
1

Econometric software
Charles G. Renfro

1.1 Introduction

The production and use of econometric software began at the University of Cambridge
in the early 1950s as a consequence of the availability there of the first operative
stored-program electronic computer, the EDSAC (Electronic Delay Storage Automatic
Calculator). This machine became available for academic research starting in or about
1951 [214, 248, 249]. Among the first to use it were members of the Department of
Applied Economics (DAE), some of whom had been invited to Cambridge by the Direc-
tor, Richard Stone. From the beginning, they employed the EDSAC to produce work
that remains well regarded [8, 77, 124, 195]. They also appear to have been the first to
describe in print the workaday process of using a stored-program computer [36]. There,
Lucy Slater, working with Michael Farrell, wrote the first distinguishable econometric
software package, a regression program [14, 224, 225]. However, these economists were
not alone in their early adoption of emerging computing technologies, for previously, in
1947, at one of the first gatherings of computer designers, the Symposium on Large-Scale
Digital Calculating Machinery, Wassily Leontief [153] had presented some of his then
current work on inter-industry relationships to provide an example of a challenging com-
putational problem. He used the existing electromechanical ‘Mark I’ Automatic Sequence
Control Calculator at Harvard, which, although not actually a stored-program electronic
computer, can nonetheless be described as the first ‘automatic digital computer’ [248].
The Mark I also represents IBM’s start in a business it was later to dominate.

At the time, worldwide, these machines were the only automatic computing
devices generally available for research. Consequently, other computationally inclined

Handbook of Computational Econometrics edited by D. A. Belsley, E. J. Kontoghiorghes
© 2009 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



2 ECONOMETRIC SOFTWARE

economists, including Lawrence Klein, Arthur Goldberger, and their colleagues at the
University of Michigan [87], still used electromechanical desktop calculators. However,
in 1954, the semi-electronic IBM Card Programmed Calculator (CPC) became available
to them and was first used to estimate moments in preparation for the estimation of the
parameters of the Klein–Goldberger model [138]. A few years later, in 1958–59, at
what would become the Lawrence Livermore Laboratory, Frank and Irma Adelman were
the first to solve an econometric model using a computer, employing an IBM 650 [6,
7, 139]. Contemporaneously, possibly at the IBM Scientific Center in New York, Harry
Eisenpress wrote the first program to perform limited information maximum likelihood
estimation [60]. A few years earlier, with Julius Shiskin in Washington, DC [218], he
had created the Census X-11 seasonal adjustment method using a UNIVAC (UNIVersal
Automatic Computer), a near relative to the EDSAC [214]. This UNIVAC, first installed
at the US Bureau of the Census in 1951, was the first stored-program computer to be
sold commercially.

This description of 1950s computer use by economists possibly reads like a series of
selectively chosen exhibits, but actually it appears to be the complete early record, with
the exception of work by others at the DAE [14, 15, 44, 195] and the start of Robert Sum-
mers’ Monte Carlo study of estimator properties [235]. Throughout the 1950s, computers
were scarce. They were also expensive to use – an hour of machine time could cost lit-
erally triple the monthly salary of the economist using it [7]. It was only during the next
two decades, starting in the early 1960s, that they began to proliferate and economists
more commonly became users [30, 52]. A number of econometric firsts occurred dur-
ing the 1960s, including the implementation of a variety of increasingly computationally
complex techniques, among them two- and three-stage least squares, seemingly unre-
lated regression equations, and full information maximum likelihood [204]. In addition,
beginning in about 1964, economists created some of the earliest large-scale computer
databases, together with the software to manage them [160–162]. However, progress
was neither uniform nor universal: even in the mid-1960s, the Wharton model, a direct
descendent of the Klein–Goldberger model [31, 127], was still being solved by using an
electromechanical desktop calculator [203, 216]. It was only during the next few years
that economists at the University of Pennsylvania first used an electronic computer to
solve macroeconometric models as nonlinear simultaneous equation systems [52, 68, 69,
216].

As indicated, the level of sophistication progressively increased during this decade.
Much of this work represents the efforts of individuals, although frequently in the context
of formal research projects [57, 58, 68, 69, 159, 197]. It typically began with the cre-
ation of single purpose programs to estimate parameters, manage datasets, and later solve
macroeconometric models. However, towards the end of the 1960s, with the advent of
time-sharing computers, the first network-resident interactive econometric software sys-
tems began to be created [203, 207], an important step in the development of the modern
econometric computational environment. In the early 1970s came attempts to focus this
research: in particular, at the MIT Center for Computational Research in Economics and
Management Science, economists began to devote considerable effort to the study of
relevant computer algorithms [29, 48–50, 120, 147–150] and closely related regression
diagnostics [19, 21, 22]. Following these advances, the 1970s saw the development of
wide-area online telecommunications-linked economic database, analysis, and economet-
ric modeling systems, which, by the end of the decade, became used worldwide [3, 4,



INTRODUCTION 3

56, 205, 206]. As a result, at the beginning of the 1980s, economists were ready to
adopt the then emerging microcomputer and, by the middle of that decade, had begun to
use it as the primary locus for analytical processing, including by 1985 the solution of
econometric models of 600 and more equations [209]. However, it was only in late 1984
that it began to become common for econometric models to be mounted on more than a
single computer [203].

Building upon these foundations laid in the 1960s and early 1970s, economists have
since created not only sophisticated, targeted applications but also specialized econometric
modeling and programming languages, as well as generally applicable econometric soft-
ware for parameter estimation and hypothesis testing that can be used with time-series,
cross-section, and panel data. At each stage, this work has affected the disciplinary
progress of economics and econometrics. Simultaneously, some of this work fed back
into the more general development of software, including operating systems, spreadsheet
packages (such as VisiCalc and Lotus 1-2-3 specifically), and a variety of other appli-
cations [204]. Last, but certainly not least, because of the subject matter of economics,
econometric software has played a critical part in the management of the performance
of the world’s economies, in its effect both on the timely dissemination of economic
information and on the development of the modern tools of applied economics. Of all
disciplines, economics has been one of those most affected by the use of the electronic
computer, and in turn, in no small measure, this use has helped to enable the broadly
consistent expansion and development of both industries and economies.

From the first availability of the electronic computer, economists were obviously
primed to become users, raising the question: Why? A reflective comment made by Klein
in 1950 suggests a reason [134, p. 12]. Referring to the seminal Cowles Commission work
and the methodological progress of the 1940s – and seemingly unaware of what would
occur within the next decade – he rather pessimistically observed that:

An annoying problem that arises with the new methods is the laboriousness
and complexity of computation. Very economical techniques of dealing with
multiple correlation problems have been perfected, but they can no longer be
used except in special cases . . . where the system is just identified. Unless we
develop more economical computational methods or more efficient computing
machines, the problems will remain beyond the reach of individual research
workers.

Were it not for such preserved commentary, it might now be difficult to imagine that
it appeared at least to some economists at the beginning of the 1950s that econometric
methodology faced a serious computational roadblock. The sense of inevitability that
hindsight provides makes it easy to overlook the importance of the timing of the adoption
of the electronic computer by economists. The distance between that time and ours is
accentuated by the watershed effect of the creation of ARPANET, the precursor network
to the Internet, in about 1970 and the equally potent consequence of the introduction of
the first microcomputers in the mid-1970s.

One of the most significant differences between then and now is that, in those earlier
times, especially in the years prior to 1975, it was almost requisite for any computer
user to begin by writing some code, and this was certainly true in those instances in
which an application might involve new techniques. Then there was so much a need to



4 ECONOMETRIC SOFTWARE

program, and comparatively so much less computer use than today, that practically any
econometric software written prior to 1975 involves some aspect that can be declared
a ‘first,’ or at minimum viewed as involving some type of pioneering effort. Although
there were certainly instances of shared software use by (comparatively small groups of)
economists during the period between 1960 and 1980 [33, 35, 89, 115, 131, 160, 196,
222, 223], it was usual nevertheless that an intending hands-on user generally needed
to learn to program, at least to some degree, but often at a rather fundamental level.
Until at least the mid-1970s, an applied economist wishing to employ a computer would
commonly either need to start from scratch, or, at best, be provided a box of cards (or,
sometimes, a paper tape), onto which were punched the source code statements for a
program – even if by 1975, perhaps earlier, it was not unusual for the ‘box of cards’ to
have been replaced by a machine-readable card image file. Specific code changes were
often necessary, at minimum to permit data transformations. For calculations associated
with a particular application, a substantial amount of new coding might be required.
Today, in contrast, it is only someone operating at the developmental leading edge of
econometrics who may need to be proficient at programming, but even then not always
in the use of a computer language such as Assembly, C++, C#, or Fortran, or in such
a way that might require understanding of the computer’s operating system and specific
hardware protocols.

However, to declare the beginning of a new epoch is not to say that all the heavy
lifting has been done. The year of the film 2001: A Space Odyssey has come and gone,
but we do not yet converse casually with articulate, seemingly intelligent computers, like
HAL, nor simply declare in broad outline, via the keyboard or some other interface, what
we wish to do and then have it done, automatically, effortlessly, and appropriately. In
important respects, the computer still remains a new technology. To present a reliable
assessment of the current state of the art, it is therefore necessary to proceed carefully,
as well as to begin by establishing a proper framework, so as to be able to describe and
evaluate current progress. For instance, there is a useful distinction to be made between
creating software designed to perform a specific task versus developing a program for a
more generally defined purpose, possibly intended for use by others. A routine might be
written specifically to calculate and display a set of parameter estimates. Alternatively,
the goal might be to create a program to be used to build a ‘model,’ or a class of models,
or some other composite, possibly quite complex, undertaking. The first of these cases
involves a pure computational problem, the success of which might be assessed by the
degree to which the individual calculations are accurately, efficiently, and even elegantly
or perhaps quickly performed. This qualitative evaluation can also include a determination
of the degree to which the results are informatively and even attractively displayed. In the
second, more general, case, what is required is potentially much more elaborate computer
code to perform an integrated series of tasks, not all of which are purely computational
problems. These tasks might also incorporate operations not likely to be immediately
classified as either economically or econometrically relevant. Such operations, which
can include the storage, retrieval, and management of data, as well as the development
of the human interface of a program, are nevertheless as much a part of econometric
software creation as is the programming of an estimator. Furthermore, whether or not
these elements are individually considered to be econometrically interesting, the future
development of economics and econometrics may depend upon a successful solution to
the problem each of them poses.



NATURE OF ECONOMETRIC SOFTWARE 5

A perspective on the underlying issues can be obtained by considering the usage of
the contrasting terms, ‘computational econometrics’ and ‘econometric computing.’ Achim
Zeileis [252, p. 2988] has recently suggested that the first of these is topically ‘mainly
about [mathematical or statistical] methods that require substantial computations’ whereas
the second involves the algorithmic translation of ‘econometric ideas into software.’ Ini-
tially, economists began to use the computer as a means to an end, simply to make
necessary calculations more rapidly than could be done manually, without a great deal
of introspection. This lack of introspection has lingered. A general appreciation that the
execution of these computations can have disciplinarily significant implications has been
slow to emerge: ‘simply computational’ remains a common wave-of-the-hand expression
used to suggest the existence of only a few remaining, possibly laborious, but essen-
tially straightforward demonstrative steps. Perhaps as a consequence, the self-conscious
consideration of software as a disciplinary research topic has been resisted almost reflex-
ively, even while the complexity of econometric ideas has increased over the years.
Economists seem to feel instinctively that the specific algorithmic aspects of econometric
software most properly should be considered from the perspectives of computer science
or operations research, leaving to the economic specialist, the econometrician, only the
task of specifying the particular formulas to be implemented algorithmically, but not the
assessment or evaluation of the end result nor the manner of its implementation. What
may be most indicative of the tendency of economists to regard econometric computing
as logically separable is that both textbooks and the more general econometric litera-
ture typically only refer to the existence of software, without considering its particular
aspects and nature. The specific issues of software creation, including even those most
obviously ‘econometric’ in content, have seldom been considered and evaluated pub-
licly by economists. It is therefore not surprising that most economics and econometrics
journals exclude discussion of these matters. Indeed, economic journals normally reject
as not germane articles that focus too obviously on specific computational issues, even
when critical to the evaluation of the published findings. A possible exception to this is
numerical accuracy [175, 253], but only recently and still in token form [34, 38, 154, 167,
169, 170, 172, 174, 219, 229, 231, 232]. To date, economists deal with computational
issues at a full arm’s length and depend upon others, often statisticians and the statistics
literature, to probe the details [10, 122, 155, 220, 239], even if some related issues have
been considered within the bounds of econometrics [16, 17, 21, 22]. Most economists are
aware of John von Neumann’s role in the development of game theory, but comparatively
few know that he also wrote the first computer program and participated in the design
of the first stored-program computer [140]. Of these several endeavors, which in the end
will prove the most seminal is an interesting question.

1.2 The nature of econometric software

The phrase ‘econometric software’ is actually a comparatively new term in the economics
literature. Its newness can be assessed using JSTOR, the full-text-searchable online jour-
nals archive. A query of the 52 economics and econometrics journals identified there as
‘economics journals’ reveals that, since 1950, only 182 articles have been published that
include the term ‘econometric software.’ The first use of this term in print appears to
have been by Robert Shiller in a 1973 Econometrica article [217]. It appears in only 14



6 ECONOMETRIC SOFTWARE

articles published prior to 1987, fewer than 25 before 1990, and 94 during the 10 years
since 1995, the latest time for which JSTOR results are available at the time of writing.
Evidently, this phrase has only recently begun to emerge into full disciplinary conscious-
ness. It is nonetheless more popular among economists than the seemingly more general
phrase ‘statistical software,’ which occurs in only 85 articles published since 1950, the
first appearing in 1982. Of course, the JSTOR journals represent only a proportion of
those classified by the Journal of Economic Literature as economics journals. Therefore,
these findings are hardly conclusive, but they are suggestive.

The currency of this term is merely interesting. Of more substance is what it means.
To determine meaning, several preliminary matters need to be considered, the most impor-
tant being the meaning of ‘econometrics,’ which is also not obvious. Judging on the basis
of the chapters of this handbook, ‘econometrics’ should be interpreted more broadly here
than is typically the case in any modern econometrics textbook or even in ‘econometric’
journals. Textbooks treat ‘econometrics’ essentially as the subdiscipline of economics
concerned with parameter estimation and closely related topics. Moreover, they treat it
somewhat abstractly, giving wide berth, as indicated, to any attempt to translate ‘econo-
metric ideas into software.’ Furthermore, neither they nor mainline econometrics journals
include the solution of nonlinear systems of equations as a standard topic, even when
characterized as ‘econometric models.’ Nor do they examine a number of the other topics
that are addressed in this volume.

Nevertheless, the meaning and scope of ‘econometrics’ has been visited regularly
since 1933, when, in the context of an editorial introducing the first issue of Economet-
rica, Ragnar Frisch proposed a rather broad definition that emphasized the unification
of economic theory, mathematics, and statistics. Clive Granger, in a recent compara-
tive review of various textbooks [93], has since suggested that the Frisch proposal ‘now
sounds like a definition of research economics’ (p. 116). He argues instead for the def-
inition advanced by Andrew Harvey [105] that ‘econometrics is concerned with the
estimation of relationships suggested by economic theory,’ which, Granger indicates,
was also rephrased by Greene in the 1994 edition of his textbook. Granger goes on to
suggest (p. 117) that a ‘more pragmatic viewpoint is to say that econometrics is merely
statistics applied to economic data,’ which leads him to ask the question: Why, then,
do economists not just use statistics textbooks? His answer is that ‘we need a special
field called econometrics, and textbooks about it, because it is generally accepted that
economic data possess certain properties that are not considered in standard statistics
texts or are not sufficiently emphasized there for economists.’ However, he does not
continue this line of thought, which, if pursued, would lead to the rather interesting and
probing – if possibly vexatious – question whether, collectively, econometrics textbooks
simply reflect the current content of econometrics, or if, instead, through selection and
emphasis, they inevitably channel and shape its progress? Resisting the temptation to
grapple with such matters, Granger limits himself to a review of the contents of that
particular textbook generation.

In line with the spirit of Granger’s ruminations, one way to specify ‘econometric
software’ is to say that it is what economists do with economic data that defines this
software – that is, it is computer code that happens to be applied to economic data. But,
what economists do with economic data presumably shapes the discipline of economics
over time and, in the process, questions might be raised that can cause econometrics to
evolve in order to answer them. One way to consider the actual progress of econometrics



NATURE OF ECONOMETRIC SOFTWARE 7

since 1933 is to observe it through the prism of Frisch’s other famous editorial dictum
[84, p. 2], that:

Theory, in formulating its abstract quantitative notions, must be inspired to a
larger extent by the technique of observation. And fresh statistical and other
factual studies must be the healthy element of disturbance that constantly
threatens and disquiets the theorist and prevents him from coming to rest
on some inherited, obsolete set of assumptions . . . This mutual penetration
of quantitative economic theory and statistical observation is the essence of
econometrics.

Fresh factual study of the way in which econometrics is practiced is a way of providing
a healthy element of disturbance.

Possibly the most direct way to determine the nature of ‘econometric software’ is
to recognize that quantitative economic research establishes operational requirements; in
particular, it involves at least four conceptually distinct activities:

• data acquisition;

• data organization and initial analysis;

• selection of particular computational tools, possibly including choosing one or more
analytic software packages or even the creation of specific software; and

• using these tools to perform this research, that is, to generate and display the results.

Of course, with the advent of the Internet, especially during the past 10–15 years, all
these activities now demonstrably relate to the development of software even if they are
not necessarily undertaken in strict sequence nor always pursued as separate and distinct
tasks. Sometimes, some of them may be minimized, even to omission. But it is also
possible for most of the analyst’s time still to be spent on the first three activities, as
was common before the advent of the microcomputer – or indeed even before mainframe
computer software became widely available.

Once these activities begin to be considered in detail, certain definitional gray areas
inevitably start to emerge, such as the common use of commercially available software not
econometric by design in order to perform some research-related operations – including
word processing, spreadsheet, and presentation software packages, not to mention ana-
lytical packages imported from other disciplines. At some stage, this matter of ancillary
software might need to be probed. After all, Excel can perform regressions [23, 176–178]
and Matlab can solve econometric models [116]. Economists, if not always econome-
tricians, employ both programs, neither of which was specifically intended for their
use. However, it is initially much simpler to ignore software not explicitly created
by, for, or at the behest of economists or econometricians, even if this software may
become quasi-‘econometric’ when employed by econometricians or applied to economet-
ric tasks. The justification for turning a blind eye can be that it is software specifically
designed as ‘econometric’ that is likely to express distinctive disciplinary characteris-
tics, although, if economists characteristically tend to use ‘other’ software, one of the
implications might be that econometrics could be in the process of evolving in another
direction.



8 ECONOMETRIC SOFTWARE

It is thus tempting to define software by the purpose for which it is created, but this
too can lead to difficulties. As indicated, in the beginning, the electronic computer was
often seen as simply a faster means to make specific calculations [36]. The importance of
its speed, compared to electromechanical devices or hand calculation, was immediately
recognized, both by governments and by other funding sources, as well as by those who
created the machines – including von Neumann, whose original interest in computers
might have been a result of his association with the Manhattan Project. A direct com-
parison, in the 1940s, of the speed of the electromechanical Mark I at Harvard with the
electronic ENIAC at the University of Pennsylvania (the first, but not stored-program,
electronic computer) had revealed that the ENIAC could perform individual calculations
up to 900 times faster [2, 41, 248]. The ENIAC was later used to make calculations
related to the development of the hydrogen bomb.

