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Partitioned Regression and the

Frisch–Waugh–Lovell Theorem

This chapter introduces the reader to important background material on the partitioned
regression model. This should serve as a refresher for some matrix algebra results on the par-
titioned regression model as well as an introduction to the associated Frisch–Waugh–Lovell
(FWL) theorem. The latter is shown to be a useful tool for proving key results for the fixed
effects model in Chapter 2 as well as artificial regressions used in testing panel data models
such as the Hausman test in Chapter 4.

Consider the partitioned regression given by

y = Xβ + u = X1β1 + X2β2 + u (1.1)

where y is a column vector of dimension (n × 1) and X is a matrix of dimension (n × k).
Also, X = [X1, X2] with X1 and X2 of dimension (n × k1) and (n × k2), respectively. One
may be interested in the least squares estimates of β2 corresponding to X2, but one has
to control for the presence of X1 which may include seasonal dummy variables or a time
trend; see Frisch and Waugh (1933) and Lovell (1963). For example, in a time-series setting,
including the time trend in the multiple regression is equivalent to detrending each variable
first, by residualing out the effect of time, and then running the regression on these residuals.
Davidson and MacKinnon (1993) denote this result more formally as the FWL theorem.

The ordinary least squares (OLS) normal equations from (1.1) are given by:[
X′

1X1 X′
1X2

X′
2X1 X′

2X2

] [
β̂1,OLS

β̂2,OLS

]
=

[
X′

1y

X′
2y

]
(1.2)

Exercise 1.1 (Partitioned regression). Show that the solution to (1.2) yields

β̂2,OLS = (X′
2P X1X2)

−1X′
2P X1y (1.3)

where PX1 = X1(X
′
1X1)

−1X′
1 is the projection matrix on X1, and P X1 = In − PX1 .

Solution

Write (1.2) as two equations:

(X′
1X1)β̂1,OLS + (X′

1X2)β̂2,OLS = X′
1y

(X′
2X1)β̂1,OLS + (X′

2X2)β̂2,OLS = X′
2y
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Solving for β̂1,OLS in terms of β̂2,OLS by multiplying the first equation by (X′
1X1)

−1,
we get

β̂1,OLS = (X′
1X1)

−1X′
1y − (X′

1X1)
−1X′X′

1X2β̂2,OLS = (X′
1X1)

−1X′
1(y − X2β̂2,OLS)

Substituting β̂1,OLS in the second equation, we get

X′
2X1(X

′
1X1)

−1X′
1y − X′

2PX1X2β̂2,OLS + (X′
2X2)β̂2,OLS = X′

2y

Collecting terms, we get (X′
2P X1X2)β̂2,OLS = X′

2P X1y. Hence, β̂2,OLS = (X′
2P X1X2)

−1

X′
2P X1y as given in (1.3). P X1 is the orthogonal projection matrix of X1 and P X1X2

generates the least squares residuals of each column of X2 regressed on all the variables in
X1. In fact, if we write X̃2 = P X1X2 and ỹ = P X1y, then

β̂2,OLS = (X̃′
2X̃2)

−1X̃′
2ỹ (1.4)

using the fact that P X1 is idempotent. For a review of idempotent matrices, see Abadir and
Magnus (2005, p.231). This implies that β̂2,OLS can be obtained from the regression of ỹ on
X̃2. In words, the residuals from regressing y on X1 are in turn regressed upon the residuals
from each column of X2 regressed on all the variables in X1. If we premultiply (1.1) by
P X1 and use the fact that P X1X1 = 0, we get

P X1y = P X1X2β2 + P X1u (1.5)

Exercise 1.2 (The Frisch–Waugh–Lovell theorem). Prove that:
(a) the least squares estimates of β2 from equations (1.1) and (1.5) are numerically identical;
(b) the least squares residuals from equations (1.1) and (1.5) are identical.

