
1 Structural Properties

1.1 IONICITY

Details of ionicity fi are given in Adachi [1]. Any given definition of ionicity is likely to be
imperfect. We present in Table 1.1 fi values for a number of group-IV, III–V and II–VI
semiconductors, including Be-based semiconductors and CdO. We have Phillips ionicity of
fi¼ 0 for all group-IV elemental semiconductors (diamond, Si, Ge and a-Sn) and fi > 0.9 for
some alkali halides (NaCl, KCl, etc.).

Figure 1.1(a) plots fi versus x for CxSi1�x. Note that fi¼ 0.177 for silicon carbide (SiC). This
means that the bond character of SiC resembles that of III–V or II–VI semiconductors
rather than of Si or diamond, so that its crystal structure must be zinc-blende, hexagonal or
rhombohedral. Similarly, an ordered alloy of SixGe1�x may have a nonzero fi value near the
ordered-phase composition x� 0.5. In fully disordered alloys (CxSi1�x, SixGe1�x, etc.), we
should have fi¼ 0 over the whole alloy range 0� x� 1.0.

Theplots of fi versus xor y forAlxGa1�xAs,GaxIn1�xPyAs1�y/InPandMgxZn1�xSySe1�y/GaAs
are shown in Figure 1.1(b). These values are obtained from the linear interpolation of
Equations (A.4) and (A.6) between the endpoint data in Table 1.1. The resulting fi versus
x (y) plots can be expressed in the usual power form as

fiðxÞ ¼ 0:310� 0:036x ð1:1aÞ
for AlxGa1�xAs,

fiðyÞ ¼ 0:335þ 0:065yþ 0:021y2 ð1:1bÞ
for GaxIn1�xPyAs1�y/InP and

fiðxÞ ¼ 0:630þ 0:154xþ 0:003x2 ð1:1cÞ
for MgxZn1�xSySe1�y/GaAs. The values of fi for fully disordered alloys should be safely
estimated from the linear interpolation scheme.

1.2 ELEMENTAL ISOTOPIC ABUNDANCE
AND MOLECULAR WEIGHT

In Tables 1.2 and 1.3 of Adachi [1], the elements which form at least one tetrahedrally
coordinated ANB8�N semiconductor, together with their natural isotopic abundance in percent
and atomic weight are listed. Let us add an element of beryllium: natural abundance of
9Be¼ 100%; atomic weight¼ 9.012182(3).
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The molecular weight M for an ANB8�N compound semiconductor (N„ 4) can be simply
given by the sum of the atomic weights of atoms A and B. For an elemental semiconductor
(N¼ 4), it is given by the atomic weight of the element atom A¼B. The molecular weightM
of any alloy semiconductors can be obtained from the linear interpolation scheme.

Table 1.1 Phillips’s ionicity fi for a number of group-IV, III–V and II–VI semiconductors

IV fi III–V fi II–VI fi

Diamond 0 BN 0.221 BeO 0.602
Si 0 BP 0.032 BeS 0.286
Ge 0 BAs 0.044 BeSe 0.261
Sn 0 AlN 0.449 BeTe 0.169
SiC 0.177 AlP 0.307 MgO 0.841

AlAs 0.274 MgS 0.786
AlSb 0.250 MgSe 0.790
GaN 0.500 MgTe 0.554
GaP 0.327 ZnO 0.616
GaAs 0.310 ZnS 0.623
GaSb 0.261 ZnSe 0.630
InN 0.578 ZnTe 0.609
InP 0.421 CdO 0.785
InAs 0.357 CdS 0.685
InSb 0.321 CdSe 0.699

CdTe 0.717
HgS 0.790
HgSe 0.680
HgTe 0.650
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Figure 1.1 Phillips ionicity fi versus x or y for (a) CxSi1�x and (b)AlxGa1�xAs,GaxIn1�xPyAs1�y/InP and
MgxZn1�xSySe1�y/GaAs. The open and solid circles in (a) show the endpoint and SiC (x¼ 0.5) values,
respectively. The solid lines in (b) are calculated from Equation (1.1)
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1.3 CRYSTAL STRUCTURE

1.3.1 Random Alloy

Table 1.2 summarizes the crystal classes for easily obtained or normally grown: (a) group-IV
elemental semiconductors, (b) III–V and (c) II–VI binary semiconductors. In Table 1.2(a),
the crystal classes for an easily grown compound semiconductor SiC are also included.

1.3.2 Spontaneous Ordering

(a) Group-IV semiconductor alloy

The phenomenon of spontaneous ordering in semiconductor alloys is observed to occur
spontaneously during epitaxial growth of certain semiconductor alloys and results in a
modification of their structural, electronic and optical properties [2]. Substantial effort has
been focused on learning how to control this phenomenon so that it may be used for tailoring
desirable material properties. We summarize in Table 1.3 the spontaneous ordering phases
observed in some group-IV, III–V and II–VI semiconductor alloys.

Table 1.2 Summary of crystal structure for: (a) group-IV, (b) III–V and (c) II–VI semiconductors.
d¼ diamond; zb¼ zinc-blende; w¼wurtzite (C6v); h¼ hexagonal (C6v or D6h); rh¼ rhombohedral;
t¼ tetragonal; rs¼ rocksalt; or¼ orthorhombic. Note that b-Sn (t) is a metal

(a)

IV C Si Ge Sn

C d zb, w, h, rh
Si zb, w, h, rh d
Ge d
Sn d, t

(b)

III/V N P As Sb

B zb, h zb zb
Al w zb zb zb
Ga w zb zb zb
In w zb zb zb

(c)

II/VI O S Se Te

Be w zb zb zb
Mg rs rs zb w
Zn w zb, w zb zb
Cd rs w w zb
Hg rh, or zb, rh zb zb
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Table 1.3 Types of spontaneous ordering phases observed in some group-IV, III–V and II–VI
semiconductor alloys

System Ordering type Material Epitaxial growth

IV RS1 (CuPt) SiGe MBEa

RS2 (CuPt) SiGe MBEa

RS3 (CuPt) SiGe MBEa

III–V CuPt-B AlInP MBE,b MOCVDc

GaInP Cl-VPE,d HT-VPE,e MBE,f MOCVDg

AlInAs MEB,h MOCVDi

GaInAs Cl-VPE,j MOCVDk

GaInSb MOCVDl

GaPAs MOCVDm

GaPSb MOCVDn

GaAsSb MBEo

InPAs MOCVDp

InPSb MOCVDq

InAsSb MOCVD,r MBEs

GaInPAs Cl-VPE,j MOCVDt

AlGaInP MOCVDc

CuPt-A AlInP MBEb

AlInAs MBEu

CuAu-I AlGaAs MOCVDv

GaInAs MBEw

GaAsSb MBE,x MOCVDy

TP-A AlInAs MBEz

GaInAs MBEaa

II–VI CuPt-B ZnCdTe MOCVDab

CdHgTe LPEac

ZnSeTe MOCVDad

CuAu-I ZnCdTe MBEae

ZnSeTe MBEaf

Cu3Au ZnCdTe MBEag

aSee,W. J€ager, in Properties of Strained and Relaxed Silicon Germanium, EMIS Datareviews Series No. 12 (edited by
E. Kasper), INSPEC, London, 1995, p. 53

bA. Gomyo et al., Jpn. J. Appl. Phys. 34, L469 (1995)
cT. Suzuki et al., Jpn. J. Appl. Phys. 27, 2098 (1988)
dO. Ueta et al., J. Appl. Phys. 68, 4268 (1990)
eK. Nishi and T. Suzuki (unpublished)
fA. Gomyo et al., Mater. Res. Symp. Proc. 417, 91 (1996)
gA. Gomyo et al., Phys. Rev. Lett. 60, 2645 (1988)
hT. Suzuki et al., Appl. Phys. Lett. 73, 2588 (1998)
iA. G. Norman et al., Inst. Phys. Conf. Ser. 87, 77 (1987)
jM. A. Shahid et al., Phys. Rev. Lett. 58, 2567 (1987)
kT.-Y. Seong et al., J. Appl. Phys. 75, 7852 (1994)
lJ. Shin et al., J. Electron. Mater. 24, 1563 (1995)
mG. S. Chen et al., Appl. Phys. Lett. 57, 2475 (1990)
nG. B. Stringfellow, J. Cryst. Growth 98, 108 (1989)
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Normally, SixGe1�x crystallizes in the diamond structure which contains of two fcc
sublattices shifted by one quarter of the body diagonal. Observations of long-range ordering
of group-IV semiconductor alloy have been made on SixGe1�x layers grown on Si(100) by
MEB [3] and subsequently at interfaces of SLs [2]. Different order structureswere suggested in
bulk SixGe1�x on the basis of experimental results and are depicted in Figure 1.2. They are RS1,
RS2 and RS3 with the rhombohedral structures (CuPt ordering, R3m). The stoichiometry for
RS1 and RS2 is Si0.5Ge0.5, while RS3 allows compositional differences on specific lattice sites.
As seen in Figure 1.2, RS1 (RS2) has the widely (closely) spaced {111} planes occupied by
the same atom type, while RS3 allows compositional differences between projected sites or
columns with compositions a, b, g and d corresponding to specific Si- and Ge-rich sites.

