Graphical models and
probabilistic reasoning

1.1 Introduction

This text considers the subject of graphical models, which is an interaction between
probability theory and graph theory. The topic provides a natural tool for dealing with
a large class of problems containing uncertainty and complexity. These features occur
throughout applied mathematics and engineering and therefore the material has diverse
applications in the engineering sciences. A complex model is built by combining simpler
parts, an idea known as modularity. The uncertainty in the system is modelled using
probability theory; the graph helps to indicate independence structures that enable the
probability distribution to be decomposed into smaller pieces.

Bayesian networks represent joint probability models among given variables. Each
variable is represented by a node in a graph. The direct dependencies between the
variables are represented by directed edges between the corresponding nodes and the
conditional probabilities for each variable (that is the probabilities conditioned on the
various possible combinations of values for the immediate predecessors in the network)
are stored in potentials (or tables) attached to the dependent nodes. Information about the
observed value of a variable is propagated through the network to update the probability
distributions over other variables that are not observed directly. Using Bayes’ rule, these
influences may also be identified in a ‘backwards’ direction, from dependent variables to
their predecessors.

The Bayesian approach to uncertainty ensures that the system as a whole remains
consistent and provides a way to apply the model to data. Graph theory helps to illustrate
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2 GRAPHICAL MODELS AND PROBABILISTIC REASONING

and utilize independence structures within interacting sets of variables, hence facilitating
the design of efficient algorithms.

In many situations, the directed edges between variables in a Bayesian network
can have a simple and natural interpretation as graphical representations of causal
relationships. This occurs when a graph is used to model a situation where the values
of the immediate predecessors of a variable in a network are to be interpreted as the
immediate causes of the values taken by that variable. This representation of causal
relationships is probabilistic; the relation between the value taken by a variable and the
values taken by its predecessors is specified by a conditional probability distribution.
When a graph structure is given and the modelling assumptions permit a causal
interpretation, then the estimates of the conditional probability tables obtained from
data may be used to infer a system of causation from a set of conditional probability
distributions. A Bayesian network is essentially a directed acyclic graph, together with
the associated conditional probability distributions. When a Bayesian network represents
a causal structure between the variables, it may be used to assess the effects of an
intervention, where the manipulation of a cause will influence the effect.

The ability to infer causal relationships forms the basis for learning and acting in an
intelligent manner in the external world. Statistical and probabilistic techniques may be
used to assess direct associations between variables; some additional common sense and
modelling assumptions, when these are appropriate, enable these direct associations to
be understood as direct causal relations. It is the knowledge of causal relations, rather
than simply statistical associations, that gives a sense of genuine understanding, together
with a sense of potential control resulting from the ability to predict the consequences of
actions that have not been performed, as J. Pearl writes in [1].

K. Pearson, an early, pre-eminent statistician, argued that the only proper goal of
scientific investigation was to provide descriptions of experience in a mathematical form
(see [2] written by Pearson in 1892); for example, a coefficient of correlation. Any effort
to advance beyond a description of associations and to deduce causal relations meant,
according to this view, to evoke hidden or metaphysical ideas such as causes; he did not
consider such modelling assumptions to be scientific.

R.A. Fisher, possibly the most influential statistician, considered that causation could
be inferred from experimental data only when controlled, or randomized experiments were
employed. A majority of statistical studies follow the approach of Fisher and only infer
‘correlation’ or ‘association’ unless randomized experimental trials have been performed.

It is not within the scope of this treatment of Bayesian networks to review the sophis-
ticated attempts at characterizing causality and the ensuing controversies (starting with
David Hume [3]) amongst scholars; the reader is referred to the enlightening treatment
by J. Williamson [4]. This text attempts to take what seems to be a ‘common sense’
point of view. The human mind is capable of detecting and approving causes of events
in an intuitive manner. For example, the nineteenth century physician Ignaz Semmelweis
in Vienna investigated, without knowing about germs, the causes of child bed fever. He
instituted a policy that doctors should use a solution of chlorinated lime to wash their
hands between autopsy work and the examination of patients, with the effect that the
mortality rate at the maternity wards of hospitals dropped substantially. Such reasoning
about causes and effects is not as straightforward for computers and it is not clear that it
is valid in terms of philosophical analysis.
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Causality statements are often expressed in terms of large and often complicated
objects or populations: for example, ‘smoking causes lung cancer’. Causal connections
at finer levels of detail will have a different context: for example, the processes at the
cell level that cause lung cancer. Causal connections are also contingent on many other
conditions and causal laws than those explicitly under consideration. This introduces a
level of uncertainty and the causal connections are therefore probabilistic.

Correlations or statistical associations between two variables often imply causation,
even if there is not a direct causal relation between the two variables in question; one need
not be the cause of the other. A correlation may indicate the presence of hidden variables,
that are common causes for both the observed variables, so that the two observed variables
are statistically associated.

When there is a possibility that there may be such unknown hidden variables, it is
necessary to separate the ‘cause’ from the extraneous factors that may influence it in
order to conclude that there is a causal relationship and a randomized (or controlled)
experiment achieves this. For a randomized experiment, the groups for each level of
treatment, and a control group to which no treatment is applied, are chosen at random
so that the allocation of members to treatment groups is not affected by any hidden
variables. Unfortunately, there are situations where it may be unethical to carry out a
randomized experiment. For example, to prove that smoking causes lung cancer, it is
perhaps inappropriate to force a non-smoker to start smoking.

In the example of smoking and lung cancer, the model is unknown and has to be
inferred from data. The statistical analyst would like to establish whether smoking causes
lung cancer, or whether there are additional hidden variables that are causes for both
variables. Note that common sense plays a role here; the possibility that lung cancer may
cause smoking is not considered. In terms of graphical models, where the direction of
the pointed arrow indicates cause to effect, the analyst wants to determine which of the
models in Figure 1.1 are appropriate.

When he carries out a controlled experiment, randomly assigning people to ‘smokers’
and ‘non-smokers’ respectively, the association between the hidden variables and smoking
for this experiment are broken and the causal diagram is therefore given by Figure 1.2.

By carrying out a ‘controlled experiment’, an intervention is made whereby the causal
path from the hidden variable is removed, thus ensuring that only the causal connection
of interest is responsible for an observed association.

In many situations, a controlled experiment seems the only satisfactory way to demon-
strate conclusively that an association between variables is due to a causal link. Without
a controlled experiment, there may remain some doubt. For example, levels of smok-
ing dropped when the first announcements were made that smoking caused lung cancer

Figure 1.1 Smoking and lung cancer.
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Figure 1.2 Controlled experiment: the control has removed the hidden causes of smok-
ing from consideration.

and levels of lung cancer also dropped substantially. A controlled experiment would have
demonstrated conclusively that the drop in lung cancer was not due to other environmental
factors, such as a decline in heavy polluting industry that occurred at the same time.

Bayesian networks provide a straightforward mathematical language to express rela-
tions between variables in a clear way. In many engineering examples, the variables that
should be present in the model are well defined. From an appropriate model that contains
the hidden (or non-observable) variables and the observable variables, and where it is
clear which variables may be intervened on, it will be possible to verify whether certain
‘identifiability’ conditions hold and hence to conclude whether or not there is a causal
relation from the data, without a controlled experiment.

Many of the classical probabilistic systems studied in fields such as systems engineer-
ing, information theory, pattern recognition and statistical mechanics are problems that
may be expressed as graphical models. Hidden Markov models may be considered as
graphical models. Engineers are also accustomed to using circuit diagrams, signal flow
graphs, and trellises, which may be treated using the framework of graphical models.

Examples of applied fields where Bayesian networks have recently been found to
provide a natural mathematical framework are reliability engineering [5], software testing
[6], cellular networks [7], and intrusion detection in computer systems [8]. In 1996,
William H. Gates 11, a co-founder of Microsoft, stated that expertise in Bayesian networks
had enhanced the competitive advantage of Microsoft. Bayesian networks are used in
software for electrical, financial and medical engineering, artificial intelligence and many
other applications.

1.2 Axioms of probability and basic notations
The basic set notations that will be used will now be established.

Definition 1.1 (Notations) The following notations will be used throughout:

e The universal set will be denoted by 2. This is the context of the experiment. In
Bayesian analysis, the unknown parameters are considered to be random. Therefore,
the context 2 consists of the set of all possible outcomes of an experiment, fogether
with all possible values of the unknown parameters.

e The notation X will be used to denote the sample space; the set of all possible
outcomes of the experiment.

e ® will be used to denote the parameter space, so that Q = X x ©.
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The following notations will be used when considering sets:

e If A and B are two sets, then A U B or A vV B denotes their union. If Ay, ..., A,
are a finite collection of sets, then U_;A; or \/'j—1 A; denotes their union. Also,
AlU...UA, or A; V...V A, may be used to denote their union.

e If A and B are two sets, then AN B or AB or A A B may be used to denote their
intersection. If Ay, ..., A, are a finite collection of sets, then A;... A,, A;N...N
Ay, ﬂ;?:lA jor Ay A... A A, all denote their intersection.

e A C B denotes that A is a strict subset of B. A C B denotes that A is a subset of
B, possibly equal to B.

e The empty set will be denoted by ¢.

e A° denotes the complement of A; namely, Q2\A, where 2 denotes the universal set.
The symbol \ denotes exclusion.

e Together with the universal set 2, an event space F is required. This is a collection
of subsets of Q2. The event space F is an algebra of constructable sets. That is, F
satisfies the following:

1. p € Fand Q € F.