Solution

(a) Using the fact that P X1 is idempotent, it immediately follows that OLS on (1.5) yields
β̂2,OLS as given by (1.3). Alternatively, one can start from (1.1) and use the result that

y = PXy + P Xy = Xβ̂OLS + P Xy = X1β̂1,OLS + X2β̂2,OLS + P Xy (1.6)

where PX = X(X′X)−1X′ and P X = In − PX. Premultiplying (1.6) by X′
2P X1 and

using the fact that P X1X1 = 0, one gets

X′
2P X1y = X′

2P X1X2β̂2,OLS + X′
2P X1P Xy (1.7)

But PX1PX = PX1 . Hence, P X1P X = P X . Using this fact along with P XX =
P X[X1, X2] = 0, the last term of (1.7) drops out yielding the result that β̂2,OLS from
(1.7) is identical to the expression in (1.3). Note that no partitioned inversion was used
in this proof. This proves part (a) of the FWL theorem. To learn more about partitioned
and projection matrices, see Chapter 5 of Abadir and Magnus (2005).
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(b) Premultiplying (1.6) by P X1 and using the fact that P X1P X = P X , one gets

P X1y = P X1X2β̂2,OLS + P Xy (1.8)

Note that β̂2,OLS was shown to be numerically identical to the least squares estimate
obtained from (1.5). Hence, the first term on the right-hand side of (1.8) must be the fitted
values from equation (1.5). Since the dependent variables are the same in equations (1.8)
and (1.5), P Xy in equation (1.8) must be the least squares residuals from regression
(1.5). But P Xy is the least squares residuals from regression (1.1). Hence, the least
squares residuals from regressions (1.1) and (1.5) are numerically identical. This proves
part (b) of the FWL theorem. Several applications of the FWL theorem will be given
in this book.

Exercise 1.3 (Residualing the constant). Show that if X1 is the vector of ones indicating
the presence of a constant in the regression, then regression (1.8) is equivalent to running
(yi − y) on the set of variables in X2 expressed as deviations from their respective sample
means.

Solution

In this case, X = [ιn, X2] where ιn is a vector of ones of dimension n. PX1 = ιn(ι
′
nιn)

−1ι′n =
ιnι

′
n/n = Jn/n, where Jn = ιnι

′
n is a matrix of ones of dimension n. But Jny = ∑n

i=1 yi and
Jny/n = y. Hence, P X1 = In − PX1 = In − Jn/n and P X1y = (In − Jn/n)y has a typical
element (yi − y). From the FWL theorem, β̂2,OLS can be obtained from the regression of
(yi − y) on the set of variables in X2 expressed as deviations from their respective means,
i.e., P X1X2 = (In − Jn/n)X2. From the solution of Exercise 1.1, we get

β̂1,OLS = (X′
1X1)

−1X′
1(y − X2β̂2,OLS) = (ι′nιn)

−1ι′n(y − X2β̂2,OLS)

= ι′n
n

(y − X2β̂2,OLS) = y − X
′
2β̂2,OLS

where X
′
2 = ι′nX2/n is the vector of sample means of the independent variables in X2.

Exercise 1.4 (Adding a dummy variable for the ith observation). Show that including
a dummy variable for the ith observation in the regression is equivalent to omitting that
observation from the regression. Let y = Xβ + Diγ + u, where y is n × 1, X is n × k and
Di is a dummy variable that takes the value 1 for the ith observation and 0 otherwise. Using
the FWL theorem, prove that the least squares estimates of β and γ from this regression are
β̂OLS = (X∗ ′X∗)−1X∗ ′y∗ and γ̂OLS = yi − x ′

i β̂OLS, where X∗ denotes the X matrix without
the ith observation, y∗ is the y vector without the ith observation and (yi, x ′

i ) denotes the
ith observation on the dependent and independent variables. Note that γ̂OLS is the forecasted
OLS residual for the ith observation obtained from the regression of y∗ on X∗, the regression
which excludes the ith observation.

Solution

The dummy variable for the ith observation is an n × 1 vector Di = (0, 0, . . . , 1, 0, . . . , 0)′
of zeros except for the ith element which takes the value 1. In this case,
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PDi
= Di(D

′
iDi)

−1D′
i = DiD

′
i which is a matrix of zeros except for the ith diago-

nal element which takes the value 1. Hence, In − PDi
is an identity matrix except for

the ith diagonal element which takes the value zero. Therefore, (In − PDi
)y returns the

vector y except for the ith element which is zero. Using the FWL theorem, the OLS
regression

y = Xβ + Diγ + u

yields the same estimates as (In − PDi
)y = (In − PDi

)Xβ + (In − PDi
)u which can be

rewritten as ỹ = X̃β + ũ with ỹ = (In − PDi
)y, X̃ = (In − PDi

)X. The OLS normal
equations yield (X̃′X̃)β̂OLS = X̃′ỹ and the ith OLS normal equation can be ignored since
it gives 0′β̂OLS = 0. Ignoring the ith observation equation yields (X∗ ′X∗)β̂OLS = X∗ ′y∗,
where X∗ is the matrix X without the ith observation and y∗ is the vector y without
the ith observation. The FWL theorem also states that the residuals from ỹ on X̃ are
the same as those from y on X and Di . For the ith observation, ỹi = 0 and x̃i = 0.
Hence the ith residual must be zero. This also means that the ith residual in the
original regression with the dummy variable Di is zero, i.e., yi − x ′

i β̂OLS − γ̂OLS = 0.
Rearranging terms, we get γ̂OLS = yi − x ′

i β̂OLS. In other words, γ̂OLS is the forecasted
OLS residual for the ith observation from the regression of y∗ on X∗. The ith
observation was excluded from the estimation of β̂OLS by the inclusion of the dummy
variable Di .