This initial focus on individual calculations sometimes had a particular effect on
machine design. In an historical hardware review, Rosen [214, p. 14] points out that ‘the
early scientific computers [as opposed to data processing equipment] were designed in
accordance with a philosophy that assumed that scientific computing was characterized
by little or no input or output.’ However, even in this context, it was soon discov-
ered that the number of calculations made tends to increase, finally forcing a more
balanced machine configuration. Generality of use, and broader capabilities, rather than
specialty of purpose, came to be seen as desirable, perhaps because of a perception (not
always correct) of declining marginal cost. Consider, in this context, the Wang and other,
now-almost-forgotten, dedicated word processors of the late 1970s, which have since
given way to the much more generally defined personal computer.

How much generality mattered in the beginning is, however, questionable. The use of
the electronic computer by economists appears to have been driven initially by a desire
simply to make particular calculations. For example, Robert Summers and Kazuo Sato in
the very early 1960s [197, 235], Arnold Zellner and Art Stroud in 1962 [256, 257, 259],
Harry Eisenpress in the early 1960s [61, 62], James Durbin and Mike Wickens in 1964
[59, 247], Denis Sargan in 1964 [110], and a group of A.R. Bergstrom’s graduate students
over a number of years in the 1960s [194], as well as Ross Preston [197] during much
the same time, quite independently all wrote, or were closely associated with the writing
of, programs to implement or study specific econometric techniques – but apparently not
originally for the conscious purpose of writing ‘econometric software’ for it’s own sake.
In contrast, others, among them Robert Hall, Michael McCracken, and Clifford Wymer
in the mid-1960s [25, 26, 160, 162, 163, 165, 192, 204, 211], and David Hendry at
the end of the 1960s [114, 115], wrote programs the direct descendants of which still
exist and which affected the development of other programs. Demonstrably, each of
these economists, as well as others, consciously sought to develop more broadly defined
and generally applicable software that has evolved over time, regardless of whether this
destiny was at first foreseeable. From the perspective of a fly on the wall of their keypunch
rooms (where programs were encoded in the form of decks of cards or paper tapes with
holes punched in them), it might not have been obvious at first who would continue
beyond the first working program and who would not. However, those who persevered
made the transition, much as a pioneer who, during his first week in the wilderness,
builds a lean-to that, with adherence and time, ultimately becomes a house and acquires
features that embody and display finished design elements.



NATURE OF ECONOMETRIC SOFTWARE 9

1.2.1 The characteristics of early econometric software

Of course, the point in this process at which the design of the lean-to or its successors
becomes architecture is a matter of judgment. Similarly, during the primordial stage, there
is no essential difference between programming a computer and developing software.
Whatever the motivation, creating computer programs that perform useful econometric
calculations requires a considerable amount of work. Initially, it also involves a large
dose of learning by doing. For the novice, this first stage usually represents an attempt to
achieve a specific task and, as indicated, in the 1960s it was common for the early stages
of a software project to involve first the construction of a series of separate, essentially
single purpose programs to be used in concert. For instance, at the Brookings Institution
in the context of the US Quarterly Model Project [57], as late as 1968 the process of
performing a regression involved executing sequentially three separate programs: the first
to form or update the databank, the second to perform the entire set of pre-regression
data transformations, and the third to compute and display parameter estimates. How-
ever, about that time, these functions began to be integrated. The then relatively widely
used ECON program provides an example. It was created by Morris Norman, on the
basis of earlier work by Ross Preston [197], originally to support the estimation of the
Wharton models and related work. By design, ECON used portions of the same code to
perform ordinary least squares, two-stage least squares, and limited information maxi-
mum likelihood. This program also incorporated data transformation subroutines, thus in
effect absorbing the work of the first two of the three Brookings Model Project programs
described earlier.

However, this account possibly conveys too great a sense of linear development, for
technologies often evolve in a somewhat helter-skelter fashion. At this time, as indicated,
computer programs almost always came in the form of punched cards: ‘jobs’ were typi-
cally submitted in the form of decks of cards, or in some cases paper tape, that included
the program source code and the sample data. Some 10–12 years previously, computers,
such as the IBM 650 [7, 237], both read cards and produced their output in the form
of cards. By the mid-1960s, output was instead more commonly produced in printed
form, on large, accordion-folded, connected sheets of paper, but cards or paper tape were
often still used for data input. In 1968, in contrast, the separate programs being used for
the Brookings Model Project, written or modified by John Angstrom, Jim Craig, Mark
Eisner, and possibly others, both wrote and read magnetic tapes, reflecting the substantial
data requirements of a large macroeconometric model, the largest of its time. Since these
data were machine resident, the ‘jobs’ at Brookings usually consisted only of source and
specific-operation code decks preceded by job control cards, rather than hundreds of data
cards in a deck. Thus, the programs of that day frequently might exhibit quite rustic
features, combined with others that at least anticipated a later state of the art. However,
generalizations about such software can be overdone, as there was at this time only a
bare handful of programs developed to support applied economic research by groups of
economists.

The programs of the period before 1969 seldom included obvious ‘architectural’
design elements in their construction. The TSP program is an exception, for, starting in
1966–67 as a result of work by Mark Eisner and Robert Hall, its design involved the
modular organization of subroutines to perform specific tasks, in contrast to an earlier



10 ECONOMETRIC SOFTWARE

tendency to write a single main routine, with perhaps one or two task-specific subroutines
[100, 102]. Other economists, including Charles Bischoff, Ray Fair, Robert Gordon, and
Richard Sutch, each wrote specific TSP subroutines or incorporated particular econometric
techniques. These pre-1969 versions of TSP also included the first vestiges of a symbolic
language interface [203]. With a few exceptions – such as MODLER [209] and TROLL
[63] – until the later 1970s the operation of other programs of all types was commonly
controlled by numbers, letters, and labels located in fixed fields on punched cards or
paper tapes. It took considerable time then simply to operate a program, given the need
not only to program, but also to validate results on a case-by-case basis.

A further difference is that in those days software used by economists was neither
leased nor sold. It was shared: transmitted in the form of source code, and then compiled
for individual use, sometimes at the beginning of each run. Source code for some of the
statistical regression packages of the 1960s, such as for BMD and OMNITAB, still exist
in a few copies; therefore it remains possible to make comparisons. For the most part,
their individual characteristics are not strongly distinctive. Whether a particular program
of that period might be judged to be ‘statistical’ or ‘econometric’ is rather subtle, a matter
of the specific techniques – most often basic regression – programmed into it. A program
of that period that offered ordinary least squares, weighted least squares, and stepwise
regression is, on the strength of this information alone, hard to classify definitively by
discipline, but one that included two-stage least squares was likely to be econometric,
rather than something else.

Clearly, what began to distinguish econometric software was the progressive incorpo-
ration of features that were designed primarily to support the interests of econometricians,
rather than applied economists generally. Recall, however, that in the 1960s econometrics
was not as distinctly a separate subdiscipline of economics. In that day, only Malinvaud’s
textbook [158] provided the student with a serious econometric challenge. Textbooks by
Johnston in 1963 [128], Goldberger in 1964 [88], and Christ in 1966 [42] were formidable
only to the degree that the reader lacked a reasonable knowledge of linear algebra – and,
actually, in the interest of making econometrics more approachable, Christ’s did not
require even this. In any case, the econometric knowledge needed to understand, or even
to write, any econometric software package of the 1960s would fill no more than 150–200
textbook pages, if that. The software content was generally limited to a few standard esti-
mation techniques and a handful of supplementary statistics, such as t statistics, one or
two types of R2, standard errors, the Durbin–Watson, and the like. It was not until the
1990s that more than a small proportion of the then known misspecification tests were
commonly implemented [204, 210].

A more significant barrier to software development in the 1960s was programming
language facility, usually writing Fortran – not simply the ability to write a few lines of
code, but rather knowing how to organize the coding of a regression program procedure,
including matrix multiplication, matrix inversion, how to print a portion of a matrix
on a line printer page of output, and other such programming techniques. This need to
program was to a degree alleviated by the creation of subroutine libraries by IBM and
others, but the lack of books on the subject made general programming more difficult than
might be immediately obvious in retrospect. The shared source code listings, although
easily obtained, often lacked embedded comments and could be opaquely written. ‘Use
the source, Luke.’ Although, of course, a phrase current only since the 1980s was in
the 1960s often the only option. This era was also an important development period



NATURE OF ECONOMETRIC SOFTWARE 11

for programming techniques, involving almost always an element of original design,
as indicated earlier: for instance, such as whether to use an entire dataset to compute
the sums of squares and cross-products matrix, then selecting the relevant submatrix to
produce given parameter estimates, or instead to form this submatrix directly. Computers
in those years were comparatively slow, so that such considerations could be important.

1.2.2 The expansive development of econometric software

It is important to recognize that, at the beginning of the 1970s, there was an evolution-
ary fork in the econometric software development road. On the one hand, at the end
of the 1960s, the first econometric modeling languages [203] began to be written, in
order to support the creation, maintenance, and use of large macroeconometric models.
The creation of multi-hundred equation models, such as the Brookings and Wharton
models in the USA, the Candide model in Canada, the Cambridge growth model in
the UK, and others elsewhere [31], implied the need to manage time-series databases
containing thousands of variables, to create model solution algorithms [197, 216], and
to develop graphical, tabular, and other easily understood display facilities. An eco-
nomic consulting and forecasting industry, including such firms as Chase Econometric
Associates, Data Resources, and Wharton Econometric Forecasting Associates, and an
emerging time-sharing telecommunications technology, both fostered and financed the
creation of quasi-natural-language software packages offering substantial database main-
tenance facilities, such as Damsel, EPS, MODLER, and XSIM [206]. These packages’
specific econometric flavor, although ostensibly their calling card, was in practice often
less important to their users in government agencies, firms, and other organizations than
other features that made them, and the data they provided, generally accessible: many
economists were neither skilled as computer programmers nor had previously used the
computer. The result was to mandate an interface as close as possible to a stylized natural
algebraic–mathematical language, such as might be typed on a sheet of paper. Because
of the typical user, time plots and attractive time-oriented tables, as well as the ability
to make data transformations, were primary desiderata, much more so than the ability to
perform complex nonlinear parameter estimation.

On the other hand, particularly at MIT, as documented in the pages of the short-lived
NBER journal Annals of Economic and Social Measurement , there was a concerted
and coordinated effort to develop TROLL, including Gremlin [19, 63, 64], which con-
tained linear and nonlinear regression algorithms. This work also affected and stimulated
the ongoing development of TSP [29, 98, 99, 101]. The development of TROLL as
a generalized package was originally driven by the aim of producing an economet-
ric modeling language, with a programming language-like interface to support the user
development of macros. Underlying this work was research on generalized and effi-
cient numeric procedures [19, 21, 22]. The development of these programs at the MIT
Center for Computational Research in Economics and Management Science [1] fos-
tered the implementation of a variety of parameter estimation facilities [29, 37, 71,
106, 107, 147] and, to a degree, also fed back into the economic consulting industry,
inasmuch as XSIM was initially developed as an extension of TROLL. At the Cen-
ter, under the direction of Edwin Kuh, economists devoted considerable effort to the
study of relevant computer algorithms [29, 48–50, 120, 147–150] and closely related
regression diagnostics [19, 21, 22]. It was following such advances that increasingly



12 ECONOMETRIC SOFTWARE

sophisticated, wide-area online telecommunications-linked economic database, analysis,
and econometric modeling systems were developed during the 1970s, which by the end
of that decade became used worldwide [3, 4, 56, 205, 206].

Elsewhere in the 1970s, such as at the DAE in Cambridge and at the London
School of Economics (LSE), econometric software was being purposefully developed
in academic environments either to support the creation and use of large, multi-sector
models – specifically in the form of the Cambridge growth model [14, 189–191] – or
else to enable the estimation of dynamic econometric specifications and, more generally,
improve the methodology of specification search [186–188]. At the LSE particularly,
work on specification search led ultimately to the development of GIVE and, later,
PcGive, as software designed to foster the general to specific, or LSE, method of spec-
ification selection [110, 112, 113, 115, 146, 181]. In this context, the development of
software played an integral part in the intended improvement of econometric methodol-
ogy, with this software specifically designed as an analysis tool to be used pedagogically.
At other places in the UK, with the establishment in the 1970s of the London Business
School Centre for Economic Forecasting, and econometric modeling projects at Liver-
pool, Southampton, and other universities and research organizations, such as the National
Institute of Economic and Social Research and the Treasury [13, 238], other software
packages were developed, among them CEF, NIMODEL, and REG-X, as well as soft-
ware developed under the aegis of the ESRC Macroeconomic Modelling Bureau at the
University of Warwick [240–243].

In other parts of the world, for instance in Canada, the development of software
such as MASSAGER and SYMSIS by McCracken and others [160–165] to support the
construction and use of the Candide and, later, TIM models [30] increasingly took the
form of econometric software designed to support the use of large macroeconometric
models. More generally, particularly with the establishment of the LINK Project [47,
117, 137, 183, 198], which fostered the coordinated use of macroeconometric models of
countries worldwide, more model-related software was developed, although for the most
part poorly documented and not always representing independent software development
efforts. In addition, other software creation by individual economists also occurred, but
this quiet, almost secretive, initiative, also under-reported in the mainstream economics
and econometrics literature, is now difficult to evaluate, except in those cases in which
programs created then later became widely used. From the reports of the use of microsim-
ulation models and the growing quantity of economic datasets, often micro-datasets, as
well as numerous published articles that provide empirical results related to a broadening
range of economic and financial theoretical topics, it is obvious that software was both
frequently employed and sometimes created in the research process [9, 24, 65, 108, 215].
There is also evidence that SAS, SPSS, and other statistical software packages were
commonly used by economists, rather than specific econometric software [204].

The creation of software by individual economists in the 1970s, particularly for per-
sonal use, can be viewed as taking two forms. In a few cases, individual economists, such
as Ray Fair [70, 72–76], Ross Preston [197], and Clifford Wymer [25, 27, 28], developed
software related to model building and use. Others, at least in the first instance, focused
upon the development of software related to parameter estimation, among them Bill
Greene, Bronwyn Hall, Hashem Pesaran, Peter Phillips, David Reilly, Chris Sims, Lucy
Slater, Houston Stokes, Kenneth White, and Arnold Zellner [95, 96, 188, 194, 204, 211,
230, 233, 234, 244–246, 254, 255, 259]. The resulting software nevertheless displays



NATURE OF ECONOMETRIC SOFTWARE 13

considerable variety. Some developers focused on microeconometric applications and
hence the use of cross-section and panel datasets, as well as specific, associated estima-
tion techniques. Others focused on particular methodologies, such as Bayesian estimation
[196] or Box–Jenkins and other time-series techniques. Certain of these efforts resulted
in software packages that still exist and continue to be developed today. A recently
published compendium [211] describes these programs individually and cites pertinent
manuals and other documents that still exist. An associated comparative assessment of
the architectural and other characteristics of these packages, based upon an interactive
survey of econometric software developers, provides further information [85, 204]. Addi-
tional software development of course occurred during these years in the context of other
economists’ personal research, often resulting in published articles, but this software gen-
erally went unremarked and is now difficult to assess properly. In contrast, there has been
more of a tendency during the past 10 or so years to consider explicitly the structure
of algorithms, although these contributions sometimes appear in specialist journals not
likely to be read regularly by econometricians [80–82, 86, 141–145].

As well as the work just considered, some software development that began in the
1970s involved the development of specific types of model solution software, includ-
ing that to support control theory applications. These applications were often not well
documented, especially when the associated software was not made generally available,
but interest in the topic is evident in the papers published in two special issues of the
Annals of Economic and Social Measurement , on control theory (1972, vol. 1, no. 4) and
on control theory applications (1977–78, vol. 6, no. 5). Subsequently, specific software
developments have been documented in the broader literature [45, 53–56, 75, 76, 121].
Since the late 1960s, nonlinear econometric models, a category that includes virtually all
macroeconometric models, have been solved using Gauss–Seidel, Jacobi, and Newton
techniques. In the first case, to solve a model usually requires it to be ordered at least
quasi-recursively, a somewhat heuristic process considered typically in the specialist lit-
erature [32, 79, 125, 126, 163, 184]. When using Newton techniques, the model need
not be reordered but may have to be linearized, at least in part, in order to obtain the
partial derivatives needed to compute the Jacobian used in the model solution, although
later versions of TROLL and TSP provide nonlinear differentiation procedures that to
a degree obviate this need [55, 216]. Optimized solutions, particularly in the context
of rational expectations or model-consistent solutions, add a further level of complexity
to the solution process [75, 76, 78]. All these solution techniques are more difficult to
implement accurately than is generally recognized, with a number of potential pitfalls
[173]; however, the numerical accuracy of model solution software has seldom been
tested [203].

Given this consideration of model solution techniques, the implied definition of econo-
metric software must be expanded beyond what can be justified by specific appeal to the
mainstream econometrics literature. With the notable exception of Klein’s, econometric
textbooks usually have not ventured into these potentially dragon-filled seas, and it is
generally to journals such as the Journal of Economic Dynamics and Control and Com-
putational Economics , rather than the Journal of Econometrics , say, that one must look
to find any discussion of these techniques, particularly during the past 15–20 years. Dur-
ing the 1970s, Econometrica would occasionally publish articles on this subject, but not
recently. Therefore, once having embarked upon considering the issue of model solution
techniques, we have left safe harbor and, by implication, have adopted a definition of



14 ECONOMETRIC SOFTWARE

econometrics that includes not only the estimation of econometric specifications, and
associated tests, but also the use of models. It is natural, when writing an article, or even
an econometrics textbook, to shape the content to fit what is best defined and understood.
In contrast, software development exerts a pull into the unknown and uncharted, forcing
decisions to be made in order to satisfy the demand of completeness.

It is thus important to recognize that, by and large, the coverage by econometrics text-
books of computational issues remains that of an earlier age in which economists simply
ran regressions, albeit sometimes involving simultaneous equation estimators. Further-
more, even the most modern textbooks present their material almost as if the reader will
be involved personally both in making the calculations and in their evaluation so as to
assess a range of candidate specifications. The essential logic of this pedagogic approach
is easily appreciated: the student econometrician needs to understand the characteristics of
the various parameter estimators and misspecification statistics, as well as the contextual
implications and possible pathological conditions. However, the reality is that the typical
economist does not calculate number by number, but instead uses whatever software is
readily available. A drawback of this is that the economist is then generally unable to
determine exactly how the computations are made. Of course, as recently demonstrated
[174], self-calculation never necessarily implied an absence of problems, but it did pro-
vide the economist close contact with the computational process and forced a degree of
step-by-step training. What is lacking today, as a necessary substitute, is guidance con-
cerning the relationship between the theoretical constructs and the computational realities.
Once having tasted of the fruit of the tree of econometric knowledge, the reader is in
effect rudely cast out of the Garden of Eden, to make sense alone of the world as it is. Not
only is there seldom an attempt made in textbooks to explain the particular implications
of the intermediation effect of the use of software, but textbooks also continue to convey
that the choice of software can be made arbitrarily, without concern for any qualitative
issues or of a given program’s suitability for a particular application. In fact, once a soft-
ware package is chosen, even in the best case the user is almost completely dependent
upon the specific provisions made by its developer. If only simple linear techniques are
considered, the difference between the textbook world and the less-than-ideal real world
may not always be significant, but in the case of nonlinear estimation, in particular, the
gap can be wide indeed [172, 173, 219].