oY.-E. Ihm et al., Appl. Phys. Lett. 51, 2013 (1987)
pD. H. Jaw et al., Appl. Phys. Lett. 59, 114 (1991)
qSee, H. R. Jen et al., Appl. Phys. Lett. 54, 1890 (1989)
rH. R. Jen et al., Appl. Phys. Lett. 54, 1154 (1989)
sT.-Y. Seong et al., Appl. Phys. Lett. 64, 3593 (1994)
tW. E. Plano et al., Appl. Phys. Lett. 53, 2537 (1988)
uT. Suzuki et al., Appl. Phys. Lett. 73, 2588 (1998)
vT. S. Kuan et al., Phys. Rev. Lett. 54, 201 (1985)
wO. Ueda, et. al., J. Cryst. Growth 115, 375 (1991)
xO. Ueta et al., Proc. 7th Int. Conf. InP and Related Materials Sapporo, Japan, p. 253 (1995)
yH. R. Jen et al., Appl. Phys. Lett. 48, 1603 (1986)
zA. Gomyo et al., Phys. Rev. Lett. 72, 673 (1994)
aaD. Shindo et al., J. Electron Microscopy 45, 99 (1996)
abN. Amir et al., J. Phys. D: Appl. Phys. 33, L9 (2000)
acK. T. Chang and E. Goo, J. Vac. Sci. Technol. B 10, 1549 (1992)
adK. Wolf et al., Solid State Commun. 94, 103 (1995)
aeH. S. Lee et al., Appl. Phys. Lett. 83, 896 (2003)
afH. Luo et al., J. Vac. Sci. Technol. B 12, 1140 (1994)
agH. S. Lee et al., Solid State Commun. 137, 70 (2006)

Figure 1.2 Si–Ge ordered structures of types (a) RS1, (b) RS2 and (c) RS3. In (c), the four projected
compositions a, b, g and d correspond to specific Si- and Ge-rich sites

3
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The long-range order parameter in RS1 and RS2 can be defined by

S ¼ rSi�x

1�x
ð1:2Þ

where rSi is the fraction of Si sites occupied correctly and x is the fraction of Si atoms in
SixGe1�x. S¼ 1means perfect and complete order,whileS¼ 0means randomalloy. The degree
of long-range order can be quantitatively deduced from the electron diffraction intensity of
superstructure reflections. However, because of the presence of crystalline defects, of
superposition of various domains and of the multiple scattering, the actual intensity substan-
tially deviates from the kinematic value so that quantitative determination from selected-area
electron diffraction intensity is usually obscured [2].

Observations of the long-range ordering have been made on bulk SiGe or SL samples
prepared by MBE at medium temperature and for various compositions. However, no
observations of ordered phases are reported for bulk SiGe grown from the melt [4].

(b) III–V semiconductor alloy

In 1985, Kuan et al. [5] first observed an ordered phase (CuAu-I type) in III–V semiconductor
alloy which was an AlGaAs epilayer grown on GaAs(100) at 600–800 �C by MOCVD. Since
the finding of CuPt-type ordering in SiGe alloy [3], this type of ordering (CuPt-B) has also been
reported for many III–V alloys, such as AlInP, GaInP, AlInAs and GaInAs ([6], see also
Table 1.3). New types of ordering, CuPt-A and TP-A, are also found in AlInP [7] and AlInAs
alloys [8]. Other types of ordering, CuAu-I, famatinite and chalcopyrite, are reported in the
early history of the spontaneous ordering in III–Valloys; however, mechanism of these phases
seems to be quite different from those of CuPt-B, CuPt-A and TP-A [6].

The unit cells of (a) CuPt-B, (b) CuAu-I and (c) chalcopyrite structures are shown in
Figure 1.3. The metallurgical CuPt alloy has a random fcc structure at high temperatures, but
quenching at low temperatures produces a rhombohedral phase with 1/2{111} chemical
ordering. The CuPt-B structure is among the most widely discussed and accessed forms
of spontaneous ordering in III–V ternaries, and occurs in both common anion and common
cation alloys (Table 1.3). It is a monolayer SL of IIIA (VA)-rich planes and IIIB (VB)-rich
planes ordered in the ½�111� or ½1�11� directions, as depicted in Figure 1.4. The CuPt-A and

Figure 1.3 Unit cells of (a) CuPt-B (GaInAs), (b) CuAu-I (AlGaAs) and (c) chalcopyrite structures
(CuGaSe2)
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TP-A phases occur in the ½�1�1�1� and ½11�1� directions, in which CuPt-B ordering is never
observed. The metallic CuAu alloy shows two prominent ordered phases: (i) CuAu-I trigonal
phase with alternating (002) planes of pure Cu and Au compositions and (ii) orthorhombic
CuAu-II phase. The CuAu-I ordering occurs spontaneously within fcc sublattices of some
III–V pseudobinary alloys, such as AlGaAs, GaInAs and GaAsSb (Table 1.3).

An earlier thermodynamic calculation based on a first-principles theory predicted that an
ordered phase with a large lattice-constant mismatch is more stable than the corresponding
random phase [9]. Some experimental data, on the other hand, showed that the kinetics of
crystal growth plays an important role in the formation of an ordered structure as discussed in
Mascarenhas [2].

(c) II–VI semiconductor alloy

Only a few studies have been carried out on spontaneous ordering of II–VI semiconductor
alloys. These studies reported ordering of CuPt and CuAu-I types (Table 1.3). Recently, a new
ordering phase, Cu3Au, has been observed in Zn0.9Cd0.1Te epilayers grown on GaAs(100)
substrates [10]. We can see a tendency in Table 1.3 to observe the CuPt (CuAu-I) phase if
samples were grown by MOCVD (MBE).

1.4 LATTICE CONSTANTAND RELATED PARAMETERS

1.4.1 CuAu Alloy: Ordered and Disordered States

Cu–Au alloy is among the best studied of all metallic alloys. Themost interesting feature of this
alloy is that CuAu (x¼ 0.5), CuAu3 (x¼ 0.25) and Cu3Au (x¼ 0.75) can be obtained in either
ordered or disordered form. The ordered CuAu alloy crystallizes in the LI0 tetragonal structure

Figure 1.4 [110] projection of CuPt-B ordering (GaInP)
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(space group¼P4/mmm), while the ordered CuAu3 and Cu3Au alloys crystallize in the LI2
cubic structure ðPm�3mÞ.

In Figure 1.5 the lattice constant a has been plotted as a function of x for CuxAu1�x. The solid
and open circles represent the ordered and disordered alloy data, respectively. The solid line
shows the linear interpolation result between the Au (x¼ 0) and Cu (x¼ 1.0) values. It can be
seen from Figure 1.5 that the Cu–Au ordering has no strong effect on the lattice parameter.
Similarly, no clear spontaneous ordering effect has been observed on the lattice parameters of
semiconductor alloys.

1.4.2 Non-alloyed Semiconductor

The lattice parameters for a number of the most easily grown group-IV, III–V and II–VI
semiconductors are listed in Table 1.4. Tables 1.5, 1.6 and 1.7 also list the molecular weight
(M), lattice constants (a and b) and crystal density (g) for a number of group-VI, III–Vand II–VI
semiconductors crystallizing in the diamond, zinc-blende andwurtzite structures, respectively.
These values can be used to obtain alloy values using the interpolation scheme.
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Figure 1.5 Lattice constant a versus x for CuxAu1�x. The solid and open circles represent the ordered
(x¼ 0.25, 0.75) and disordered alloy values, respectively. The solid line shows the linear interpolation
result between the endpoint elemental data

Table 1.4 Most easily grown crystal structure and lattice constants at 300K for a number of easily or
normally grown group-IV, III–V and II–VI semiconductors. d¼ diamond; zb¼ zinc-blende;
h¼ hexagonal; w¼wurtzite; rs¼ rocksalt; or¼ orthorhombic; rh¼ rhombohedral

System Material Crystal structure a (A
�
) c (A

�
)

IV Diamond d 3.5670
Si d 5.4310
Ge d 5.6579
Sn d 6.4892
3C-SiC zb 4.3596
6H-SiC h 3.0806 15.1173

System Material Crystal structure a (A
�
) c (A

�
)
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Table 1.4 (Continued )

System Material Crystal structure a (A
�
) c (A

�
)

III–V BN zb 3.6155
BN h 2.5040 6.6612
BP zb 4.5383
BAs zb 4.777
AlN h (w) 3.112 4.982
AlP zb 5.4635
AlAs zb 5.66139
AlSb zb 6.1355
GaN h (w) 3.1896 5.1855
GaP zb 5.4508
GaAs zb 5.65330
GaSb zb 6.09593
InN h (w) 3.548 5.760
InP zb 5.8690
InAs zb 6.0583
InSb zb 6.47937

