
1 Getting the basics right

Introduction: Why forensic science
is a quantitative science
This is the first page of a whole book devoted to mathematical and statistical applications within
forensic science. As it is the start of a journey of discovery, this is also a good point at which to
look ahead and discuss why skills in quantitative methods are essential for the forensic scientist.
Forensic investigation is about the examination of physical evidence related to criminal activity. In
carrying out such work what are we hoping to achieve?

For a start, the identification of materials may be necessary. This is achieved by physicochemical
techniques, often methods of chemical analysis using spectroscopy or chromatography, to charac-
terize the components or impurities in a mixture such as a paint chip, a suspected drug sample or
a fragment of soil. Alternatively, physical methods such as microscopy may prove invaluable in
identify pollen grains, hairs or the composition of gunshot residues. The planning and execution
of experiments as well as the analysis and interpretation of the data requires knowledge of units
of measurement and experimental uncertainties, proficiency in basic chemical calculations and con-
fidence in carrying out numerical calculations correctly and accurately. Quantitative analysis may
require an understanding of calibration methods and the use of standards as well as the construction
and interpretation of graphs using spreadsheets and other computer-based tools.

More sophisticated methods of data analysis are needed for the interpretation of toxicological
measurements on drug metabolites in the body, determining time since death, reconstructing bullet
trajectories or blood-spatter patterns. All of these are based on an understanding of mathematical
functions including trigonometry, and a good grasp of algebraic manipulation skills.

Samples from a crime scene may need to be compared with reference materials, often from sus-
pects or other crime scenes. Quantitative tools, based on statistical methods, are used to compare sets
of experimental measurements with a view to deciding whether they are similar or distinguishable:
for example, fibres, DNA profiles, drug seizures or glass fragments. A prerequisite to using these
tools correctly and to fully understanding their implication is the study of basic statistics, statistical
distributions and probability.

The courts ask about the significance of evidence in the context of the crime and, as an expert
witness, the forensic scientist should be able to respond appropriately to such a challenge. Methods
based on Bayesian statistics utilizing probabilistic arguments may facilitate both the comparison of
the significance of different evidence types and the weight that should be attached to each by the
court. These calculations rely on experimental databases as well as a quantitative understanding
of effects such as the persistence of fibres, hair or glass fragments on clothing, which may be

Essential Mathematics and Statistics for Forensic Science Craig Adam
Copyright c© 2010 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



2 GETTING THE BASICS RIGHT

successfully modelled using mathematical functions. Further, the discussion and presentation
of any quantitative data within the report submitted to the court by the expert witness must be
prepared with a rigour and clarity that can only come from a sound understanding of the essential
mathematical and statistical methods applied within forensic science.

This first chapter is the first step forward on this journey. Here, we shall examine how numbers
and measurements should be correctly represented and appropriate units displayed. Experimental
uncertainties will be introduced and ways to deal with them will be discussed. Finally, the core
chemical calculations required for the successful execution of a variety of chemical analytical
investigations will be explored and illustrated with appropriate examples from the discipline.

1.1 Numbers, their representation and meaning
1.1.1 Representation and significance of numbers
Numbers may be expressed in three basic ways that are mathematically completely equivalent. First,
we shall define and comment on each of these.

(a) Decimal representation is the most straightforward and suits quantities that are either a bit larger
or a bit smaller than 1, e.g.

23.54 or 0.00271

These numbers are clear and easy to understand, but

134000000 or 0.000004021

are less so, as the magnitude or power of 10 in each is hard to assimilate quickly due to difficulty
in counting long sequences of zeros.

(b) Representation in scientific notation (sometimes called standard notation) overcomes this prob-
lem by separating the magnitude as a power of ten from the significant figures expressed as a
number between 1 and 10 e.g. for the examples given in (a), we get:

1.34 × 108 or 4.021 × 10−6

This is the best notation for numbers that are significantly large or small. The power of 10
(the exponent) tells us the order of magnitude of the number. For example, using the cali-
brated graticule on a microscope, the diameter of a human hair might be measured as 65 μm
(micrometres or microns). In scientific notation and using standard units (see Table 1.1), this
becomes 6.5 × 10−5 m (metres) and so the order of magnitude is 10−5 m. Note that when using
a calculator the ‘exp’ key or equivalent allows you to enter the exponent in the power of ten.

(c) An alternative that is widely used when the number represents a physical measurement, for
example such as distance, speed or mass, is to attach a prefix to the appropriate unit of mea-
surement, which directly indicates the power of ten. These are available for both large and
small numbers. There are several prefixes that are commonly used, though it is worth noting
that best practice is to use only those representing a power of 10 that is exactly divisible by 3.
Nevertheless, because of the practical convenience of units such as the centimetre (cm) and
the cubic decimetre (dm3), these units may be used whenever needed. For example, rather than
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Table 1.1. Useful prefixes representing orders of magnitude

Prefix (> 1) Power of 10 Prefix (< 1) Power of 10

deca (da) 101 deci (d) 10−1

Hecto (h) 102 centi (c) 10−2

kilo (k) 103 milli (m) 10−3

Mega (M) 106 micro (μ) 10−6

Giga (G) 109 nano (n) 10−9

Tera (T) 1012 pico (p) 10−12

Note carefully whether the prefix is an upper or lower case letter!

write a mass as 1.34 × 10−4 kg we could write it alternatively as either 0.134 grams (g) or
134 milligrams (mg).

In summary, the example of a length of 2031.2 metres may be written in the following
equivalent (represented by the symbol ‘≡’) ways:

2031.2 m ≡ 2.0312 × 103 m ≡ 2.0312 km

A summary of some of the available prefixes and their meanings is given in Table 1.1.

1.1.2 Choice of Representation
How do you decide which way to represent any number in your laboratory notebook or in a report?
There are two reasons for thinking carefully about how the value of a particular quantity should be
written down.

1. Impact and context .
Ask yourself what the reader is expected to get from the number and what relevance it has
to his or her understanding of the context. If the context is scientific and you are addressing
a technically knowledgeable audience then numbers may be represented differently than if the
context is everyday and the audience the general public.

For example, if the order of magnitude of the number is the important feature then few
significant figures may be used. If your report or document is for a non-scientific audience then
perhaps it is better to avoid scientific notation. On the other hand, as it is difficult to appreciate
a decimal number packed with zeros, it may be preferable to express it in prefixed units, such
as mm or μm for example.

2. Justification .
How many significant figures can you justify and are they all relevant in the context? If a number
is the result of a pure calculation, not involving experimental data, then you may quote the number
to any number of significant figures. However, is there any point in this? If the intention is to
compare the calculated answer with some other value, perhaps derived from experiment or to
use it to prepare reagents or set up instrumentation, then there may be no point in going beyond
the precision required for these purposes. Be aware, however, that if the number is to be used in
further calculations you may introduce errors later though over-ambitious rounding of numbers
at early stages in the calculation.
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For example, suppose we wish to cut a circle that has a circumference C of 20 cm from a sheet
of paper. The calculated diameter d required for this is found, using a standard 10 digit display
calculator, from the formula:

d = C

π
= 20

π
= 6.366197724 cm

This is the mathematically correct answer given to the limits of the calculator’s capability. However,
the measurement of this circle, on the paper before cutting out, is likely to be done with a ruler,
at best marked with a millimetre scale. Hence, quoting this diameter to anything better than two
significant figures (d = 6.4 cm) is pointless and displays poor scientific practice.

On the other hand, if you are undertaking calculations that include experimentally measured
quantities, it is not necessary to work with more significant figures than are justified by the precision
of these measurements. When making such measurements, including extra significant figures that
are guesses or unreasonable estimates is not good practice as these figures are not significant. As a
guiding general principle, your final answer should be quoted to a similar level of significance as
the least precise numbers included in the calculation itself.