2. Each A € F may be constructed. That is, for each A € F, let iy : Q@ — {0, 1}
denote the mapping such that iy (w) =1 if w € A and ix(w) =0 if w € A°.
Then there is a procedure to determine the value of i4 (w) for each w € Q!

3. If for a finite collection of events (A j)’;zl each A; satisfies A; € F, then
U;'»: Aj e F. .

4. If A € F, then A¢ € F, where A° = Q\A denotes the complement of A.
5. Each A € F satisfies A C Q.
For Q, F satisfying the above conditions, a probability distribution p over (2, F)

(or, in short, a probability distribution over €2, when F is understood) is a function
p : F — [0, 1] satisfying the following version of the Kolmogorov axioms:

1. p(¢) =0 and p(Q) = 1.

2. If (A;)}_, is a finite collection such that each A; € F and the events satisfy
AjN A = ¢ for all j # k, then

n

p(Uisias) =2 p(ay.

j=1
3.0< p(A) <1forall A eF

A non-constructable set The following example illustrates what is intended by the term constructable
set. Let A, x = (2"7 - ﬁ, 2"7 + ﬁ) and let A = U2, Uf:{)l Apnk. Then A is not constructable in the
sense given above. For any number x € A N [0, 1], there is a well defined algorithm that will show that it is in
A N[0, 1] within a finite number of steps. Consider a number x € [0, 1] and take its dyadic expansion. Then,
for each A, x it is clear whether or not x € A, . Therefore, if x € A, this may be determined within a finite
number of steps. But if x € A€, there is no algorithm to determine this within a finite number of steps.
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This is a reduced version of the Kolmogorov axioms. The Kolmogorov axioms require
countable additivity rather than finite additivity. They invoke axiomatic set theory and
do not therefore require the constructive hypothesis. For the Kolmogorov axioms, the
event space F is taken to be a sigma-algebra and the second axiom requires countable
additivity.

o Let (,x) e Q=0 x X. For each A € F, let Ag = {6 € O|(0,x) € A} and let
Ay = {x € X|(0, x) € A}. Then Fg will be used to denote the algebra {Ag|A € F}
and FX = {A/ﬂA € .7:}

Definition 1.2 (Probability Distribution over &X) If X contains a finite number of elements,
then Fy contains a finite number of elements. In this setting, a probability distribution over
X satisfies:

e p({x}) =0forall x € X,

e Forany A € Fx, ) o4 PUx}) = p(A).

e In particular, ) ., p({x}) =1
Definition 1.3 (Notation) Let X be a finite state space and let Ax denote the set of all
subsets of X (including ¢ the empty set and X). For probability distribution p : Ax —

[0, 1] defined above (Definition 1.2), p will also be used to denote the function p : X —
[0, 1] such that p(x) = p({x}). The meaning of p will be clear from the context.

The definitions and notations will now be established for random variables.

Definition 1.4 (Random Variables and Random Vectors) Discrete random variables, con-
tinuous random variables and random vectors satisfy the following properties:

e For this text, a discrete random variable Y is a function Y :  — C where C is a
countable space, that satisfies the following conditions: for each x € C, {w|Y () =
x} € F, and there is a function py : C — R, known as the probability function of
Y, such that for each x € C,

py(x) = p({olY (@) = x}).

This is said to be the ‘probability that Y is instantiated at x’. Therefore, for any
subset C C C, py satisfies

> pr() = p({o]Y (@) € C}).

xeC

In particular, taking C = C,

Doy =1

xeC
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e A continuous random variable E is defined as a function Z : Q — R such that

for any set A € R such that the function 14~(—xn 7 is Riemann integrable for all
N € Z,, the set {w|E(w) € A} € F, and for which there is a function 7z, known
as the probability density function, or simply density function, such that for any
A C R with Riemann integrable indicator function,

P0IE@) eA}):fAnE(x)dx.

In particular,

p({w|E@) € R}) = p(Q) = /R 2= ()dx = 1.

A random vector Y is a vector of random variables. It will be taken as a row vector
if it represents different characteristics of a single observation; it will be taken as
a column vector if it represents a collection of independent identically distributed
random variables.

This convention is motivated by the way that data is presented in a data matrix.
Each column of a data matrix represents a different attribute, each row represents
a different observation.

A random row vector Y is a collection of random variables that satisfies the
following requirements: suppose Y = (Y1, ..., Y,) and for each j =1,...,m,
Y; is a discrete random variable that takes values in a countable space C; and
let C=Cy x...xCpy, then Y is a random vector if for each (yi,..., y,) €C,
{w|(Y1(w), ..., Yy(w))} € F, and there is a joint probability function py, .y, :
C — [0, 1] such that for any set C C C,

Y P01 ) = p({] (Y1), ..., Y (@) € C}).

15+ Ym)€C

In particular,

Z Py, Y V15 ym) = L.

(V15-sYm)€C

If 2:=(E,..., &) is a collection of n random variables where for each j =
;j 1s a continuous random variable, then E is a random vector if for each
" such that 14~y ny» is Riemann integrable for each N € Z,

L
(Lo
> 0
N s
7 m

{wl(E1(@), ..., Bx(w)) € A} € F,

and there is a Riemann integrable function ng,, . =z, : R" — Ry, where R denotes
the non-negative real numbers such that for each set A C R" such that 14y, yy
is Riemann integrable for each N € Z,
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In particular,

/ Ty, 8, (X1, o X)dxr . dx, = 1.
R)'l

A collection of random variables Y of length m + n, containing m discrete variables
and n continuous variables, is a random vector if it satisfies the following: there

is an ordering o of 1, ..., m + n such that (Y1), ..., Yo(m)) is a discrete random
vector and (Y5 m+1)s - - - » Yomtn)) 1S @ continuous random vector. Furtherm~0re, let
C denote the state space for (Y, (1), - .., Yo(m)), then for each (y1, ..., yn) € C, there

is a Riemann integrable function b : R" — R; such that for
Y a(m+1)>+ YG()71+)1)|y1
any set A € R" such that 14y, Ny 1S Riemann 1ntegrable for each N € Z,,

P({COKYU(]), ey Ya(m)) = (Yh BRI ym)ﬁ (Yg(m—i-l)y ) Ya(m+n)) S A})

_ (o)
= DYy Yo Vs -+ o5 Ym) /A Y o 1yYo (nm) V1o (1, e ) dxy . doy.
and such that
7l b (X1, X)L dxy, = 1
R" Ya(m+l)""YrT(n1+n)|y ------ ’ o n

Definition 1.5 (Marginal Distribution) Let X = (X, ..., X,;) be a discrete random
vector, with joint probability function pyx, . x,. The probability distribution for
(Xj,...,Xj,), where m <n and 1 <j; <...< j, <n is known as the marginal
distribution, and the marginal probability function is defined as

ple ..... ij(X1,...,xm)= § le ..... X,,(yls""yn)'
Do YO 5o Vi )= Xy s X )

In particular, for two discrete variables X and Y taking values in the spaces Cx and Cy
respectively, with joint probability function py y, the marginal probability function for
the random variable X is defined as

px() =Y pxy(x,y)

yely

and the marginal probability function for the random variable Y is defined as

pry) =Y pxrx,y).

XECX
If E=(Ey,..., E,) is a continuous random vector, with joint probability density func-
tion g, Ens then the marginal density function for 8, ..., 8;,, where {ji,..., ju} C
{1,...,n} is defined as
nEjl’ EJ’"(XI’.“’xm):/,,,mT[EI ,,,,, En()’l’--~7}’n|(yj1y~--’)’jm)

=(~x1""7~xm)) 1_[ d)’k

kE(j1seeJm)
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Categorical random variables In this text, the sample space X will contain a finite, or
countably infinite, number of outcomes, while usually the parameter space ® C R", where
n is the number of parameters. Most of the discrete variables arising will be categorical
in the sense that the outcomes are classified in several categories. For example, suppose
an urn contains 16 balls, of which four are white, six are green, five are blue and one is
red. Pick a ball at random and let C denote the colour of the ball, then C is an example
of a discrete random variable. The probability distribution of a categorical variable C is
denoted by p¢. Here, for example, p({C = green}) = p¢(green) = 1—66 = %;

white green blue red

pc = 1
16

N

1 3
g 8

The set-up described above is adequate for this text, where only two types of random vari-
ables are considered; continuous (which, by definition, have a Riemann integrable density
function) and discrete variables. Statements of uncertainty made within this framework
are consistent and coherent. Any probability function p over F that is to provide a
quantitative assessment of the probability of an event, which is also to be mathemat-
ically coherent over a constructive algebra of events, must satisfy the axioms listed
above. Any set function over an algebra of sets that satisfies these axioms will provide
a mathematically coherent measure of uncertainty.

1.3 The Bayes update of probability

The prior probability is the probability distribution p over F before any relevant data is
obtained. The prior probability is related to background information, modelling assump-
tions, or simply a function introduced for mathematical convenience, which is intended
to express a degree of vagueness. It could be written pX)(.), where K designates what
could be called the context or a frame of knowledge [9]. The notation p(.|K) is often
employed, although this is a little misleading since, formally, conditional probability is
only defined in terms of an initial distribution. Here, the initial distribution is based on
K. Since the notation is now standard, it will be employed in this text, although caution
should be observed.