II–VI BeO h (w) 2.6979 4.380
BeS zb 4.865
BeSe zb 5.137
BeTe zb 5.617
MgO rs 4.203
MgS rs 5.203
MgSe zb 5.91
MgTe h (w) 4.548 7.390
ZnO h (w) 3.2495 5.2069
ZnS h (w) 3.8226 6.2605
ZnS zb 5.4102
ZnSe zb 5.6692
ZnTe zb 6.1037
CdO rs 4.686
CdS h (w) 4.1367 6.7161
CdSe h (w) 4.2999 7.0109
CdTe zb 6.481
HgO or 3.577 (a)

8.681 (b)
2.427 (c)
0.745 (u)

HgS rh 4.14 (a)
9.49 (b)
2.292 (c)
0.720 (u)
0.480 (v)

HgSe zb 6.084
HgTe zb 6.4603

STRUCTURAL PROPERTIES 17



Table 1.5 Molecular weightM, lattice constant a and crystal density g for a number of cubic, diamond-
type semiconductors at 300 K

System Material M (amu) a (A
�
) g (g/cm3)

IV Diamond 12.0107 3.5670 3.5156
Si 28.0855 5.4310 2.3291
Ge 72.61 5.6579 5.3256
Sn 118.710 6.4892 5.7710

Table 1.6 Molecular weight M, lattice constant a and crystal density g for a number of cubic, zinc-
blende-type semiconductors at 300 K

System Material M (amu) a (A
�
) g (g/cm3)

IV 3C-SiC 40.0962 4.3596 3.2142

III–V BN 24.818 3.6155 3.4880
BP 41.785 4.5383 2.9693
BAs 85.733 4.777 5.224
AlN 40.98828 4.38 3.24
AlP 57.955299 5.4635 2.3604
AlAs 101.903098 5.66139 3.73016
AlSb 148.742 6.1355 4.2775
GaN 83.730 4.52 6.02
GaP 100.696 5.4508 4.1299
GaAs 144.645 5.65330 5.31749
GaSb 191.483 6.09593 5.61461
InN 128.825 4.986 6.903
InP 145.792 5.8690 4.7902
InAs 189.740 6.0583 5.6678
InSb 236.578 6.47937 5.77677

II–VI BeO 25.0116 3.80 3.03
BeS 41.078 4.865 2.370
BeSe 87.97 5.137 4.310
BeTe 136.61 5.617 5.120
MgO 40.3044 4.21 3.59
MgS 56.371 5.62 2.11
MgSe 103.27 5.91 3.32
MgTe 151.91 6.42 3.81
ZnO 81.39 4.47 6.05
ZnS 97.46 5.4102 4.0879
ZnSe 144.35 5.6692 5.2621
ZnTe 192.99 6.1037 5.6372
CdO 128.410 5.148a 6.252a

CdS 144.477 5.825 4.855
CdSe 191.37 6.077 5.664
CdTe 240.01 6.481 5.856
HgS 232.66 5.8514 7.7135
HgSe 279.55 6.084 8.245
HgTe 328.19 6.4603 8.0849

aTheoretical



1.4.3 Semiconductor Alloy

(a) Group-IV semiconductor

Table 1.8 gives the lattice-matching condition between some group-IV ternary alloys and
Si substrate. The incorporation of carbon into Si or SiGe gives rise to additional flexibility for
group-IV-based heterostructure design [11]. Due to huge lattice mismatch between diamond

Table 1.7 Molecular weightM, lattice constants a and c and crystal density g for a number of hexagonal,
wurtzite-type semiconductors at 300K

System Material M (amu) Lattice constant (A
�
) g (g/cm3)

a c

IV 2H-SiC 40.0962 3.0763 5.0480 3.2187

III–V AlN 40.98828 3.112 4.982 3.258
GaN 83.730 3.1896 5.1855 6.0865
InN 128.825 3.548 5.760 6.813

II–VI BeO 25.0116 2.6979 4.380 3.009
BeSa 41.078 3.440 5.618 2.370
BeSea 87.97 3.632 5.932 4.311
BeTea 136.61 3.972 6.486 5.120
MgO 40.3044 3.199 5.086 2.970
MgS 56.371 3.972 6.443 2.127
MgSe 103.27 4.145 6.723 3.429
MgTe 151.91 4.548 7.390 3.811
ZnO 81.39 3.2495 5.2069 5.6768
ZnS 97.46 3.8226 6.2605 4.0855
ZnSe 144.35 3.996 6.626 5.232
ZnTe 192.99 4.27 6.99 5.81
CdO a 128.410 3.678 5.825 6.249
CdS 144.477 4.1367 6.7161 4.8208
CdSe 191.37 4.2999 7.0109 5.6615
CdTe 240.01 4.57 7.47 5.90
HgS a 232.66 4.1376 6.7566 7.7134
HgSe a 279.55 4.302 7.025 8.246
HgTe a 328.19 4.5681 7.4597 8.0850

aEstimated or theoretical

Table 1.8 Lattice-matching conditions of some group-IV ternaries at 300K

Material Substrate Expression Remark

CxSiyGe1�x�y Si x¼ 0.109–0.109y 0� y� 1.0, x/(1� x� y)¼ 0.122
CxSiySn1�x�y Si x¼ 0.362–0.362y 0� y� 1.0, x/(1� x� y)¼ 0.567
CxGeySn1�x�y Si x¼ 0.362–0.284y 0� y� 0.89

STRUCTURAL PROPERTIES 19



and Si, a small amount of substantially incorporated C induces a substantial tensile strain
in pseudomorphic CxSi1�x layers on Si. This effect can be exploited for CxSiyGe1�x�y/Si,
CxSiySn1�x�y/Si and CxGeySn1�x�y/Si heterostructures by properly choosing pseudomorphic
compositions x and y. It should be noted, however, that the solubility of C into Si is only
about 6� 10�6 at% (�3� 10�17 cm�3) at the melting point of Si. Carbon incorporated into
substitutional lattice sites up to a few atomic percent has been achieved only using growth
techniques far from thermodynamic equilibrium [12].

Figure 1.6 shows the plot of the lattice constant a versus x for bulk CxSi1�x. The open circles
represent the experimental data for diamond and Si, while the solid circle shows the data for

3C-SiC (x¼ 0.5). The light solid line is obtained from Vegard law between Si and 3C-SiC
(x¼ 0.5), while the dashed line is obtained between Si and diamond (x¼ 1.0). The 3C-SiC
value is smaller than the linearly interpolated value. The heavy solid line in Figure 1.6
represents the theoretical a values for CxSi1�x obtained from a Monte Carlo calculation [13].
These values can be expressed as (in A

�
)

aðxÞ ¼ 5:4310�2:4239xþ 0:5705x2 ð1:3Þ

The negative deviation a(x) seen in Figure 1.6 has been confirmed experimentally from
pseudomorphic CxSi1�x epilayers (x < 0.012) grown on Si(100) by solid-source MBE [14].

Si and Ge, both crystallize in the diamond structure, form a continuous series of SixGe1�x

alloys with x ranging from 0 to 1.0. The most precise and comprehensive determination of the
lattice constant a and crystal density g across the whole alloy range was undertaken by
Dismukes et al. [15]. The values they obtained for a and g are plotted versus x for SixGe1�x in
Figure 1.7. These data reveal a small deviation fromVegard law, i.e. from the linearity between
the endpoint values. The lattice parameter a shows a downward bowing, while the density
parameter g gives an upward bowing. From Figure 1.7, we obtain parabolic relation for a and g
as a function of x (a in A

�
, g in g/cm3)

aðxÞ ¼ 5:6575�0:2530xþ 0:0266x2 ð1:4aÞ
gðxÞ ¼ 5:3256�2:5083x�0:4853x2 ð1:4bÞ
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Figure 1.6 Lattice constant a versus x for bulk CxSi1�x at 300K. The open and solid circles represent the
experimental data. The light solid and dashed lines represent the results of Vegard law between Si (x¼ 0)
and 3C-SiC (x¼ 0.5) and between Si (x¼ 0) and diamond (x¼ 1.0), respectively. The heavy solid line
shows the theoretical values obtained from a Monte Carlo simulation by Kelires [13]
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As shown in Figure 1.8, the diamond-type lattice, e.g. Si has only one type of first-neighbor
distance

dðSi�SiÞ ¼
ffiffiffi
3

p

4
a ðfour bondsÞ ð1:5Þ

EXAFS has been popularly used to determine bond lengths for different types of neighbor
atom pairs and the corresponding fractional occupancy of each type of neighbor. Recent
EXAFS and XRD studies performed on strained SixGe1�x/Si layers indicated that the Si–Si,
Si–Ge andGe–Ge nearest-neighbor distances are 2.35� 0.02, 2.42� 0.02 and 2.38� 0.02A

�
,

respectively, close to the sum of their constituent-element covalent radii and independent of
x, while the lattice constant varies monotonically with x [16,17]. More recently, Yonenaga
et al. [18] investigated the local atomistic structure in bulk Czochralski-grown SixGe1�x

using EXAFS. As shown in Figure 1.9, the bond lengths Si–Si, Si–Ge and Ge–Ge in the bulk
SixGe1�x remain distinctly different lengths and vary in linear fashion of x over the entire
composition range 0� x� 1.0, in agreement with expectation derived from ab-initio
electronic structure calculation. These results suggest that SixGe1�x is a typical disorder
material and that the bond lengths and bond angles are disordered with x in SixGe1�x.
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Figure 1.7 (a) Lattice constant a and (b) crystal density g for SixGe1�x at 300K. The experimental data
are taken from Dismukes et al. [15]. The solid and dashed lines represent the parabolic and linear fit
results, respectively

Figure 1.8 Bond distances in (a) diamond (Si), (b) zinc-blende (GaAs) and (c)wurtzite structures (GaN)
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(b) III–V semiconductor

The expressions for a versus alloy composition can be obtained from Vegard law. The crystal
density can also be calculated from g¼MdM/NA, where M is the molecular weight, NA¼
6.022� 1023mol�1 is the Avogadro constant and dM is the molecular density [1].