For example, say we wish to estimate the value of π , by measuring the diameter and circum-
ference of a circle drawn on paper using a ruler, we may obtain values such as C = 19.8 cm and
d = 6.3 cm. Using the calculator we calculate π as follows:

π = C

d
= 19.8

6.3
= 3.142857143

Despite this output from the calculator, 10 significant figures cannot possibly be justified from
this calculation. Given that the diameter is measured to two significant figures, the best we can
reasonably expect from this answer is 3.1.

To understand in greater detail the justification for the quoted precision in such calculations, we
have to study experimental uncertainties in more detail (Section 1.3). As a general principle how-
ever, in most experimental work it is good practice to work to four significant figures in calculations,
then to round your final answer to a precision appropriate to the context in the final answer.

1.1.3 Useful definitions
In the previous section a number of important terms have been used, which need to be formally
defined as their use is very important in subsequent discussions.

Significant figures: this is the number of digits in a number that actually convey any meaning.
This does not include any information on the order or power of ten in the number representation,
as this can be conveyed by other means. Some examples, showing how the number of significant
figures is determined, are given in Table 1.2.

Truncating a number means cutting out significant digits on the right hand side of the number
and not changing any of the remaining figures.

Rounding means reducing the number of significant figures to keep the result as close as possible
to the original number. Rounding is always preferable to truncation. Note that when rounding a
number ending in a 5 to one less significant figure we conventionally round it up by one.

Table 1.3 compares the results of both truncation and rounding applied to numbers.
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Table 1.2. Examples of significant figures

Number Number of significant figures

43.909 5: all are relevant
1.04720 6: the final zero is relevant as it implies that this digit is known; if it is not

then it should be left blank
0.000203 3: as only the zero between the 2 and the 3 conveys any meaning, the others

convey the order of magnitude.
3 1: obviously
3.00 3: implies the value is known to two decimal places
300 1: as the two zeros just give the order of magnitude (this last example is

ambiguous as it could be interpreted as having 3 significant figures since
the decimal point is implicit)

Table 1.3. Examples of rounding and truncation

Number Truncated to

5 figures 4 figures 3 figures 2 figures

4.5527 4.552 4.55 4.5

4.55272 Rounded to

4.5527 4.553 4.55 4.6

1.1.4 Estimation
It always pays to think intelligently when working with numbers. Nowadays, when the calculator
will do all the hard work and provides an answer with more significant figures that you could ever
need, it is still necessary to look at the result and ask yourself “Is that a reasonable answer?”. Things
can go wrong when using a calculator: a number may be entered incorrectly or misread from the
display; the wrong operation may be entered so you carry out a division rather than a multiplication,
and so on. Having the skill to estimate the correct answer, as well as an awareness of how errors
can occur, are invaluable to the practising scientist.

In this context, estimation means being able to calculate the order of magnitude of an answer using
a pencil and paper. The aim is not to decide whether the result given by the calculator is exactly cor-
rect but to determine whether or not it is of the expected size. This is achieved by carrying out the cal-
culation approximately using only the powers of ten and the first significant figure in each number in
the calculation. There are only two rules you need to remember for dealing with orders of magnitude:

multiplication means adding the powers of 10: 10x × 10y = 10x+y

division means subtracting powers of ten:
10x

10y
= 10x−y

Each number is rounded to one significant figure and the appropriate arithmetical calculations carried
out as shown in the worked exercises.
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Worked Exercises
Exercise Estimate the results of the following calculations without using a calculator:

(1)

(
1.72 × 102

) × (
6.16 × 105

)
3.88 × 103

≈ 2 × 6

4
× 102+5−3 = 3 × 104

(2)
3.1416 × (

2.06 × 10−4
)2

7.68 × 10−3
≈ 3 × 22

8
× 10−4−4−(−3) = 2 × 10−5

A further estimation skill is to be able to use your experience, general scientific knowledge and
ingenuity to deduce the approximate size of a physical quantity such as a length or mass, for
example. Sometimes we do this by imaginary experiments; e.g., to estimate the width of a cotton
thread, imagine it lying against the scale of ruler and visualize the measurement. Other approaches
include making simplifying approximations of shape, for example. This skill is helpful in planning
and designing experiments as well as deciding whether the values entered into you laboratory
notebook are reasonable!

Worked Example

Example In the study of shoeprints on soft ground it is necessary to estimate the pressure
exerted by the individual responsible. The formula for pressure in this context is:

P = Mg

A

where g ∼ 10 ms−2, M is the body mass and A the contact area with the surface.

Solution To estimate P we need to make sensible estimates of M and A. Assuming an
average male adult was responsible for the shoeprints, we may estimate the corresponding
body weight to be around 75 kg and the shape and size of each shoe to a rectangle with
dimensions 10 cm by 30 cm. This gives:

P = 75 × 10

2 × 10 × 10−2 × 30 × 10−2
= 750

0.06
= 1.25 × 104 N m−2(Pa)

The factor of two in the denominator is to account for the weight being distributed over two
shoe soles!

Self-assessment exercises and problems
1. Complete Table 1.4. For the first two columns, express your answer in standard units.
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Table 1.4. Data required for self-assessment
question 1

Decimal Scientific notation Prefixed units

0.0025 m
5.4 × 105 kg

181 μg
3.652 × 10−2 m3

1.19 cm2

2. Round the following numbers to three significant figures:
(a) 126.545 (b) 0.064 3573 (c) 1.6346 × 103 (d) 1.9996 × 10−2

3. Estimate the results of the following calculations without using your calculator:

(a) (3.9×102)× (
7.8×10−3

) × (
1.2×105

)
(b)

8.9912× (
3.81×10−4

)
9.21×103

(c)

(
7.77×10−2

)2 × (
2.91×108

)
5.51×10−3

(d)

(
1.6×10−19

)2

12.56× (
8.85×10−12

) × (
5.3×10−10

)2

4. Estimate the following to one significant figure, explaining your method:
(a) the separation of fingerprint ridges
(b) the diameter of a human hair
(c) the width of an ink-line on paper
(d) the surface area of an adult body
(e) the mass of a single blood drop from a cut finger.

1.2 Units of measurement and their conversion
1.2.1 Units of measurement
Measurements mean nothing unless the relevant units are included. Hence a sound knowledge of
both accepted and less commonly used units, together with their inter-relationships, is essential to
the forensic scientist. This section will examine the variety of units used for the key quantities you
will encounter within the discipline. In addition to a brief discussion of each unit, a number of
worked examples to illustrate some of the numerical manipulations needed for the inter-conversion
of units will be included.

However, not only should units be declared in our measurements, but more importantly, all the
units we use should be from a standard system where each quantity relates to other quantities in a
consistent way. For example, if we measure distance in metres and time in seconds, velocity will
be in metres per second; if mass is quoted in kilograms then density will be in kilograms per cubic
metre. A consequence of this is that the evaluation of formulae will always produce the correct
units in the answer if all quantities substituted into the formula are measured in the appropriate
units from a consistent system.
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Both in the UK and the rest of Europe, the Systèm Internationale, or SI, units based on the
metre, kilogram and second, is well established and extensively used. In the US, many of the
imperial or British engineering units are still actively used, in addition to those from the SI. In
the imperial system, the basic units are the foot, pound and second. In some engineering contexts
worldwide, units from both systems exist side by side. Occasionally, measurements are quoted
using the, now defunct, CGS system, based on the centimetre, gram and second. Generally CGS
quantities will only differ from those in the SI system by some order of magnitude but this system
does include some archaic units which are worth knowing as you may come across them in older
publications. You will also find that in some areas of forensic science such as ballistics, non-SI units
predominate.

Nowadays, forensic scientists should work in the internationally accepted SI system. However,
this is not always the case across the discipline, world-wide. As a result, when using non-SI data
or when comparing work with those who have worked in another system it is essential to be
able to move between systems correctly. The key units from SI and non-SI systems, together
with their equivalencies, are given in Appendix I. Some features of these units will now be
discussed.