Consider a prior distribution, denoted by p(.). Suppose the experimenter, or agent,
has the information that B € F holds and desires to update the probabilities based on
this piece of information. This update involves introducing a new probability distribution
p* on F. Suppose also that p(B) > 0. Since it is now known that B is a certainty, the
update requires

pr(B)=1

so that p*(B¢) = 0, where B¢ = Q\B is the complement of B in 2. The updated prob-
ability is constructed so that the ratio of probabilities for any By C B and B, C B does
not change. That is, for B; C B, i =1, 2,

p*(By) _ p(B1)
p*(By)  p(By)’
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For arbitrary A € F, the axioms yield
p*(A) = p*(AN B) + p*(AN BY).

But since p*(B¢) = 0, it follows that p*(A N B°) < p*(B¢) = 0. In other words, it fol-
lows that for arbitrary A € F, since p*(B) = 1,

p*(ANB)+p*(ANB°) p*(ANB) p(ANB)

p*(B) p*(B) p(B)
The transformation p — p* is known as the Bayes update of probability. When the
evidence is obtained is precisely that an event B € F within the algebra has happened,

Bayes’ rule may be used to update the probability distribution. It is customary to use the
notation p(A|B) to denote p*(A). Hence

pr(A) =

_ pANnB)
~ p(B)

This is called the conditional probability of A given B. This characterization of the
conditional probability p(A|B) follows [10]. Further discussion may be found in [11].
This is the update used when the evidence is precisely that an event B € F has occurred.
Different updates are required to incorporate knowledge that cannot be expressed in this
way. This is discussed in [12].

From the definition of p(A|B), the trivial but important identity

p(AIB) < p*(A) 1.0

p(A|B)p(B) = p(AN B) (1.2)

follows for any A, B € F.

The Bayes factor Bayes’ rule simply states that for any two events A and C,
p(ClA)p(A)
p©)
If event C represents new evidence, and p*(.) = p(.|C) represents the updated probability
distribution, then for any two events A and B, Bayes’ rule yields:
PH(A) _ p(ClA) p(A)
p*(B)  p(CIB) p(B)

i P(A) p*(A)
therefore updates the ratio 2B © B Note that

p(ClA) _ p*(A)/p*(B)
p(CIB)  p(A)/p(B)

This leads to the following definition, which will be used later.

P(AIC) =

p(ClA)

The factor 2(C1B)

Definition 1.6 Ler p and q denote two probability distributions over an algebra A. For
any two events A, B € A, the Bayes factor F, ,(A; B) is defined as

_q(A)/q(B)

F, ,(A, B) := .
004 B) p(A)/p(B)

(1.3)
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Here p plays the role of a probability before updating and g plays the role of an updated
probability. The Bayes factor indicates whether or not the new information has increased
the odds of an event A relative to B.

Bayes’ rule applied to random variables Let X and Y be two discrete random vari-
ables. Let px, py, px)y and py|x denote the probability mass functions of X, Y, X given
Y and Y given X respectively. It follows directly from Bayes’ rule that for all x, y

Prix(v1x) px (x)
py (y) '

If X and Y are continuous random variables with density functions 7y and my, then the
conditional probability density function of X, given ¥ =y is

pxyy (x|y) = (1.4)

my x (y|x) 7y (x)
my (y)
If X is a discrete random variable and ® is a continuous random variable with state space

©, where px|e(.|6) is the conditional probability function for X given ® = 6 and © has
density function g, then Bayes’ rule in this context gives

wxy (x|y) =

Pxje(x]0)me(0) _ pxje(x|0)me(0)
Jo Pxio(x10)e (0)do Px(x) .

mex (01x) = (1.5)

1.4 Inductive learning

The task of inductive learning is, roughly stated, to find a general law, based of a
finite number of particular examples. Without further information, a law established in
this way cannot be a certainty, but necessarily has a level of uncertainty attached to it.
The assessment uses the idea that future events similar to past events will cause similar
outcomes, so that outcomes from past events may be used to predict outcomes from
future events. There is a subjective component in the assessment of the uncertainty,
which enters through the prior distribution. This is the assessment made before any
particular examples are taken into consideration.

In any real situation within the engineering sciences, a mathematical model is only
ever at best a model and can never present a full description of the situation that is
being modelled. In many situations, the information is not presented in terms of absolute
certainties to which deductive logic may be applied and ‘inductive learning’, as described
above, is the only way to proceed.

For machine learning of situations arising in the engineering sciences, the machine
learns inductively from past examples, from which it makes predictions of future
behaviour and takes appropriate decisions; for example, deciding whether a paper mill
is running abnormally and, if it is, shutting it down and locating the error.

In the following discussion, the second person singular pronoun, ‘You’, will be used to
denote the person, or machine,” with well defined instructions, analysing some uncertain
statements and making predictions based on this analysis.

2 A more precise description of the machine is the hypothetical artificial intelligence robot ‘Robbie’ in [13].
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The Bayes update rule is now applied to learning from experience. The update is
based on the definition of the conditional probability p(E|A) of an event E given an
event A. The rule for calculating the conditional probability of A given E (or, given that
E ‘occurs’) is known as Bayes’ rule and is given by

p(AlE) = PEIAPA) (1.6)
p(E)
Equation (1.6) follows immediately from the definitions introduced in Equations (1.1)
and (1.2). Here E is a mnemonic notation for evidence.

The formula (1.6) was for a long time known more widely as ‘inverse probability’
rather than as ‘Bayes’ rule’. The quantity p(A|E) does not always need to be computed
using this formula; sometimes it is arrived at by other means. For example, the Jeffrey’s
update rule, as will be seen later, uses a particular set of conditional probabilities as
Jundamental and derives the other probabilities from it.

1.4.1 Bayes’ rule

A more instructive form of Bayes’ rule is obtained by considering a finite exhaustive set
of mutually exclusive hypotheses {H;}{" ;. The law of total probability gives for any E

p(E) = p(H)p(E|H,) (1.7)

i=1
and Equation (1.6) yields for any H;

p(E|H;)p(H;)
S, p(H)p(E|H;)

Here p(H;) is the initial or prior probability for a hypothesis, before any evidence E is
obtained. The prior probability will have a subjective element, depending on background
information and how You interpret this information. As discussed earlier, this background
information is often denoted by the letter K. In computer science, this is often referred to
as domain knowledge [14]. The prior is therefore often denoted p(H;|K). As discussed
earlier, this is misleading, because no application of the formula given in Equation (1.1)
has been made. The notation is simplified by dropping K.

The quantity in p(H;|E) in Equation (1.8) denotes how p(H;) is updated to a new
probability, called the posterior probability, based on this new evidence. This update is
the key concept of Bayesian learning from experience.

There is a basic question: why should probability calculus be used when performing
the inductive logic in the presence of uncertainty described above? This is connected
with the notion of coherence. The probability calculus outlined above ensures that the
uncertainty statements ‘fit together’ or ‘cohere’ and it is the only way to ensure that
mathematical statements of uncertainty are consistent. To ensure coherence, inductive
logic should therefore be expressed through probability. Inference about uncertain events
H; from an observed event E will be mathematically coherent if and only if they are
made by computing p(H;|E) in the way described above. All calculations, in order
to achieve coherence, must be made within this probability calculus. Hence, to make

p(Hi|E) = (1.8)
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coherent statements about different events, Your calculations for learning by experience
have to satisfy Bayes’ rule.

The introduction of an arbitrary prior distribution may appear, at first sight, to be
ad hoc. The important point here is that all modelling contains some ad hoc element in
the choice of the model. The strength of the Bayesian approach is that once the prior
distribution is declared, this contains the modelling assumptions and the ad hoc element
becomes transparent. The ad hoc element is always present and is stated clearly in the
Bayesian approach.

When an event E occurs that belongs to the well defined algebra of events, over
which there are well defined probabilities, the Bayes rule for updating the probability of
an event A from p(A) to p(A|E) is applied. There are situations where the evidence E
may be given in terms of observations that are less precise (that is, E is not an event that
clearly belongs to the algebra), but nevertheless an update of the the probability function
p(-) is required. Jeffrey’s rule and Pearl’s method of virtual evidence can be useful in
these situations.

1.4.2 Jeffrey’s rule

Suppose that the new evidence implies that You form an exhaustive set of r mutu-
ally exclusive hypotheses (G;)7_; which, following the soft evidence have probabilities
p*(G;). The question is how to update the probability of any event A € F. Note that You
cannot use Bayes’ rule (Equation (1.6)), since the evidence has not been expressed in
terms of a well defined event E for which the prior probability value is known. Jeffrey’s
rule may be applied to the situation where it may be assumed that for all events A € F,
the probabilities p(A|G;) remain unchanged. It is only the assessment of the the mutually
exclusive hypotheses (G;);_, that changes; no new information is given about the the
relevance of (G;);_, to other events.