The III–V quaternaries can be epitaxially grown on some III–V binaries (GaAs, InP, etc.).
Introducing the binary lattice parameters in Table 1.6 intoEquation (A.6) or Equation (A.8), we
can obtain the lattice-matching conditions for AxB1�xCyD1�y and AxByC1�x�yD quaternaries
on various III–V binary substrates. These results are summarized in Tables 1.9–1.11. The
lattice-matching conditions in Tables 1.9–1.11 can be approximated by more simple expres-
sions. Some results are presented in Table 1.12.

The lattice parameter a at 300K as a function of x for AlxGa1�xAs is shown in
Figure 1.10. The experimental data are taken from Takahashi [19]. From a least-squares fit,
we obtain

aðxÞ ¼ 5:6533þ 0:0083x�0:0003x2 ð1:6Þ
The solid line in Figure 1.10 shows the calculated result of Equation (1.6). This equation
promises that the lattice parameter for AlxGa1�xAs can be given by Vegard law with good

Figure 1.9 Near-neighbor distance in SixGe1�x at 300K. The experimental data are taken from
Yonenaga et al. [18]. The horizontal lines show the bond lengths in bulk Si and Ge. The middle thin
line is obtained from Vegard law

Table 1.9 Lattice-matching conditions for some cubic, zinc-blende-type III–V quaternaries of type
AxB1�xCyD1�y at 300K

x ¼ A0 þB0y

C0 þD0y

Quaternary Substrate A0 B0 C0 D0 Remark

AlxIn1�xPyAs1�y GaAs 0.4050 �0.1893 0.3969 0.0086 0.04�y�1.0
InP 0.1893 �0.1893 0.3969 0.0086 0�y�1.0

GaxIn1�xPyAs1�y GaAs 0.4050 �0.1893 0.4050 0.0132 0�y�1.0
InP 0.1893 �0.1893 0.4050 0.0132 0�y�1.0
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Table 1.10 Lattice-matching conditions for some cubic, zinc-blende-type III–V quaternaries of type
AxB1�xCyD1�y at 300K

y ¼ A0 þB0x

C0 þD0x

Quaternary Substrate A0 B0 C0 D0 Remark

AlxGa1�xPyAs1�y GaAs 0 0.0081 0.2025 �0.0046 0� x� 1.0
AlxGa1�xPySb1�y GaAs 0.4426 0.0396 0.6451 0.0269 0� x� 1.0

GaSb 0 0.0396 0.6451 0.0269 0� x� 1.0
InP 0.2269 0.0396 0.6451 0.0269 0� x� 1.0
InAs 0.0376 0.0396 0.6451 0.0269 0� x� 1.0

AlxGa1�xAsySb1�y GaSb 0 0.0396 0.4426 0.0315 0� x� 1.0
InP 0.2269 0.0396 0.4426 0.0315 0� x� 1.0
InAs 0.0376 0.0396 0.4426 0.0315 0� x� 1.0

AlxIn1�xPySb1�y GaAs 0.8261 �0.3439 0.6104 0.0616 0.53� x� 1.0
GaSb 0.3834 �0.3439 0.6104 0.0616 0� x� 1.0
InP 0.6104 �0.3439 0.6104 0.0616 0� x� 1.0
InAs 0.4211 �0.3439 0.6104 0.0616 0� x� 1.0

AlxIn1�xAsySb1�y GaSb 0.3834 �0.3439 0.4211 0.0530 0� x� 1.0
InP 0.6104 �0.3439 0.4211 0.0530 0.48� x� 1.0
InAs 0.4211 �0.3439 0.4211 0.0530 0� x� 1.0

GaxIn1�xPySb1�y GaAs 0.8261 �0.3834 0.6104 0.0348 0.52� x� 1.0
GaSb 0.3834 �0.3834 0.6104 0.0348 0� x� 1.0
InP 0.6104 �0.3834 0.6104 0.0348 0� x� 1.0
InAs 0.4211 �0.3834 0.6104 0.0348 0� x� 1.0

GaxIn1�xAsySb1�y GaSb 0.3834 �0.3834 0.4211 0.0216 0� x� 1.0
InP 0.6104 �0.3834 0.4211 0.0216 0.47� x� 1.0
InAs 0.4211 �0.3834 0.4211 0.0216 0� x� 1.0

Table 1.11 Lattice-matching conditions for some cubic, zinc-blende-type III–V quaternaries of the type
AxByC1�x�yD or ABxCyD1�x�y at 300K

Quaternary Substrate Expression Remark

AlxGayIn1�x�yP GaAs y¼ 0.5158–0.9696x 0� x� 0.53
AlxGayIn1�x�yAs InP y¼ 0.4674–0.9800x 0� x� 0.48
AlPxAsySb1�x�y GaAs x¼ 0.7176–0.7055y 0� y� 1.0

InP x¼ 0.3966–0.7055y 0� y� 0.56
InAs x¼ 0.1149–0.7055y 0� y� 0.16

GaPxAsySb1�x�y GaAs x¼ 0.6861–0.6861y 0� y� 1.0
InP x¼ 0.3518–0.6861y 0� y� 0.51
InAs x¼ 0.0583–0.6861y 0� y� 0.08

InPxAsySb1�x�y GaSb x¼ 0.6282–0.6899y 0� y� 0.91
InAs x¼ 0.6899–0.6899y 0� y� 1.0
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approximation. The difference in a between AlxGa1�xAs and GaAs can also be written as

aðAlxGa1�xAsÞ�aðGaAsÞ
aðGaAsÞ ¼ 0:0015x ¼ 0:15x% ð1:7Þ

Figure 1.11 shows the experimental x–y plots for GaxIn1�xPyAs1�y/InP [20]. The solid line
shows the exactly calculated x–y relation in Table 1.9

Table 1.12 Approximated lattice-matching expression for some important cubic, zinc-blende-type
III–V quaternaries at 300K

Quaternary Substrate Expression Remark

AlxGa1�xAsySb1�y GaSb y¼ 0.084x 0� x� 1.0
InAs y¼ 0.085 þ 0.078x 0� x� 1.0

GaxIn1�xPyAs1�y InP x¼ 0.47–0.47y 0� y� 1.0
GaxIn1�xAsySb1�y GaSb y¼ 0.91–0.91x 0� x� 1.0

InAs y¼ 1.00–0.91x 0� x� 1.0
AlxGayIn1�x�yP GaAs y¼ 0.52–0.97x 0� x� 0.53
AlxGayIn1�x�yAs InP y¼ 0.47–0.98x 0� x� 0.48
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Figure 1.10 Lattice parameter a as a function of x for AlxGa1�xAs at 300K. The experimental data are
taken from Takahashi [19]. The solid line represents the quadratic least-squares fit
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Figure 1.11 Plots of x versus y for GaxIn1�xPyAs1�y nearly lattice-matched to InP at 300K. The
experimental data are taken fromNahory et al. [20]. The solid and dashed lines show the lattice-matching
relationships obtained from Vegard law in Equations (1.8) and (1.9), respectively
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x ¼ 0:1893�0:1893y

0:4050þ 0:0132y
ð1:8Þ

The dashed line also shows the calculated result using an expression in Table 1.12

x ¼ 0:47�0:47y ð1:9Þ
Both expressions can explain the experimental x–y relation very well and simultaneously
indicate the validity of Vegard law for GaxIn1�xPyAs1�y/InP. It has, however, been reported that
strained AlxGa1�xSb/GaSb does not obey Vegard law [21].

The crystal density g versus y for GaxIn1�xPyAs1�y/InP is shown in Figure 1.12. The solid
line represents the X-ray crystal density calculated from Equation (1.16) of Adachi [1], while
the dashed line is obtained from the linear interpolation between the endpoint densities
(y¼ 0, 1.0). Their difference is within 2%.