1.2.1.1 Mass
The SI unit of mass is the kilogram (kg), though very often the gram (g) is used in practical
measurement. The imperial unit is the pound weight (lb), which comprises 16 ounces (oz); 1 lb =
453.6 g. Very small masses are sometimes measured in grains (440 grains per oz); for example
precious metals, bullets etc. Large masses are often quoted in tonnes (1 tonne = 1000 kg = 2200 lbs),
which is almost, but not quite, the same as the imperial ton (note the spelling) (1 ton = 2240 lb).

1.2.1.2 Length
The SI unit of length is the metre, though we use the centimetre and millimetre routinely. For
microscopic measurement the micrometre or micron (1 μm = 10−6 m) is convenient, whilst for
topics at atomic dimensions we use the nanometre (1 nm = 10−9 m). Imperial units are still widely
used in everyday life: for example, the mile, yard, foot and inch. At the microscopic level, the
Ångström (10−10 m) is still commonly used, particularly in crystallographic contexts.

1.2.1.3 Time
The unit of time, the second (s), is common across all systems. However, in many contexts, such
as measurement of speed or rates of change, the hour (1 h = 3600 s) and the minute (1 m = 60 s)
are often much more convenient for practical purposes. Nevertheless, in subsequent calculations, it
is almost always the case that times should be written in seconds.

1.2.1.4 Volume
Volume is based on the SI length unit of the metre. However, the cubic metre (m3) is quite large
for many purposes so often the cm3 (commonly called the cc or cubic centimetre), or mm3 are
used. The litre (1 L = 1000 cm3) is also a convenient volume unit, though not a standard unit. It is
worth remembering that the millilitre is the same quantity as the cubic centimetre (1 mL = 1 cm3).
Rather than use the litre, it is preferable now to quote the equivalent unit of the cubic decimetre
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(1 L = 1 dm3), though the former unit is still widely used in the literature. Imperial units are not,
for the most part, based on a corresponding length unit so we have gallons and pints, though the
cubic foot is sometimes used. Note that the UK gallon and the US gallon are different! 1 UK gallon
= 277.42 in3 while 1 US gallon = 231 in3.

1.2.1.5 Density
Density is an important forensic quantity as it can be used to identify pure metals from their alloys
and to match glass fragments. Density ρ is the mass per unit volume and is therefore expressed
mathematically as the ratio of mass M to volume V :

ρ = M

V

The units of density follow the mathematics of the formula to give kg m−3. Sometimes we use the
relative density of a substance compared with that of water. This is also called the specific gravity
(SG). Thus:

SG = ρ

ρ(water)

Since this is a ratio of densities, SG is a pure number with no units. The density of water at 20◦C
is 998 kg m−3 but is normally taken as 1000 kg m−3 or 1 g cm−3. Densities of liquids and solids
vary from values just below that of water, such as for oils and solvents, to over 10 000 kg m−3 for
heavy metals and alloys.

1.2.1.6 Concentration
This is a quantity that is often encountered in the chemical analysis of forensic materials that occur
in solution – such as drugs or poisons. It is similar to density in that it can be expressed as a
ratio of mass to volume. However, in this case the mass refers to the solute and the volume to
the solvent or sometimes the solution itself. These are different substances and so concentration is
a different concept to density. The mass is often expressed in molar terms (see Section 1.4.1) so
that the concentration is given in moles per dm3 (mol dm−3), for example. Sometimes we include
the mass explicitly as in mg cm−3 or μg dm−3; for example, the legal (driving) limit in the UK
for blood alcohol may be stated as 0.8 g dm−3. An alternative approach is to ratio the mass of the
solute to that of the solvent to give a dimensionless concentration, which may be stated as parts per
million (ppm) or parts per billion (ppb) by mass or alternatively by volume. These concepts will
be discussed in greater detail later in section 1.4. Note the practical equivalence of the following
units:

1 dm3 ≡ 1 L

1 cm3 ≡ 1 cc ≡ 1 mL

1 g cm−3 ≡ 1 g cc−1 ≡ 1000 kg m−3

1 mg cm−3 ≡ 1 g dm−3
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1.2.1.7 Force
This is an important quantity not just on its own but more particularly as the basis for the units of
pressure, work and energy. Force may be usefully defined as the product of mass and acceleration.
On the Earth where the acceleration due to gravity is 9.81 ms−2, the consequent force on a mass is
its weight. The Newton (N) is the SI unit of force and is equivalent to the kg m s−2. The imperial
unit is the pound force (lb), with 1 lb force = 4.45 N. There is also the CGS unit of force called
the dyne (1 dyne = 10−5 N).

1.2.1.8 Pressure
This quantity has more units in regular use than any other! The SI unit is the N m−2 commonly
called the Pascal (Pa). This reminds us of the definition of pressure as:

Pressure = Force

Area

In the imperial system the corresponding unit is the pound per square inch or psi.
We can also measure pressure relative to the atmospheric pressure on the earth’s surface, which

is around 105 Pa. This precise value is called 1 bar. However, a pressure of exactly 101 325 Pa is
termed 1 atmosphere, and so both these units may be conveniently used for pressures on the Earth’s
surface, but it should be noted that they are not precisely equivalent. As pressure can be measured
experimentally using barometric methods, we occasionally use units such as mm Hg (1 mm Hg =
1 Torr) to describe pressure. This represents the height of a column of mercury (Hg) that can be
supported by this particular pressure.

1.2.1.9 Temperature
Within forensic science most temperature measurements will be encountered in degrees Celsius
(◦C), where 0 ◦C is set at the triple point – effectively the freezing point – of water and 100 ◦C at
its boiling point. However, many scientific applications use the absolute temperature or Kelvin scale,
where the zero point is independent of the properties of any material but is set thermodynamically.
Fortunately, the Kelvin degree is the same as the Celsius degree, only the zero of the scale has been
shifted downwards, so the scales are related by:

TK = TC + 273.15

The Fahrenheit temperature scale is now extinct for most scientific purposes.

1.2.1.10 Energy
The wide range of units for energy has arisen as part of the historical development of our under-
standing of this important concept. The SI unit is, of course, the Joule (J), which is 1 N m in
fundamental units. In describing electrical energy we may use the kilowatt-hour (kW-h), where
1 kW-h = 3.6 × 106 J. For the energies typical of atomic processes, the unit of the electron-volt
is used frequently; 1 eV = 1.602 × 10−19 J. In spectroscopy you will also meet energies defined
in terms of the spectroscopic wavenumber (cm−1). This unit arises from the De Broglie formula,
which may be used to define the relationship between energy E and wavelength λ as:
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E = hc

λ

In this formula c = 2.998 × 108 ms−1 is the speed of light and h = 6.626 × 10−34 Js is Planck’s
Constant. This may be re-arranged to convert energy in eV to wave-number in cm−1, as follows:

1

λ
= E

hc
= 8065 × E cm−1 where E is in eV

An alternative version of this equation may be used to convert wavelength in nm to energy in eV:

E = 1240

λ
eV where λ is in nm

The calorie or often the kilocalorie may be used to describe chemical energies – for example the
energies of foods. 1 cal = 4.186 J is the appropriate conversion factor. The imperial unit is the foot-
pound, which is remarkably close to the joule as 1 ft-lb = 1.356 J. However, we more frequently
come across the British Thermal Unit or BTU , to describe large amounts of energy, such the heat
emitted from burning processes, with 1 BTU = 1055 J.

1.2.1.11 Power
Power is the rate of doing work or expending energy. The units of power are closely linked to
those for energy, with the SI unit being the Watt where 1 W = 1 J s−1. Other units for power are
linked in a similar way to those for energy. The exception is the horsepower , which is unique as a
stand-alone unit of power.