Definition 1.7 (Jeffrey’s Update) The Jeffrey’s rule for computing the update of the prob-
ability for any event A, is given by

P*(A) =) p*(G)p(AIG)). (1.9)

i=1

This is discussed in [15]. Jeffrey’s rule provides a consistent probability function, such
that p*(A|G;) = p(A|G;) for all i. Equation (1.9) is therefore an expression of the rule
of total probability (Definition 1.7). O

1.4.3 Pearl’s method of virtual evidence

In the situation considered by Pearl, new evidence gives information on a set of mutually
exclusive and exhaustive events G, ..., G, but is not specified as a set of new probabil-
ities for these events. Instead, for each of the events Gy, ..., G,, the ratio A; = %,
for j =1,...,n is given for an event A. That is, A; represents the likelihood ratio that

the event A occurs given that G; occurs, compared with G. Note that A; = 1.

Definition 1.8 Ler p denote a probability distribution over a countable space X (Defi-
nition 1.2) and let Gy, ..., G, € F be a mutually exclusive (that is G; N G; = ¢ for all
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i # j) and exhaustive (that is U?:1Gj = Q) events, where p(G ;) = p;. Set A; = %
for j =1,...,n. Then, for each x € X, the Pearl update p is defined as

_ Aj .

px) = px)=——— x€Gj, j=1,...,n. (1.10)

Zj:l Ajpj

It is clear that this provides a well defined probability distribution.

Jeffrey’s rule and Pearl’s method for virtual evidence will be discussed further in
Section 3.2. They are methods that, under some circumstances, enable evidence to be
incorporated that does not fit directly into the framework of the chosen statistical model.

1.5 Interpretations of probability and Bayesian networks

Loosely speaking, ‘classical statistics’ proposes a probability distribution over the event
space, where the probability distribution is a member of a parametric family, where the
value of the parameters are unknown. The parameters are estimated, and the estimates
are used to obtain an approximation to the ‘true’ probability, which is unknown. In
Bayesian probability, the lack of knowledge of the parameter is expressed though a
probability distribution over the parameter space, to feature Your personal assessment
of the probability of where the parameter may lie. For this reason, Bayesian probability
is also referred to as personal probability, or epistemological probability. Built into a
Bayesian probability is Your a priori state of knowledge, understanding and assessment
concerning the model and the source of data. So, loosely speaking, classic statistics yields
an approximation to an objectively ‘true’ probability. The ‘true’ probability is fixed, but
unknown, and the estimate of this probability may differ between researchers. Bayesian
statistics yields an exact computation of a subjective probability. It is the probability
itself, rather than the estimate of the probability, that may differ between researchers.

Bayesian networks are frequently implemented as information processing components
of Expert Systems (in artificial intelligence) [14], where personal and epistemological
probability provides a natural framework for the machine to learn from its experience.
P. Cheeseman in [13] and [16] argues that personal probability as the calculus of plausible
reasoning is the natural paradigm for artificial intelligence.

J. Williamson [4] and other authors distinguish between subjective and objective
Bayesian probability. Consider two different learning agents, called (for convenience)
Robbie, and Robbieg. These are two hardware copies of Robbie in [13], with some
different internal representations (i.e. different ways of assessing prior information). A
Bayesian probability is said to be objective if, with the same background information,
the two agents will agree on the probabilities. Bayesian probabilities are subjective if the
two different learning agents, Robbie, and Robbieg may disagree about the probabilities,
even though they share the same background knowledge, but without either of then being
provably wrong.

It seems rational to require that subjective probabilities should be calibrated with
the external world. This does not follow from requirements of coherence; it is rather a
principle of inference that is imposed in any serious statistical study. For this, one often
cites Lewis’s principal principle, stated in [17]. This is the assertion that Your subjective
probability for an event, conditional upon the knowledge of a physical probability of that
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event, should equal the physical probability. In terms of the formula (where ch denotes
the physical chance),

p(Alch(A)=x)=x.

There are several theoretical foundations for reconciling subjective opinion to objec-
tive probability. One of the more prominent was given by R.J. Aumann.? He proved the
following fact. If two agents have same priors, and if their posteriors for an event A are
common knowledge (i.e. Robbie, and Robbieg know the posterior, and Robbie, knows
that Robbieg knows and that Robbieg knows that Robbie, knows that Robbieg knows
and so on, ad infinitum), then the two posterior probability masses will be identical [18].

This relies on the rational idea that if someone presents an opinion different from
Yours, then this is an important piece of information which should induce You to revise
Your opinion. The result by Aumann quoted above implies that there will be a process
of revision, which will continue until objective probability (an equilibrium of consensus)
is reached. It can be shown that this will happen in a finite number of steps.

In probabilistic theories of causation there is a set of variables V, over which there
is a probability distribution p. The causal relationships between the variables in V' are
the object of study. In [19], the variables are indexed by a time parameter and causality
is reduced to probability. The Bayesian network approach is different; in addition to
the probability distribution p, the variables are nodes of a directed acyclic graph G,
where the edges represent direct causal relationships between the variables in V. This
requires, as pointed out by D. Freedman and P. Humphreys [20], that we already know
the causal structure obtained, for example, by exercise of common sense and knowledge
of the variables V. Both p and G are required [21]. Additional assumptions are therefore
required to infer the direction of cause to effect relationships between variables; there is
no form of Bayesian coherence from which they may be inferred. The role of a directed
graph is to represent information about dependence between variables V. In particular,
the graph may be used to indicate what would happen to values of some variables under
changes to other variables that are called interventions; namely, the variable is forced
to take a particular value irrespective of the state of the rest of the system. The graph
will also indicate how the various different distributions for subsets of V are consistently
connected to each other to yield p.

1.6 Learning as inference about parameters

Consider a random row vector X = (X1, ..., Xy4), denoting d attributes. Suppose that
n independent observations are made on X and the values obtained are recorded in a
matrix X, where x;; denotes the jth recorded value of attribute k. The n x d matrix x
may be regarded as an instantiation of the n x d random matrix X, where each row of
X is an independent copy of X. Suppose that the evidence X is to be used to update the
probability function for another collection of m variables, (Y1, ..., Y,) from py, .y, (.)
to py;.. v x(-[X).

A fundamental special case, discussed in [22], is that of computing the predictive
probability for the next observation in the univariate setting. That is, d = 1. Here, the

32005 Laureate of the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel.
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matrix X is an n X 1 matrix and may therefore be considered as a column vector X, =
(X1,...,X,)", where X j»J =1,...,n are independent identically distributed. Here, x =
Xy = (x1,...,x,)", a vector of n observed values. The random vector Y is simply X, ;.
The problem is to compute the conditional probability distribution of ¥ given X ) = x,).
The connection between x,,) and y is described by a probability py|x o VX)) of Y given
Xy =X Let Xy = (X3, .0 X,+1)" and X ey = (X1, - . Xn+1)". You compute

pX(nJrl) (i(n‘ﬁ‘l))

(1.11)
pX(n) (&(n))

PXyi1|X ) Knt 11X ) =

The progression from here requires a mathematical model containing parameters denoted
6 such that, given 6, the random variables X, X», ... are independent and identically
distributed (i.i.d.). That is, with notation (.|#) to denote the parameter fixed as 0, there
is a decomposition

n
Px o Ean0) = [ ] ax (xi16).
1

The family of probability functions gx,(.|0), 0 € © (where ® is the space of all per-
missible values of the unknown parameter 6) and the parameter 6 need to be specified.
Since the value of 6 is unknown, the Bayesian approach is to consider a probability
distribution over ©. Thus, & may be regarded as a realisation of a random variable ®.
You need to specify a prior distribution over . This discussion confines itself to the case
where ® is considered to be a continuous random variable and hence the prior distribu-
tion is described by a probability density function g : ® — R.. The prior predictive
distribution may then be written as

PX iy X)) Z/G)HQXi(xi|0)7T(9)d9. (1.12)
1

Definition 1.9 (Prior Predictive Probability Distribution) The prior distribution Px,, for
the collection of random variables X, (for which x,, is an observation) is known as the
Prior Predictive Probability Distribution.

B. De Finetti showed in [23] that if the x;s are infinitely exchangeable (and lie in a
reasonable space), then the structure for PX) (.) given by Equation (1.12) is the only
possible one.

Inserting (1.12) in the right hand side of (1.11) yields

5 11 gx, (xi10)me (6)d6
Jo TT1 ax, (xi10) e (0)d0

:/C] (Xpt110) [1} ax, (xi10)7we (9)
o T [ T ax, (xil0)mo (6)d6

PX,q1 (Xp41 |£(n)) =
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The conditional probability density of ® given X, = x,, may be obtained by Bayes’
rule:

_ TV 9%, Gil0)me (0)
To1xy, (01 X4) = T T, (i l0) 0 6)d6 (1.13)

It follows directly that

DXy Cnt1 1) = / AXer Cnr11O) e, (01 X,)) d6. (1.14)
®

In Section 1.9, explicit examples of evaluations of Equation (1.14) are given.

The probability density function 7g, placed over © before any data is observed is
known as the prior density; the probability density function mg)x . defined by Equation
(1.13) is known as the posterior probability density. Equation (1.14) shows how Bayesian
learning about X, is based on learning about 6 from x . Bayesian statistical inference
is the term used to denote Bayesian learning of the posterior distribution of a set of
parameters.