That such gaps can exist is an important underlying issue, for it still seems to be
widely believed that the existing software necessarily meets the appropriate qualitative
standards. Reflecting this belief, when economists evaluate software, they often appear to
adopt the point of view that software should be judged simply by its ability to facilitate
use on the user’s terms, defined by the particular tastes and even prejudices of that user.
McCullough and Vinod [175], in particular, have argued (p. 633) that economists ‘gener-
ally choose their software by its user friendliness,’ going on to suggest that ‘they rarely
worry whether the answer provided by the software is correct.’ This suggestion’s most
thought-provoking aspect is not only the economist’s possible presumption of numerical
accuracy, without evidence, but also its assertion that, for at least certain econometric
software users, the perceived currency of the interface is the deciding factor, in part
perhaps because of an ignorance that has been enforced by the silence of the main-
stream literature. An equally disturbing aspect may be the level of user expectations it
implies, in a world in which economists typically wish to obtain software cheaply. Inex-
pensive software is of course generally associated with increasing returns to scale, but



NATURE OF ECONOMETRIC SOFTWARE 15

it is also possible that the economics profession might be too small a market to support
the cost of providing all-singing, all-dancing, custom-built econometric software, com-
prehensive and competently produced, accurate to a fault, and yet so well designed with
an always up-to-date interface that it can be competently evaluated on the surrogate basis
of superficial characteristics alone.

However, to provide the proper perspective for a more detailed evaluation of the
implications of these circumstances, it is first necessary to place them in their appropriate
historical context. The mention of microcomputers here is potentially misleading, given
their ubiquity today, for although it is true that the first microcomputers became available
to ‘hobbyists’ as early as 1975, the 1970s were, as a general proposition, still very much
the age of the mainframe, for economists as well as most other people. Only at the
end of this decade did economists begin to write software for the microcomputer [204].
Furthermore, many of the earlier econometric software initiatives mentioned took fully a
decade to come to term, so that considering 1970s computer use in context it is important
to recognize that this decade’s predominant computational characteristic was not only a
mainframe focus but also a continuing relative rarity of use. The 1960s were a time
during which economists more generally became computer users, as suggested earlier,
but this was a change relative to the use in the 1950s. Even in 1970, only a small number
of economists, or people at large, had begun to directly use the computer intensively. In
the case of economists, many were then graduate students, and of these only a proportion
customarily spent each night and weekend in the keypunch room. Today, in contrast,
computer use of course begins at kindergarten, or even before, and extends to any age
pervasively, but such behavior began, at the very earliest, in the late 1980s.

Today there is also stress upon user accessibility, which did not exist then to anything
like the same degree. The human interface is now much more developed, in a way that
permits the user to operate programs at a much higher level of abstraction. In contrast,
as indicated above, programs in the early 1970s often, and in the later 1970s sometimes,
still needed to be operated by placing numbers in fixed fields of punched cards, a given
integer number from 1 to k indicating which of a particular k options the user wished to
select, or by the use of 0 to indicate omission. Sometimes data transformations needed
to be made explicitly, the user coding these in Fortran or other high-level language.
However, as discussed, in the 1970s there were also certain incentives that led some
individual econometric software developers to begin to focus on the human interface
and on abstract symbolic processing, as well as large-scale data management, whereas
others considered particular algorithms or programs that have effectively developed as
representative of what might almost be considered econometric ‘schools’ of thought,
even if their advocates might have sometimes gathered in one-room schoolhouses. Most
commonly, in those days, economists and econometricians created or modified particular
programs for their personal use, only certain of which ultimately became widely used.

Particular examples of programs of the first type, the interface focused, include
Damsel, EPS, MODLER, and XSIM, only one of which is still maintained but each
of which were then associated with the creation, maintenance, and use of relatively large
macroeconometric models. As touched upon earlier, the use of such models characteris-
tically involves the need to create and maintain substantial time-series databases. It also
requires the processing of symbolic data in the form of equations, and imposes a require-
ment for software that can be used even by teams of people. Examples of programs of
the second type, which can be regarded as interesting because of their particular internal



16 ECONOMETRIC SOFTWARE

algorithmic characteristics in the 1970s, include B34S, TSP, and WYSEA. Programs
of the third type, those that can be construed as individually associated with a particu-
lar econometric ‘school,’ include such diverse packages as AUTOBOX and AUTOREG
(represented today by its direct descendant PcGive). More broadly, programs created
originally in the 1970s for local, even personal, use, but that have since been developed
for use by economists generally, include those such as AREMOS, CEF, FP, IDIOM,
LIMDEP, MicroFit, ModelEasy+, RATS, REG-X, SHAZAM, Soritec, and WinSolve.
Some of these might also be regarded as being assignable to a ‘school.’ These classi-
fications should all be regarded as being only tentative, but they nevertheless illustrate
aspects of econometric software development pre-1980.

During the 1970s, there were also larger forces propelling the development of econo-
metric software. Overall, the economic spirit of that time was distinctly activist. At the
end of the 1960s, in keeping with the particular prevailing Keynesian paradigm, not only
was there some feeling among economists that the economy was potentially precisely
manageable (although possibly not to the degree that it has been represented since),
but – just as importantly – there was also a broader willingness on the part of govern-
ment officials and corporate leaders, particularly in the USA, to believe in the capability
of the economist to ‘fine-tune’ the economy. All this was, to a degree, a consequence
of the fact that then the memory of both the 1930s depression and the escape from it in
the 1940s and 1950s was still vivid. In 1945, it was popularly believed, a belief shared
by many economists, that an economic downturn was likely, that World War II possibly
represented merely a temporary period of ‘full employment’ that would inevitably give
way to widespread unemployment when ‘the troops came home’ [135, 185, 251]. How-
ever, 25 years later, at least in the case of the major industrialized countries, each of the
recessions that had occurred had proved to be of short duration and at worst represented
small fluctuations about a distinctly upward trend. One of the consequences, in 1970, was
substantial forthcoming corporate and government support for the creation of economic
consulting firms, such as Data Resources, Chase, and Wharton, each of which began to
create and support large-scale, computer-resident economic databases and econometric
software systems [203, 206].

The development of econometric software during the period between 1960 and 1980,
as it has been traced here, can in fact be seen as reflecting two distinct ‘motivating
forces’ – those internal to econometrics, and those external, deriving from economics as
the parent discipline. In the case of individual econometricians, this generally took the
form of software development that was focused upon parameter estimation using a variety
of estimators; the academic imperative driving this innovation was of course the usual
desire to present the new and different. In the case of the major economic consulting
and forecasting firms, the imperative was to provide billable services to clients; that is,
to applied economists in governments, corporations, and other organizations. Software
development in this context and at that time was usually competitively motivated by the
goal to provide time-sharing software services, in combination with access to substantial
time-series economic databases, in many cases via telecommunications links [5, 180,
206]. As time went on, an important aspect of the software development supported by
economic consulting firms was the creation of a semi-natural-language, symbolic human
command interface of the type prevalent even today, intended to be easy to learn and
easy to use [4, 56, 130, 179, 203]. Another important aspect, reflecting the widening
range of users, many of whom might be less likely to call themselves ‘econometricians’



NATURE OF ECONOMETRIC SOFTWARE 17

than simply ‘economists’ or even ‘planners’ or other occupational descriptions, was the
development of more broadly based facilities to support onscreen tables, graphs, and even
maps, although not at 21st-century standards.

Both these types of software development efforts have proved to be important ulti-
mately, each in its own way. Individual software development, for self-consumption,
does not normally result in programs that can be used easily by other people, no matter
how econometrically interesting the algorithms created. In contrast, programs developed
for a broad user group, of necessity, tend to offer not only ‘user-friendly’ interfaces, but
also data display capabilities that can actually be quite important in applied research. The
academic payoff from software development, such as it is, tends to be much greater for
work that leads to the publication of information about new econometric technologies
or stimulates the development of new economic theories, but this represents a private,
not necessarily a social, benefit, beyond the creation of new knowledge that may or may
not be of substantial or wide interest. In contrast, the greatest social benefit may arise
from new computational technologies that benefit the research of all economists and
econometricians alike. However, it is also important to recognize that, for applied eco-
nomic research, and the econometric software development that supported it, the 1970s
were years of substantial aspiration, yet also a time during which the economist’s reach
exceeded his or her grasp. One of the reasons why this aspect needs to be considered
is that economists, in their introductions to journal articles and other publications, often
provide stylized, frequently not particularly well founded, historical statements, intended
as motivators for the argument to be presented, and not always representing deep belief,
even the author’s. Yet these statements, as historical assessments, can be quite mislead-
ing, and can then also be cited and passed on as gospel, finally entering into the folk
wisdom of the discipline, essentially in the form of old wives’ tales.

1.2.3 Econometric computing and the microcomputer

Among those used by economists, the machines prevalent prior to the early 1980s
ordinarily can be classified as mainframes or minicomputers, although supercomputers
had by then also appeared in increasing numbers, after being introduced in the 1960s,
even if seldom used by economists. Mainframes were of course intended to be used
‘enterprise-wide,’ whereas minicomputers were meant to be used in departments and
other, generally small, subclassifications of organizations. Supercomputers, in the 1970s
typically a category of fast, vector processor machines, commonly had the interesting
characteristic that mainframes were generally used as auxiliary processors for the input
of data and output of results. However, irrespective of classification, the most fundamen-
tal characteristic of computing before the early 1980s was not only that the computers
used were almost without exception organizationally owned, rather than personally, but
also that they were shared. Mainframe sharing at this time implied that, however fast the
machine might be when operated by a single person, it could be quite slow for the average
user. In particular, it might be slow because it operated in batch mode, with programs
prioritized and queued as they were read in, and sometimes not executed for hours. On
output, the hard-copy results were sorted and distributed by hand by the computer’s one
or more operators. The effect could be turnaround times of an hour or more, or even
24 hours for ‘large’ jobs, those requiring memory in excess of 512 kB, or sometimes as
little as 256 kB. Even when machines were used in ‘time-sharing’ mode, the fact that



18 ECONOMETRIC SOFTWARE

individual users’ ‘jobs’ were almost always prioritized and then queued, and also might
require a human operator to mount tapes and removable hard-disk units, could mean
that even minutes passed between the entry of a single command and the computer’s
response. The first personal computers were themselves slow machines, compared to
either mainframes or minicomputers (or personal computers today), but they were single
user and self-operated, and in practice these characteristics caused them, even as early
as 1981, to be time competitive with mainframes and sometimes even supercomputers.

The fundamental problem that the microcomputer initially posed for the econome-
trician was the lack of useful software, which almost always occurs when hardware
characteristics are fundamentally changed because of the adoption of an entirely new
central processing unit (CPU). In addition, the architecture of this new class of computer
at first also represented a significant step back in capabilities: maximum memory size on
the order of 64 kB, rising to 640 kB only more than a year later, and small, slow diskette
drives for permanent storage rather than hard disks, with hard disks initially unavailable
and then reaching the size of 20 MB, as a common characteristic, only in 1984 – not to
mention CPU operating speeds of 6–8 MHz or less before 1986 [39, 40]. Furthermore, it
took several years before microcomputer software provided the capabilities of mainframe
software, reflecting that writing software takes time, but also that the language compilers
and linkers available for the microcomputer were at first ‘bug’ ridden, idiosyncratic, and
originally designed for small, memory-undemanding programs. In at least one case, in
1982, it was necessary to ‘patch’ an existing linker in order to make it possible to convert
an econometric software package from the mainframe to the PC.

Nevertheless, by the fall of 1983, at least one econometric software package capable
of estimating and solving (small) econometric models was available for the IBM Personal
Computer and compatibles. In September 1984, the first microcomputer-based economic
forecasting service was introduced at the annual meeting of the National Association of
Business Economists, combining a 250+ equation Wharton Quarterly Econometric Model
of the United States with the MODLER software [209]. The solutions for a 12-quarter
forecast horizon took less than 4 minutes. This software had the same capabilities as its
mainframe version [56]; in particular, it could then be used to create, maintain, and solve
econometric models of as many as 1000 equations. By the end of 1985, the other packages
available for the ‘PC’ included AREMOS, AUTOBOX, PcGive, RATS, Shazam, Soritec,
and Stata, as well as limited versions of both SAS and SPSS. Even earlier, a few, relatively
limited packages had been implemented on both a Tandy machine and the Apple II [204],
including interestingly enough a program called ‘Tiny TROLL,’ created by Mitch Kapor
at MIT, parts of which were then incorporated into the VisiCalc spreadsheet package and
subsequently also influenced aspects of the development of Lotus 1-2-3, and later other
packages, such as Excel.

In order to chart the subsequent evolution of econometric software during the present
microcomputer age, it is possible to proceed by tracing the broad outlines of the compu-
tational developments of the past 20–30 years. The computational shift during the 1980s,
from the creation of software and systems on large institutionally based machines to the
use of the personal computer as the locus of such work, can be viewed as responsible for
the range of econometric software that exists today. The personal computer, because of
its affordability, wide distribution, and steadily increasing capabilities, not only provided
an important developmental context but also became the basis of an extensive market for
this software. The 1960s may have been the time that economists generally first began



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 19

to learn to use the computer, but pervasively it was in the later 1980s that computer
use began to become truly widespread. The comparative degree of market extensivity
is even more obviously apparent today, given the ubiquity of the notebook, or laptop,
computer, and otherwise the sheer number of personal computers commonly found in
offices and homes, not to mention such things as the recently accelerating convergence
of television and computer technologies. Of course, in addition, the development of the
Internet as an effective successor to the more local, mainframe-based wide-area networks
of the 1970s has obviously also had a significant impact, particularly from the second
half of the 1990s, especially on the distribution of economic data and information.

Consequently, although it is possible to talk in terms of nearly 60 years of evolution, in
truth the impetus for the development of today’s number and variety of econometric soft-
ware packages is more recent. Their present characteristics are essentially the direct result
of a combination of relatively modern circumstances, among them being the introduction
of the microcomputer in the 1970s and 1980s, the simultaneous expansive development
of econometric techniques since the 1960s, and most recently the increasingly common
adoption of a graphical interface, often while preserving macro language capabilities,
in conjunction with the more and more widespread use of the Internet since the 1990s.
Among the effects, the broadening and deepening of econometrics – and, more generally,
quantitative economics – especially during the past 30 years, has had a significant impact
on the range of the present-day properties of these programs, resulting in considerable
diversity. For example, functionally classified, today they can be placed in categories
that include basic regression, advanced estimation, and econometric modeling languages.
Considered in terms of characteristic functionality and interface, they can be classified as
ranging from those defined by specific-selection, menu-oriented econometric features to
algebraic quasi-natural-language econometric modeling and programming languages that
provide even the capacity for an individual user to create new techniques [204].

Simultaneously, substantive changes in hardware have of course occurred during the
past 20 years. As indicated, the personal computer in 1987 operated at 6, 8 or 10 MHz;
today, many modern notebooks operate at or near 2 GHz or better. The 1985 computer
ordinarily contained at most 640 kB of easily accessible memory; the modern variety
can contain even as much as 1 GB or, in an increasing number of cases, even more.
Furthermore, in 2009, the microcomputer has now progressed to the point of commonly
incorporating (in a single chip package) two to four processing units and having other
characteristics that make it more and more difficult to distinguish conceptually between
the types and capabilities of large and small machines in a meaningful way that does
not involve mind-numbing detail. What is certainly true is that the microcomputer found
either on the desktop or on an airline tray table is now the locus of the vast proportion of
all the empirical analysis that is done by economists. In almost every sense, the composite
history of the electronic stored-program computer is now present in the modern personal
machine.

1.3 The existing characteristics of econometric software

To this point the focus has been upon the developmental characteristics of econometric
software during the past nearly 60 years. It might seem that, on the one hand, there are
historical examples and, on the other, modern examples – and that the historical examples



20 ECONOMETRIC SOFTWARE

are interesting only historically. To a degree, this is a reasonable characterization: a
number of econometric software packages were created, used for a period of time, often
years, and then dispensed with. However, it is not entirely correct. Although none of
the packages used in the 1950s is still employed today, certain of those from the 1960s
continue to be used, although in modern form. In particular, AUTOBOX, B34S, Microfit,
MODLER, Mosaic, PcGive, TSP and WYSEA all began to be developed then and, in
certain cases, still incorporate some original source code. Furthermore, the majority of
these programs continue to be developed by their original principal developers. Others,
including AREMOS, FP, IDIOM, LIMDEP, ModelEasy+, RATS, SHAZAM, and Soritec,
each originally came to life on mainframes in the 1970s, as did SAS, SPSS, and other well
known statistical software packages. In some cases, these too continue to be developed by
their original developers. All these programs were converted to microcomputers, generally
beginning at various times during the period 1980–85. In contrast, REG-X began to
be developed on a Tandy microcomputer in 1979, was moved to a minicomputer, and
then to the PC in the 1980s. Yet others, including EViews (as MicroTSP), Gauss, and
Stata, began to be developed on the microcomputer in the 1980s, joined by Betahat,
EasyReg, Ox, and the present-day incarnation of TROLL in the 1990s. Of all the existing,
recognized programs, only Gretl began to be developed in the present century, albeit
on the basis of ‘inherited’ code, although there are also certain Gauss- and Ox-based
special applications that have been created during the past few years. Gauss and Ox are
themselves classifiable as high-level econometric programming languages. Taken as a
group, the packages just mentioned constitute the econometric software packages used
by economists today. Quite clearly, the majority of them date from before 1980, so
that their history and the history of the ‘automatic’ stored-program computer are rather
extensively intertwined.

This intertwining is also indicated by these packages’ collective hardware history:
their development spans the cycles of hardware change since all but the earliest times.
For example, the first use of the computer by economists at the University of Pennsylvania
included the use of the UNIVAC, the immediate design successor to the EDVAC [52,
197], although this is arguably incidental. However, links to the second generation are
firm. At least three of the existing packages began to be developed on second-generation
computers, and several more on third-generation ones. The fundamental distinguishing
hardware characteristic of the second-generation computer was the original introduction of
the transistor, which occurred first in 1959 with the IBM 7090/94 [214]. Another machine,
the IBM 7040, was effectively an IBM 7090 ‘lite.’ The IBM 1130 and 1620, used
in several cases by economists, were second-generation, small mainframes principally
designed for scientific use. The CDC 6400, used in at least one case, can also be described
as a second-generation mainframe machine, although it is also architecturally compatible
with the earlier CDC 6600, designed by Seymour Cray, which is commonly regarded as
the first supercomputer. Interactive econometric computing began in 1970 on a Digital
Equipment PDP-10, a type of machine also later used by Bill Gates and Paul Allen
(www.pdpplanet.com). The IBM 360 was a third-generation machine and in a number
of cases was used by econometric software developers, as were also its successors, the
IBM 370 and the 3090. Other econometric software developers, especially those in the
UK, even if they did not actually cut their teeth on the first EDSAC, can nevertheless date
their earliest work to the use of the Atlas, particularly the machines at the Universities of
Cambridge and London, or even the EDSAC 2 or Titan [226]. More recently, econometric



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 21

software has involved the use of Apple, Tandy, the Victor 9000, the RS/6000, several
Sun machines, and multiple generations of the IBM PC and compatibles. The inference
to be drawn is that econometric software enjoys a long and rich hardware patrimony, one
that has been only partially described here.

However, until very recently, as has been discussed, the design and development of
econometric software packages has been part of the econometric deep background. Only
certain individual developers have ventured into print to any significant degree [19, 63,
64, 113, 115, 160, 163, 202, 203, 208, 209, 225, 230, 244]. Furthermore, although the
user guides and reference manuals commonly provided with individual programs often
provide some aspects of their history, these accounts tend to be presented selectively,
ordinarily without technical details. The most readily available historical description of
the existing econometric software packages, albeit still somewhat limited, is found in a
compendium published in 2004 [211]. This compendium comprises edited accounts by
each of the current principal developers of each of the existing packages, with certain
exceptions to this rule; the exceptions occur mainly in the case of historically significant
programs that are no longer maintained today. Other, more selective, descriptions of
particular econometric software packages available in 1983 and earlier can be found in
an article of that date by Arne Drud [56], articles in a special issue of the Journal of
Economic Dynamics and Control [130], and in minimally descriptive compilations of
statistical software by Ivor Francis and others [83].