The experimental lattice parameter c as a function of x for w-GaxIn1�xN is plotted in
Figure 1.13. The experimental data are taken fromBearch et al. [22] (solid circles) andRomano
et al. [23] (open circles). The GaxIn1�xN layers (0� x� 0.14) used by Bearch et al. [22]
were grown on (0001) sapphire byMOMBE andwere believed to be fully relaxed. On the other
hand, theGaxIn1�xN layers inRomano et al. [23]were pseudomorphically grown on 5mmthick
GaN on (0001) sapphire byMOCVD (x¼ 0–0.114). The solid line in Figure 1.13 obeysVegard
law using c¼ 5.1855A

�
for GaN and c¼ 5.760A

�
for InN (Table 1.7).

Figure 1.14 shows the lattice parameter c versus x for strainedAlxGa0.9�xIn0.1N alloy grown
by MOCVD [24]. The dashed line represents the linear interpolation result using the endpoint
values taken from Table 1.7. The lattice parameter c is found to decrease almost linearly with
increasing x. The prediction ofVegard lawgives no good agreementwith the experimental data.

It can be concluded from Figure 1.13 that the fully relaxed GaxIn1�xN films follow Vegard
law well; however, no good agreement can be achieved in the case of the pseudomorphic
alloy layers. As we will see later (Section 1.5.2), Vegard law may be applicable if any strain
effects are artificially removed from such pseudomorphically strained layers.

HRXRDhas been widely used and demonstrated that almost all III–V semiconductor alloys
obeyVegard lawwell. It has also been reported that Vegard law remains valid in dilute nitrides,
such as GaNxAs1�x and GaxIn1�xNyAs1�y, as long as all N atoms in the dilute nitrides locate
at the arsenic sites [25]. The N–N pairs are thought to be the predominant N-related defects
that cause deviation from Vegard law [26]. Germini et al. [21], however, observed a deviation
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Figure 1.12 X-ray crystal density g versus y forGaxIn1�xPyAs1�y/InP at 300K. The solid line represents
the exact X-ray crystal density calculated from Equation (1.16) of Adachi [1], while the dashed line is
obtained from the linear interpolation between the endpoint binary data
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from Vegard law in MBE-grown AlxGa1�xSb/GaSb layers by HRXRD, RBS and RHEED.
These results are plotted in Figure 1.15. The experimental unstrained lattice parameters can be
described by

aðxÞ ¼ 6:09593þ 0:04360x�4:229� 10�3 x2 ð1:10Þ
The deviation from linearity is found to be larger than the prediction of a perfect randomalloy in
the frame of the Fournet model [27].

There is a significant structural difference between the bond distance in the zinc-blende and
wurtzite structures of AxB1�xC alloy. The first-neighbor distance in the zinc-blende structure
is given from Figure 1.8 by

dðGa�AsÞ ¼
ffiffiffi
3

p

4
a ðfour bondsÞ ð1:11Þ

Yet, the wurtzite structure has two types of the first-neighbor anion–cation bond distances
(Figure 1.8)

dðGa�N1Þ ¼ ua ðone bondÞ ð1:12aÞ
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Figure 1.13 Lattice parameter c as a function of x forw-GaxIn1�xN at 300K. The experimental data are
taken from Bearch et al. [22] (fully relaxed layers, solid circles) and Romano et al. [23] (pseudomorphic
layers, open circles). The solid line represents the simply estimate of the c versus x relationship obtained
from Vegard law
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Figure 1.14 Lattice parameter c versus x for strained w-AlxGa0.9�xIn0.1N at 300K. The experimental
data are taken fromAumer et al. [24]. The dashed and solid lines represent the results of applying Vegard
law before and after correcting for the biaxial strain effect
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dðGa�N2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3
þ 1

2
�u

� �2 c

aw

� �2
s

aw ðthree bondsÞ ð1:12bÞ

where u represents the cell-internal structural parameter and aw and c show the lengths of the
lattice vectors of thewurtzite structure. In the case of an ideal tetragonal ratio c/aw¼ (8/3)1/2¼
1.6330 and an ideal cell internal parameter u¼ 3/8, it follows from Equation (1.12) that
d(Ga–N1)¼ d(Ga–N2).

In the zinc-blende lattice, we have only one type of second neighbor cation–anion bond
distance

dðGa�AsÞ ¼
ffiffiffiffiffi
11

p

4
a ð12 bondsÞ ð1:13Þ

On the other hand, the wurtzite lattice has three types of second neighbor cation–anion
distances concerning the cation A (Ga) to anions C2a, C2b and C2c

dðGa�N2aÞ ¼ ð1�uÞ c

aw
aw ðone bondÞ ð1:14aÞ

dðGa�N2bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uc

aw

� �2
s

aw ðsix bondsÞ ð1:14bÞ

dðGa�N2cÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

3
þ 1

2
�u

� �2 c

aw

� �2
s

aw ðthree bondsÞ ð1:14cÞ

For ideal wurtzite parameters of c/aw¼ (8/3)1/2¼ 1.6330 and u¼ 3/8, the following expression
can be obtained from Equation (1.14)

dðGa�N2aÞ ¼ 1:0206aw; dðGa�N2bÞ ¼ dðGa�N2cÞ ¼ 1:1726aw ð1:15Þ
The spacing between the near-neighbor In–In or P–P atoms in InP is equal to (1/H2)a.

It would be anticipated that for an alloy the interatomic bond length of each constituent remains
constant with alloy composition. Unfortunately, however, standard XRD techniques give
information only on the lattice structure that is averaged over an area larger than the scale of
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Figure 1.15 Room-temperature lattice constant a as a function of x for AlxGa1�xSb grown on GaSb.
The experimental data are taken from Germini et al. [21]. The solid line represents the quadratic best-fit
result obtained using Equation (1.10)
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lattice constant. The interatomic structure in such semiconductor alloyswas, therefore, notwell
understood until 1982. Mikkelsen and Boyce [28] reported in 1982 the interatomic structure of
GaxIn1�x As using an EXAFS. They found that the Ga–As and In–As near-neighbor distances
change by only 0.04A

�
as the In composition varies from 1 to 99 at% despite the fact that this

alloy accurately follows Vegard lawwith a change in average near-neighbor spacing of 0.17A
�
.

We reproduce in Figure 1.16 the results of Mikkelsen and Boyce [28]. They also observed that
the cation sublattice approaches a virtual crystal (i.e. an average fcc lattice) with a broadened
single distribution of second-neighbor distances, whereas the anion sublattice exhibits a
bimodal anion–anion second-neighbor distribution.

The essentially same EXAFS results, but on GaxIn1�xPyAs1�y/InP, were reported by
Oyanagi et al. [29]. They reported that the cation–anion distances in GaxIn1�xPyAs1�y/InP
deviate from the average interatomic distance, but are rather close to the bond lengths in pure
parent crystals. The cation–anion distances obtained from this study are plotted in Figure 1.17.

The near-neighbor distances in w-GaxIn1�xN versus x are shown in Figure 1.18. The
experimental data are taken from Jeffe et al. [30]. The theoretical lines are taken fromMattila
and Zunger [31] in which the valence force field simulation with large supercells (512–1280
atoms) was used. It has been shown [31] that while the first-neighbor cation–anion bonds for
different cations (Ga–N1 and In–N1) retain distinct values in the wurtzite and zinc-blende
alloys, the second-neighbor cation–anion bonds Ga–N2 and In–N2 merge into a single bond
length. However, the second-neighbor cation–anion bonds for the same cation exhibit a crucial
difference between the wurtzite and zinc-blende structures. This is thought to be an intrinsic
property of the binary constituents and persists in the alloy. The small splitting of the first-
neighbor cation–anion bonds in the wurtzite structure is also preserved in the alloy, but
obscured by bond length broadening [31].

Figure 1.16 Near-neighbor distance in GaxIn1�xAs at 300K. The middle thin line represents the
bond length curve estimated from Vegard law. [Reprinted with permission from J. C. Mikkelsen, Jr. and
J. B. Boyce, Phys. Rev. Lett. 49, 1412 (1982). Copyright (1982) by the American Physical Society]
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(c) II–VI semiconductor

Several II–VI semiconductor quaternaries can be epitaxially grown on III–V binary substrates.
The corresponding lattice-matching relationships are shown in Tables 1.13 and 1.14. These
relationships can be approximated using more simple expressions, as listed in Table 1.15.

Figure 1.19 shows the lattice constant a as a function of x for ZnxCd1�xTe. The experimental
datawere obtained at 300Kusing anXRDcombinedwith aWDXS [32]. The combinationwith
WDXS led to an absolute composition errorDx of less than 0.01. These data suggest thatVegard

Figure 1.18 Near-neighbor distances versus x for w-GaxIn1�xN. The experimental data were measured
at 300K by Jeffe et al. [30]. The theoretically calculated lines are taken fromMattila and Zunger [31]who
used the valence force field simulation with large supercells (512–1280 atoms)
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Figure 1.17 Near-neighbor distance in GaxIn1�xPyAs1�y/InP at 300 K. The experimental data are taken
from Oyanagi et al. [29]. The dashed line represents the bond length curve obtained from Vegard law
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law is exactly valid within the limits of error Da/a� 4� 10�4 and follows the equation (in A
�
)

aðxÞ ¼ 6:4822�0:3792x ð1:16Þ
CdSxTe1�x shows a zinc-blende–wurtzite crystalline phase change at any alloy composition.