The meaning of causality for K. Pearson, see Chapter 4 in [2], seems to be expressible
by Equation (1.14), as he writes ‘that a certain sequence has occurred and recurred in the
past is a matter of experience to which we give expression in the concept of causation,
that it will recur in the future is a matter of belief to which we give expression in the
concept of probability.’

1.7 Bayesian statistical inference

The aim of learning is to predict the nature of future data based on past experience [22].
One constructs a probabilistic model for a situation where the model contains unknown
parameters. The parameters are only a mechanism to help estimate future behaviour; they
are not an end in themselves.

As stated, the ‘classical’ approach regards a parameter as fixed. It is unknown and has
to be estimated, but it is not considered to be a random variable. One therefore computes
approximations to the unknown parameters, and uses these to compute an approximation
to the probability density. The parameter is considered to be fixed and unknown, because
there is usually a basic assumption that in ideal circumstances, the experiment could be
repeated infinitely often and the estimating procedure would return a precise value for the
parameter. That is, if one increases the number of replications indefinitely, the estimate
of the unknown parameter converges, with probability one, to the true value. This is
known as the ‘frequentist’ interpretation of probability.

Basic to the ‘frequentist’ interpretation is the assumption that an experiment may
be repeated, in an identical manner, an indefinite number of times. With the classical
approach, the sample space Q2 and the event space .4 of subsets of Q have to be defined
in advance. This makes incorporation of ‘soft evidence’ or ‘virtual evidence,” that will be
considered later in the text, harder; these are situations where the information obtained
cannot be expressed as one of the well defined events of the event space. Then, the
probability distribution is interpreted as follows: for each A € A, p(A) is interpreted as
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the limit, from observed data that would be obtained if the experiment could be repeated
independently, under identical circumstance, arbitrarily often. That is,

. N, A
p(A) = lim ———,
n——+o0o n
where N (n, A) denotes the number of times event A has been observed from n replica-
tions of the experiment.

This interpretation is intuitively appealing, but there is room for caution, since the
infinite independent replications are imagined, and therefore the convergence of relative
frequencies to a limit is hypothetical; the imagined infinite sequence of replications under
exactly the same conditions is a textbook construction and abstraction. In concrete terms,
it is supposed that there are many sources, each with large numbers of data so that
the ‘empirical’ distribution can approximate the limit with arbitrary precision. Despite
the hypothetical element in the formulation, the ‘frequentist’ interpretation of probability
follows basic human common sense; the probability distribution is interpreted as the long
run average. The ‘long run average’ interpretation assumes prior knowledge; when an
agent like Robbie is to compute probability for its actions, it cannot be instructed to wait
for the result in an infinite outcome of experiments and, indeed, it cannot run in ‘real
time’ if it is expected to wait for a large number of outcomes.

Once the existence of a probability measure p over (£2,.4) has been established,
which may be interpreted in the sense of ‘long run averages’, it is then a matter of
computation to prove that the parameter estimates 6, based on n observations converge
with probability 1, provided a sensible estimating procedure is used, to a parameter
value 6.

As discussed earlier, the Bayesian approach takes the view that since the parameter is
unknown, it is a random variable as far as You are concerned. A probability distribution,
known as the prior distribution, is put over the parameter space, based on a prior assess-
ment of where the parameter may lie. One then carries out the experiment and, using the
data available, which is necessarily a finite number of data, one uses the Bayes rule to
compute the posterior distribution in Equation (1.13), which is the updated probability
distribution over the parameter space.

The posterior distribution over the parameter space is then used to compute the
probability distribution for future events, based on past experience. Unlike the classical
approach, this is an exact distribution, but it contains a subjective element. The subjective
element is described by the prior distribution.

In Bayesian statistics, the computation of the posterior distribution usually requires
numerical methods, and Markov chain Monte Carlo methods seem to be the most efficient.
This technique is ‘frequentist’, in the sense that it relies upon an arbitrarily large supply of
independent random numbers to obtain the desired precision. From an engineering point
of view, there are efficient pseudo-random number generators that supply arbitrarily large
sequences of ‘random’ numbers of very good quality. That is, there are tests available
to show whether a sequence ‘behaves’ like an observation of a sequence of suitable
independent random numbers.

Both approaches to statistical inference have an arbitrary element. For the classical
approach, one sees this in the choice of sample space. The sample space is, to use
H. Jeffreys’ [24] vivid description, ‘the class of observations that might have been
obtained, but weren’t’. For some experiments, the sample space is a clear and well
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defined object, but for others, there is an arbitrary element in the choice of the sample
space. For example, an experiment may be set up with n plants, but some of the plants
may die before the results are established.

Alternative hypotheses There is no distinction within the Bayesian approach between
the various values of the parameter except in the prior 7 (0). The view is one of contrast
between various values of 6. Consider the case where the parameter space consists of
just two values, (6, 01). Dropping subscripts where they are clearly implied, Bayes’ rule

for data x gives
0o)7 (6
7 @lx) = p(x160)7 (6p)
p(x)

and
O = PEIODTED
p(x)

It follows that
7 (6plx) _ p(x|60)7 (8o)
n(@1x)  p&|ODT©6)

The likelihood ratiofor two different parameter values is the ratio of the likelihood func-
tions for these parameter values; denoting the likelihood ratio by LR,

(1.15)

_ plb)
PO

The prior odds ratio is simply the ratio w(6y)/m(6;) and the posterior odds ratio is
simply the ratio 7w (6y|x)/m(01]x). An odds ratio of greater than 1 indicates support for
the parameter value in the numerator.

Equation (1.15) may be rewritten as

LR(8, 61; x)

posterior odds = LR X prior odds.

The data affect the change of assessment of probabilities through the likelihood ratio,
comparing the probabilities of data on 6y and 6;. This is in contrast with a sampling
theory, or tail area significance test, where only the null hypothesis (say 6p) is considered
by the user of the test.

In ‘classical’ statistics, statements about parameters may be made through confidence
intervals. It is important to note that a confidence interval for 6 is not a probability
statement about 6, because in classical statistics 0 is not a random variable. It is a fixed,
though unknown, value. The confidence interval is derived from probability statements
about x the observation, namely from p(x|0).

There is no axiomatic system that leads to confidence measures, while the axioms of
probability are well defined. Operations strictly in accord with the calculus of probability
give coherent conclusions. Ideas outside the probability calculus may give anomalies.

The next two sections give a detailed examination of two probability distributions
that are often central to the analysis of Bayesian networks. Section 1.8 discusses binary
variables, while Section 1.9 discusses multinomial variables. The distributions discussed
in Section 1.8 are a useful special case of those discussed in Section 1.9.
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1.8 Tossing a thumb-tack

The discussion of the thumb-tack is taken from D. Heckerman [25].

If a thumb-tack is thrown in the air, it will come to rest either on its point (0) or on
its head (1). Suppose the thumb-tack is flipped »n times, making sure that the physical
properties of the thumb-tack and the conditions under which it is flipped remain stable
over time. Let x,, denote the sequence of outcomes

i(n) = (.XI, "'7-xn)t'

Each trial is a Bernoulli trial with probability € of success (obtaining a 1). This is
denoted by

X; ~ Be®), i=1,...,n.

Using the Bayesian approach, the parameter 6 is be regarded as the outcome of a random
variable, which is denoted by ®. The outcomes are conditionally independent, given 0.
This is denoted by

X, LX;|0, i#].

When ® = 6 is given, the random variables Xy, ..., X,, are independent, so that

n

Pxo, @) =070 =)' =01 —6)"*
=1

where k = Y], x;.

The problem is to estimate 6, finding the value that is best for x ). The Bayesian
approach is, starting with a prior density mg(.) over the parameter space ® = [0, 1], to
find the posterior density 7e|x,,, (-1X(,)-

PX, (&(n)) B fpé(,l)|®(£(n)|¢)n®(¢)d¢.

Tolx,, O1x,) =

Let mg be the uniform density on [0, 1]. This represents that initially You have no
preference concerning 6; all values are equally plausible.* The choice of prior may seem
arbitrary, but following the computations below, it should be clear that, from a large class
of priors, the final answer does not depend much on the choice of prior if the thumb-tack
is thrown a large number of times.

4 As previously stated, the prior distribution contains the ‘ad hoc’ element. The results obtained from any
statistical analysis are only reliable if there is sufficient data so that any inference will be robust under a rather
general choice of prior.

There are well known difficulties with the statement that a uniform prior represents no preference con-
cerning the value of . If the prior density for ® is uniform, then the prior density of ®2 will not be uniform,
so ‘no preference’ for values of © indicates that there is a distinct preference among possible initial values
of ®2. If 7y (x) = 1 for 0 < x < 1 is the density function for ® and 7, is the density function for ®2, then
T (x) = 2x+/2 for0 < x < 1.
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With the uniform prior,

! ! . kl(n —k)!
Ap%mmwwmﬁw=ﬁem—wkw=zﬁjr (1.16)

This may be computed using integration by parts, as follows. Set

1
ka/'wu—mWWQ
0

then
! 1
10=/(1—9)”d9= .
a 0 n—+1
Using integration by parts,
P 91{(1 _ 9)n7k+1 1 N k ./ B k ,
e n—k+1 oy n—k+1 " T kg
From this,
k! 1 kln—k)!

hk=nm_1yHM—k+1Mn+D__(n+D!.