1.2.1.12 Other quantities
Once we move away from the core mechanical units there are far fewer alternatives to the SI units
in common use, so no details will be given here. Should you come across an unexpected unit there
are many reliable reference texts and websites that will give the appropriate conversion factor.

1.2.2 Dimensions
The concept of dimensions is useful in determining the correct units for the result of a calculation
or for checking that a formula is correctly recalled. It is based on the fact that all SI units are based
on seven fundamental units, of which five are of particular relevance – the metre, kilogram, second,
kelvin and mole. The remaining two – the ampere and the candela – are of less interest in forensic
science. Further information on the fundamental units is given at, for example, www.npl.co.uk.
Some examples of building other units from these have already been given, e.g.

ρ = M

V

This equation tells us that the units of density will be the units of mass divided by the units of
volume to give kg m−3. To express this in terms of dimensions we write the mass units as M and
the length units as L to give ML−3.
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To determine the dimensions of pressure we follow a similar approach. The units here are Pascals,
which are equivalent to N m−2. The Newton however is not a fundamental unit, but is equivalent
to kg m s−2. Writing the Pascal dimensionally therefore gives:

MLT−2 × L−2 ≡ ML−1 T−2

A useful application of dimensionality occurs when dimensions cancel to give a dimensionless quan-
tity, e.g. an angle (see Section 4.1.1) or a simple ratio, such as specific gravity. Many mathematical
functions that we shall meet in the following chapters act on dimensionless quantities. For example,
the sine of an angle must, by definition, be a pure number. Consider an equation from blood pattern
analysis such as

sin θ = W

L

where W and L are the length dimensions of an elliptical stain. This is a satisfactory form of equation
as the dimensions of W and L are both length, so they cancel to make W/L a pure number.

Worked Problem
Problem Explain why a student, incorrectly recalling the formula for the volume of a sphere
as 4πR2, should realize she has made a mistake.

Solution The units of volume are m3 so the dimensions are L3. Any formula for a volume
must involve the multiplication together of three lengths in some way. Inspection of this
formula shows its dimensions to be L2, which is an area and not a volume. Note that this
formula is actually that for the surface area of a sphere.

1.2.3 Conversion of units
The ability to convert non-SI units into SI units, or even to carry out conversions within the SI
system such as km h−1 to m s−1, is a necessary competence for the forensic specialist. This is
not something that many scientists find straightforward, as it involves an understanding of the
principles together with some care in application. Although it is best learned by worked examples,
some indications of the general method are helpful at the start.

The basic principle is to write each of the original units in terms of the new units then to multiply
out these conversion factors appropriately to get a single conversion factor for the new unit. For
example, to convert a density from g cm−3 to kg m−3, the conversion factor will be derived as
follows.

1 g = 10−3 kg and 1 cm = 0.01 m to give a conversion factor = 10−3

(0.01)3
= 10−3

10−6
= 103.

Thus 1 g cm−3 is the same as 1000 kg m−3. Note that we divide these two factors since density is
“per unit volume”. In other words, volume is expressed as a negative power in the statement of the
density units.
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Worked Examples

Example 1. A car is travelling at 70 km h−1 before being involved in a collision. Express
this speed in standard units.

Solution 1. The standard SI unit for speed is m s−1. Since 1 km = 1000 m and 1 h = 3600 s,
we can obtain the conversion factor from:

1000

3600
= 0.2778

Therefore the equivalent speed v in standard units is v = 70 × 0.2778 = 19.44 m s−1. Alter-
natively, this calculation may be completed in a single step, as follows:

v = 70 × 1000

3600
= 19.44 m s−1

Example 2. A spherical shotgun pellet has a diameter of 0.085 in and there are 450 such
pellets to the ounce. Calculate:

(a) the pellet diameter in mm
(b) the mass of one pellet in g
(c) the density of the pellet material in kg m−3.

The volume of a sphere is given by 4πr3/3.

Solution 2.

(a) Convert the pellet diameter to m: 0.085 × 2.54 × 10−2 = 2.16 × 10−3 m = 2.16 mm.
(b) Calculate the mass of a single pellet in oz then convert to g in a single step:

m = 1

450
× 28.35 = 0.0630 g

(c) Calculate the volume of a pellet in m3 (standard units), remembering to convert diameter
to radius:

V = 4

3
π

(
2.16 × 10−3

2

)3

= 5.277 × 10−9 m3

Then the density in kg m−3, ρ = 0.0630 × 10−3

5.277 × 10−9
= 11940 kg m−3.
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Example 3. Peak pressure in a rifle barrel is 45 000 lb in−2. Express this in (a) Pa (b) bar.

Solution 3.

(a) Using the conversion factors of 1 lb force = 4.45 N and 1 in = 2.54 × 10−2 m, we can
calculate the pressure in Pa as:

P = 45000 × 4.45(
2.54 × 10−2

)2
= 3.104 × 108 Pa

Since the pressure depends on inversely on area, which has dimensions L2, the conversion
factor for inches to metres needs to be squared in this calculation.

(b) Since 1 bar = 105 Pa, the conversion is trivial: P = 3.104 × 103 bar.

Self-assessment problems
1. Pressure P is linked to the height of a mercury barometer h by the formula:

P = ρgh

The density of mercury ρ = 13.53 g cm−3 and g = 9.81 m s−2. Calculate the height of the
mercury column in metres, at a pressure of 1 atmosphere, to three significant figures.

2. A small cache of diamonds is examined by density measurement to determine whether they
are genuine or simply cut glass. Their volume, measured by liquid displacement, is found
to be 1.23 cm3 while their mass is determined by weighing to be 48 grains. By calculating
their density in g cm−3, determine whether the cache is genuine. Standard densities are
given as diamond, 3.52 g cm−3, and glass, ∼2.5 g cm−3.

3. A 0.315′′ calibre rifle bullet has a mass of 240 grains.
(a) Convert its diameter and mass to SI units.
(b) If the bullet has a kinetic energy of 2000 ft lb, calculate its speed in m s−1.

Note that the speed v is related to kinetic energy T by v =
√

2T

m
.

4. The heat of combustion of gasoline is the energy released as heat through the complete
burning of a kilogram of the material and has a value of 43.7 MJ kg−1. In addition the
specific gravity of gasoline is 0.751. In a fire, 5000 L of gasoline are consumed. Calculate
the total heat generated in
(a) J (b) BTU.

5. If the legal limit for alcohol in blood is 0.8 mg cm−3, express this in
(a) mg dm−3 (b) g L−1.

6. In an IR spectrum, an H–O–H bend occurs at 1618 cm−1. Express the energy of this
absorption in: (a) eV (b) J.
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1.3 Uncertainties in measurement and how
to deal with them
1.3.1 Uncertainty in measurements
All measurements are subject to uncertainty . This may be due to limitations in the measurement
technique itself (resolution uncertainty and calibration uncertainty) and to human error of some sort
(e.g. uncertainty in reading a scale). It is evidenced by making repeat measurements of the same
quantity, which then show a spread of values, indicating the magnitude of the uncertainty – the
error bar . The level of uncertainty will determine the precision with which the number may be
recorded and the error that should accompany it. The precision is essentially given by the number
of significant figures in the quantity under discussion, a high precision reflecting small uncertainty
in the measurement. It is clearly difficult to determine the uncertainty in a single measurement
but it can be estimated through careful consideration and analysis of the measurement method and
process.

If the true value of the quantity is known then we can identify the accuracy of the measure-
ment. This is extent to which our measurement agrees with the true value. It is important to fully
appreciate the difference between precision and accuracy. This may be illustrated by comparing
the measurement of mass using two different instruments – a traditional two-pan balance and a
single-pan digital balance.