1.3.1 Software characteristics: broadening and deepening

It is said that the past is a foreign country, but if the detailed, step-by-step record is now
difficult to recover, it is possible to describe the salient modern characteristics of these
packages, using for reference an earlier interactive survey made in 2003. This survey
was taken in conjunction with the compilation of a special volume on econometric com-
puting, published simultaneously in the Journal of Economic and Social Measurement
(2004, vol. 29) and as a book, which includes the compendium mentioned earlier [212].
In that context, a number of the operational characteristics of the individual packages
are documented using summary charts. As a practical matter, as indicated earlier, recall
that it was in the first few years of the 1960s that research-driven computer use notice-
ably began. At that point, the transition from using desktop calculators to the electronic
computer at first occurred simply as a modal transfer: calculations previously made on
the calculator began to be made instead using the computer [52, 87, 225]. After that
first step came the rather slow process of incorporating into this computer use both more
comprehensive data management and more than simple parameter estimation methods.
The earliest recognizable econometric software, as mentioned, commonly took the form
of separate, usually single purpose, programs classifiable individually as data manage-
ment, data transformation, and regression programs, the latter in their original form not
always easily distinguished from the ‘statistical’ programs of that day. To the degree that
evident differences existed in the mid-1960s, the most obvious characteristic of econo-
metric software was less of a tendency to include stepwise regression and more to include
simultaneous equation techniques, such as limited information maximum likelihood or
two-stage least squares. It was the late 1960s before programs became more than rudimen-
tary in operating style and before econometricians even began to think about something
as conceptually sophisticated as software design.



22 ECONOMETRIC SOFTWARE

In contrast, during the past 25 years, reflecting the impact of personal computers,
econometric software packages have become clearly distinguishable, both from other
types of software and from each other. Among themselves, as a general property, indi-
vidual programs have become functionally more self-contained, combining parameter
estimation capabilities with data transformation facilities and at least a minimal degree
of more generalized data management and display capabilities, a number of packages
increasingly integrating as well such capabilities as nonlinear multi-equation model solu-
tion facilities. Since 1995, there has also been a noticeable tendency to adopt the pre-
vailing standards of the so-called ‘graphical user interface’ (GUI), associated with both
Microsoft Windows and the Apple operating systems, although just as noticeably it has
also been common for econometric software to continue to offer command-line control,
usually in the form of a scripting or macro capability. Characteristically, today almost all
are able to operate by manipulating econometric objects using a keyword-based command
language, even if most operate primarily using menus and icons. It is also common for
a package to permit its users to collect command elements into a text file, as a macro.
The reason is the repetitive nature of many of the operations performed, for example,
requiring the ability to make data transformations repeatedly as new observations are
acquired, or to rerun regressions. The ability to recycle commands issued earlier and to
form these into macros to perform substantial tasks easily and repeatedly is a desirable
trait of an econometric software package.

The particular econometric software developments during the past 50 years can be
classified in various ways. Certain of these represent a widening or broadening of econo-
metric techniques, tests, and other operations implemented in software. Others represent
a capital deepening process, in the sense of more sophisticated implementations that,
in some cases, took the form of more complete algorithms that subsume the capability
to perform any of a multiplicity of techniques, or perhaps some combination of these
simultaneously. In other cases, they took the form of combining in the same program
a sequence of operations that involved a high degree of mutual integration, such as
permitting parameters to be estimated as a first-stage operation, followed by the very
nearly automatic creation of model equations, and then incorporating those estimates, as
a next stage, leading finally to the creation of a functionally complete model, capable
of being solved. Such broadening and deepening can be considered to be algorithmic in
nature.

However, another aspect of this software development took the form of the creation of
progressively more sophisticated interfaces. One type of interface is the human interface,
functionally related to the way in which the user of a program both controls the operations
performed and either perceives or comprehends the results. As discussed earlier, in the
1960s, sometimes even in the 1970s, program control was effected by choices made using
numbers located in fixed fields on punched cards or paper tape. This type of control has
long since been replaced by the use of the WIMP (windows, icons, menus, and pointing
methods) graphical interface and even earlier by the use of free-form, if still stylized,
command languages. The results obtained may, in turn, be displayed in tabular form,
or as graphs, or as other perceivable objects, such as an equation or a list of equations.
Comprehension, as opposed to simple perception of the program’s output, obviously can
be aided by interface design, even if there has been considerably less attention paid by
econometric software developers to this aspect of the human interface than to enabling
simple perception.



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 23

Another type of interface is the machine interface, the way in which a given computer
either receives input from or sends output to one or more other machines. The idea of this
interface began increasingly to be a consideration at the beginning of the 1970s, when it
became feasible to connect not only one computer to another, but also individual users to
machines remotely from a dumb terminal via a telecommunications link, either dial-up
or dedicated. Peer-to-peer machine linkages were often difficult to achieve in those days,
for computers were commonly designed to operate stand-alone, not as either intelligent
or dumb correspondents; connections then generally required some type of master–slave
protocol. More recently, the machine interface has of course taken the form of either a
local-area network (LAN) or a wide-area network (WAN) connection, the latter includ-
ing both the Internet and other machine-to-machine linkages. For econometric software
developers, these have generally been behind-the-scenes innovations, since making these
linkages is an operating system task. Consequently, these developers have not ordinar-
ily been involved in the establishment of machine interconnection protocols as such.
However, once such connections began to be made, remote data retrieval and database
management began to become much more important environmentally [11, 12, 104, 205,
206, 213], even if today it is still most common for econometric software to be designed
simply to read in data from some type of text file or an Excel or some other spreadsheet
file, rather than to query a relational or other database system using SQL (Structured
Query Language) or other procedural language.

Mary Morgan [182] and Qin Duo [199] have each considered carefully the process
of the development of econometric theory and the way in which the ideas of Frisch,
Haavelmo, and Koopmans, among others, and the work of Tinbergen, Klein, Goldberger,
and others during the early days of macroeconometric model building combined to estab-
lish both econometric practice and its received theoretical support at the beginning of
the 1960s. Qin’s assertion (p. 65) that ‘estimation can be seen as the genesis of econo-
metrics, since finding relationships has always been the central motive and fulfilment of
applied modeling activities’ expresses well what can be regarded as a motivating thought
behind the beginning efforts to employ the electronic computer more generally in the
first few years of the 1960s. However, the operative philosophical position in those years
was often that expressed in 1958 by Haavelmo [97, p. 351], that ‘the most direct and
perhaps most important purpose of econometrics has been the measurement of economic
parameters that are only loosely specified in general economic theory.’ Of course, this
measurement often took place without sufficiently taking into account his clearly stated
qualification (p. 352) that the quantification of economic phenomena had in the preceding
25 years appropriately come to be interpreted to extend ‘not only to the measurement
of parameters in would be “correct” models, but to the field of testing, more generally,
the acceptability of the form of a model, whether it has the relevant variables, whether
it should be linear, and many other similar problems.’ The methodology debates at the
end of the 1970s and into the 1980s stand as testimony to the continued lack of testing
as a practice, as has been evaluated elsewhere [210].

In the early 1960s, the electronic computer, as it became progressively more com-
monly available, represented to economists the potential to perform computations not
feasible previously. Eisenpress’s creation in 1959 of a program that implemented limited
information maximum likelihood was followed in 1962–63 by the efforts of Zellner and
Stroud, referred to earlier, to implement the two- and three-stage least squares [257] and
seemingly unrelated regression equations [256] techniques. This work marks the first



24 ECONOMETRIC SOFTWARE

time that particular estimation techniques were both introduced in the literature [254,
258] and implemented contemporaneously in software that could be used by others. A
short time after that, in 1963–64, Mike Wickens programmed full information maximum
likelihood, based upon a later published formulation by James Durbin [59] that, among
other things, utilized Newton–Raphson convergence and demonstrated that the second
iteration of the process generated three-stage least squares estimates. Elsewhere, during
this time, there were other econometricians who implemented sophisticated estimation
techniques in software; much of this work took place in Canada, the UK, the USA, and
New Zealand [31, 136]. In most cases, these efforts can be seen to be motivated by
the desire to make these calculations specifically for the sake of it. Other efforts in the
middle to late 1960s, including follow-on work in New Zealand [25, 26, 194], as well as
the program development that took place at the Brookings Institution in Washington, DC
[57, 58, 159], and that at the Wharton School of the University of Pennsylvania [67–69,
197, 216], represented much more the need to support the estimation, construction, and
use of macroeconometric models. However, as this was the takeoff period of econometric
software development, representing the first dispersed attempt to create a software infras-
tructure, the effect in almost all cases was generally broadening, rather than deepening,
as more and more estimation and even model solution techniques became embodied in
software.

A broadening also took place in the 1970s, which in many cases and in a similar way
also at first represented the separate efforts of individual econometricians, yet has since
resulted in the general availability of packages such as AUTOBOX, B34S, BRAP, FP,
IDIOM, LIMDEP, MicroFit, PcGive, RATS, and SHAZAM. Characteristically, during
the 1970s, these appear to have been developed, or in certain cases expanded, either as
an individual reaction to the unavailability (or simply the local absence) of appropriate
software or else to solve some perceived econometric problem. Especially in the case
of MicroFit and PcGive, this work sometimes took the form of software development
that over the years increasingly incorporated misspecification tests and other evaluative
features. Most of this broadening, beginning then and extending to the present day, effec-
tively took the form of the addition of econometric techniques. However, this accretion
represented not simply more techniques able to be applied in a given macroeconomic
time-series context, but instead, in certain cases, the development of software to be used
in a different data or economic environment, such as cross-section or microeconomic.
The greater availability of survey data, both cross-section and panel, as well as econome-
tricians’ advocacy of Bayesian, time-series analysis, and other specific methodologies, or
new areas of investigation, such as financial theory, provided some of the initial broad-
ening stimulus in the 1970s. In the 1980s and 1990s, the market possibilities provided by
the microcomputer and, in later years, the Internet, added extra stimulus. However, some
of these packages, even in their early days, broadly supported the applied research of
economics departments and groups of economists at such diverse places as Auckland, the
Brookings Institution, Chicago, Cambridge, Harvard, the London School of Economics,
Minnesota, MIT, Pennsylvania, Princeton, and Wisconsin.

The phenomenon of software deepening is both most evident and easiest to describe in
the case of programs developed for research teams associated with large-scale econometric
model projects. The need to manipulate and display substantial quantities of data in con-
junction with the creation and use of such models, starting in the mid-1960s, led increas-
ingly during the 1970s to the creation of large-scale economic database management



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 25

systems, both separately and as subcomponents of such packages as EPS, FP, MODLER,
Mosaic, TROLL, and XSIM [205]. More broadly, the computer and more intensive data
processing generally led to the greater availability of data of all types. However, from
the 1960s to the later 1980s, data series used in research often needed to be acquired
in hard-copy form and then keypunched. The associated expense obviously provided an
incentive to develop ways to move the data once in machine-readable form from one
place to another with a minimum of effort, as well as to manipulate the observations
easily. Models containing 300 or more equations only became possible because of the
computer hardware and software advances that began in the 1960s, although at first mod-
els of this size strained the technology. In the early 1970s, to create a 200-equation model
was commonly held to require a year’s effort on the part of a team of 10–12 people
[165]; in 1987, in contrast, one person working a week could estimate, compile, and
successively solve a 300-equation model [43, 203]. The objects that are associated with
macroeconometric models containing hundreds or even thousands of equations consist of
data series, which explains the development of not only database management capabili-
ties, but also equations, multiple tables, graphical displays, and other such items that also
need to be managed effectively. In addition, there was a need to incorporate labor-saving
features: the manual coding of individual equations itself was time consuming, but in
addition likely to result in transcription errors. Otherwise, and in common with other
types of software, deepening also took the form of the creation of program components
capable of performing a variety of selected operations given a particular input stream
[111]. As indicated earlier, this intensification process can be considered either as an
internal program phenomenon, as just briefly described, or else in connection with the
development of human command interfaces that make possible the more sophisticated
control of a program’s operation.

1.3.2 Software characteristics: interface development

As discussed earlier, and in greater detail in another place [203], one of the evolutionary
characteristics of econometric software was the early development of explicit econometric
modeling languages, which began in the late 1960s. The employment here of the term
‘language’ refers to the command structure as a human interface, which permits the user
of this type of software to describe to the software the operations to be performed using
an algebraic syntax and vocabulary, together with keywords and variable names – for
example, resulting in transformation commands (and identities) such as

Y = C + I + G + (X − M).

Here, the variable names (Y , C, I , G, X, M) have an obvious mnemonic quality, and
as command elements each constitutes a symbolic reference to a vector of observations,
inasmuch as the use of the program’s command language not only directly invokes
the retrieval of observations from an organized database (and perhaps subsequently the
storage of results there) but also defines and causes the calculations and other opera-
tions (written in the language) that are associated with the construction, maintenance,
and use of an econometric model that might contain even hundreds or a thousand or
more equations. Once created, such a program can also be used more prosaically to
make simple data transformations, as shown above, as well as to perform regressions, to
execute a variety of analytical tasks, and to display tables, graphs, and the like, all in a



26 ECONOMETRIC SOFTWARE

comparatively user-friendly way. Consequently, as previously described, the development
of econometric modeling languages in the 1970s was often associated with the forma-
tion of economic consulting and forecasting firms, which then made available to a wider
public both software services and economic data for analysis [206].

The IBM personal computer at its introduction in 1981, with its original DOS (Disk
Operating System) command-line user interface, can easily be seen to be immediately
compatible with the type of command-line operation associated with earlier economet-
ric modeling languages developed for use with time-sharing mainframes in the 1970s.
Furthermore, the interactive operation of time-sharing operating systems, which normally
provided the context of the early development of such modeling languages, was function-
ally mirrored by the single user operating systems of the microcomputer. Therefore, from
the first, the microcomputer provided a new, yet also quite familiar, environment. What
this machine in addition soon made available to each user, beginning in 1982, was a
pixel-based screen display that permitted graphical displays of a superior type previously
only rarely available to users of mainframe computers; this type of screen provided the
environment for the development of the modern graphical user interface (GUI). Inciden-
tally, the particular circumstance that caused the IBM personal computer and compatibles
to be selected by almost all econometric software developers in the early 1980s, rather
than the Apple, Tandy, or other microcomputers, may reflect the early availability for
this machine of Fortran and other algebraically oriented compilers, in addition to the
inclusion in its technical specifications of a numeric coprocessor chip, the 8087, which
permitted faster floating-point numeric calculations. For many years, the Apple machines,
in particular, provided attractive frosting but almost no cake – with the exception of its
display, only in the present century has the Apple finally become hardware competitive.

Of course, the personal computer and modeling languages were independent devel-
opments, even if the microcomputer environment, taken together with the subsequent
widespread use of this computer, caused a fundamental change in the degree of computer
use worldwide. Considered alone, econometric modeling languages represent a logical
extension of the development of high-level programming languages that began in the
mid-1950s. Both the parsed evaluation of alphanumeric commands and the translation of
arithmetic/algebraic expressions, usually involving the conversion of infix notation (for
example, a + b) into reverse Polish (for example, ab+) or some other operative syn-
tax that permits stack-based processing, constitute operations that are – or can be seen
to be – common to both compiler design and econometric modeling languages. In turn,
linker operation and the functional integration of a sequence of operations so as to marry
the output of an earlier one to the input requirements of a later one are logically generally
analogous in their essential characteristics.

During the 1970s, there was almost always a noticeable difference between the human
interface of the econometric software packages typically used by academic economists
and that experienced mainly by business and other non-academic economists, who used
the econometric modeling language type of interface just described. This difference in
part reflects that, during the 1970s, batch processing mainframes and minicomputers were
much more commonly available in academic environments than were computers with
time-sharing operating systems. The typical self-programming academic econometrician
in the 1970s might, in any case, have had little incentive to develop a sophisticated
language interface for a program, compared to the incentive to focus upon econometrically
interesting algorithms, but in a card (or paper tape) oriented batch environment there was



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 27

even less reason. AUTOREG, B34S, LIMDEP, and most other such programs were
originally developed with an algorithmic focus, rather than the interface. As indicated,
programs such as Damsel, EPS, MODLER, and XSIM were more human interface biased
in their development. The combination of differences in developer incentives and their
environments explain the particular diverse characteristics and almost bipolar orientation
of econometric software development during the 1970s.

However, it is also pertinent that, until about 1978, much of the design and develop-
ment of econometric software occurred under relatively isolated conditions. As indicated,
there was a time in the early 1970s that journals, in particular Econometrica, appeared
ready to publish articles and notes about software, but for whatever reason this was a
short-lived, Prague spring. With certain exceptions [19, 63, 64], it was only at the end of
this decade that program descriptions and algorithmic details noticeably began to appear
in the disciplinary literature [51, 115, 130, 132, 151, 188, 227]. Otherwise, econometric
software and its documentation ordinarily passed from hand to hand, even if user guides
to statistical programs had begun to appear in university bookstores. In the days before
microcomputers, software purchases were commonly made organizationally, usually by
people who worked in computer centers and spoke of ‘statistical,’ rather than ‘econo-
metric,’ software; in addition, it was decidedly uncommon for software of any type to be
prominently marketed at economic association and society meetings. Even as late as 1983,
computational methods were ordinarily considered separately from any explicit consid-
eration of their algorithmic computer implementation, and the citations that appeared in
the formal economics and econometrics literature were often not directly related to any
such implementation [200], a practice not unknown even today.

These circumstances of econometric software development before 1985 are relevant
to the consideration of particular developments since. Furthermore, at the risk of stereo-
typing, it is useful to consider certain of the resulting properties of econometric software
as the microcomputer began to be used widely, in about 1985. In particular, whatever
the specific differences between programs in the 1970s, at the time the microcomputer
began to be used by economists, it was almost universally characteristic of econometric
software packages that they each offered specific, program-dependent user choices. In the
case of the econometric modeling languages, the user might be able to choose to create a
possible variety of models, but the parameter estimation facilities were for the most part
given. Some degree of flexibility might exist that would allow distinguishable techniques
to be combined, such as two-stage least squares and autoregressive corrections. To the
degree an economist was willing to program, such packages also might offer greater
capabilities, but essentially the typical users made their choices as if from a menu. The
same was true of the other existing packages.

However, in 1985, a new type of software began to become available, the earliest
example familiar to economists being Gauss [119]. It is possible to argue that too sharp a
distinction has just been made, that the econometric modeling languages already offered
capabilities similar to those of these new packages, albeit described in the depths of thick
manuals, but it is useful to ignore this particular fine point in order to focus on the differ-
ence in orientation of these two types of econometric software package. Packages such
as AREMOS, MODLER, and XSIM are examples of econometric modeling languages
(EML) [203], as has been described, but Gauss, Ox, and possibly other similar packages
are effectively econometric programming languages (EPL). The critical difference is the
object the user works with: an econometric modeling language characteristically has as its



28 ECONOMETRIC SOFTWARE

objects specific, well defined econometric techniques, to include estimators with explicit
names. Other objects take the form of time-series variables, model equations, and models,
but also a range of variable transformations, defined in terms of algebraic and arithmetic
operators, and, as well, also implicit functions.