This is an example of the Beta integral. The posterior distribution is therefore a Beta
density

plgk -k 0<6<1

7olx,, @1x") = (1.17)

0 otherwise.

It should be apparent that, in this case, there would have been tremendous difficulties
carrying out the integral if the prior had been anything other than the uniform, or a member
of the Beta family. The computational aspects are, or were, prior to the development of
Markov chain Monte Carlo (McMC) methods [26], the main drawback to the Bayesian
approach.

The Beta distribution is not restricted to integer values; the Euler gamma function is
necessary to extend the definition to positive real numbers.

Definition 1.10 (Euler Gamma function) The Euler Gamma function I' () : (0, +00) —
(0, +00) is defined as

[e¢]
nw:/ x* e dx. (1.18)
0
The Euler Gamma function satisfies the following properties.

Lemma 1.1 Foralla >0, I'(e + 1) = al'(«). If n is an integer satisfying n > 1, then

T(n) = (n—1)!
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Proof of Lemma 1.1 Note that I'(1) = fooo e *dx = 1. For all a >0, integration by
parts gives

Ma+1)= /oox“e_"dx =al'(a). (1.19)
0

The result follows directly. O

Definition 1.11 (Beta Density) The Beta density Beta(a, B) with parameters o >0 and
B > 0 is defined as the function

C(a+B) totfl 1—1¢ B—1 ¢ 0,1
Yy =] "' (=0 =01 (1.20)
0 ¢ 10,1]

The following results show that the Beta density is a probability density function for all
real « >0 and 8 > 0.

Lemma 1.2 Set |
B(a, B) =/ N1 =P dr.
0
Then I (@) (8)

BeP=tarp

Proof of Lemma 1.2 Directly from the definition of the Gamma function, using the
substitutions u = a¢? and v = b* and, at the end of the argument cos26 = so that
dt — _2cos6sinf,

0=

F(oc)F(,B):f / e “u e P dudv
o Jo

oo o0
—4 / / =@+ 2D 2D b
0 0
o0 o0 5 5
:/ / e—(a +b)|a|2a—1|b|2ﬂ—ldadb
—00 J—00

2 00 2
=f e PP cos 0127 sin 0P~ rdrdo
o Jo
1 21

o0
S (/ |cos9|2“—1|sin9|2ﬂ—‘d9)/ e u =1y
2 \Jo 0

/2
= (2/ (cos 0)>@ D (sin9)>#~D cos 6 sin GdQ) 'l + B)
0

1
= (/ 11— t)ﬁ—ldz> I+ B)
0

= B(a, BT (@ + B).
The result follows directly. O
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C?rollary 1.1 Let v denote the Beta density, defined in Equation (1.20), then
Jo ¥(©)do = 1.

Proof of Corollary 1.1 This is a direct consequence of Lemma 1.2. O

It follows that, for binomial sampling, updating may be carried out very easily for any
prior distribution within the Beta family. Suppose the prior distribution 7 is the B(«, )
density function, n trials are observed, with k taking the value 1 and n — k taking the
value 0. Then

Px0X ) |0)me©)

TOIX ) O1X ) =

' + B)

— 9a+k—1(1 _ 9)ﬂ+n—k—1 — c9a+k—l(1 _ 0)/3+n—k—1‘
F@)(B)px,,, X))

Since fol To|X, (O1x,))d0 = 1, it follows from Lemma 1.2, that

['(a+B+n) k —k
bt @n0 T (1= 6 € 0.1)
60, 1).

01X g (01X () Z{ 0
so that TO(X, (9|£(n)) is a B(a + k, B + n — k) density. Il
Recall the definition of the maximum likelihood estimate: it is the value of 6 that
maximizes px,yl0) = 0k(1 — 6)" k1t is well known that

~ k
Omie (x,) = .

The same pattern of thought can be applied to maximize the posterior density.

Definition 1.12 (Maximum Posterior Estimate) The maximum posterior estimate, Oviap,
is the value of 0 which maximizes the posterior density 7we|x o (O1x )

When the posterior density is B(k + «, n — k + ), an easy computation gives
o+k
a+p+n
Note that when the prior density is uniform, as in the case above, the MAP and MLE are
exactly the same. The parameter, of course, is not an end in itself. The parameter ought

to be regarded as a means to computing the predictive probability. The posterior is used
to compute this; c.f. (1.14) above.

Omap =

The predictive probability for the next toss Recall that the ‘parameter’ is, in general,
an artificial introduction, to help compute py, | X (Xn+11X,))- Suppose that 7(0]x,,))
has a B(« + k, B +n — k) distribution. The predictive probability for the next toss, for
a =0 or 1, is given by

1
PXpi1lX () (@1X ) =/ Px,., @ld)mex,, 0lx,))do.
0
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Since py,.,(116) = 0, it follows (using equation (1.19)) that

Ma+p+n) fle(a+k+l)(1_9)ﬁ+n—kd9
T+ k0B +n—k) Jo
_ I'(a+ B +n) Fa+k+ DB +n—k)
T@+kbrB+n—k  T@+p+n+1)
o+ k
a+B+n

pxn+l |§(n) (1 |£(n))

In particular, note that the uniform prior, mo(6) = 1 for 6 € (0, 1), is the B(1, 1) density
function, so that for binomial sampling with a uniform prior, the predictive probability is

(lx ) k+1
PXpp1l Xy MXy) = —/755
nt2 (121)
n+1—k
PXpi11Xgy O1X ) = i
This distribution, or more precisely %, is known as the Laplace rule of succession. A

combinatorial derivation for it is given in [27].

Reconciling subjective predictive probabilities The example of agreeing to disagree,
referred to in the preceding, is due to R.J. Aumann, in [18]. Suppose two agents,
Robbie, and Robbieg, both toss a thumb-tack once without communicating the outcome
to each other. Both Robbie, and Robbieg have the same uniform prior on 6. Suppose
Robbie, and Robbieg communicate the value of their respective predictive (posterior)
probabilities as

2 1
P(IX1 = DIRobbie,) = 3i p((Xu41 = 1)|Robbies) = =

Note that in the conditional probabilities above Robbie, and Robbieg actually refer to
respective states of knowledge. Now, since both the number of tosses by each agent and
the predictive probabilities held by the two agents is their common knowledge, they can
revise their opinions by (1.21) to
(X 1}|Robbie,, Robbieg) L
= obbie,, Robbieg) = —— = —.
p n+1 1Cq 1 /3 2 + 2 2

This holds as Robbie, and Robbieg deduce by (1.21) that exactly one outcome of the
two tosses was 1 (and the other was 0). The revision would not hold if the number of
tosses was not common knowledge.

1.9 Multinomial sampling and the Dirichlet integral

Consider the case of multinomial sampling, where an experiment can take one of k
outcomes, labelled Cy, ..., Ci. Suppose that p(X = C;) =0;,sothat 6 + ...+ 6, = 1.
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Consider n independent trials, Xy, ..., X,,. The notation 14, to denote the indicator
function of a set A, will be used; that is

1 xeA
1a(x) =
0 x&A.

Let 1¢, (x) =1 if x = C; and O otherwise. Set

n
Yi=3) 1c(X)).
j=1

Then Y; denotes the number of trials that result in outcome C;. Note that
Yi+...+ Y. =n

Then (Yq, ..., Y) is said to have a multinomial distribution and

n!

X X
pylw,yk(xl,...,xk)z 911...9kk,

x1!x2! . .xk_llxk!
where the expression in front of the ;" ...60.* is the multinomial coefficient.

In the Bayesian approach, a prior distribution is put over 0y, ..., 6. Then, using the
observations, this is updated using Bayes’ rule to a posterior probability distribution over
O1,...,06k.

A particularly convenient family of distributions to use is the Dirichlet family, defined
as follows.

Definition 1.13 (Dirichlet Density) The Dirichlet density Dir(ay, . .., ai) is the function

M(n ) 0, >0, Z 6, =1,
1 1
701, ...,00) = M=y P 5= % = (1.22)

0 otherwise,

where I' denotes the Euler Gamma function, given in Definition 1.10. The parameters
(ay, ..., ay) are all strictly positive and are known as hyper parameters.

This density, and integration with respect to this density function, are to be understood
in the following sense. Since 6, = 1 — ZI;_} 6;, it follows that 7 may be written as
w@,...,60) =70, ...,01), where

(O, O1)
-1
7”“'*“*““( k1 9‘.‘1”1> (1 - ’f—le»)“k 0, >0,
= l_[l;:l I"(ay) 1_[']=1 J ijl J Z ] — (123)
0 otherwise.

Clearly, when k = 2, this reduces to the Beta density. The following results show that
the Dirichlet density is a probability density function.
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Lemma 1.3 Set

1 pl—x; pl—(x1+x2) 1—2’;3 X
D(ay,...,a;) = / /
o Jo 0 0

ap—1

k-1 -
1
xj’ 1 —ij dxi_1...dx;.
j=1 :
Then
" T(ai)
Da,...,a0) = r[/—lij

r (Z§=1 aj>'

Proof of Lemma 1.3 Straight from the definition of the Euler Gamma function, using

the substitutions sz. =uj,

k
l_[r(a])_/ / J 1 M;jildul...duk

j=1

—Zk/ / 72/ 157 l_[x 4 ]dxl...dxk

k
/ / J 1 ¥ / |xj|2“f_1dx1 coodxyg.