The former method compares the unknown mass against a set of standard masses by observation
of the balance point. The precision can be no better than the smallest standard mass available, and so
this is a limiting factor. The measurement is always made by judgement of the balance point against
a fixed scale marker which is a reliable technique so any measurement should be close to the correct
value. This method is therefore accurate but not necessarily precise. On the other hand, the digital
balance will always display the value to a fixed number of significant figures and so it is a precise
technique. However, if the balance is not tared at the start or has some electronic malfunction, or
the pan is contaminated with residue from an earlier measurement, then the displayed mass may not
be close to the correct value. This method therefore may be precise but not necessarily accurate.

If all goes well, the true value should lie within the range indicated by the measurements, noted
to an appropriate precision, and the error bar may be interpreted from this data using the method of
maximum errors . Strictly, this should be a statistical comparison, based on the probability relating
the position of the true value to that of the measured value, but this is for future discussion in
Section 10.1.1. For the moment we shall consider the principles of error analysis by the maximum
error method. This implies that, should a measurement and its uncertainty be quoted, for example,
as 3.65 ± 0.05, then the true value is expected to lie between 3.60 and 3.70.

The uncertainty in the measurement x may be expressed in two ways.

The absolute uncertainty is the actual magnitude of the uncertainty �x.
The relative uncertainty is obtained by expressing this as a fraction or percentage of the measured

value, e.g.

�x

x
or

�x

x
× 100

Note that we use the Greek symbol � – upper case delta – to represent a small difference between
two values of the same quantity: in this case the spread of values given by the uncertainty .
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Experimental uncertainties may be classified into two categories.

1. Random uncertainties produce a scatter of measurements about a best value. These may arise
from a variety of causes, such as poor resolution, electrical noise or other random effects,
including human failings such as lack of concentration or tiredness! They cannot be eliminated
from any measurement but may be reduced by improved techniques or better instrumentation.
For a single measurement, the uncertainty must be estimated from analysis of the measurement
instruments and process. For example, in using a four-figure balance, draughts and other dis-
turbances may mean that the last figure in the result is not actually reliable. So, rather than
quoting a result as say, 0.4512 ± 0.00005 g, which indicates that the value of the last digit is
accepted, it may be more realistic to state 0.4512 ± 0.0003 g if fluctuations indicate an uncer-
tainty of three places either way in the fourth digit. In Section 1.3.2 we shall see how the
uncertainty arising from random errors may be assessed and reduced by the use of repeat mea-
surements.

2. A systematic uncertainty can arise through poor calibration or some mistake in the experimental
methodology. For example, using a metre stick to measure length when the zero end of the scale
has been worn down so that the scale is no longer valid will now give readings that are system-
atically high. Incorrect zeroing (taring) of the scale of a digital balance or some other instrument
are common sources of systematic error. Such effects often result in an offset or constant error
across a range of values that is sometimes called bias . However, they can also give rise to
uncertainties that increase or decrease as measurements are made across a range. In principle,
systematic uncertainties may be removed through proper calibration or other improvements to
the measurement procedure, though they may be difficult to discover in the first place.

1.3.2 Dealing with repeated measurements: outliers,
mean value and the range method
It is often the case that an experiment may be repeated a number of times in order to obtain a
set of measurements that ideally should be the same but that because of random errors form a set
of numbers clustered around some mean value. Where some measurements within a set deviate
significantly from the mean value compared with all the others they are called outliers and may
be evidence of an occasional systematic error or some unexpectedly large random error (gross
error) in the data. Outliers should be identified by inspection or by plotting values along a line,
and then omitted from any averaging calculation. For example, from the following series of repeat
measurements – 6.2, 5.9, 6.0, 6.2, 6.8, 6.1, 5.9 – the solitary result of 6.8 looks out of place as it is
numerically quite separate from the clustering of the other measurements and should be disregarded.
Note that there are more formal, statistically based methods for identifying outliers, which will be
examined in Section 10.6. For the moment, you should be aware that a critical approach to data,
including an awareness of outliers, is a vital skill for the experimental scientist.

Estimation of the random uncertainty or error bar in a quantity can be improved through such
repeated measurements. Statistically, the magnitude of the uncertainty may be reduced through
analysis of such a set of measurements. Where only random errors are present, the best value is
given by the average or mean value x for the set of measurements, xi :

x = x1 + x2 + · · · · · · + xn

n
= 1

n

n∑
i=1

xi
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The “capital sigma” symbol � is shorthand for taking the sum of a series of values xi , where the
symbol “i” provides an index for this set of numbers running from i = 1 to i = n. In principle, the
uncertainty associated with this mean should decrease as the number of measurements increases,
and this would override any estimate of uncertainty based on a single measurement. There are two
difficulties here, however. This assumes, first, that the data are distributed about the mean according
to a statistical law called the normal distribution, and second, that the dataset contains a significant
number of measurements. These issues will be discussed in detail in Chapters 6, 9 and 10 where the
calculation of uncertainties will be dealt with in a rigorous fashion. For the present, a reasonable
and straightforward approach to estimating error bars is given by the range method . This provides
an approximate value for the error bar (the standard error) associated with n repeat measurements
where n is less than 12 or so. To derive the standard error, we calculate the range of the set of
measurements by identifying the largest and smallest values in the set. Then the range is divided
by the number of measurements n to give the uncertainty �x (Squires, 1985):

�x ≈ xmax − xmin

n

This method works best when the errors involved are truly random in origin.
Finally, care is needed when discussing “repeat measurements” as there are two ways in which

these may be made. If further measurements are made on the same specimen, with no changes to the
experimental arrangement, then this examines the repeatability of the measurement. Alternatively,
if a fresh specimen is selected from a sample, e.g. a different fibre or glass fragment from the same
source, or the same specimen is examined on a separate occasion or with a different instrument
or settings, the reproducibility of the measurement is then the issue. The expectation is that the
uncertainty associated with repeatability should be less than that for reproducibility.

1.3.3 Communicating uncertainty
Generally, we should quote an uncertainty rounded to one significant figure and then round the
related measurement to this level of significance. This is because the uncertainty in the leading digit
overrides that of any subsequent figures. In practice, an exception would be made for uncertainties
starting with the digit “1”, where a further figure may be quoted. This is due to the proportionally
much larger difference between 0.10 and 0.15 say, compared to that between 0.50 and 0.55.

For example, a concentration measured as 0.617 mol dm−3 with an estimated uncertainty of
0.032 mol dm−3 should be recorded as 0.62 ± 0.03 mol dm−3, whereas with an uncertainty of
0.013 mol dm−3 this should be quoted as 0.617 ± 0.013 mol dm−3.

However, if no uncertainty is given, the implied uncertainty should be in the next significant figure.
For instance, if a value of 5.65 × 10−6 kg is quoted, it is assumed correct to the last significant
figure and so the uncertainty here is in the next unquoted figure to give 5.65 ± 0.005 × 10−6 kg.
Note that the presentation of this error in scientific notation to ensure that both the value and its
uncertainty are expressed to the same power of 10. This means that the correct value is expected
to be between 5.60 and 5.70 and our best estimate from measurement is 5.65. Therefore, it is very
important to ensure that your value is written down to reflect clearly the precision you wish the
number to have: e.g., if a length, measured using a ruler marked in mm, is exactly 20 cm, then it
should be quoted as 20.0 cm, implying uncertainty to the order of tenths of a mm. It is worth noting
that some scientists suggest taking a more pessimistic view of uncertainty, so that in this example of
a weight quoted as 5.65 × 10−6 kg they would assume some uncertainty in the last figure, despite the
above discussion, and work with 5.65 ± 0.01 × 10−6 kg. These difficulties reinforce the importance
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of the experimental scientist always quoting an uncertainty at the point of the measurement itself,
as estimation in retrospect is fraught with difficulty.

Worked Exercises
Exercise 1. Measurement of a bullet diameter is quoted as 0.88 cm with an uncertainty of
0.03 cm. Calculate the
(a) absolute uncertainty (b) relative uncertainty (c) % uncertainty.

Solution 1.