Early studies failed to grow alloys for the full range of compositions, concluding that a large

Table 1.13 Lattice-matching conditions for some cubic, zinc-blende-type II–VI quaternaries of the type
AxB1�xCyD1�y at 300K

y ¼ A0 þB0x

C0 þD0x

Quaternary Substrate A0 B0 C0 D0 Remark

MgxZn1�xSySe1�y GaAs 0.016 0.241 0.259 0.031 0� x� 1.0
MgxZn1�xSeyTe1�y InP 0.235 0.314 0.435 0.075 0� x� 0.84

Table 1.14 Lattice-matching conditions for some cubic, zinc-blende-type II–VI quaternaries of the type
AxByC1�x�yD at 300K

Quaternary Substrate Expression Remark

BexMgyZn1�x�ySe GaAs x¼ 0.030 þ 0.453y 0� y� 0.67
MgxZnyCd1�x�ySe InP y¼ 0.510–0.409x 0� x� 0.83

Table 1.15 Approximated lattice-matching expression for some important cubic, zinc-blende-type
II–VI quaternaries at 300K

Quaternary Substrate Expression Remark

MgxZn1�xSySe1�y GaAs y¼ 0.08 þ 0.82x 0� x� 1.0
MgxZn1�xSeyTe1�y InP y¼ 0.55 þ 0.54x 0� x� 0.84
BexMgyZn1�x�ySe GaAs x¼ 0.03 þ 0.45y 0� y� 0.67
MgxZnyCd1�x�ySe InP y¼ 0.51–0.41x 0� x� 0.83
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Figure 1.19 Lattice constant a as a function of x for ZnxCd1�xTe at 300K. The experimental data are
taken from Schenk et al. [32]. The solid line represents the linear best fit of Equation (1.16)
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miscibility gap exists in the CdS–CdTe pseudobinary system [33]. In 1973 Ohata et al. [34]
studied the bulk alloy system for the full range of compositions and reported a change in the
crystalline phase at x� 0.2.

Figure 1.20 plots the lattice constants a and c versus x for bulk CdSxTe1�x crystals as
measured by Wood et al. [35] using XRD. The composition x of each pellet was determined
independently using PIXE. In Figure 1.20, the phase change occurs at x� 0.2, in agreementwith
Ohata et al. [34]. The solid triangles represent the effective cubic lattice parameters aeff¼
(H3a2c)1/3 defined inAdachi [1]. It canbe concluded fromFigure 1.20 that the lattice parameters
both in the zinc-blende andwurtzite phases obeyVegard lawwell. It is also understood that if we
consider aeff, instead of a or c, in the wurtzite phase (0.2< x� 1.0), CdSxTe1�x gives the linear
relationship between a and x over the whole alloy range (0� x� 1.0).

Motta et al. [36] carried out EXAFS measurements on ZnxCd1�xTe. These results are
shown in Figure 1.21 by the open circles. The solid circles correspond to the XRD data by
Schenk et al. [32]. We can see that the EXAFS bond lengths in Figure 1.21 change much less
than the nearest-neighbor distances determined from theXRD.As in the case of the III–Valloys
(Figures 1.16 and 1.17), the XRD lattice parameters in II–VI alloys do not reflect the actual
bond lengths of the nearest neighbors. The EXAFS data of Motta et al. [36] agreed with a
random distribution of atoms in the mixed cation sublattice.

0 0.2 0.4 0.6 0.8 1.0

4

5

6

7

8

a 
(Å

)

x

a (zb)

a (w)

c (w)

CdSxTe1-x

Figure 1.20 Lattice constants a and c versus x for bulk CdSxTe1�x in the zinc-blende (zb) and wurtzite
(w) structures at 300K. The experimental data are taken from Wood et al. [35]. The solid triangles
represent the effective cubic parameters aeff¼ (H3a2c)1/3
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Figure 1.21 Near-neighbor distance in ZnxCd1�xTe at 300K. The experimental data (open circles) are
taken from Motta et al. [36]. The solid circles represent the bond lengths obtained from the XRD data
by Schenk et al. [32]

STRUCTURAL PROPERTIES 31



1.5 COHERENT EPITAXYAND STRAIN PROBLEM

1.5.1 Bilayer Model

Recent semiconductor devices usually havemultilayer structures. The distribution of strains in
multilayer structures is the subject of perennial, great interest since internal strains normally
arise in thin epitaxial films during the preparation by heteroepitaxial growth. Internal strains or
stresses are a consequence of the mismatch of lattice constants and/or the difference in the
thermal expansion coefficients of the individual layers. The strain and stress are related through
the fourth-rank elastic stiffness [C] or compliance tensor [S] [1].

Let us consider the case of bonding a thin plate of zinc-blende crystal of sizeNeae�Neae� te
onto a substrate of a different sizeNsas�Nsas� ts, whereNi is the number of lattice atoms along
the edge of the crystal plate, ai is the lattice constant and ti is the thickness of the plate;
see Figure 1.22(a) [37]. To achieve a coherent interface,Ne is set to equalNs. Let us assume that
ae is less than as and thus le¼Neae is less than ls¼Nsas. The bonding operation is carried out
in the following manner: equal and opposite forces F are applied to the plates to stretch plate
‘e’ and compress plate ‘s’ uniformly in the lateral direction to the same final dimension lf� lf.
The two plates are then bonded together with a perfect alignment of the atomic planes; see
Figure 1.22(b). At the moment when the two plates are bonded together, the composite
experiences an applied bending moment given by F(ts þ te)/2, which is counterbalanced
by the moment resulting from the internal elastic stress. Finally, the applied forces are relieved,
and the moments from the elastic stresses bend the composite in the direction shown in

Figure 1.22 Formation of a two-layer composite: (a) two single-crystalline plates with the lattice
constants ae and as (ae< as) and thicknesses te and te, respectively; (b) layer ‘e’ is stretched and layer ‘s’ is
compressed to match the macroscopic dimension, and the two layers are then bonded together to form a
composite; (c) the composite bends toward the side with the shorter lattice constant after removal of the
external stresses Fe and Fs
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Figure 1.22(c). The bending of the composite relaxes some of the stress, and the radius of
curvature is determined by the final state of the internal stress.

Based on this bilayer model, Noyan and Segm€uller [37] obtained the coherency condition in
terms of the curvature radius R

ae�as
as

¼ 2

R

ts
4

1þ aete
asts

� �
þ 1

Eetsteð1þ te=tsÞ
ae
as

1þ asEete
aeEsts

� �
Est

3
s

12
þ Eet

2
s te
4

� �� �
ð1:17Þ

where

Ei ¼ Yi
1�Pi

ð1:18Þ

with Y¼Young’s modulus and P¼ Poisson’s ratio. The term d shown in Figure 1.22(c)
represents the shift of the neutral axis of the composite from ts/2. This quantity is given by

d ¼ teEe

2Es

1þ te=ts
1þðEete=EstsÞ ð1:19Þ

Solving the elastic force andmomentum balance equations, Noyan and Segm€uller [37] gave
the elastic stress component Xxx parallel to the film as

Xe
xx ¼ � Ee

1þðasEete=aeEstsÞ
as
ae

ae�as
as

� 1þ aete
asts

� �
ts
2R

� �
ð1:20Þ

The relationship between the film and substrate stresses is given by

Xs
xx ¼ � te

ts
Xe
xx ð1:21Þ

The dependence of Xxx on z is now given by

Xe
xxðzÞ ¼ Xe

xx þEe
z�te=2

R

� �
for 0 � z � te ð1:22aÞ

Xs
xxðzÞ ¼ �Xe

xx

te
ts
þEs

zþ te=2

R

� �
for 0 	 z 	 �ts ð1:22bÞ

In the case where ae< as, these expressions give Xs
xx < 0; Xe

xx > 0, and R< 0.

1.5.2 Elastic Strain and Lattice Deformation

Since Xzz is equal to zero in the bilayer model discussed above, the lattices are free to expand
or contract in the z direction, that is, perpendicular to the interface. As seen in Figure 1.23, this
causes the cubic lattice structure to be tetragonally distorted. Since both Xi

xx and Xi
yy have

opposite signs for i¼ s compared to i¼ e, the two cubic lattices are tetragonally distorted in the
opposite sense, one with the lattice constant perpendicular to the interface lengthened and
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the other shortened. Therefore, the measured vertical mismatch is enhanced by the tetragonal
distortion.