Jj= l

Now let r = Zl;zlsz and Q:% for 1<j<k-—1 Using x; =rz; for

j=1,...k—1and x, =r,/1 — le;i z?, the computation of the Jacobian easy and

is left as an exercise:

k—1
,
Jx1s ooy xk) = (120, 0005 2k—1)) = Wamreveart
1 - Zj:] <
Then
- 2 vk k
[[r@n =/ e PP AN Th k= g
j=1 0
ap—1/2
2 k=2 2 — _
1 p1-7] BB e 2a,-1 k=1 )
X - l_[Zj 1— Zj
-1J-(1-z}) ~1=20 ) \ o =
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1 p1-22 1-y421 22 ) k=1 k=1
= (aj—1) 2
x/ Z; =) zj HZZ,dZ,

0 JO 0 j=1 j=1 j=I

k
=T Zaj D(ay, ..., ax)
j=1
and the result follows. O

Theorem 1.1 The function 7 (01, ..., 0r—1) defined by Equation (1.23) satisfies

1 pl-g 1-Y5236;
/ / / 7O, ..., 60c—1)dOk—1...dOy =1,
0 Jo 0

hence the Dirichlet density (Definition 1.13) is a well defined probability density function.

Proof This follows directly from the lemma. ]

Properties of the Dirichlet density Theorem 1.1 shows that the Dirichlet density is a
probability density function.

Another very important property is that the Dirichlet densities Dir(ay, ..., ax) :
a;>0,...,a,>0 form a family of distributions that is closed under sampling.
Consider a prior distribution mg ~ Dir(ay, ..., a;) and suppose that an observation
X :=(x1,...,x;) is made on Y := (Yy,...,Y;) based on n independent trials (i.e.
X1+ ...+ x;x = n). Let mg|y denote the posterior distribution. Then, using Bayes’ rule,

e 01, ..., k-1 pr(x|01, ..., 00)
Py (x) '

oy (1, ...,0) =

It follows that
1 n!

9a1+x1—1 eak+xk—1
py () xilxo! g ! k ’

o)y b1, ...,0k) =

where 6, =1 — le‘;ll 0;.

Since the posterior density is a probability density, belonging to the Dirichlet family,
it follows that the constant

1 n! _F(al+--~+ak+x1+~~-+xk)
Py (x) xplxo! o x ! [T5_, T@; +x))

and hence that
7T®|X(91, ..., 0p) ~Dir(ay + x1, ..., ar + x¢).

The results in this section were perhaps first found by G. Lidstone [28].
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Later in the text, the Dirichlet density will be written exclusively as a function of

k variables, wg (61, ..., 6k), where there are k — 1 independent variables and 6; = 1 —
Zk—l 0.
j=1Yj-
A question is how to select the hyper parameters ay, ..., a; for the prior distribution.
The choice of @) = ... =a; = % was suggested by W. Perks in [29].

Definition 1.14 (Conjugate Prior) A prior distribution from a family that is closed under
sampling is known as a conjugate prior.

In [30], I.J. Good proved that exchangeability and sufficientness of samples implied that
the prior is necessarily Dirichlet, if k> 2. The notion of sufficientness was originally
defined by W.E. Johnson and I.J. Good. Loosely speaking, it means that the conditional
probability of seeing case i of k possible in the next sample given n past samples, depends
only on n, the number of times you have seen i in the past and NOT on the other cases.

Notes Full accounts of the coherence argument may be found, for example, in [4], [31]
and [32]. An introduction to inductive logic is given in [33].

The monograph [34] includes a thorough presentation of the topics of statistical infer-
ence and Bayesian machine learning. The papers [13] and [16] argue for subjective
probability as the appropriate inference and language procedures for artificial intelligence
agents, see also [14]. The book [35] provides a clear introduction to the application of
Bayesian methods in artificial intelligence.

The work [36] by Thomas Bayes (1702—1761) and Richard Price was published
posthumously in 1763. This paper makes difficult reading for a modern mathematician.
Consequently, there is a considerable literature investigating the question of what Bayes
actually proved, see, e.g. [22, 37-39] and the references therein. There is, however, a
wide consensus that [36] does contain Equation (1.17).

For this, Bayes deals with billiard balls. Suppose You throw one billiard ball o (orange)
on a square table (e.g. a billiard table without pockets) and measure the shortest distance
from the side of the table, when the side of the table is scaled in size to 1. Let this value
be denoted by p. Then You throw n balls W (white) on the table and note the number
of white balls, say k, to the left of the orange ball. Then it is understood that Bayes
computed the distribution of p given k given by Equation (1.17).

In this setting the uniform prior distribution on p is based on a physical understanding
that is verifiable by repeated experimentation.

There is even the question of whether Bayes was the first to discover the results
attributed to him. This is discussed in [40]. Another up-to-date report on the life and
thinking of the Reverend Thomas Bayes, by D.R. Bellhouse [41], also discusses the
question of whether he was the first to prove these results. The author has discovered
some previously unknown documents. The paper points out that the canonical picture of
Bayes is not proved to be an image of him.

An alternative procedure on the billiard table is that n 4 1 balls W are thrown on the
table. One of them is then selected at random to play the role of the orange ball, and k,

3 see http://www-history.mcs.st-andrews.ac.uk/PictDisplay/Bayes.html.
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the number of balls to the left of the orange ball, is counted. Then You have a uniform

distribution # on the values of k.
It has been argued that Bayes demonstrated that a prior density 7 (0) satisfying the

equality

n!

! 1
k _ n—k _
716!(” Y /o 0“(1 —0)""m(6)do = 1 (1.24)

+1

for all 0 < k < n and all n must be the uniform density. It may be checked rather easily
using Equation (1.16) that the uniform density indeed satisfies this equality. F.H. Murray
in [42] observed that Equation (1.24) implies for k = n that

1
/ 0"7(0)do = (1.25)
0

n+1’
which means that all the moments of 7 (6) are given. Murray then went on to show that
these moments determine a unique distribution, which is in fact the uniform distribution.®

The probability in Equation (1.24) is a uniform distribution on the number of successes
in n Bernoulli trials with an unknown parameter. Hence Bayes (or Murray) has shown that
the uniform distribution on the number of successes is equivalent to the uniform density on
the probability of success. But this probability on the number of successes is a predictive
probability on observables. This understanding of the Bayesian inference due to Thomas
Bayes is different from many standard recapitulations of it, as pointed out in [39].

The ultimate question raised by reading of [36] is, ‘what is it all about?’. In other
words, what was the problem that Bayes was actually dealing with?

It is hardly credible that Bayes, a clergyman, should have studied this as a mere
curious speculation, and even less that scoring at a billiard room should have been at the
forefront of his mind. Richard Price writes in [36],

... the problem ... mentioned [is] necessary to be solved in order to provide
a sure foundation for all our reasoning concerning past facts, and what is
likely to be hereafter ...

For a layman in the history of philosophy the argument in [37] and [43] may carry a
convincing power: Bayes and Price developed an inductive logic as a response to the
critical and, in particular, anti-clerical objections to induction, causation and miracles
advanced by David Hume [3] in his book of 1748; the famous philosopher and scholar
was a contemporary of Bayes and Price.

Further evidence that this consideration may have prompted Bayes to develop a math-
ematical framework for inductive logic is seen from his theological interests. In 1731,
he published the following paper: ‘Divine Benevolence, or an Attempt to Prove That
the Principal End of the Divine Providence and Government is the Happiness of His
Creatures’.

©The moment problem is a classic problem; whether or not the moments of a distribution uniquely char-
acterize the distribution. The technique usually employed is to check whether the Carlemann conditions are
satisfied. For this problem, Murray showed directly that the moments uniquely determined the distribution.
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The models that were later to be called Bayesian networks were introduced into
artificial intelligence by J. Pearl, in the article [44]. Within the artificial intelligence
literature, this is a seminal article, which concludes with the following statement: The
paper demonstrates that the centuries-old Bayes formula still retains its potency for serving
as the basic belief revising rule in large, multi hypotheses, inference systems.
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1.10 Exercises: Probabilistic theories of causality, Bayes’
rule, multinomial sampling and the Dirichlet density
1. This exercise considers the statistical notion of association due to G.U. Yule, who
used it in a classical statistical study to demonstrate the positive effect of innoculation

against cholera.
Here the association between two events A and B, denoted by « (A, B), is defined as

a (A, B) =p(ANB)— p(A) - p(B).
(a) Show that
a (A, B) = —a (A, BY),

where B¢ is the complement of B.

(b) Show that
a (A, B) =« (A, BY).

Comment: Association is clearly symmetric. That is, for any two events A and
B, (A, B) =« (B, A). It does not seem reasonable to claim that a decrease in
cholera causes an increase in the number of innoculations. In this case it is common
sense to conclude that there is an underlying causal relation, where innoculation
(say B) causes a decreased prevalence of cholera (A), although without a controlled
experiment, it is not possible to conclude that there is not a hidden factor C that both
causes cholera and makes innoculation less likely.

2. On a probabilistic theory of causality Following the theory of causality due to P.
Suppes [19] an event By is defined as a prima facie cause’ of the event A, if and
only if the following three statements hold:

e 5 <I,

e p(B)>0

e p (A | By)>p(A).