(a) The absolute uncertainty is simply 0.03 cm.

(b) The relative uncertainty is given by
�x

x
= 0.03

0.88
= 0.034.

(c) The % uncertainty is given by 0.034 × 100 = 3% expressed to one significant figure.

Exercise 2. The weight of a chemical from a three-figure balance is 0.078 g. Calculate the
(a) absolute error (b) relative error (c) % error.

Solution 2.

(a) No error is quoted so the uncertainty must be in the next significant figure, to give:

�x = 0.0005 g

(b) The relative error is given by
�x

x
= 0.0005

0.078
= 0.006.

(c) The % error is given by 0.006 × 100 = 0.6%.

Exercise 3. A student produces bloodstains by dropping blood droplets on to a flat paper
surface and measuring the diameter of the stains produced. Five repeat measurements are
carried out for each set of experimental conditions. The following is one set of results.

Blood droplet diameter (cm)

1.45 1.40 1.50 1.40 1.70

Inspect this data and hence calculate a best value for the diameter and estimate the error bar.
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Solution 3. All values are quoted to the nearest 0.05 cm. Four of the values are clearly
tightly clustered around 1.45 cm while the fifth is 0.25 cm distant. This is likely to be an
outlier and should be removed before calculating the mean:

x = 1.45 + 1.40 + 1.50 + 1.40

4
= 1.44 cm

This mean is quoted to the same number of significant figures as each measurement. The
error bar may be calculated by identifying the maximum and minimum values in the data
and using the range method, excluding any outliers. Hence:

�x ≈ 1.50 − 1.40

4
= 0.025 ≈ 0.03 cm

Thus the uncertainty may be taken as 0.03 cm and the result quoted as

x = 1.44 ± 0.03 cm

Note that there is always some approximation and rounding in such measurements, so round-
ing the mean to 1.45 (as all experimental values are quoted to the nearest 0.05) and quoting
the uncertainty as 0.05 is acceptable in this case.

Self-assessment problems
1. Estimate the experimental uncertainty in making measurements with

(a) a standard plastic 30 cm ruler
(b) a small protractor
(c) a three-digit chemical balance
(d) a burette marked with 0.1 mL graduations.

2. Ten glass fragments are retrieved from a crime scene and the refractive index of each is
measured and results quoted to five decimal places.

Refractive index

1.51826 1.51835 1.51822 1.51744 1.51752 1.51838 1.51824 1.51748 1.51833 1.51825

It is suspected that these fragments originate from two different sources. Inspect the data,
determine which and how many fragments might come from each source, then calculate
the mean and estimated uncertainty for the refractive index for each.

3. Forensic science students each measure the same hair diameter using a microscope with a
calibrated scale. The following results are obtained from 10 students.

Hair diameter (μm)

66 65 68 68 63 65 66 67 66 68
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Determine whether there may be any possible outliers in this data and obtain a best value
for the mean hair diameter together with an estimated uncertainty.

4. A chisel mark on a window frame has a measured width of 14.1 mm. Test marks are made
on similar samples of wood using a suspect chisel and the following results obtained.

Width of chisel mark (mm)

14.4 14.2 13.8 14.4 14.0 14.6 14.2 14.4 14.0 14.2

Examine this data for outliers, calculate the mean value and estimated uncertainty, and on
this basis decide whether these data support the possibility that this chisel is responsible
for the marks on this window frame.

1.4 Basic chemical calculations
1.4.1 The mole and molar calculations
The basic idea of the mole is to be able to quantify substances by counting the number of
microscopic particles or chemical species – atoms, molecules or ions – they contain, rather than
by measuring their total mass. Realistically, any sample will contain such a large number of
particles that dealing directly with the numbers involved would be cumbersome and impractical in
any chemical context. Instead, a new unit is defined to make manipulating quantities of chemical
substances, containing these huge numbers of particles, a practical proposition. This unit is the
mole. So, in working with quantities of substances, for example at the kg/g/mg level in mass, we
count the particles in an equivalent fashion as several moles or some fraction of a mole. A formal
definition of the mole is the following.

1 mole is the amount of a substance that contains the same number of entities as there are atoms in
a 12 g sample of the isotope 12C .

12C is the most common stable isotope of carbon having 6 protons and 6 neutrons in its atomic
nucleus. Strictly we should call this the gram-mole, as we have defined the mass in g rather than
kg, which makes it a non-SI unit. However, although in some circumstances the kg-mole may be
used, in all chemical-analytical work the g-mole predominates. You should also note the use of the
word “particle” in this discussion! The mole may be applied to any entity and, within the chemical
context, this will be the atom, ion or molecule. It is important, however, to be consistent, and always
ensure that like is being compared with like.

Molar calculations are essentially based on proportionality, involving the conversion between
mass and number of particles, as measured in moles. Hence, the constant of proportionality needs
to be known. This is found by measuring very precisely the mass of one 12C atom using a mass
spectrometer, and from the definition of the mole, the number of particles in one mole is found to be:

NA = 6.022 × 1023 particles
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This special number, for which we use the symbol NA, is called Avogadro’s number . For the
purposes of routine calculations this is normally expressed to two decimal places. Thus, if we have
n moles of a substance that comprises N particles then:

N = nNA

Since the number of particles N for a particular substance is proportional to its mass M , this
expression may be written in an alternative way that is of great practical use, namely:

M = nm

where m is the molar mass or mass of one mole of the substance in grams per mole – written as
g mol−1. Since this is constant for any particular substance – for example, m = 12.01 g mol−1 for
carbon due to the particular mix of stable isotopes in terrestrial carbon – molar masses are readily
available from reference sources. For atoms or ions

the molar mass is the atomic mass (often termed the atomic weight) of a substance expressed in
grams per mole.

For a molecular substance we replace the atomic weight by the molecular weight (molecular
mass), which is calculated from the chemical formula using the appropriate atomic weights.
If a substance comprises more than one stable isotope of any species, e.g. chlorides comprise
75.8% 35Cl and 24.2% 37Cl, then the molar mass must be calculated by including these in their
appropriate proportions.

Worked Problems
Problem 1. Calculate the mean molar mass of chlorine (Cl).

Solution 1. Using the data given previously, with the isotopic masses expressed to four
significant figures, the contributions from the two isotopes add proportionally to give:

m(Cl) = 75.8

100
× 34.97 + 24.2

100
× 36.97 = 35.45 g mol−1

Problem 2. Calculate (a) the number of molecules in 0.02 moles of nitrogen gas
(b) the number of moles that corresponds to 3.2 × 1025atoms of helium.

Solution 2. In both cases we use N = nNA.

(a) N = 0.02 × 6.02 × 1023 = 1.20 × 1022 N2 molecules.

(b) N = nNA ⇒ n = N

NA
= 3.2 × 1025

6.02 × 1023
= 53.2 moles of He.
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Problem 3. Calculate

(a) the number of moles of gold (Au) present in a pure gold coin of mass 180 g
(b) the mass of 3 moles of oxygen gas (O2).

[Data: molar masses are m(Au) = 197.0 g mol−1; m(O) = 16.0 g mol−1.]

Solution 3. In both cases we use M = nm

(a) M = nm ⇒ n = M

m
= 180

197.0
= 0.914 moles of gold.

(b) M = nm = 3 × (2 × 16) = 96 g of O2 gas.
Note that as oxygen exists in diatomic molecular form we have used the molecular molar
mass here.

Problem 4. Calculate the formula mass for NaCl and hence calculate the number of moles
in 2 g of salt. [m(Na) = 22.99 g mol−1; m(Cl) = 35.45 g mol−1.]