In contrast, an econometric programming language is defined by its mathematical
and, in some cases, statistical objects. These objects include matrices, vectors, operators,
implicit functions, a looping syntax, and a particular grammar, among other characteris-
tics. As its name implies, an econometric programming language is a programming lan-
guage, but one that is specifically oriented to the use of econometricians and economists.
Generally, it is also a higher-level language than Fortran, C++, and other commonly rec-
ognized computer programming languages. An aspect of its high-level nature is that the
user is ordinarily not expected to be familiar with computer operating systems and other
aspects of the particular use of a computer programming language. However, it is difficult
to make hard and fast distinctions. Clearly, there is a potential class question that could
be raised concerning exactly how to distinguish an econometric programming language
from any other programming language of a sufficiently high level. Similarly, as indicated
earlier, an econometric modeling language can contain an econometric programming
language as a subclassification.

Suffice it to say that these are fuzzy sets. However, ignoring such classification com-
plexities, econometric software can today be categorized into various types. First are the
standard estimation packages that provide an economist with the ability to perform a
given set of econometrically defined operations, operations that are specifically defined
by the software developer. Notice that the operational characteristic in this case con-
sists of the user selecting from a set of options, possibly using a menu. There is next a
mid-range, which most obviously includes the econometric modeling languages, with the
characteristic that the economist is required not only to make certain selections but also
to control how particular operations are performed: he or she must form equations, com-
bining variables and operators and possibly implicit functions, and thereby build a model.
These models can be solved or simulated. The results can be plotted or produced as tab-
ular displays. Advanced estimation packages (AEP) or generalized estimation packages
(GEP) that offer a selection of choices and incorporate a macro language capability should
also be included in this classification, as offering a subset of capabilities and features.
Finally, the econometric programming language in turn offers less in the way of prefab-
ricated statistical and mathematical objects, but more scope to create new econometric,
statistical, and mathematical forms. It might also be possible to infer that an econometric
programming language is most suited for use by econometricians, as creators of emerg-
ing techniques, as opposed to applied economists, who are more likely to use established
methodologies, hence another type of package. Obviously, these sharp distinctions are
most meaningful when considering polar examples of these package types.

Considering the human interface aspects of the modern econometric software pack-
ages, the classifications just described can be considered to imply substantial progress,
inasmuch as the ideal might be to present economists with the capability to perform their
research in the most immediately intuitively obvious way. For certain analysts, interested
only in the use of standard econometric techniques, it is clearly beneficial for econometric
software packages to be available that are easy to learn to use and involve little effort
to apply. For others, the capability to learn an econometric language that is language
compatible with the material presented in textbooks and journal articles would appear



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 29

to offer much, even if this capacity might also imply the need to specify explicitly the
calculations made in each case.

More generally, it might seem possible to infer from this description that this appar-
ent movement towards a complete econometric programming language represents for
economists what the development of CAD/CAM (computer-aided design/computer-aided
manufacturing) has meant for architects, designers, engineers, and others, namely the cre-
ation of a productive environment in which it is possible both to design a new entity and
at the same time to establish constructively its specific characteristics. In an engineering
context, the CAD component can be imagined to permit the production of a design for a
particular object; the CAM component ideally then permits the design itself to control the
machine, or machines, that produce this object. Alternatively, it might be possible to see
these econometric software developments as implying potentially much the same type of
near-term functional improvement in econometric practice as modern word processing
software has brought to document production, namely, in this case, a screen representa-
tion that is the same visually as the final printed document, a characteristic that usually
goes by the name ‘what you see is what you get’ (WYSIWYG).

All this sounds good, but there are certain aspects of econometric software that make
these concepts less than immediately applicable. In the first place, in the case of econo-
metric software, there is no necessity for there to be a direct correspondence between
what appears on the screen and the computations that are made. Users of this software
generally do not and will not know the algorithmic details of the computations performed,
for the simple reason that individual developers do not ordinarily publish these details.
Furthermore, whatever the user specifies in the form of a command, there is no necessary
relationship between this command and the calculations performed by the software. At
issue here is not just the user’s ability to specify the characteristics of an arithmetic or
algebraic operation, which may be supported, but also the way in which various condi-
tions are evaluated, such as, for instance, the degree of convergence in the context of an
iterative nonlinear process, or the user’s freedom to set initial values and other control
parameters [172, 173]. However, fundamentally, whatever the user provides as a set of
commands will be interpreted by the software package used, acting as an intermediating
agent. The actual calculations then performed will be determined and controlled by the
software developer. Furthermore, at least in certain cases, it can be argued that it is desir-
able that the user of the package not be allowed to control precisely how the program
does what it does: the user cannot be presumed to be a knowledgeable numerical analyst
nor a skilled programmer.

1.3.3 Directives versus constructive commands

In certain respects, the discussion has come full circle since the introductory section of this
chapter. Implicitly it was argued there that, over the past 30–40 years, specialization has
occurred, with economists in effect ceding responsibility for the design and development
of econometric software to a minority of econometricians. One of the implications of the
modern development of this software – namely, the creation of econometric programming
languages – would appear on the face of it to provide any economist (once again?) with
the capability, in effect, to design and develop his or her own software, but now in
a way that avoids the complexities, yet achieves the goal of allowing that economist
to determine the constructive characteristics of whatever applied econometric research



30 ECONOMETRIC SOFTWARE

project he or she might wish to imagine. The one objection that has been made to
this idea is the argument just posed that, in any case, the designer and developer of any
econometric programming language used is essentially able to remain in complete control
as an intermediating agent. The normative question that naturally arises is this: To what
degree should the designer/developer exert this control?

In order to consider this question properly, a certain amount of background informa-
tion is necessary. It may be useful to begin by considering what distinguishes a directive
from a constructive command. A directive command, or simply a directive, as this term
will be used here, can take any of a number of forms. For example, in order to direct a
program to perform an ordinary least squares regression of a named dependent variable,
such as CE, on one or more other named regressors, the user might in one case issue the
commands:

dependent: CE,

regressors: YPD, CELAG1;
in another:

CE = F(YPD, CE(−1));

or, in a third:

reg. command: CE = c1 ∗ YPD + c2 ∗ CE(−1) + c3.

All three directive types are found in the command languages of existing econometric
software packages. It is also true that, in some cases, pulldown or dropdown menus will
be used in order to identify, progressively, the dependent and regressor variables.

All directive forms are constructively equivalent, inasmuch as, by definition, none
does anything except direct that a certain type of operation be performed. In each case,
the command’s meaning and the particular corresponding default operation will have been
established by the program’s designer; that is, the meaning of the directive is completely
established by the syntax and vocabulary of the program used. However, as illustrated,
in some cases a directive can have constructive features, either seemingly or actually;
for example, in the second command above, the term CE(−1) obviously constitutes the
directive that the variable named CE is to be retrieved from the program’s data storage
component and then, constructively, lagged by one period before the observations on
this variable are used as one of the regressors in the implied regression. Alternatively,
in the third case, the directive would seem to indicate constructively that the regression
is to be linear in parameters. Nevertheless, notice that none of these directives is linked
automatically to a specific estimator, except by default.

In contrast, a textbook consideration of the so-called general linear model and ordinary
least squares regression will commonly begin with a statement like: ‘Consider the linear
specification

y = Xβ + u,

where y ∈ �T are the observations on the dependent variable, X ∈ �T ×k are the obser-
vations on k regressor variables, β ∈ �k are the unobserved constant parameters, and
u ∈ �T are the unobserved disturbances.’

Constructively, the most direct approach to performing such a regression is to compute
the sums of squares and cross-products of all the relevant variables and then load them



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 31

into a matrix. Conventionally – as shown in almost any modern econometrics textbook
[46, 94, 129], and even in many older ones [88, 128, 236] – this matrix can be formed
so that the cross-products of the dependent variable with the regressor variables border
those of the regressor variables alone, producing the matrix:

(
X′X X′y
y′X y′y

)
.

The next procedural step is simply to invert the interior matrix, X′X.
The specific way that this is done can matter constructively. In particular, if the

inversion process is programmed so that, as it takes place, the operations are extended
to the rightmost column of the original bordered matrix, this inversion can be performed
in a way [91] that causes that column simultaneously to become the estimated values of
the parameters, denoted by b: (

(X′X)−1 b

y′X y′y

)
,

where, of course, b is constructively defined (in textbooks) as:

b = (X′X)−1X′y.

At first glance, it might appear that the same result is obtained whichever of these
two possible routes is taken to obtain the estimates, but inasmuch as few, if any, program
command languages are designed to permit the user to choose between them, if a user
is allowed to specify the estimator constructively, the estimates are almost certain to be
obtained in the manner implied by the textbook definition of b. After all, what is the
user’s alternative, in practice? That is, other than by programming at the most fundamental
level, how is the user to specify constructively the precise algorithms involved, not only in
this simple case but generally? Equally determinant, where in the econometrics textbook
literature will he or she discover the alternative algorithms that might be used?

However, when programming, the extra matrix multiplications implied by the textbook
definition of b are not computationally efficient if carried out explicitly: most importantly,
they can result in additional rounding error, compared to the simultaneous generation of
the inverse and the parameter estimates. In this and other important cases, an almost
inevitable consequence is that the textbook mathematical statement of an econometric
calculation will not necessarily directly correspond to the best algorithmic statement of
its computational logic. The result can be an operational divergence in both the statistical
and numerical properties of the econometric calculations [232]. However, in many cases
(although not all), the possibility of this divergence can be traced to the general circum-
stance that the finite memory space that can be allocated for the representation of any
given number inevitably allows only a finite set of the real numbers to be represented by
the computer without approximation, leading to approximation error even before the first
calculation is made. Incidentally, with reference to these calculations, please note that
this discussion ignores many details that should be examined were the complete story to
be told, including truncation errors that occur when representing derivatives and integrals
finitely and other possible formulation-related approximation errors [201].

It is important to understand why the property of finiteness is important and, as
well, that memory space is inevitably limited by competing claims. It is not difficult



32 ECONOMETRIC SOFTWARE

to appreciate why number representation space limitations were necessarily severe for
the first electronic computers, with as little as 1 kB of total memory; clearly, the ability
then to create anything approaching even a minimally useful program implied serious
restrictions. However, the effective space gain implied by the growth of random access
memory (RAM) memory to 32 kB, 64 kB, or even 640 kB during the next 40 years was
less than might appear at first sight, once account is taken of the concomitant increase
in the amount of work done by the typical program, especially one designed to be used
by many different people. In the early 1960s, for whatever particular reason, the space
used to represent a given real number was commonly limited by default to 32 binary
digits, which allowed a floating-point representation of only five or six decimal digits of
precision for the fractional part. This so-called single-precision standard, although capa-
ble of being increased, has continued to be a common default. One of the reasons is that
only in the 21st century has the RAM available on the typical computer increased to the
point that it has become possible to imagine writing comprehensive computer programs
without the need to consider carefully offsetting storage space issues each step of the
way. Yet, even today, the properties of computers are still limited by decisions made in
1980, or even before – at a time when 1 GB of RAM per user seemed prospectively
stupendous. However, even ignoring these history-determined restrictions, it is not rea-
sonable to suppose that any time in the near future that programs can be written without
taking some account of space restrictions. A given computer might have 1 GB or even
2 GB of RAM, but overall memory limitations still exist. They exist as a consequence
of a continuing battle for space among programs, as programs have become more capa-
ble, space demanding, and numerous, not to mention the need to consider such things
as execution speed requirements. Even the operating system, possibly incorporating an
Internet browser, is a program that competes with others for space or at least operation
time, which is functionally much the same thing in a virtual machine world. Similarly,
each program’s interface code competes for space with its analytically oriented code.
Likewise, the number of observations on each economic variable competes for space
against the number of variables that can be operated on at any one time.

Any floating-point number essentially consists of two space-taking parts, a fractional
part and an exponent. Quite clearly, it is always possible in principle to choose an
exponent that will map any real number into the open set (−1, 1) to provide a decimal
fraction as the fractional part value, which then removes the need to cope with the
decimal point itself. For example, consider the number 3345 647, which can be stated, in
terms of the fractional part, as 0.334 565 if it is represented to six places. The exponent
is obviously 107. Except as a result of a programming error, an economist is unlikely
to encounter an observation in his or her work the scale of which is greater than the
machine’s default limiting size for exponents, especially as the modern microcomputer,
properly utilized, actually supports the IEEE numeric standard. However, the number
of digits of precision available to represent the fractional part is necessarily limited,
and this problem arises irrespective of whether one considers single-precision numbers,
double-precision numbers, or for that matter numbers of any finite-precision number n.
In addition, also reflecting this finiteness, error can be introduced by the need to convert
between the decimal numbers that are input as data and the base 2 values used internally
by the machine. If n is finite, approximation error is inevitably involved.

In the case of linear ordinary least squares parameter estimates, or linear parameter
estimates more generally, the fundamental lurking danger is the degree to which the data



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 33

used might be highly collinear. The problem is the ease with which, in this event, the
calculations can result in computed values that have no meaningful precision whatso-
ever, possibly resulting from intermediate values that are effectively random numbers.
To monitor this circumstance, the condition number, defined as the ratio of the largest to
the smallest singular values of the matrix to be inverted, can be computed and displayed
[17, 22]. In the presence of high collinearity, the calculation of the sums of squares and
cross-products matrix can produce values that are affected by rounding and truncation
errors, which are exacerbated in particular by the process of matrix inversion, so that
the accuracy of the final results – parameter estimates and the derived misspecification
statistics – becomes highly sensitive to the input values [100, 232]. A specific manifesta-
tion is what is known as ‘catastrophic number cancellation,’ which can occur when one
large number is subtracted from another, both of which numbers agree in their n leading
digits, leading to an extreme loss of significant digits and error propagation. For a more
detailed discussion of this problem, see, for instance, Golub and Van Loan [90], par-
ticularly chapter 2, or Householder [123], chapter 1. Another problem posed by finitely
precise number representation is that comparisons can only discriminate approximately
between numbers: for floating-point real values x and y, it is not meaningful to ask if
x = y exactly, but only if ‖x − y‖ ≤ ε, where ε is some suitably chosen small number.
One of the implications is that, even in the linear case, computations such as the inversion
of a matrix must be carried out with due regard for the effect of the data used, as a matter
of conditioning, as well as the fact that in the end the solution is always approximate
rather than exact [118, 228].

To the mathematical economist, there is ordinarily a sharp conceptual difference
between a linear and a nonlinear problem. To the economist as a numerical analyst,
the computational difference between a linear and a nonlinear problem is essentially that
the latter requires additional calculations, with each successive iteration typically intro-
ducing additional rounding and approximation errors – although, of course, nonlinear
problems can additionally involve other specific computational issues [173]. Curiously
enough, error propagation is not necessarily likely to be particularly great in the case of
multiplication, division, or taking square roots, but simply adding operands of different
sign can, in extreme cases, lead to catastrophic cancellation [228, pp. 11–12]. All this can
be considered in much greater detail, but the main point is that truly precise calculations
do not occur within an electronic computer – the name of the game is the minimization
of calculation error, not its absolute elimination. A classic study of the computational
problem of error accumulation is that by Harold Hotelling [122], but see also Wilkinson
[250], Belsley et al. [22], and most recently McCullough [170] and Stokes [229, 232].
For a consideration of the algorithmic properties of simultaneous equation estimators, see
for example Kontoghiorghes et al. [80, 142, 145].

Longley’s 1967 study [155] of the numerical accuracy of regression programs first
brought to the attention of econometric software developers and others the problem of
rounding error in the context of single-precision floating-point numbers. There has since
been a significant amount of study of appropriate numeric methods, most recently by
Stokes [232], who also addresses data storage precision and alternative matrix inversion
techniques. The methods for matrix inversion are determined by the characteristics of the
data: in particular, near-singular matrices should use the QR or singular-value decompo-
sitions applied directly to the data matrix, rather than the usual Cholesky factorization
of X′X. However, it is often not evident in advance just how collinear the data are. At



34 ECONOMETRIC SOFTWARE

one time, this uncertainty created a conundrum; for instance, in the 1960s, in the case
of mainframes, and the 1980s, in the case of microcomputers, there were concerns about
the demands placed upon the capabilities of existing CPUs by highly accurate matrix
inversion techniques. Today, in contrast, although still depending of course upon the size
of the matrix, most situations can be taken in one’s stride inasmuch as most of the esti-
mation problems that the economist is likely to encounter day to day will involve small
to moderate-sized matrices that are unlikely to tax the latest computers.

The omission of textbook treatments and considerations of these issues provides
an important reason why command-line directives, rather than constructive commands,
should predominate. However, in addition to the knowledge requirement that construc-
tive commands pose, there is also what might be called the problem of computational
completeness, alluded to earlier. Textbook presentations provide only partial coverage of
the relevant range of formulas and calculations. Programming ordinary least squares, or
any other parameter estimation method, in the most generally reliable manner requires
information difficult to find in the literature. For example, how should one treat special
cases, such as the suppression of the intercept, which, among other things, affects the
validity of certain diagnostic statistics that are ordinarily displayed with the parameter
estimates? Or, how should the program react if the user chooses to regress a variable on
itself or omits entirely all regressor variables? How should one treat missing observations,
either at the extremes or in the interior of the range? These events are not necessarily
the result of sensible actions by the program user, but rather are actions that, if not dealt
with gracefully, can cause the program to crash, or possibly, without warning, produce
incorrect or inappropriate results. Ideally, any action that the user chooses to make should
produce a meaningful response by the program, either an intelligible error message or a
sensibly performed action.

There is also the more general, not yet fully explored, question of the characteristics of
the supplementary statistics, alluded to earlier. An existing, recently discovered problem
with current econometric software packages is that they often present supplementary
statistics that are eclectically named; for instance, one program’s ‘White test’ is another’s
‘Breusch–Godfrey’ [210]. Or one program might display a particular statistic in log form
that is presented by another in level form. Often, each of these values numerically implies
the other, once their relationship is understood, but the user is not necessarily told which is
being presented. Or one program might omit the ‘inessential constant’ from the calculation
of a statistic, whereas another includes it. The following question therefore arises: What
nomenclature should be adopted for a particular set of supplementary statistics so as
to make them instantly intelligible to the reasonably knowledgeable user, and, beyond
this, what specific values should be presented in each case, assuming the underlying
calculations have indeed been accurately made? Although in certain cases some values
have been found to be miscalculated, usually, at least in the case of ordinary least squares
(OLS), the problem is one of presentation, not calculation. However, so far, except for
certain special cases [34, 172], only OLS-related statistics have been evaluated and, of
course, OLS is just one estimation method, so that this judgment is provisional. It is
pertinent to note that, except in rare instances, such as the footnote on p. 269 of the
2003 edition of Greene’s textbook [94], such issues have not been addressed in modern
econometrics textbooks, seemingly leaving readers the freedom to assume that they can
blithely self-evaluate econometric software simply on the basis of its interface modernity
or other subjective criterion.



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 35

Additionally, there is the matter of which set of supplementary statistics a program
should provide. Although it is possible to identify a common set of supplementary statis-
tics that are generally provided as basic by existing econometric packages, eclecticism
reigns beyond this basic set. Many programs allow the user to select from additional sup-
plementary statistics, among those they are programmed to calculate optionally. There is
therefore the open question: Should the average applied economist be presumed to know
which statistics to choose to display, or should a program’s designer make a default
selection in advance? Should there also be provision for the selection to change, based
upon the particulars of the situation? Which statistics are mutually compatible and which
are potentially contradictory? Which statistics are better in the case of small samples?
And what is a small sample? These are questions that are in part design questions, and in
part transcendental questions that may have no real answer, at least at present, but they
are nevertheless questions that must be answered, well or badly, during each package’s
design process.