Here the parameter is considered as a time parameter, and s < ¢ means that By occurs
prior to A,; a cause occurs before an effect.

An event By is defined as a prima facie negative cause of an event A, [19] if and
only if the following three statements hold:

e 5 <I,

e p(By)>0

7 Prima facie is a Latin expression meaning ‘on its first appearance’, or ‘by first instance’. Literally the
phrase translates as first face, ‘prima’ first, ‘facie’ face. It is used in modern legal English to signify that on
first examination, a matter appears to be self-evident from the facts. In common law jurisdictions, ‘prima facie’
denotes evidence that (unless rebutted) would be sufficient to prove a particular proposition or fact.
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o p(A;| By) < p(A).

Intuitively, a negative cause is an event that prevents another event from happening.
For example, the theory and practice of preventive medicine focuses on certain types
of negative causation. In the problems the indices s, ¢ are dropped for ease of writing.

(a) Show that if B is a prima facie negative cause of A, then B is a prima facie
cause of A.

(b) Show that if B is a prima facie cause of A, then B¢ is a prima facie cause of A°.
Also, show that if B is a prima facie negative cause of A, then B¢ is a prima
facie negative cause of A°.

(c) Recall the definition of association from Exercise 1. Show that if B is a prima
facie cause of A, then «(A, B) >0 and that if B is a prima facie negative cause
of A, then (A, B) < 0.

On odds and the weight of evidence Let p be a probability distribution over a
space X. The odds of an event A C X given B C X under p, denoted by O, (A | B),
is defined as

A|B
O,,(A|B)—p( | B)

S S e 1.26
p (A°| B) (120)

The odds ration will play an important role in Chapter 7, which considers sensitivity
analysis. Next, the weight of evidence E in favour of an event A given B, denoted
by W (A : E | B), is defined as

O,(A|BNE
W(A:E|B)=logM (1.27)
0, (A | B)
Show that if p(E N A° N B) >0, then
p(E|ANB)
W(A:E|B)=log——F——. (1.28)
p(E | AN B)

On a generalized odds and the weight of evidence Let p denote a probability
distribution over a space X and let H; C X, H, € X, G C X and E C X. The odds
of Hi compared to H, given G, denoted by O, (H1/H> | G), is defined as

p(H | G)
0, H /H, | G) = ———. (1.29)
p 1/ H p(Hy | G)
The generalized weight of evidence is defined by
O,(H/H,|GNE
W (Hi/H>: E | G) = log p (Hi/H | ). (1.30)
Oy (Hi/H> | G)
Show that if p(HiNGNE)>0 and p(H, NG N E) >0 then
E|H NG
W (H\/Hy: E | B) = log ZAETHIOG) (131)
p(E| H,NG)

Clearly this is just a log likelihood ratio and these notions are another expression for
posterior odds = likelihood ratio x prior odds.
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5. In [45], L.J. Good discusses the causes of an event that are necessary and sufficient
from probabilistic view point. For example, let E is the event of being hit by a
car and F the event of going for a walk. Then F tends to be a necessary cause
of E. The quantitites Qg (E : F | U) and Qpec (E : F | U) are defined to measure
the probabilistic tendency of an event F to be a sufficient and/or necessary cause,
respectively, for an event E with background information U, by the weights of
evidence discussed in the preceding exercise. They are defined respectively by

Owt (E:F|U)y=W(F°: E°|U) (1.32)
and

Onec (E:F|U)=W(F:E|U). (1.33)
In view of the preceding definitions, Qg,r may be read as the weight of evidence
against F provided by non-occurrence of E. Similarly, Qpe is the the weight of

evidence in favour of F given by occurrence of E. Both quantities are computed, to
borrow a philosophical phrase, ‘given the state of universe U just before F occurred’.

(a) If p(E°| FNU) >0, show that

p(E°| FCNU)

suf (E:F|U)=1 . 1.34
Qui (E: F | U) = log oo (1.34)
b)) If p(E| F°NU) >0, show that
p(E|FNU)
nec (E 1 F | U)=log ————. 1.35
Onee (B3 F | U) =log -~ mer s (1.35)

6. This exercise considers a few more properties of Qg and Q... Following Exercise
4 above, set

Onec (E 2 Fi/F2 | U) =W (Fi/F>: E|U)
which is the necessitivity of E of F| against F, and

Owi (E: F2/F |U) =W (F1/F,: E°|U),
which is the sufficientivity of E of F) against F.

(a) Show that Qq¢(E : F | U) <0, if and only if Qe (E : F | U) < 0. Compare
with prima facie negative cause in Exercise 2.

(b) Show that
Onee (E = Fi/Fy | U) = Qqi (E€ : F2/Fy | U).

This is called a probabilistic contraposition.
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(c) Show that
Onec (E : F | U) = Quur (E°: F | U).

This may interpreted along the following lines. Going for a walk F' tends to be
a necessary cause for being hit by a vehicle E, whereas staying home tends to
be a sufficient cause for not being hit by a vehicle. (Note that cars and aircraft
are known to have crashed into houses.) Both Q. and Qg should have high
values in this case.

Let X = (Xy,..., X,)" be an exchangeable sample of Bernoulli trials and let 7 =
2?21 X ;. Show that there is a probability density function 7 such that

@ 1
pT(t)=/ (;’)9’(1—9)”—%(9)&, t=0,1,....n
0

(b) 1
E[T] =n/ 07 (6)do.
0

You may use the result of DeFinetti.

Consider a sequence of n independent, identically distributed Bernoulli trials, with
unknown parameter 6, the ‘success’ probability. For a uniform prior over 6, show
that the posterior density for 6, if the sequence has k successes, is

(ntD! 9]( (1 _ e)nfk 0<6<1

(0 _ | ma—nor 1.36
7oy (¢ | x) {0 elsewhere. (1.36)

Consider the thumb-tack experiment and the conditional independence model for the
problem and the uniform prior density for 6. What is Py (headm(n)), where
X, denotes the outcome of the first n throws?

n+11X )

Consider multinomial sampling, where 6; is the probability that category j is
obtained, with prior density mg (01, ..., 0;) is the Dirichlet prior Dir(aqy, ..., a¢qr)
with Zle q;j = 1, defined by

_ M) L 00111]'71 0 B '
-0, ... 4+0,=1,0<6 <1
Te@) = [152 Meq)) HJ 1Y ;

0 elsewhere.

Show that for multinomial sampling, with the Dirichlet prior, the posterior density
polx (01x; &) is the Dirichlet density

Dir (ny +agqy,...,np +aqr),

which is shorthand for

L
I'n+ao g
woux (0150 ) = = [Ter e, (1.37)
Hi:l F (05% + ni) i=1

where g = (q1, ..., qL)-
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A useful property of the Dirichlet density is that the predictive distribution of X,
may be computed explicitly by integrating px, e (. | €) with respect to the posterior
distribution containing the stored experience x,,. Using the previous exercise, show
that

n; +ag;
PXpalX gy (¥ 1 X)) = f O (91, s L aq) dé ...do, = ———. (1.38)
S — n o
Let ® = (®q, ..., ®) be a continuous random vector with Dir («y, ..., o) distri-
bution. Compute Var (®;).
Prove the Laplace rule of succession. Namely, let {X, ..., X, 11} be independent,

identically distributed Bernoulli random variables, where px,(1) =1 — px,(0) =6
and 6 ~ U (0, 1). Then the Laplace rule of succession states that

s+ 1
PXnst = DX+ 4+ Xy = s = ——.
n+2
Let V. = (Vy,..., Vk) be a continuous random vector, with
Z’\' Dir(al, ...,CZK) ,
and set
Vix;! .
Ui:Ki—l’ ,l=1,...,K,
iz Vix;
where x = (x1, ..., xg) is a vector of positive real numbers; that is, x; > 0 for each
i=1,...,K. Show that U = (Uy, ..., Ug) has density function

r(Xiia) K 1 Zie K .
e () e

[T, T(@) i1 i WiXi
This density is denoted
U~S(ax).

This is due to J.L.. Savage [46]. Note that the Dirichlet density is obtained as a special
case when x; =cfori=1,..., K.

The next two examples illustrate how the Savage distribution of the previous exercise
can arise in Bayesian analysis, for updating an objective distribution over the subjec-
tive assessments of a probability distribution by several different researchers, faced
with a common set of data. Consider several researchers studying an unknown quan-
tity X, where X can take values in {1, 2, ..., K'}. Each researcher has his own initial
assessment of the probability distribution V = (Vy, ..., Vk) for the value that X
takes. That is, for a particular researcher,

Vi=px(@), i=1,...,K.
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It is assumed that
V ~Dir(ay,...,ak).
Each researcher observes the same set of data with the common likelihood function
[, =p(data{X =i}, i=1,...,K.
The coherent posterior probability of a researcher is
U=p({X=i}|data), i=1,2,...,K.

Let U = (Uy, ..., Ug). Prove that

where @ = (ay, ..., ax) and [~ = (1;‘, o 1,;‘). This is due to J.M. Dickey [47].

Show that the family of distributions S (a,/™"') is closed under updating of the
opinion populations. In other words, if

V~S(az),
before the data is considered, then
U~S(azxl"),

after the data update, where

gx[l = (zllfl,...,zKl,?).