Solution 4. The term formula mass is used here since NaCl is ionic not molecular in
structure, and is calculated by:

m(NaCl) = 22.99 + 35.45 = 58.44 g mol−1

Then, using M = nm, we get:

M = nm ⇒ n = M

m
= 2

58.44
= 0.0342 moles of NaCl

Problem 5. The chemical (molecular) formula for anhydrous codeine is C18H21NO3.
Calculate the mass of 0.01 moles of the drug. [Data: m(C) = 12.01 g mol−1; m(H) =
1.008 g mol−1; m(N) = 14.01 g mol−1; m(O) = 16.00 g mol−1, working to four significant
figures.]

Solution 5. First we determine the molecular molar mass from the chemical formula:

m(C18H21NO3) = 18 × 12.01 + 21 × 1.008 + 1 × 14.01 + 3 × 16.00

= 299.36 g mol−1

Then, using M = nm:

M = 0.01 × 299.36 = 2.99 g of codeine
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1.4.2 Solutions and molarity
In practical, forensic chemical analysis, the concept of the mole is met with most frequently when
dealing with reagents in solution and in the preparation of standards for quantitative analyses. Here
it is essential to know what mass of a substance to dissolve in order to obtain a particular strength
of solution, as measured by the number of chemical species (or moles) present. Conventionally, the
litre or the dm3 are used to quantify the amount of solvent (often water) included, so we should
refer to the strength of such solutions using either g L−1 or g dm−3 when dealing with mass of
solute, or mol L−1 or mol dm−3 in the case of the number of moles of solute. These latter units
measure the molarity of the solution. Often, rather than using the proper full units, e.g. 2 mol dm−3,
we simply say that a solution is 2 M or 2 molar.

The molarity of a solution is the number of moles of a substance present in 1 dm3 of solution .

If n moles of the substance are dissolved in V dm3 of solvent, the molarity C is calculated
according to:

C = n

V
mol dm−3

If we need to prepare a solution of a specified molarity and volume then this formula is used to deter-
mine the number of moles of solute required, which then may be converted to mass of solute using
the result from the previous section. In the analytical laboratory, reagents in common use are often
kept as stock solutions, usually of a high molarity. These may then be diluted appropriately to obtain
the concentration needed for a particular application. Similarly, when preparing very dilute standard
solutions of known concentration for quantitative analysis, for example by ICP-OES (Inductively-
Coupled-Plasma Optical Emission Spectroscopy), it is not practical to weigh out tiny amounts of
solute. Rather, a more concentrated solution is first prepared, which is then diluted accordingly.

When carrying out dilution calculations, the number of moles in the system stays the same, as
it is the volume of solvent and the molarity that alter. Thus we can write n in terms of either the
initial concentration or final dilution:

CiVi = n = CfVf

which may be re-arranged for any of these quantities, e.g.

Vf = CiVi

Cf

1.4.3 Molality
The molarity of a solution is a measure of the concentration expressed as moles per unit volume of
solvent. In situations where changes in temperature are likely, the molarity will change due to the
effect of thermal expansion on this volume. An alternative is to refer the concentration to the mass
of solvent, as this will be temperature independent. We refer to concentrations measured in units of
moles per unit mass of solvent (mol kg−1) as the molality of the solution. As an example, a solution
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of KOH with a molality of 2 mol kg−1 would be denoted as 2 m KOH. The molality also differs from
molarity in that it is referred to the solvent rather than to the whole solution. This means that con-
version between the two requires knowledge of both the volume of solvent involved and its density.

Worked Problems

Problem 1. A solution of NaCl in water is prepared using 5 g of salt in 250 cm3 of water.

(a) Calculate its molarity.
(b) What weight of CsCl would be needed to produce a solution of the same molarity, using

the same volume of water?
(c) If 5 Mcm3 of the original solution is taken and diluted with water up to a total volume of

100 cm3 what is the molarity of the new solution?
[Data: m(Na) = 22.99 g mol−1;m(Cs) = 132.9 g mol−1;m(Cl) = 35.45 g mol−1.]

Solution 1.

(a) The formula mass of NaCl is given by m(NaCl) = 22.99 + 35.45 = 58.44 g mol−1.

The solute represents n = M

m
= 5

58.44
= 0.08556 mole of NaCl.

The consequent molarity is calculated using C = n

V
= 0.08556

250 × 10−3
= 0.342 mol dm−3.

Note the factor of 10−3 in the denominator to convert cm3 to dm3.
(b) The formula mass of CsCl is given by m(CsCl) = 132.9 + 35.45 = 168.4 g mol−1.

We require 0.08556 mol of solute for the required molarity of solution.
This corresponds to M = nm = 0.08556 × 168.4 = 14.4 g of CsCl.

(c) The final molarity is given by Cf = CiVi

Vf
= 0.342 × 5 × 10−3

100 × 10−3
= 0.0171 mol dm−3.

Problem 2. The enhancement of fingerprints on porous surfaces is often carried out by dip-
ping the exhibit in ninhydrin solution. A concentrated solution of ninhydrin is first prepared
using 25 g of solid dissolved in 260 cm3 of solvent (ethanol, ethyl acetate and acetic acid). The
working solution is then prepared by taking 50 cm3 of the concentrated solution and adding fur-
ther solvent up to a total volume of 1000 cm3. Calculate the molarity of both the concentrated
and working solutions of ninhydrin. The molecular formula for ninhydrin is C9H6O4.

Solution 2. First, the molecular mass of ninhydrin is calculated using the atomic masses
for the constituent atoms:

m(C9H6O4) = 9 × 12.01 + 6 × 1.008 + 4 × 16 = 178.1 g mol−1

Thus, the number of moles of ninhydrin added to the concentrated solution is:

n = 25

178.1
= 0.1404 moles



1.4 BASIC CHEMICAL CALCULATIONS 25

Therefore, the molarity of the concentrated solution is given by:

C = n

V
= 0.1404

260 × 10−3
= 0.540 mol dm−3

When the working solution is prepared, 50 cm3 of this solution is taken. The molarity fol-
lowing dilution is given by:

Cf = CiVi

Vf
= 0.540 × 50 × 10−3

1000 × 10−3
= 0.0270 mol dm−3

1.4.4 Percentage concentrations
Concentrations of solutions are often defined in terms of percentage of solute present, particularly
in the biological context. There are three ways in which this may be done:

% w/w :
Msolute

Msolution
× 100

% w/v :
Msolute

Vsolution
× 100

% v/v :
Vsolute

Vsolution
× 100

Note that all of these definitions refer to the solution and not the solvent mass or volume. The
percentage concentration expressed as % w/v relates well to laboratory practice in weighing a solid
then measuring liquid by volume, for example using a measuring cylinder. The last of these would
be used to describe mixtures of liquids. Both w/w and v/v are dimensionless numbers and represent
a true percentage as long as both numerator and denominator are measured in the same units e.g.
grams or cm3. However, % w/v is not dimensionless. The convention is to use the non-standard units
of g cm−3. If the solute is measured in grams and the solution specified as 100 g (or equivalently
for aqueous solutions 100 cm3) then the % concentration is given directly without the need to
multiply by 100. For dilute aqueous solutions % w/w and % w/v are equivalent, to all intents and
purposes, as the density of the solution is approximately equal to that of water (1.00 g cm−3 at room
temperature).

Worked Example

Example A 2% w/v aqueous solution of cobalt isothiocyanate (Co(SCN)2) is used as a
presumptive test for cocaine. What mass of the salt is needed to prepare 250 cm3 of this
solution?



26 GETTING THE BASICS RIGHT

Solution This is a straightforward application of proportionality. The 2% w/v solution is
defined as 2 g of Co(SCN)2 in 100 cm3 of solution. For 250 cm3 of solution we therefore
require 2 × 2.5 = 5 g of the salt.