Some existing packages allow their users to generate still more supplementary statis-
tics, or even additional parameter estimators, among a variety of other options. Indeed, if
any program simply permits the values of the residuals and the ‘predicted’ values of the
dependent variable to be saved, the knowledgeable user can create numerous additional
misspecification test statistics, the primary question then being the ease with which this
can be done. The design issue is only in part that of which facilities are consciously
provided, even if the choices made in advance by a program’s designer cannot help
but limit or promote the subsequent choices of its users. However, whichever particular
design choices have been made and implemented, the effect in the aggregate will be to
affect how applied economics research is performed. For almost any product on the open
market, there are always some ‘after market’ options that become available, but most
products are used ‘as is.’ In practice, few programs are radically reconfigured during
use, even when written to permit this. What may be critical here is the degree to which
programs are designed to be user enabling, for those who create econometric software
packages do not in fact exercise final control: it is in principle possible for any economist
to create anew his or her own econometric software package from the ground up. It might
therefore be argued that packages should be created for those who are themselves most
unlikely to program – but the implications of such an argument need to be carefully
considered before it is made in earnest.

1.3.4 Econometric software design implications

It is evident from this limited discussion that there are many detailed questions of econo-
metric software design that have yet to be either satisfactorily answered or even widely
admitted to need careful consideration. However, there are nonetheless at least two
possible general precepts of econometric computing. The first is that it involves the
development of algorithms that permit the calculations to be made that are specified by
econometric theory, where these are sufficiently broadly defined so as to include all the
operations that are described in the economics literature. Of course, that literature includes
what has been referred to earlier as the mainstream economic and econometric journals,
which have a practical importance and relevance to economists. At the same time, there
is a more broadly defined literature, equally respectable, that may include, in addition
or instead, journals published by the Association for Computing Machinery, statistical



36 ECONOMETRIC SOFTWARE

organizations around the world, and others in the context of which the design of econo-
metric software might well be seen as being more universally defined. In this context,
there will be certain computations and operations that are regarded as being specifically
econometric in nature, but these may not be algorithmically unique nor in themselves
uniquely econometric. In particular, an atomistic view of the computations performed by
an econometric software package, in terms of such operations as matrix inversion, the
solution of a set of nonlinear equations, and the calculations that underlie the production
of misspecification statistics, are each quite able to be interpreted as subject matter to
be considered in the context of this other, ostensibly non-econometric, literature. Should
econometric software in fact be defined by the data used, in line with the suggestion
made by Granger, quoted earlier? Should it be defined instead by the particular set of
calculations that are performed, recognizing that this is an especially fuzzy set?

Recall from the earlier discussion the properties of the data ‘that are not considered in
standard statistics texts or are not sufficiently emphasized there for economists.’ It is not
altogether a churlish question to ask where in the econometrics literature one goes to find
a discussion of the particular properties of economic data. It is certainly evident where
one might go to find a discussion of the general properties of time-series data, and of
the cointegration and other tests that might be applied to particular examples to attempt
to discover their specific statistical properties, but it is not obvious how this information
should best be utilized to design a software package that makes these tests particularly
applicable to economic data, especially in a way that enables the effective testing of any
given dataset. Are the properties of economic data merely statistical? Similarly, it is clear
from what has been said so far that it is broadly possible to identify something called
‘econometric software,’ but at the same time it is also clear that there is not necessarily
a checklist that can be constructed that uniquely defines its properties, either of solely its
own software type or in comparison with the properties of some other type of software,
such as ‘statistical software.’

It is tempting to suggest that the absolutely indispensable requirement of economet-
ric software is the provision for parameter estimation based upon regression techniques,
but of course there are many statistical software packages that also include regression
as a technique. As an alternative, it is possible to assert that what distinguishes econo-
metric software is the provision of parameter estimation techniques that provide for the
estimation of the parameters of simultaneous equations, but if this idea is carried too
far the final result would be to exclude software packages that are commonly used by
economists ‘as if’ econometric software packages. What is evident in all of this is that
the econometrics literature and econometrics software do not necessarily make a par-
ticularly well matched couple. The collective characteristics of the existing econometric
software packages actually extend much more broadly than does the subject coverage
of the mainstream econometrics literature, either the textbooks or the journals literature.
Furthermore, although there is likely to be a present feeling on the part of econometric
theorists that it is econometric theory that defines the appropriate operative content of
econometric software packages, in fact what is beginning to occur is that the software is
beginning to define the frontiers of econometric theory.

Of course, it is incorrect to say that this is beginning to occur. It began to occur some
years ago, but the collective capacity of these software packages to define both operational
econometrics and the frontiers of econometric theory is only just on the verge of becoming
widely recognized. In this regard it might be possible to argue that what is happening,



CHARACTERISTICS OF ECONOMETRIC SOFTWARE 37

perhaps to the horror of the most fastidious, is that theory is being overrun by practice,
but the simple truth is that the development of an operative econometric software package
requires that choices be made. Those choices, for good or ill, then become econometric
practice. In some particular cases, such as in the case of PcGive, the bit has actually
been taken between the teeth. From the perspective of this program’s principal designer,
David Hendry, the software has become the teaching agent. Hendry openly asserts that
‘we see our PcGive books as textbooks with a strong computational bent (and use them
that way), rather than manuals’ [109]. The effect is to present the user of this software
with the particular set of techniques that are offered by the software, thus excluding from
consideration any techniques not offered. But, at the same time, as textbooks, the PcGive
guidebooks provide a direct pedagogic mechanism, thus marrying econometric theory
with operative econometrics. More generally, it is only to the degree that the developers
of econometric software severally and collectively incorporate particular techniques that
the average applied economist becomes able to use them. How these techniques are
implemented, and which techniques are implemented, shape applied economic research.

Yet the whole story has not so far been told. In the early days, econometric software
packages were designed so as to offer their users a choice from among a given collection
of techniques and facilities, even if the user might be at liberty to recode. In contrast,
today, considering polar cases, it is possible to characterize econometric software either
as offering the user a choice among a selected set of techniques, often using a WIMP
interface, or else as a high-level language that is defined in terms of matrices, loops,
and other programming language constructs and that permits the user to specify the
calculations to be performed. Growing out of the development of the econometric mod-
eling languages in the 1970s, but of course also affected by the general development of
computer software everywhere, including operating systems and computer programming
languages, the provision of a high-level language interface and programming language
constructs widened the scope and increased the flexibility of applications software for
both econometric software and other end-user programs. Of these polar examples, the
first type provides the user with a minimal actual need to confront the particular com-
putational characteristics of the computer, but at the cost of accepting an intermediated
choice of input and output conventions, as well as techniques. The second ostensibly
provides the user with the capability to control the computational environment, but at the
same time does not impose the responsibility to deal directly with the computer’s actual
operating system.

The word ‘ostensibly’ is used here as a reminder, to indicate that the user may actually
have little or no control over the precise way in which calculations are performed. As
discussed earlier, in reality, whatever commands he or she issues are always interpreted
by the program and then translated into the operational commands actually obeyed by
the program. It is a misunderstanding of the context to think of any software package as
necessarily freely enabling the user. Fundamentally, on the one hand, there is absolutely
no point in such intermediation if the user actually takes on the developer’s freedom and
responsibility: he or she may as well start from scratch. On the other hand, if the user of a
particular program is not able by using it to ignore the various numerical analytical issues
that define best practice, why use an applications program at all? This tension between
accepting intermediation and writing a program from scratch began in 1957 when Fortran
relieved the users of that day of the need to program in machine or assembly language.
It is likely to continue in the foreseeable future.



38 ECONOMETRIC SOFTWARE

It is an interesting question how the economist is affected by the various developer
solutions to the three earlier identified research problems of data acquisition and man-
agement, user interface, and the particular econometric techniques the existing packages
make available. There are at least two classes of users of econometric software. One of
these consists of academic economists, who tend to use small datasets that tend to be
fixed for extended periods of time, essentially during a particular research project. These
economists appear to tend to place a premium on the particularity of the techniques
offered and may also prefer to be seen to be using noticeably ‘cutting edge’ techniques.
The topical ‘mix’ that these economists represent may also be changing over time, with
financial theory progressively becoming more represented. The other class consists of
business economists (or at least non-academic economists), who characteristically are
often responsible for monitoring and analyzing the performance of one or more eco-
nomic entities or economies. These economists may use either small or large datasets,
but seldom those that are fixed over time. They often have similar training to academic
economists, but may not be quite as sensitive to the need to be seen to be using the
academically most fashionable techniques. Instead, they may place a premium on ease
of use and upon the ability to acquire data and produce results rapidly. They may be
less sensitive to the modernity of the interface. The desires of these two classes of users,
among others, create the dynamic for the future development of econometric software,
and it may also be possible to see the existing packages as reflecting the specific histor-
ical demands of these groups or, it has been argued [166-169, 171, 175, 208], even an
indifference to software that is both accurate and carefully designed.

The classification of econometric software developers is equally interesting. One
characteristic, commonly unrecognized, is that those econometricians who develop this
software, as a group, include a relatively high proportion of econometrics textbook writers,
or if not textbooks specifically, then books on econometric methodology. Furthermore,
although not always in a formalized way, there has additionally been some tendency in
recent years for particular econometrics textbooks to become tied in some fashion to
particular econometric software packages. In other cases, as indicated earlier, there is a
perceptible tendency for the manuals of particular packages to take on at least some the
characteristics of textbooks, not always unintentionally. Furthermore, in certain cases,
econometrician developers are editors of economics or econometrics journals, or else
serve on the advisory boards of journals or are otherwise linked in some fashion to par-
ticular journals. Overall, there is a strong tendency for at least one of the people closely
associated with each econometric software package to hold an academic post, possibly
reflecting the need for a day job if one happens to develop econometric software, which
may also signal the condition of the market for this software. In short, even though it is
generally true that the development of econometric software is a path neither to riches nor
to academic tenure, it is wrong to think of this activity as being an intensely commercial,
academically unrelated business.

However, it also needs to be recognized that economists, and econometricians, do not
use only ‘econometric software,’ even apart from Word and Excel. Econometrics, as it
is portrayed in textbooks, may be principally concerned with parameter estimation and
related issues, and may tend not to include formally such computational issues as the
solution of simultaneous equation models, even in the case of those models estimated
using standard econometric techniques. But, as has been discussed above, such limita-
tions do not necessarily impose software restrictions. Articles published in journals such



CONCLUSION 39

as Computational Economics and the Journal of Economic Dynamics and Control that
involve the use of software will often involve the use of Matlab, Mathematica, R, or
S-Plus, which originate outside the discipline of economics, lack econometric estimation
facilities as such, although these can be self-programmed using the facilities of these
languages, and therefore often can solve systems of equations that can be identified as
econometric models [18, 20, 133]. Certain types of models, such as computable gen-
eral equilibrium (CGE), may involve the use of other software packages, like GAMS
(General Algebraic Modeling System), which is currently classified as being ‘specifically
designed for modeling linear, nonlinear and mixed integer optimization problems,’ that
fit within the classification of quantitative economics software or operations research,
but not econometric software strictly. What have been called calibrated macroeconomic
models (CMM), and particularly the real business cycle models of Kydland and Prescott,
may use unidentified software of a proprietary nature. The aforementioned reticence of
economists to identify publicly the specific software used in their research makes it
difficult to be certain about all the details.

These software packages have capabilities in common with econometric modeling lan-
guage software, such as AREMOS, MODLER, TROLL, WYSEA or WinSolve, or with
econometric programming languages, such as GAUSS or Ox, to the extent that, if the dis-
tinguishing capabilities are defined algorithmically, there may not be any greater degree
of functional difference between ‘non-econometric’ and econometric software packages
than between econometric modeling packages, econometric programming languages, and
other econometric software packages. This is particularly the case if account is taken of
the fact that the code to estimate parameters is actually a small proportion of the code of
packages such as AREMOS, MODLER, or TROLL. There are particular procedures used
by macroeconometric model builders, such as what are called type 1 and type 2 ‘fixes’
or ‘ragged edge’ solutions, that may not be provided by Matlab or GAMS, for instance,
that serve therefore as distinguishing features, but apart from these differences, at least
certain algorithmic characteristics may be quite similar. Because of such classification
difficulties, the recently published compendium [211] of econometric software was based
upon the way in which software developers self-classified their software, not just prop-
erties capable of being objectively defined. This approach is not a perfect solution to the
problem of classification, but it does permit inferences to be drawn about econometric
software following from developers’ stated intentions. Furthermore, over time, packages
designer-identified as econometric are more likely to characterize econometric practice
than packages such as Matlab or S-Plus. Of course, as suggested earlier, to the degree
that economists use the latter type of package, econometric practice may be broadened
by the implied non-disciplinary influence.

1.4 Conclusion

This chapter is intended to convey that econometricians can take pride in the progress to
date, but, at the same time, that there is a need for a better and more general appreciation of
the process of software development and of the relationship of this to the future develop-
ment of econometrics. A possible natural comparison lies in the contrast between physics
and engineering, or even pure and applied mathematics. That these are false comparisons
is, however, easily seen. Physics as a set of abstract principles is not affected by the degree



40 ECONOMETRIC SOFTWARE

to which physical structures are built, nor are the principles of mathematics affected by
any application, even if it is also true that as disciplines both physics and mathematics are
inevitably human, thus worldly, endeavors. In contrast, as a subdiscipline of economics,
econometrics exists as the direct result of original attempts to explain the observed. Its
subject matter is expressly defined by this history. Anyone who takes the time to mark
the difference between the early econometrics textbooks of Klein, Tinbergen, and Tintner,
through the mid-years of Christ, Goldberger, and Johnston, to the present day cannot but
be struck by the degree to which what have been perceived as real-world problems have
conditioned the evolution of the subject. For example, the work of Weiner and Kalman,
Box and Jenkins, although perhaps adopted originally somewhat out of context by econo-
metricians, at inception fundamentally represented attempts to explain respectively signal
propagation, machine operation, and the implications of autoregressive processes. Sim-
ilarly, the work of Engle, leading to the examination of (generalized) autoregressive
conditional heteroskedasticity (ARCH and GARCH) phenomena, both in its application
to financial theoretic problems and for its inspiration, depends upon an original real-world
context. The work of Granger, Klein, Sargan, Stone, Theil, Tinbergen, Zellner, and oth-
ers could also be considered in this light. Item by item, including the relative shift
from the macroeconomic estimation methods emphasis of the early textbooks to both the
modern emphasis on diagnostic tests and the consideration of methods related to microe-
conomic cross-section or panel data applications, what has been driving the development
of econometrics has been empirical observation, albeit sometimes at a slight remove.

With these thoughts in mind, what is evident from the historical literature, in the form
of well known articles by Leamer [152], Lucas and Sargent [156, 157], and Sims [221],
among others [92, 103], is the possibility that at least some of the heat and noise of
the methodology debates of the 1970s and 1980s reflected a lack of reality grounding, a
degree of misperception of the actual computational realities of the 1960s and 1970s, as
compared to the inflated computational expectations that arose during that period [66].
Even if defensibly based on a visceral concern for the applied econometric evaluation
process in those days, a concern that remains, possibly in a revised form, even today, much
of that methodology discussion arguably lacked suitable supportive specificity, in at least
some cases representing what has recently been described as an excess of ‘theory without
measurement’ [66] that then gave rise to a distaste for confronting the hard realities
too closely. It may be indicative that, recently, Granger, in his Econometric Theory
interview [193], expresses certain misgivings about the ‘whole evaluation process – both
in econometrics and in economics generally. I want to know how people evaluate the
theory and how people evaluate a technique and how to value the model.’ He goes on to
observe that ‘a lot of literature is losing the viewpoint that we are here to learn about the
actual economy,’ and furthermore that at least some economists are ‘. . . playing games
when they write papers.’ Later (p. 62) he reflects that he ‘would like to see much more
use of relevant economic theory in model building’ and notes that [he is] ‘worried that
the Econometrics Society includes both economic theorists and econometricians and that
in their meetings the two sides never talk – or virtually never talk. There are few joint
sessions involving both theorists and econometricians.’ In such an environment, it has
been easy for the profession to ignore such seemingly mundane matters as the design of
econometric software and its impact and to push all considerations of such issues into
the deep background. Yet Granger’s words suggest the underlying importance of a better
general understanding of the computational process.



REFERENCES 41

Acknowledgments

I am very grateful for the advice, comments, suggestions, and corrections that I have
received from a number of readers, particularly Jerry Adams, Richard Anderson, David
Belsley, Allin Cottrell, Robert Dixon, Tom Doan, Clive Granger, Bruce McCullough,
Houston Stokes, and Arnold Zellner. The opinions expressed are, however, entirely my
own. I am also wholly responsible for all remaining errors of fact and omission.

References

1. Announcement, 1972. NBER Computer Center for Economics and Management Science.
Annals of Economic and Social Measurement, 1(1): 103.

2. Anon., 1948. Proceedings of a Symposium on Large-Scale Digital Calculating Machinery.
Cambridge, MA: Harvard University Press.

3. Adams, M.O., 1986. The Kentucky Economic Information System. In Exemplary Systems in
Government Awards ’85–’86: the State of the Art. Urban and Regional Information Systems
Association. pp. 144–158.

4. Adams, M.O., 1981. The Kentucky Economic Information System: a resource for govern-
ment, academic, and private sector researchers and libraries. In National Online Meeting
Proceedings–1981, M.E. Williams and T.H. Hogan, Editors. Medford, NJ: Learned Informa-
tion.

5. Adams, M.O. and F.E. Ross, 1983. The energy data base within the Kentucky Economic
Information System. Review of Public Data Use, 11(1): 75–78.

6. Adelman, F. and I. Adelman, 1959. The dynamic properties of the Klein–Goldberger model.
Econometrica, 27: 596–625.

7. Adelman, I., 2007. The research for the paper on the dynamics of the Klein–Goldberger
model. Journal of Economic and Social Measurement, 32(1): 29–33.

8. Aitchison, J. and J.A.C. Brown, 1957. The LogNormal Distribution. Cambridge: Cambridge
University Press.

9. Alexander, L.A. and T.B. Jabine, 1980. Access to Social Security microdata files for research
and statistical purposes. Review of Public Data Use, 8: 203–224.

10. Altman, M., J. Gill, and M.P. McDonald, 2004. Numerical Issues in Statistical Computing
for the Social Scientist. Hoboken, NJ: John Wiley & Sons, Inc.

11. Anderson, R.G., 2006. Replicability, real-time data, and the science of economic research:
FRED, ALFRED, and VDC. Federal Reserve Bank of St. Louis Review, pp. 81–93.

12. Anderson, R.G., W.H. Greene, B.D. McCullough, and H.D. Vinod, 2008. The role of data
and code archives in the future of economic research. Journal of Economic Methodology,
15(1): 99–119.

13. Ball, R.J. and S. Holly, 1991. Macroeconometric model-building in the United Kingdom. In
A History of Macroeconometric Model-Building, R.G. Bodkin, L.R. Klein, and K. Marwah,
Editors. Aldershot: Edward Elgar, pp. 195–230.

14. Barker, T.S., W. Dada, and W. Peterson, 2004. Software developments in the Cambridge
Growth Project 1960–1976: the origins of software for space–time economics. Journal of
Economic and Social Measurement, 29: 173–182.

15. Begg, I. and S.G.B. Henry, 1998. Applied Economics and Public Policy. Cambridge: Cam-
bridge University Press.

16. Belsley, D.A., 1986. Centering, the constant, first-differencing, and assessing conditioning.
In Model Reliability. Cambridge, MA: MIT Press, pp. 117–152.



42 ECONOMETRIC SOFTWARE

17. Belsley, D.A., 1991. Conditioning Diagnostics. New York: John Wiley & Sons, Inc.

18. Belsley, D.A., 1996. Doing Monte Carlo studies with Mathematica. In Computational Eco-
nomics and Finance. Modeling and Analysis with Mathematica, H.R. Varian, Editor. New
York: Springer, pp. 300–343.