Lattice deformation between the epilayer and substrate can be determined by conventional
XRD. For example GaxIn1�xPyAs1�y epilayers on InP(100) are shown in Figure 1.24 [38],
where the GaxIn1�xPyAs1�y/InP samples were grown by LPE with the Ga atomic fractions in
liquid solution between 0.4 an 1.0 at%. The experimental lattice deformation Da/a perpendic-
ular to the layer surface for layers with a Ga fraction lower than �0.0065 has a positive value
(i.e. compressive strain in the growth direction), while it has negative values (tensile strain) for
layers with a fraction larger than 0.0065.

In practical cases where the thickness of the epilayer is very small compared to that of
the substrate, the lattice mismatch can be taken up totally by the tensile or compressive strain
inside the epilayer, giving a coherent interface. A discontinuity in the lattice constant parallel to
the interface can exist only in the presence of misfit dislocations. Nagai [39] studied the

Figure 1.23 Cross section of an ‘epilayer–substrate’ system, where ae and as are the unstrained lattice
parameters of the epilayer and substrate, respectively

Figure 1.24 Lattice mismatch in a GaInPAs/InP heterostructure as a function of the Ga atom fraction in
LPE-growth liquid solution. [Reprinted with permission from K. Oe and K. Sugiyama, Appl. Phys. Lett.
33, 449 (1978). Copyright (1978) by the American Institute of Physics]
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effects of lattice misfit on the lattice deformation for GaxIn1�xAs on GaAs by HT-VPE. The
thickness of the substrates was in the range 2–5mm and the epilayer was in the range 5–10 mm.
His results are shown in Figure 1.25,where a|| is the unstrained lattice parameter of the substrate
(GaAs) and a? is the strained lattice parameter of the epilayer due to tetragonal distortion.

The lattice constant of InAs (6.0583A
�
) is larger than that of GaAs (5.65330A

�
). Thus, the

GaxIn1�xAs lattice on GaAs is expected to be tetragonally distorted with the lattice constant
perpendicular to the interface being lengthened. The measured lattice constants perpendicular
to the film are indeed larger than that along the surface. In the region x > 0.8 the degree of
deformation increased with decreasing x, but in the region x < 0.8 it decreased with decreasing
x.With the aid of defect revealing etching, it was concluded that in the region x > 0.8 the lattice
mismatch is relieved only by tetragonal distortion and for x < 0.8 it is relieved by both misfit
dislocation and tetragonal distortion.

Figure 1.26 plots the lattice constant a versus x for strained CxSi1�x alloy grown on Si(100)
by solid-source MBE. The experimental data are taken from Berti et al. [14]. The dash-dotted

Figure 1.25 Lattice-constant ratio ae/as for HT-VPE-grown GaxIn1�xAs on (1 0 0) and (1 1 1)As planes
of GaAs. [Reprinted with permission fromH. Nagai, J. Appl. Phys. 45, 3789 (1974). Copyright (1974) by
the American Institute of Physics]
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Figure 1.26 Lattice constant a versus x for strained CxSi1�x grown on Si(1 0 0) by solid-source MBE.
The experimental data are taken from Berti et al. [14]. The dash-dotted line represents the linearly
interpolated values between diamond and Si. The light solid and dashed lines are calculated from
Equation (1.23) by introducing a0 values estimated fromVegard law between Si and 3C-SiC (x¼ 0.5) and
between Si and C (x¼ 1.0), respectively. The heavy solid line is calculated by introducing the Monte
Carlo-simulated lattice constants reported by Kelires [13] as a0
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line shows the linear interpolation result between diamond (a¼ 3.5670A
�
) andSi (a¼ 5.4310A

�
).

We can see that the linear interpolation scheme predicts quite different lattice parameters from
the experimental data.

The strain in the epilayer and hence the lattice constant in growth direction a? can be
calculated from the elastic theory [37]

a? ¼ ða0�ajjÞ 1þ 2P

1�P

� �
þ ajj ð1:23Þ

where a0 is the lattice constant of the relaxed material, a|| is the in-plane lattice constant
assumed to be the same as the substrate parameter and P is Poisson’s ratio. In the case of cubic
materials, Equation (1.23) can be rewritten as

a? ¼ ða0�ajjÞ 1þ 2C12

C11

� �
þ ajj ð1:24Þ

where Cij is the elastic stiffness constant.
The light solid and dashed lines in Figure 1.26 represent the calculated results of

Equation (1.23) by introducing a0 values estimated from Vegard law between Si and 3C-SiC
(x¼ 0.5) and between Si and diamond (x¼ 1.0), respectively (Figure 1.6). The heavy solid line
is also obtained from Equation (1.23) by introducing Monte Carlo-simulated lattice con-
stants [13] as a0. The P values in Equation (1.23) are obtained from the linear interpolation
between diamond and Si [1]. The results in Figure 1.26 suggest that the lattice constant a in
CxSi1�x significantly deviates fromVegard law. The relationship between a and x can be finally
given by Equation (1.3).

Figure 1.27 shows the lattice parameters perpendicular and parallel to the epilayer surface
of MOMBE-grown GaNxAs1�x on GaAs(100) [40]. The experimental data clearly suggest that
the GaNxAs1�x layers are coherently grown on the GaAs(100) substrates. The dashed line is
simply estimated from the linear interpolation between c-GaN and GaAs. The solid lines are
calculated from Equation (1.23) with a||¼ 5.6517A

�
. The relaxed parameter a0 and Poisson’s

ratios used in thecalculationare taken fromVegard lawbetween c-GaNandGaAs [1].Wecan see
in Figure 1.27 excellent agreement between the calculated and experimental lattice parameters.
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Figure 1.27 Lattice parameters perpendicular (a?) and parallel (a||) to the epilayer surface ofMOMBE-
grown dilute-nitride GaNxAs1�x on GaAs(1 0 0). The experimental data are taken fromUesugi et al. [40].
The dashed line is simply estimated from Vegard law between c-GaN and GaAs. The solid lines are
calculated from Equation (1.23) with a||¼ 5.6517A

�
(const.). The relaxed parameters a0 and Poisson’s

ratios P are taken from Vegard law between c-GaN and GaAs
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The essentially same analysis as in Figure 1.27 is performed on strained AlxGa0.9�xIn0.1N
grown by MOCVD [24]. The solid line in Figure 1.14 represents the result of this analysis.
Note that Poisson’s ratio is a crystallographic plane- and direction-dependent quantity. The
expressions of Poisson’s ratio P and corresponding numeric values for some hexagonal
semiconductors are summarized in Tables 3.19 and 3.20 of Adachi [1]. The quaternary
P values used in Equation (1.23) are estimated fromVegard law. The in-plane lattice constant a||
is assumed to be 5.240A

�
. In Figure 1.14, there is good agreement between the calculated and

experimental values even in the wurtzite crystal structure. However, in the case of relaxed
AlxIn1�xN alloyVegrad law leads to an overestimation of the Inmole fraction, which cannot be
explained by either strain state or impurity levels. The In atomic fraction can be overestimated
by as much as 6–37% in the range of 0.18 < x < 0.93 [41].

Figures 1.28(a) and 1.28(b) show the experimental lattice parameters a and c forMgxZn1�xO
layers on sapphire (0001) [42] and on 6H-SiC (0001) [43]. The solid lines show the linear
interpolation results of c and a between MgO and ZnO. The effective cubic lattice parameters
aeff¼ (H3a2c)1/3 for MgO and ZnO are, respectively, 4.484 and 4.567A

�
, while those for

sapphire and 6H-SiC are 6.335A
�
and 4.359A

�
, respectively. Coherently grownMgxZn1�xO films

on the sapphire and 6H-SiC substrates will be tensile- and compressive-strained, respectively.
The ZnO (x¼ 0) layers, however, exhibited virtually relaxed lattice constants of 3.246 and
5.205A

�
along the a and c axes, respectively. As seen in Figure 1.28, the c- (a-) axis length

decreased (increased) with increasing x for MgxZn1�xO both on the sapphire and 6H-SiC
substrates. The resulting ratio c/a decreased with increasing x, indicating that the MgxZn1�xO
films are considerably distorted from the ideal wurtzite although they are in the relaxed states.

1.5.3 Critical Thickness

Pseudomorphic epitaxy, in which a high-quality thin film is epitaxially grown on a lattice-
mismatched substrate, has found its application in many areas [44]. SLs and QWs are
high-quality multilayered structures grown from lattice matched and mismatched materials.

Figure 1.28 (a) a-axis and (b) c-axis lattice parameters at 300K forMgxZn1�xOgrown onAl2O3 (0001)
substrate by Ohtomo et al. [42] and on 6H-SiC (0001) substrate by Ashrafi and Segawa [43]. The solid
lines in (a) and (b) show the linearly interpolated values of a and c between MgO and ZnO. The
corresponding c/a ratios are plotted in (c)
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The large lattice mismatch is totally accommodated by uniform elastic strains in the layers if
the layer thicknesses are kept below certain critical values. The idea for thin films emerged
from a critical layer thickness hc below which a dislocation-free, coherently strained
interface would be stable and above which a misfit dislocation structure and semi-coherent
interface would be stable. Knowledge of the so-called critical thickness is essential for
realizing the advantages of lattice-mismatched heterostructure systems.