1.4.5 The mole fraction and parts per million
The concept of molarity is basically a measure of the concentration of particles in a solution,
determined as moles per unit volume, but of course the solvent itself is comprised of particles e.g.
molecules of water or ethanol. Hence, the concentration could be quantified instead as a ratio of
particles of solute Nsolute to the total number of particles present in the solution, Nsolute + Nsolvent – as
moles per mole. Alternatively, we could use the ratio of mass of solute to total mass of solution or
even volume, for example when mixing two liquids together. All of these measures differ from that
of molarity in that the units we use in our definitions are the same for both solute and solvent and
so the concentration is expressed non-dimensionally, as a ratio of two numbers. The ratio of particle
numbers is called the mole fraction XF and may be expressed either in terms of total number of
particles N or number of moles n, as:

XF = Nsolute

Nsolvent + Nsolute
= nsolute

nsolvent + nsolute

Similarly, the mass fraction MF and volume fraction VF are given by:

MF = Msolute

Msolvent + Msolute
and VF = Vsolute

Vsolvent + Vsolute

This method is particularly useful in describing very low concentrations and, to enhance the impact
of these small numbers, we may scale the ratio to give parts per million (ppm) or parts per billion
(ppb):

ppm (mass) → MF × 106

ppb (mass) → MF × 109

Note that, for low concentrations, the denominator is effectively the same number as that for the
solvent itself. Alternatively, the mass fraction is also sometimes expressed as a percentage.

These units are used to quantify traces of substances often found as contaminants within materials
or products, e.g. chemical species such as Ca2+, Cl− or HCO−

3 in mineral water. They are used
also when specifying the limit of sensitivity of an analytical technique. For example, in the forensic
examination of glass, the quantitative measurement of trace levels of elements such as Mn, Fe or Sr
may be used to characterize and individualize each sample. Techniques exhibit differing sensitivities
for this: for example, the XRF limit is often quoted as 100 ppm and that for ICP-OES as down to
∼1 ppm, while ICP-MS has sensitivity down to ∼1 ppb.
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As well as having a clear understanding of their meanings, you must be able to convert between
the various concentration units so as to be able to compare measurements quoted in different ways.
These are best illustrated by worked examples.

Worked Exercises

Exercise A bottle of mineral water claims a sodium concentration of 6.4 mg dm−3. Express
this
(a) as a mass fraction (b) in ppm (mass) (c) as a mole fraction.

Solution

(a) We need to express the volume of the solution in terms of its mass using the fact that the
density of water is 1000 kg m−3. Thus:

M = ρV = 1000 × 1 × 10−3 = 1 kg

Thus the mass fraction is given by:

MF = Msolute

Msolvent + Msolute
= 6.4 × 10−6

1 + 6.4 × 10−6
= 6.4 × 10−6

Clearly this is a very dilute system and so the solute mass may be neglected in the
denominator. Remember that the mass fraction is a dimensionless quantity.

(b) The ppm (mass) is given by:

ppm (mass) = MF × 106 = 6.4 × 10−6 × 106 = 6.4 ppm

Note that for dilute aqueous solutions ppm (mass) and mg dm−3 are completely equivalent,
as are ppb (mass) and ng dm−3.

(c) Here we must convert both the solute and solvent to moles using the molar masses: m(Na)
= 22.99 g mol−1 and m(H2O) = 18.02 g mol−1. Thus:

XF = nsolute

nsolvent + nsolute
=

(
6.4 × 10−6

22.99

)
(

1

18.02

)
+

(
6.4 × 10−6

22.99

) = 5.04 × 10−6

The same result to three significant figures would be obtained by neglecting the magnitude
of nsolute in the denominator. Note also that if the molar masses for solute and solvent
are similar then MF and XF, and therefore ppm (mass) and ppm (moles), will be similar.
However, this is not the case for quantification of heavy elements or large molecules with
large molar masses; in these cases XF < MF.
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Self-assessment exercises and problems
Unless otherwise stated in the question, all necessary molar masses are given in the text of
Section 1.4.

1. Calculate the mean atomic mass for potassium from the following isotopic data:

m
(39K

) = 38.96 g mol−1, abundance 93.26%

m
(41 K

) = 40.96 g mol−1, abundance 6.74%

2. For the ionic compound, KCl, calculate
(a) the molar mass of KCl
(b) the number of moles in 2 g of the salt
(c) the mass corresponding to 0.15 mol
(d) the number of atoms present in 1 g of KCl.

3. The molecular formula for paracetamol is C8H9NO2.
(a) Calculate the molecular mass of paracetamol.
(b) Determine the number of moles of the drug in a 500 mg dose.

4. The HPLC analysis of the drug LSD specifies 25 mM Na2HPO4 as a mobile phase.
If 500 cm3 of solution are needed, calculate the mass of solute required. (m(P) =
30.97 g mol−1)

5. Iodine fuming is used occasionally as a means of fingerprint enhancement. The print
may be made permanent by spraying with a solution of α-naphthoflavone (C19H12O2) to
produce a blue coloured image. If 350 cm3 of solution is to be used, calculate the mass of
α-naphthoflavone required to give a 0.01 M working solution.

6. Physical developer is an enhancement method for fingerprints on wet surfaces that works
by the deposition of freshly made particles of colloidal silver on to the residues. One of
the reagents used is a solution of AgNO3 and the exhibit is pre-treated using a solution of
maleic acid (molecular formula C4O4H4).
Calculate the molarity for solutions of (a) 10 g of AgNO3 in 50 cm3 of water

(b) 2.5 g of maleic acid in 100 cm3 of water.
Data: m(Ag) = 107.9 g mol−1.

7. Gentian (Crystal) Violet is a substance that appears in several contexts in forensic science,
one of its main uses being as an enhancement reagent for fingerprints deposited on the
sticky side of adhesive tape. On submerging the exhibit in a solution of Gentian Violet,
fatty deposits within the residues are dyed a deep purple colour. The molecular formula
for this reagent is C25H30N3Cl.
(a) Calculate the molecular mass of Gentian Violet.
(b) Calculate the mass of Gentian Violet needed to prepare a 0.2 M solution in 60 cm3 of

solvent.
(c) If 1 cm3 of this concentrated solution is then made up to 20 cm3 with fresh solvent,

calculate the molarity of this working solution.
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8. Convert a blood alcohol level of 0.80 g dm−3 into the equivalent % w/w concentration,
given that the density of blood is 1060 kg m−3.

9. A microscopic glass fragment of mass 35 ng contains 140 ppm (mass) of iron. Assume the
glass is SiO2 and taking m(Si) = 28.09 g mol−1 and m(Fe) = 55.84 g mol−1, express this
concentration as
(a) a mass fraction (b) a mole fraction (c) the mass of iron atoms present.

10. Quantification of diamorphine (C21H23NO5) in heroin may be achieved using HPLC.
If the minimum detectable level in solution (assumed aqueous) is found to be around
0.02 mg cm−3, express this
(a) as a mass fraction (b) in ppm (mass) (c) as a mole fraction.

11. Standard solutions are to be prepared for the quantitative analysis of Sr in digested papers
using ICP-OES. A stock solution of 0.01 M Sr(NO3)2 is available (m(Sr) = 87.62 g mol−1).
If 1 cm3 aliquots of stock solution are to be diluted with deionized water, calculate, in each
case, the volume of water required for dilution to the following ppm (mass) concentrations:
(a) 100 ppm (b) 10 ppm (c) 1 ppm.

Chapter summary
Dealing with and communicating numerical data in a correct and clear manner is a core skill
for any scientist. This includes both the representation of numbers and the choice of appropriate
units. Although the SI system of units is almost universally adopted, there are several areas of
the forensic discipline where non-standard units are commonly used and so conversion of units is
required. Additionally, conversion calculations within the SI system need to be dealt with routinely
in forensic work: for example, between m s−1 and km h−1. In acquiring and evaluating experimental
data any uncertainties should be considered and included when reporting results. It is important to
inspect and critically assess all such measurements for unexpected values and inconsistencies such
as the presence of outliers. All forensic scientists should be competent in carrying out basic chemical
calculations involving reagents and substances needed for analytical work in the chemical laboratory.