19. Belsley, D.A., 1974. Estimation of systems of simultaneous equations, and computational
specification of GREMLIN. Annals of Economic and Social Measurement, 3: 551–614.

20. Belsley, D.A., 1999. Mathematica as an environment for doing economics and econometrics.
Computational Economics, 14(1–2): 69–87.

21. Belsley, D.A. and E. Kuh, Editors, 1986. Model Reliability. Cambridge, MA: MIT Press.

22. Belsley, D.A., E. Kuh, and R.E. Welsch, 1980. Regression Diagnostics. New York:
Wiley-Interscience.

23. Berger, R.L., 2007. Nonstandard operator precedence in Excel. Computational Statistics and
Data Analysis, 51: 2788–2791.

24. Bergmann, B.R. and R.L. Bennett, 1984. Macroeconomic models on microfoundations: data
requirements. Review of Public Data Use, 12(2): 91–96.

25. Bergstrom, A.R., 1967. The Construction and Use of Economic Models. London: English
Universities Press.

26. Bergstrom, A.R., 1967. Selected economic models and their analysis. New York: American
Elsevier.

27. Bergstrom, A.R., K.B. Nowman, and C. Wymer, 1992. Gaussian estimation of a second order
continuous time macroeconometric model of the United Kingdom. Economic Modelling, pp.
313–351.

28. Bergstrom, A.R. and P.C.E. Phillips, 1993. Models, methods, and applications of economet-
rics: essays in honor of A.R. Bergstrom. Cambridge, MA: Blackwell.

29. Berndt, E.R. et al., 1974. Estimation and inference in nonlinear structural models. Annals of
Economic and Social Measurement, 3: 653–665.

30. Bodkin, R.G., 1999. Computation in macroeconometric model-building: some historical
aspects. In Advances in Econometrics, Income Distribution, and Scientific Methodology:
Essays in Honor of Camilo Dagum, D.J. Slottje, Editor. New York: Physica, pp. 41–60.

31. Bodkin, R.G., L.R. Klein, and K. Marwah, 1991. A History of Macroeconometric
Model-Building. Brookfield, VT: Edward Elgar.

32. Boutillier, M. and B. Durand, 1986. Investigations in the causal structure of the yearly OFCE
model. Journal of Economic Dynamics and Control, 10: 131–137.

33. Bracy, D. et al., Editors, 1975. Computer Programs Available for Distribution. Philadelphia,
PA: Wharton Econometric Forecasting Associates.

34. Brooks, C., S. Burke, and G. Persand, 2001. Benchmarks and the accuracy of GARCH model
estimation. International Journal of Forecasting, 17: 45–56.

35. Brown, B.W., 1975. WEFA batch solution program, WEFA program usage guide #2. In
Computer Programs Available for Distribution, D. Bracy et al., Editors. Philadelphia, PA:
Wharton Econometric Forecasting Associates.

36. Brown, J.A.C., H.S. Houthakker, and S.J. Prais, 1953. Electronic computation in economic
statistics. Journal of the American Statistical Association, 48(263): 414–428.

37. Brundy, J.M. and D.W. Jorgenson, 1974. The relative efficiency of instrumental variables esti-
mation of systems of simultaneous equations. Annals of Economic and Social Measurement,
3(4): 679–700.

38. Bruno, G. and R. De Bonis, 2004. A comparative study of alternative econometric pack-
ages with an application to Italian deposit interest rates. Journal of Economic and Social
Measurement, 29: 271–296.



REFERENCES 43

39. Byte, 1984. Guide to the IBM Personal Computers. Byte: The Small Systems Journal, 9(9).

40. Byte, 1986. Inside the IBM PCs. Byte, The Small Systems Journal, 11(11).

41. Campbell-Kelly, M. and M.R. Williams, Editors, 1985. The Moore School Lectures. Cam-
bridge, MA: MIT Press.

42. Christ, C.F., 1966. Econometric models and methods. New York: John Wiley & Sons, Inc.

43. Cooper, F., 1987. Modeling the U.S. trade sector. Paper presented to the 1987 MODLER
Users Conference, October 21, Philadelphia, PA.

44. Cramer, M., 2006. The working conditions of econometric scholars, then and now. Statistica
Neerlandica, 60(2): 194–2005.

45. Czamanski, S., 1968. An econometric model of Nova Scotia. Halifax, NS: Dalhousie Uni-
versity Institute of Public Affairs.

46. Davidson, J., 2000. Econometric Theory. Oxford: Blackwell.

47. Deardorff, A.V. and R.M. Stern, 1978. What Have We Learned From Linked Econometric
Models? A Comparison of Fiscal-Policy Simulations. Stockholm: Institute for International
Economic Studies, University of Stockholm.

48. Dennis, J.E. and R.E. Welsch, 1978. Techniques for nonlinear least squares and robust regres-
sion. Communications in Statistics, 7: 345–359.

49. Dennis, J.E.J., D.M. Gay, and R.E. Welsch, 1981. An adaptive nonlinear least-squares algo-
rithm. ACM Transactions on Mathematical Software, 7: 348–368.

50. Dennis, J.E.J., D.M. Gay, and R.E. Welsch, 1981. Algorithm 573 NL2SOL–an adaptive non-
linear least-squares algorithm. ACM Transactions on Mathematical Software, 7: 369–383.

51. Dent, W.T., 1980. Computation in econometric models. Journal of Econometrics: Annals of
Applied Econometrics, 12.

52. Desai, M., 2007. Memories of Monroe: econometric computing in the early 1960s. Journal
of Economic and Social Measurement, 32(1): 35–38.

53. Drud, A., 1983. Interfacing modelling systems and solution algorithms. Journal of Economic
Dynamics and Control, 5: 131–149.

54. Drud, A., 1976. Methods for Control of Complex Dynamic Systems: Illustrated by Econo-
metric Models. Lyngby: IMSOR.

55. Drud, A., 1977. An Optimization Code for Nonlinear Econometric Models Based on Sparse
Matrix Techniques and Reduced Gradients. Lyngby: Matematisk Institut Danmarks Tekniske
Højskole.

56. Drud, A., 1983. A survey of model representations and simulation algorithms in some existing
modeling systems. Journal of Economic Dynamics and Control, 5: 5–35.

57. Duesenberry, J.S. et al., 1969. The Brookings Model: Some Further Results. Chicago, IL:
Rand McNally.

58. Duesenberry, J.S. et al., 1965. The Brookings Quarterly Econometric Model of the United
States. Chicago, IL: Rand McNally.

59. Durbin, J., 1988. Maximum likelihood estimation of the parameters of a system of simulta-
neous regression equations. Econometric Theory, 4: 159–170.

60. Eisenpress, H., 1959. Forecasting by Generalized Regression Methods. Limited-Information
Estimation Procedure. IBM 704 Program IB LI. New York: International Business Machines
Corporation, Data Systems Division.

61. Eisenpress, H., 1962. Note on the computation of full-information maximum-likelihood esti-
mates of coefficients of a simultaneous system. Econometrica, 30(2): 343–348.

62. Eisenpress, H. and J. Greenstadt, 1966. The estimation of nonlinear econometric systems.
Econometrica, 34(4): 851–861.



44 ECONOMETRIC SOFTWARE

63. Eisner, M., 1972. TROLL/1–an interactive computer system for econometric research. Annals
of Economic and Social Measurement, 1: 95–96.

64. Eisner, M. and R.S. Pindyck, 1973. A generalized approach to estimation as implemented in
the TROLL/1 system. Annals of Economic and Social Measurement, 2: 29–51.

65. Eliasson, G., 1978. A Micro-to-Macro Model of the Swedish Economy. Stockholm: Almqvist
& Wiksell.

66. Ericsson, N.R. and J.S. Irons, 1995. The Lucas critique in practice: theory without measure-
ment. In Macroeconometrics: Developments, Tensions, and Prospects, K.D. Hoover, Editor.
Boston, MA: Kluwer, pp. 263–311.

67. Evans, M.K., 1969. Macroeconomic Activity: Theory, Forecasting, and Control; an Econo-
metric Approach. New York: Harper & Row.

68. Evans, M.K. and L.R. Klein, 1967. The Wharton Econometric Forecasting Model. Pro-
grammed by George R. Schink. Philadelphia, PA: Economics Research Unit, University of
Pennsylvania.

69. Evans, M.K. and L.R. Klein, 1968. The Wharton Econometric Forecasting Model. Pro-
grammed by George R. Schink, Second, Enlarged Edition. Philadelphia, PA: Economics
Research Unit, University of Pennsylvania.

70. Fair, R.C., 1977. A note on the computation of the Tobit estimator. Econometrica, 45(7):
1723–1727.

71. Fair, R.C., 1974. On the robust estimation of econometric models. Annals of Economic and
Social Measurement, 3(4): 667–678.

72. Fair, R.C., 1971. A Short-Run Forecasting Model of the United States Economy. Lexington,
MA: Lexington Books, D.C. Heath.

73. Fair, R.C., 1984. Specification, Estimation, and Analysis of Macroeconometric Models. Cam-
bridge, MA: Harvard University Press.

74. Fair, R.C., 1994. Specification, Estimation, and Analysis of Macroeconometric Models, Sec-
ond Edition. Cambridge, MA: Harvard University Press.

75. Fair, R.C. and W.F. Parke, 1993. The Fair–Parke Program for the Estimation and Analysis
of Nonlinear Econometric Models. New Haven, CT: Yale University Press.

76. Fair, R.C. and J.B. Taylor, 1983. Solution and maximum likelihood estimation of dynamic
nonlinear rational expectations models. Econometrica, 51: 1169–1185.

77. Farrell, M.J., 1957. The measurement of productive efficiency. Journal of the Royal Statistical
Society, Series A (General), 120(III): 253–290.

78. Fisher, P.G., S. Holly, and A.J. Hughes Hallett, 1986. Efficient solution techniques for
dynamic non-linear rational expectations models. Journal of Economic Dynamics and Control,
10: 139–145.

79. Fisher, P.G. and A.J. Hughes Hallett, 1988. Iterative techniques for solving simultaneous
equations systems: a view from the economics literature. Journal of Computational and
Applied Mathematics, 24: 241–255.

80. Foschi, P., D.A. Belsley, and E.J. Kontoghiorghes, 2003. A comparative study of algorithms
for solving seemingly unrelated regressions models. Computational Statistics and Data Anal-
ysis, 44: 3–35.

81. Foschi, P. and E.J. Kontoghiorghes, 2003. Estimating seemingly unrelated regression models
with vector autoregressive disturbances. Journal of Economic Dynamics and Control, 28:
27–44.

82. Foschi, P. and E.J. Kontoghiorghes, 2003. Estimation of VAR models: computational aspects.
Computational Economics, 21: 3–22.



REFERENCES 45

83. Francis, I., Editor, 1981. Statistical Software: A Comparative Review. New York: North
Holland.

84. Frisch, R., 1933. Editorial. Econometrica, 1(1): 1–4.

85. Gambardella, A. and B.H. Hall, 2004. Propriety vs. public domain licensing of software and
research products. European University Institute, Department of Economics, EUI Working
Paper ECO No. 2004/15.

86. Gatu, C. and E.J. Kontoghiorghes, 2006. Estimating all possible SUR models with permuted
exogenous data matrices derived from a VAR process. Journal of Economic Dynamics and
Control, 30: 721–739.

87. Goldberger, A.S., 2004. Econometric computation by hand. Journal of Economic and Social
Measurement, 29: 115–118.

88. Goldberger, A.S., 1964. Econometric Theory. New York: John Wiley & Sons, Inc.

89. Goldberger, A.S. and V. Hofer, 1962. A users guide to the multiple regression program RGR.
Systems Formulation and Methodology Workshop, Paper 6207. Madison, WI: Social Systems
Research Institute, University of Wisconsin.

90. Golub, G.H. and C.F. Van Loan, 1996. Matrix Computations, Third Edition. Baltimore, MD:
Johns Hopkins University Press.

91. Goodnight, J.H., 1979. A tutorial on the sweep operator. American Statistician, 33: 149–158.

92. Granger, C.W.J., 1999. Empirical Modeling in Economics: Specification and Evaluation.
Cambridge: Cambridge University Press.

93. Granger, C.W.J., 1994. A review of some recent textbooks of econometrics. Journal of Eco-
nomic Literature, 32: 115–122.

94. Greene, W.H., 2003. Econometric Analysis, Fifth Edition. Upper Saddle River, NJ:
Prentice-Hall.

95. Greene, W.H., 1980. Maximum likelihood estimation of econometric frontier functions. Jour-
nal of Econometrics, 13: 27–56.

96. Greene, W.H., 1980. On the asymptotic bias of the ordinary least squares estimator of the
tobit model. Econometrica, 48: 505–514.

97. Haavelmo, T., 1958. The role of the econometrician in the advancement of economic theory.
Econometrica, 26(3): 351–357.

98. Hall, B.H., 2003. Email to C.G. Renfro, re. the History of econometric software development.

99. Hall, B.H., 2003. Email to C.G. Renfro, re. TSP and symbolic processing.

100. Hall, R.E., 1967. The Calculation of Ordinary Least Square. Working Paper #2, Department
of Economics, Massachusetts Institute of Technology.

101. Hall, R.E., 2003. Email to C.G. Renfro and B.H. Hall, re. History of econometric software
development.

102. Hall, R.E., 1967. Matrix Operations in Econometrics. Working Paper #1, Department of
Economics, Massachusetts Institute of Technology.

103. Hall, S., 1995. Macroeconomics and a bit more reality. Economic Journal, 105: 974–988.

104. Harrison, T. and C.G. Renfro, 2004. TSX and TSE: a proposal for an extended time series
data interchange and transfer format. Journal of Economic and Social Measurement, 28:
339–358.

105. Harvey, A.C., 1990. The Econometric Analysis of Time Series, Second Edition. LSE Hand-
books in Economics. Cambridge, MA: MIT Press.

106. Hausman, J., 1975. An instrumental variable approach to full information estimators for linear
and certain nonlinear econometric models. Economica, 43(4): 727–738.



46 ECONOMETRIC SOFTWARE

107. Hausman, J.A., 1974. Full information instrumental variables estimation of simultaneous
equation systems. Annals of Economic and Social Measurement, 3(4): 641–652.

108. Haveman, R.H. and K. Hollenbeck, 1980. Microeconomic Simulation Models for Public
Policy Analysis. New York: Academic Press.

109. Hendry, D.F., 2003. Email to C.G. Renfro, re. Final version of software survey paper.

110. Hendry, D.F., 2003. J. Denis Sargan and the origins of the LSE econometric methodology.
Econometric Theory, 19: 457–480.

111. Hendry, D.F., 1976. The structure of simultaneous equation estimators. Journal of Econo-
metrics, 4: 51–88.

112. Hendry, D.F. and J.A. Doornik, 1999. Empirical Econometric Modelling Using PcGive,
Volume I. London: Timberlake Consultants Ltd.

113. Hendry, D.F. and J.A. Doornik, 1999. The impact of computational tools on time-series econo-
metrics. In Information Technology and Scholarship, T. Coppock, Editor. London: British
Academy, pp. 257–269.

114. Hendry, D.F. and H.-M. Krolzig, 2003. The Properties of Automatic ‘Gets’ Modelling. Eco-
nomics Papers 2003-W14, Economics Group, Nuffield College, University of Oxford.

115. Hendry, D.F. and F. Srba, 1980. AUTOREG: a computer program library for dynamic econo-
metric models with autoregressive errors. Journal of Econometrics, 12: 85–102.

116. Herbert, R.D., 2004. Modelling programming languages–appropriate tools? Journal of Eco-
nomic and Social Measurement, 29: 321–338.

117. Hickman, B.G., L.R. Klein, and Project LINK, 1998. LINK Proceedings, 1991, 1992: Selected
Papers from Meetings in Moscow, 1991, and Ankara, 1992. Singapore: World Scientific.

118. Higham, N., 2002. Accuracy and Stability of Numeric Algorithms. Second Edition. Philadel-
phia, PA: SIAM.

119. Hill, R.C., 1989. Learning Econometrics Using Gauss. New York: John Wiley & Sons, Inc.

120. Holland, P.W. and R.E. Welsch, 1977. Robust regression using iteratively reweighted
least-squares. Communications in Statistics, 6: 813–827.

121. Hollinger, P., 1996. The Stacked-time simulator in TROLL: a robust algorithm for solving
forward-looking models. Paper presented at the Second International Conference on Com-
puting in Economics and Finance, Geneva, Switzerland, June 26–28.

122. Hotelling, H., 1943. Some new methods in matrix calculation. Annals of Mathematical Statis-
tics, 14(1): 1–34.

123. Householder, A.S., 2006. Principles of Numerical Analysis. Mineola, NY: Dover.

124. Houthakker, H.S., 1951. Some calculations on electricity consumption in Great Britain. Jour-
nal of the Royal Statistical Society, Series A, 114(III): 351–371.

125. Hughes Hallett, A.J., 1981. Some extensions and comparisons in the theory of Gauss–Seidel
iterative techniques for solving large equations systems. In Proceedings of the 1979 Econo-
metric Society Meeting: Essays in Honour of Stefan Valavanis. E.G. Charatsis, Editor.
Amsterdam: North-Holland.

126. Hughes Hallett, A.J. and L. Piscitelli, 1998. Simple reordering techniques for expanding the
convergence radius of first-order iterative techniques. Journal of Economic Dynamics and
Control, 22: 1319–1333.

127. Intriligator, M.D., 1978. Econometric Models, Techniques, and Applications. Englewood
Cliffs, NJ: Prentice-Hall.

128. Johnston, J., 1963. Econometric Methods. New York: McGraw-Hill.

129. Johnston, J. and J. DiNardo, 1997. Econometric Methods, Fourth Edition. New York:
McGraw-Hill.



REFERENCES 47

130. Kendrick, D. and A. Meeraus, 1983. Special issue on modeling languages. Journal of Eco-
nomic Dynamics and Control, 5(1).

131. Kim, K.-S. et al., 1979. Time Series Processor: A Computer Language for Econometrics and
Statistics Interfaced With KDI Data Base, Revised Edition. Seoul, Korea: Korea Development
Institute.

132. Kirsch, J., 1979. TROLL Primer, Third Edition. Cambridge, MA: MIT Center for Computa-
tional Research in Economics and Management Science.

133. Kleiber, C. and A. Zeileis, 2008. Applied Econometrics With R. New York: Springer.

134. Klein, L.R., 1950. Economic Fluctuations in the United States 1921–1941. Cowles Commis-
sion Monograph, Vol. 11. New York: John Wiley & Sons, Inc.

135. Klein, L.R., 1946. A post-mortem on transition predictions of national product. Journal of
Political Economy, 54(4): 289–308.

136. Klein, L.R., 1960. Single equation vs. equation systems methods of estimation in economics.
Econometrica, 28: 866–871.

137. Klein, L.R. and M. Dutta, 1995. Economics, Econometrics and the LINK: Essays in Honor
of Lawrence R. Klein. Contributions to Economic Analysis, no. 226. Amsterdam: Elsevier.

138. Klein, L.R. and A.S. Goldberger, 1955. An econometric model of the United States,
1929–1952. Contributions to Economic Analysis, no. 9. Amsterdam: North-Holland.

139. Knuth, D.E., 1986. The IBM 650: an appreciation from the field. Annals of the History of
Computing, 8(1): 50–54.

140. Knuth, D.E., 1970. Von Neumann’s first computer program. ACM Computing Surveys, 2(4):
247–260.

141. Kontoghiorghes, E.J., 2004. Computational methods for modifying seemingly unrelated
regressions models. Journal of Computational and Applied Mathematics, 162: 247–261.