The critical thickness hc of an epilayer, which was first considered by Frank and van der
Merwe [45], is a parameter introduced to explain the experimental observation of coherent,
pseudomorphic or strained-layer epitaxy. The breakdown of coherency can be determined
in several ways. XRD and PL are commonly employed methods of determining the loss of
coherency by demonstrating a change in average lattice constant (XRD) or a shift in PL peak
energy and a reduction in PL intensity, following the release of strain. TEM is the direct
manifestation of the breakdown of coherency.

We show in Figure 1.29 the critical thickness hc versus x for (a) SixGe1�x layer on Si,
(b) GaxIn1�xAs layer on InP and (c) GaNxAs1�x layer on GaAs, respectively. Note that
x¼ 0.47 in Figure 1.29(b) is the lattice-matching composition to InP.

Although several theories have been proposed to predict hc [44], most semiconductor
device designers rely upon the model of Matthews and Blakeslee [46]. The solid lines in
Figure 1.29 show the results based on this model. The experimental hc data usually exceed
the Matthews–Blakeslee’s prediction. It is also understood that for SixGe1�x there is little
dependence of hc on x. The heavy solid line in Figure 1.29(a) represents the theoretical
curve obtained from an energy-balanced misfit dislocation generation model by People and
Bean [47]. This model is in excellent agreement with the experimental data.

The critical thicknesses hc for AlxGa1�xN and GaxIn1�xN on relaxed GaN layers were
measured by Akasaki and Amano [48]. The experimental hc values were in the range 300
to 700 nm for AlxGa1�xN/GaN (0.05� x� 0.2) and �40 nm for GaxIn1�xN/GaN (0.8� x
� 0.95).
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Figure 1.29 Critical thickness hc versus x for (a) SixGe1�x layer on Si, (b) GaxIn1�xAs layer on InP
and (c) GaNxAs1�x layer on GaAs. The solid lines represent the theoretical model of Matthews and
Blakeslee [46]. The heavy solid line in (a) is obtained from an energy-balanced misfit dislocation
generation model by People and Bean [47]
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The hc values for SixGe1�x/Si and some III–Vand II–VI semiconductors grown on various
lattice-mismatched substrates are summarized in Figure 1.30. The solid lines are obtained
by least-squares fitting with (hc in A

�
, Da/a in at%)

hc ¼ A

Da=a

� �n

ð1:25Þ

with A¼ 7.5 and n¼ 3.5 for SixGe1�x/Si, A¼ 16 and n¼ 2.4 for III–V semiconductors and
A¼ 52 and n¼ 1.5 for II–VI semiconductors. It should be noted that the II–VI semiconductors
have weak bond strength. The dislocation energy in such semiconductors is much smaller
than those in SixGe1�x/Si and III–V semiconductors. Therefore, dislocations can bemore easily
generated in the II–VI semiconductors.

1.6 STRUCTURAL PHASE TRANSITION

At high pressure the group-IV elemental semiconductors show metallic transitions in a
sequence from cubic (diamond) ! tetragonal (b-Sn) ! simple hexagonal ! hexagonal
close packed. Similarly, the III–V and II–VI binary semiconductors exhibit a variety of the
crystal structures at high pressures. In Tables 1.8 and 1.9 ofAdachi [1], transition pressure to the
first phase (PT) and transition sequences can be found for some group-IV, III–V and II–VI
semiconductors. The additional data are: PT¼ 56 GPa (zinc-blende ! hexagonal (NiAs))
for BeSe; PT¼ 35GPa (zincblende ! hexagonal (NiAs)) for BeTe; and PT¼ 90.6GPa
(rocksalt ! CsCl) for CdO.

There are a very few studies on the structural phase transition in semiconductor alloys.
Some of these studies are summarized in Table 1.16. Webb et al. [49] observed the phase
transition in ZnxCd1�xTe from the zinc-blende to rocksalt structures. However, the recent
studies on ZnTe and CdTe suggest the presence of cinnabar phase between the zinc-blende
and rocksalt structures [50]. Vnuk et al. [51] studied the effect of pressure on semiconductor
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Figure 1.30 Critical thickness hc for (a) SixGe1�x, (b) III–Vand (c) II–VI semiconductors grown on
various lattice-mismatched substrates. The solid lines represent the least-squares fit using
Equation (1.25)
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(a-Sn)-to-metal (b-Sn) transition temperature in dilute GexSn1�x (x� 1 at%). They obtained a
slope of �48.4� 6K/kbar, in good agreement with thermodynamic prediction.

Figure 1.31 plots the transition pressure to the first phase PT versus x for GaxIn1�xSb. The
experimental data are taken from Liu et al. [52]. A slight bowing can be found in the PT versus

Table 1.16 Phase-transition sequence observed for some III–V and II–VI ternaries at high pressures.
zb¼ zinc-blende; or¼ orthorhombic; w¼wurtzite; rs¼ rocksalt (NaCl); cin¼ cinnabar

System Material Sequence Ref.

III–V GaxIn1�xP semiconductor ! metal (optical absorption) a
AlxGa1�xAs zb ! or (Pmm2)/or (Cmcm) (GaAs like) b
GaxIn1�xSb zb ! b-Sn c

II–VI MgxZn1�xO w ! rs d
ZnxCd1�xS zb ! rs e
ZnxCd1�xSe zb ! rs (x¼ 0.9) f

semiconductor ! metal (0� x� 0.32) g
ZnxCd1�xTe zb ! rs h
ZnSxSe1�x semiconductor ! metal (resistance) i
ZnSexTe1�x zb ! cin ! rs (0� x� 0.55) j

zb ! rs (0.55<x� 1) j

aA. R. Go~ni et al., Phys. Rev. B 39, 3178 (1989)
bW. Paszkowicz et al., Acta Phys. Pol. A, 91, 993 (1997)
cC. Y. Liu et al., J. Phys. Chem. Solids 39, 113 (1978)
dJ. A. Sans and A. Segura, High Pressure Res. 24, 119 (2004)
eA. B�eliveau and C. Carlone, Phys. Rev. B 44, 3650 (1991)
fC.-M. Lin et al., Phys. Rev. B 58, 16 (1998)
gY. C. Lin et al., J. Appl. Phys. 101, 073507 (2007)
hA. W. Webb et al., J. Appl. Phys. 61, 2492 (1987)
iS. R. Tiong et al., Jpn. J. Appl. Phys. 28, 291 (1989)
jJ. Pellicer-Porres et al., Phys. Rev. B 71, 035210 (2005)
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Figure 1.31 Transition pressure to the first phase PT versus x for GaxIn1�xSb. The experimental data
are taken from Liu et al. [52]. The solid line shows the quadratic-fit result using Equation (1.26).
zb¼ zinc-blende
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x plots. The solid line shows the best-fit result of the quadratic expression (in GPa)

PTðxÞ ¼ 2:3þ 6:5x�2:6x2 ð1:26Þ
The transition pressures to the first phase PT against alloy composition x for some II–VI

semiconductors are shown in Figure 1.32. The experimental data are taken for ZnxCd1�xS from
B�eliveau and Carlone [53], for ZnSxSe1�x from Tiong et al. [54] and for ZnSexTe1�x from
Pellicer-Porres et al. [55]. In Figure 1.32(c), the transition pressure to the second phase is also
plotted with the open circles. The linear interpolation is concluded to be an efficient tool to
estimate the phase transition pressure in semiconductor alloys.

1.7 CLEAVAGE PLANE

1.7.1 Cleavage

The cleavage properties of a crystal are strongly related to the atomic arrangement and
corresponding electron densitymap. Themost readily cleaved crystallographic planes can then
be determined only by the crystalline structure. They are (111) plane for alloys of diamond
type, (1 1 0) plane for zinc-blende type, ð11�20Þ and ð10�10Þ planes for wurtzite type and (100)
plane for rocksalt type [1].

1.7.2 Surface Energy

The cleavage energy is assumed equal to twice the surface energy of that plane. There is a dearth
of experimental measurements on surface energy. The surface energies for several group-VI
elemental, III–Vand II–VI binary semiconductors are listed in Tables 1.11–1.13 of Adachi [1].
No surface energy data are available for semiconductor alloys.
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Figure 1.32 Transition pressures to the first phasePTagainst x for (a) ZnxCd1�xS, (b) ZnSxSe1�x and (c)
ZnSexTe1�x. The transition pressure to the second phase is plotted in (c) by the open circles. The
experimental data are taken for (a) ZnxCd1�xS from B�eliveau and Carlone [53], for (b) ZnSxSe1�x from
Tiong et al. [54] and for (c) ZnSexTe1�x from Pellicer-Porres et al. [55]. cin¼ cinnabar; m¼metal;
rs¼ rocksalt (NaCl); s¼ semiconductor; zb¼ zinc-blende
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