142. Kontoghiorghes, E.J., 2000. Inconsistencies in SURE models: computational aspects. Com-
putational Economics, 16: 63–70.

143. Kontoghiorghes, E.J., 2000. Parallel strategies for solving SURE models with variance
inequalities and positivity of correlation constraints. Computational Economics, 15: 89–106.

144. Kontoghiorghes, E.J. and M.R.B. Clarke, 1995. An alternative approach for the numerical
solution of seemingly unrelated regression equations models. Computational Statistics and
Data Analysis, 19: 369–377.

145. Kontoghiorghes, E.J. and E. Dinenis, 1997. Computing 3SLS solutions of simultaneous
equation models with a possible singular variance–covariance matrix. Computational Eco-
nomics, 10: 231–250.

146. Krolzig, H.-M. and D.F. Hendry, 2001. Computer automation of general-to-specific model
selection procedures. Journal of Economic Dynamics and Control, 25: 831–866.

147. Kuh, E., 1974. Introduction. Annals of Economic and Social Measurement, 3(4): i–iii.

148. Kuh, E., 1972. Some notes on the research program at the NBER Computer Research Center
for Economics and Management Science. Annals of Economic and Social Measurement, 1(2):
233–236.

149. Kuh, E. and J. Neese, 1982. Econometric model diagnostics. In Evaluating the Reliability of
Macro-Economic Models, G.C. Chow and P. Corsi, Editors. New York: John Wiley & Sons,
Inc.

150. Kuh, E. and R.E. Welsch, 1980. Econometric models and their assessment for policy: some
new diagnostics applied to the translog energy demand in manufacturing. In Proceedings
of the Workshop on Validation and Assessment Issues of Energy Models, S. Gass, Editor.
Washington, DC: National Bureau of Standards, pp. 445–475.



48 ECONOMETRIC SOFTWARE

151. Lane, T., Editor, 1979. TROLL Reference Manual (Standard System), Second Edition. Cam-
bridge, MA: MIT Center for Computational Research in Economics and Management Science,
MIT Information Processing Services.

152. Leamer, E.E., 1983. Let’s take the con out of econometrics. American Economic Review,
73: 31–43.

153. Leontief, W.W., 1948. Computational problems arising in connection with economic analysis
of industrial relationships. In Proceedings of a Symposium on Large-Scale Digital Calculating
Machinery. Cambridge, MA: Harvard University Press.

154. Lilien, D., 2000. Econometric software reliability and nonlinear estimation in EViews: com-
ment. Journal of Applied Econometrics, 15(1): 107–110.

155. Longley, J.W., 1967. An appraisal of least squares programs for the electronic computer from
the point of view of the user. Journal of the American Statistical Association, 62: 819–841.

156. Lucas, R.E. and T.J. Sargent, 1981. Rational Expectations and Econometric Practice. Min-
neapolis, MN: University of Minnesota Press.

157. Lucas, R.E.J. and T.J. Sargent, 1981. After Keynesian macroeconomics. In Rational Expec-
tations and Econometric Practice, R.E.J. Lucas and T.J. Sargent, Editors. Minneapolis, MN:
University of Minnesota Press, pp. 295–319.

158. Malinvaud, E., 1966. Statistical Methods of Econometrics. Translated by A. Silvey. Chicago,
IL: Rand McNally.

159. McCarthy, M.D., 1992. The Cowles Commission, the Brookings Project, and the economet-
ric services industry: successes and possible new directions: a personal view. Econometric
Theory, 8: 383–401.

160. McCracken, M.C., 1967. A computer system for econometric research. Social Science Infor-
mation, 5: 151–158.

161. McCracken, M.C., 1967. Data administration in an information system. In Conference on
Government Information Systems. Ottawa: Economic Council of Canada.

162. McCracken, M.C., 1966. DATABANK System: Users’ Manual. Ottawa: Economic Council
of Canada.

163. McCracken, M.C. and K. May, 2004. Issues in the development of early solution facilities
for very large macroeconometric models. Journal of Economic and Social Measurement, 29:
167–172.

164. McCracken, M.C. and C.A. Sonnen, 1973. MASSAGER User’s Manual. Ottawa: Statistics
Canada.

165. McCracken, M.C. and C.A. Sonnen, 1972. A system for large econometric models: manage-
ment, estimation, and simulation. In Proceedings of the Association for Computing Machinery
Annual Conference, Boston, Mass., August 1972. New York: Association for Computing
Machinery.

166. McCullough, B.D., 2000. The accuracy of Mathematica 4.0 as a statistical package. Compu-
tational Statistics, 15: 279–299.

167. McCullough, B.D., 1999. Econometric software reliability: EViews, LimDep, Shazam, and
TSP. Journal of Applied Econometrics, 14(2): 191–202.

168. McCullough, B.D., 2000. Is it safe to assume that software is accurate? International Journal
of Forecasting, 16: 349–357.

169. McCullough, B.D., 1997. A review of RATS v4.2: benchmarking numeric accuracy. Journal
of Applied Econometrics, 12: 181–190.



REFERENCES 49

170. McCullough, B.D., 2004. Wilkinson’s tests and econometric software. Journal of Economic
and Social Measurement, 29: 261–270.

171. McCullough, B.D., K.A. McGeary, and T.D. Harrison, 2006. Lessons From the Archive(s)
at the Fed. St. Louis Review (and Other Journals). Philadelphia, PA: Drexel University.

172. McCullough, B.D. and C.G. Renfro, 1998. Benchmarks and software standards: a case study
of GARCH procedures. Journal of Economic and Social Measurement, 25: 59–71.

173. McCullough, B.D. and C.G. Renfro, 2000. Some numerical aspects of nonlinear estimation.
Journal of Economic and Social Measurement, 26: 63–77.

174. McCullough, B.D., C.G. Renfro, and H.H. Stokes, 2006. Re-examining 50-year-old OLS
estimates of the Klein–Goldberger model. Statistica Neerlandica, 60(3): 181–193.

175. McCullough, B.D. and H.D. Vinod, 1999. The numerical reliability of econometric software.
Journal of Economic Literature, 37(2): 633–665.

176. McCullough, B.D. and B. Wilson, 1999. On the accuracy of statistical procedures in Microsoft
Excel 97. Computational Statistics and Data Analysis, 31: 27–37.

177. McCullough, B.D. and B. Wilson, 2002. On the accuracy of statistical procedures in Microsoft
Excel 2000 and Excel XP. Computational Statistics and Data Analysis, 40: 713–721.

178. McCullough, B.D. and B. Wilson, 2005. On the accuracy of statistical procedures in Microsoft
Excel 2003. Computational Statistics and Data Analysis, 49(4): 1244–1252.

179. Meeraus, A., 1983. An algebraic approach to modeling. Journal of Economic Dynamics and
Control, 5: 81–108.

180. Mendelssohn, R.C., 1980. The new on-line BLS database and information system. In Readings
in Business and Economic Research Management: Execution and Enterprise, J.D. Fischer,
Editor. Madison, WI: Office of Research Administration, School of Business, University of
Wisconsin, pp. 86–89.

181. Mizon, G.E., 1984. The encompassing approach in econometrics. In Econometrics and Quan-
titative Economics, D.F. Hendry and K.F. Wallis, Editors. Oxford: Blackwell, pp. 135–172.

182. Morgan, M.S., 1990. The History of Econometric Ideas. Historical Perspectives on Modern
Economics. Cambridge: Cambridge University Press.

183. Nakamura, Y. and J.T. Yap, 1990. ASEAN link: an econometric study. White Plains, NY:
Longman.

184. Norman, A.L., L.S. Lasdon, and J.K. Hsin, 1983. A comparison of methods for solving
and optimizing a large non-linear econometric model. Journal of Economic Dynamics and
Control, 6(1/2): 3–24.

185. Orcutt, G.H., 1962. Microanalytic models of the United States economy: need and develop-
ment. American Economic Review, 52: 229–240.

186. Pesaran, M.H. and B. Pesaran, 1987. Microfit. A Interactive Econometric Software Package.
User Manual. Oxford: Oxford University Press.

187. Pesaran, M.H. and B. Pesaran, 1997. Working with MicroFit 4.0. Interactive Econometric
Analysis. Oxford: Oxford University Press.

188. Pesaran, M.H. and L.J. Slater, 1980. Dynamic Regression: Theory and Algorithms. Chich-
ester: Ellis Horwood.

189. Peterson, W., 1987. Computer software for a large econometric model. In The Cambridge
Multisectoral Dynamic Model of the British Economy, T.S. Barker and W. Peterson, Editors.
Cambridge: Cambridge University Press, pp. 105–121.

190. Peterson, W., 2004. Email to C.G. Renfro, re. Econometric computing in Cambridge.



50 ECONOMETRIC SOFTWARE

191. Peterson, W., T. Barker, and R. van der Ploeg, 1983. Software support for multisectoral
dynamic models of national economies. Journal of Economic Dynamics and Control, 5(1):
81–108.

192. Phillips, P.C.B., 1988. The ET interview: Professor A.R. Bergstrom. Econometric Theory, 4:
301–328.

193. Phillips, P.C.B., 2001. The ET interview: Professor Clive Granger. In Essays in Econometrics.
Collected Papers of Clive W.J. Granger. E. Ghysels, N.R. Swanson, and M.W. Watson,
Editors. New York: Cambridge University Press, pp. 28–81.

194. Phillips, P.C.B. and V. Hall, 2004. Early development of econometric software at the Uni-
versity of Auckland. Journal of Economic and Social Measurement, 29: 127–134.

195. Prais, S.J. and H.S. Houthakker, 1955. The Analysis of Family Budgets. Cambridge: Cam-
bridge University Press.

196. Press, S.J., 1980. Bayesian computer programs. In Bayesian Analysis in Econometrics and
Statistics: Essays in Honor of Harold Jeffreys, A. Zellner, Editor. Amsterdam: North-Holland,
pp. 429–442.

197. Preston, R.S., 2006. Personal Reflections on the Historical Development and Use of Com-
puter Software Needed to Undertake Econometric Research at the Economics Research Unit,
University of Pennsylvania–1960 to 1969.

198. Project LINK and J.A. Sawyer, 1979. Modelling the international transmission mechanism:
applications and extensions of the Project LINK system. Contributions to Economic Analysis,
no. 121. New York: North-Holland.

199. Qin Duo, 1993. The Formation of Econometrics: A Historical Perspective. Oxford: Clarendon
Press.

200. Quandt, R.E., 1983. Computational problems and methods. In Handbook of Econometrics,
Z. Griliches and M.D. Intriligator, Editors. Amsterdam: North-Holland, pp. 699–764.

201. Ralston, A. and P. Rabinowitz, 2001. A First Course in Numerical Analysis. Mineola, NY:
Dover.

202. Renfro, C.G., 1981. The computer as a factor of production in economic data provision and
research. Presented at the American Economic Association Annual Meeting, Washington,
DC, 30 December 1981.

203. Renfro, C.G., 2004. The early development of econometric modeling languages. Journal of
Economic and Social Measurement, 29: 145–166.

204. Renfro, C.G., 2004. Econometric software: the first fifty years in perspective. Journal of
Economic and Social Measurement, 29(1–3): 9–108.

205. Renfro, C.G., 1997. Economic data base systems: further reflections on the state of the art.
Journal of Economic and Social Measurement, 23(1): 43–85.

206. Renfro, C.G., 1980. Economic data base systems: some reflections on the state of the art.
Review of Public Data Use, 8(3): 121–140.

207. Renfro, C.G., 1970. An Interactive Regression Program for the PDP-10. Description and User
Manual. Washington, DC: Brookings Quarterly Model Project, Brookings Institution.

208. Renfro, C.G., 1997. Normative considerations in the development of a software package for
econometric estimation. Journal of Economic and Social Measurement, 23(4): 277–330.

209. Renfro, C.G., 1996. On the development of econometric modeling languages: MODLER
and its first twenty-five years. Journal of Economic and Social Measurement, 22(4): 241–
311.

210. Renfro, C.G., 2009. The Practice of Econometric Theory. New York: Springer.



REFERENCES 51

211. Renfro, C.G., Editor, 2004. A compendium of existing econometric software packages. Jour-
nal of Economic and Social Measurement, 29: 359–402.

212. Renfro, C.G., Editor, 2004. Computational Econometrics: Its Impact on the Development of
Quantitative Economics. Amsterdam: IOS Press.

213. Ritter, J.A., 2000. Feeding the national accounts. Federal Reserve Bank of St. Louis Review,
82(2): 11–20.

214. Rosen, S., 1969. Electronic computers: a historical survey. ACM Computing Surveys, 1(1):
7–36.

215. Sadowsky, G., 1977. MASH: A Computer System for Microanalytic Simulation for Policy
Exploration. Washington, DC: Urban Institute.

216. Schink, G.R., 2004. Simulation with large econometric models: the quest for a solution.
Originally a paper presented to the Association for Computing Machinery meetings, Denver,
Colorado, 12 June 1970. Journal of Economic and Social Measurement, 29: 135–144.

217. Shiller, R., 1973. A distributed lag estimator derived from smoothness priors. Econometrica,
41(4): 775–788

218. Shiskin, J. and H. Eisenpress, 1957. Seasonal adjustments by electronic computer methods.
Journal of the American Statistical Association, 52: 415–449.

219. Silk, J., 1996. Systems estimation: a comparison of SAS, SHAZAM, and TSP. Journal of
Applied Econometrics, 11(4): 437–450.

220. Simon, S.D. and J.P. Lesage, 1988. Benchmarking numerical accuracy of statistical algo-
rithms. Computational Statistics and Data Analysis, 7: 197–209.

221. Sims, C.A., 1980. Macroeconomics and reality. Econometrica, 48: 1–48.

222. Slater, L.J., 1967. Fortran Programs for Economists. Department of Applied Economics Occa-
sional Paper 13. Cambridge: Cambridge University Press.

223. Slater, L.J., 1972. More Fortran Programs for Economists. Department of Applied Economics
Occasional Paper 34. Cambridge: Cambridge University Press.

224. Slater, L.J., 2004. Recollections on early days in the Cambridge Computing Laboratory.
Journal of Economic and Social Measurement, 29: 119–122.

225. Slater, L.J., 1962. Regression analysis. The Computer Journal, 4(4): 287–291.

226. Slater, L.J. and T.S. Barker, 1967. Regression Program for Titan. Cambridge: Department of
Applied Economics, University of Cambridge.

227. Society for Economic Dynamics and Control, 1981. News item: Third Conference of the
Society for Economic Dynamics and Control (Program). Journal of Economic Dynamics and
Control, 3: 393–395.

228. Stoer, J. and R. Bulirsch, 1993. Introduction to Numerical Analysis, Second Edition. New
York: Springer.

229. Stokes, H.H., 2008. A benchmark-free approach to assess the accuracy of an OLS model cal-
culation in an econometrically uncertain world. Journal of Economic and Social Measurement,
33: 1–17.

230. Stokes, H.H., 2004. The evolution of econometric software design: a developer’s view. Jour-
nal of Economic and Social Measurement, 29: 205–259.

231. Stokes, H.H., 2004. On the advantage of using two or more econometric software systems
to solve the same problem. Journal of Economic and Social Measurement, 29: 307–320.

232. Stokes, H.H., 2005 The sensitivity of econometric results to alternative implementations of
least squares. Journal of Economic and Social Measurement, 30(1): 9–38.



52 ECONOMETRIC SOFTWARE

233. Stokes, H.H., 1991. Specifying and Diagnostically Testing Econometric Models. New York:
Quorum Books.

234. Stokes, H.H., 1997. Specifying and Diagnostically Testing Econometric Models, Second
Edition. New York: Quorum Books.

235. Summers, R., 1965. A capital intensive approach to the small sample properties of various
simultaneous equation estimators. Econometrica, 33(1): 1–41.

236. Theil, H., 1971. Principles of Econometrics. New York: John Wiley & Sons, Inc.

237. Trimble, G.R., 1986. The IBM 650 magnetic drum calculator. Annals of the History of
Computing, 8(1): 20–29.

238. Uebe, G., G. Huber, and J. Fischer, 1988. Macro-Econometric Models–An International
Bibliography. Aldershot: Gower.

239. Velleman, P.F. and R.E. Welsch, 1976. On evaluating interactive statistical program packages.
Communications in Statistics, Part B–Simulation and Computation, 5: 197–208.

240. Wallis, K.F. et al., 1984. Models of the UK Economy. Oxford: Oxford University Press.

241. Wallis, K.F. et al., 1985. Models of the UK Economy: A Second Review by the ESRC
Macroeconomic Modelling Bureau. Oxford: Oxford University Press.

242. Wallis, K.F. et al., 1986. Models of the UK Economy: A Third Review by the ESRC Macroe-
conomic Modelling Bureau. Oxford: Oxford University Press.

243. Wallis, K.F. et al., 1987. Models of the UK Economy: A Fourth Review by the ESRC
Macroeconomic Modelling Bureau. Oxford: Oxford University Press.

244. White, K.J., 1978. A general computer for econometric models–SHAZAM. Econometrica,
46(1): 239–240.

245. White, K.J., L.T.M. Bui, and E.R. Berndt, 1991. The Practice of Econometrics: A Computer
Handbook Using SHAZAM. Reading, MA: Addison-Wesley.

246. White, K.J., S.A. Haun, and D.J. Gow, 1988. Introduction to the Theory and Practice of
Econometrics–A Computer Handbook Using SHAZAM and SAS. New York: John Wiley &
Sons, Inc. For use with G.G. Judge, R.C. Hill, W.E. Griffiths, H. Lütkepohl, and T.C. Lee,
1988. Introduction to the Theory and Practice of Econometrics, Second Edition. New York:
John Wiley & Sons, Inc.

247. Wickens, M., 2003. Email to C.G. Renfro, re. Early computing at the LSE.

248. Wilkes, M.V., 1956. Automatic Digital Computers. London: Methuen.

249. Wilkes, M.V. and W. Renwick, 1949. The EDSAC, an electronic calculating machine. Journal
of Scientific Instruments, 26: 385–391.

250. Wilkinson, J.H., 1961. Error analysis of direct methods of matrix inversion. Journal of the
Association for Computing Machinery, 8(3): 281–330.

251. Woytinsky, W.S., 1947. What was wrong in forecasts of postwar depression. Journal of
Political Economy, 55(2): 142–151.

252. Zeileis, A., 2006. Implementing a class of structural change tests: an econometric computing
approach. Computational Statistics and Data Analysis, 50: 2987–3008.

253. Zeileis, A. and C. Kleiber, 2005. Validating multiple structural change models–a case study.
Journal of Applied Econometrics, 20: 685–690.

254. Zellner, A., 1962. An efficient method of estimating seemingly unrelated regressions and
tests for aggregation bias. Journal of the American Statistical Association, 57: 348–368.

255. Zellner, A., 1989. PCBRAP: a PC Bayesian regression program. American Statistician, 43(1):
124.



REFERENCES 53

256. Zellner, A., A. Stroud, and L.C. Chau, 1963. Program for Computing Seemingly Unre-
lated Regressions Estimates. Madison, WI: Social Systems Research Institute, Department of
Economics.

257. Zellner, A., A. Stroud, and L.C. Chau, 1963. Program for Computing Two and Three Stage
Least Squares and Associated Statistics. Madison, WI: Social Systems Research Institute,
Department of Economics.

258. Zellner, A. and H. Theil, 1962. Three stage least squares: simultaneous estimation of simul-
taneous equations. Econometrica 30(1): 54–78.

259. Zellner, A. and E.H. Thornber, 1966. Computational accuracy and estimation of simultaneous
equations econometric models. Econometrica, 34(3): 727–729.