The results of Exercise 1.4 can be generalized to including dummy variables for several
observations. In fact, Salkever (1976) suggested a simple way of using dummy variables
to compute forecasts and their standard errors. The basic idea is to augment the usual
regression in (1.1) with a matrix of observation-specific dummies, i.e., a dummy variable
for each period where we want to forecast:[

y

yo

]
=

[
X 0
Xo ITo

] [
β

γ

]
+

[
u

uo

]
(1.9)

or

y∗ = X∗δ + u∗ (1.10)

where δ′ = (β ′, γ ′). X∗ has in its second part a matrix of dummy variables, one for each
of the To periods for which we are forecasting.

Exercise 1.5 (Computing forecasts and forecast standard errors)

(a) Show that OLS on (1.9) yields δ̂′ = (β̂ ′, γ̂ ′), where β̂ = (X′X)−1X′y, γ̂ = yo − ŷo,
and ŷo = Xoβ̂. In other words, OLS on (1.9) yields the OLS estimate of β without
the To observations, and the coefficients of the To dummies, i.e., γ̂ , are the forecast
errors.

(b) Show that the first n residuals are the usual OLS residuals e = y − Xβ̂ based on the
first n observations, whereas the next To residuals are all zero. Conclude that the mean
square error of the regression in (1.10), s∗2, is the same as s2 from the regression of y

on X.
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(c) Show that the variance–covariance matrix of δ̂ is given by

s2(X∗ ′X∗)−1 = s2
[
(X′X)−1

[ITo + Xo(X
′X)−1X′

o]

]
(1.11)

where the off-diagonal elements are of no interest. This means that the regression pack-
age gives the estimated variance of β̂ and the estimated variance of the forecast error
in one stroke.

(d) Show that if the forecasts rather than the forecast errors are needed, one can replace
yo by zero, and ITo by −ITo in (1.9). The resulting estimate of γ will be ŷo = Xoβ̂, as
required. The variance of this forecast will be the same as that given in (1.11).

Solution

(a) From (1.9) one gets

X∗ ′X∗ =
[
X′ X′

o

0 ITo

] [
X 0
Xo ITo

]
=

[
X′X + X′

oXo X′
o

Xo ITo

]
and

X∗ ′y∗ =
[
X′y + X′

oyo

yo

]
The OLS normal equations yield

X∗ ′X∗
[
β̂OLS

γ̂OLS

]
= X∗ ′y∗

or (X′X)β̂OLS + (X′
oXo)β̂OLS + X′

oγ̂OLS = X′y + X′
oyo and Xoβ̂OLS + γ̂OLS = yo.

From the second equation, it is obvious that γ̂OLS = yo − Xoβ̂OLS. Substituting this in
the first equation yields

(X′X)β̂OLS + (X′
oXo)β̂OLS + X′

oyo − X′
oXoβ̂OLS = X′y + X′

oyo

which upon cancellation gives β̂OLS = (X′X)−1X′y. Alternatively, one could apply the

FWL theorem using X1 =
[

X

Xo

]
and X2 =

[
0

ITo

]
. In this case, X′

2X2 = ITo and

PX2 = X2(X
′
2X2)

−1X′
2 = X2X

′
2 =

[
0 0
0 ITo

]
This means that

P X2 = In+To − PX2 =
[
In 0
0 0

]
Premultiplying (1.9) by P X2 is equivalent to omitting the last To observations. The
resulting regression is that of y on X, which yields β̂OLS = (X′X)−1X′y as obtained
above.
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(b) Premultiplying (1.9) by P X2 , the last To observations yield zero residuals because the
observations on both the dependent and independent variables are zero. For this to be
true in the original regression, we must have yo − Xoβ̂OLS − γ̂OLS = 0. This means
that γ̂OLS = yo − Xoβ̂OLS as required. The OLS residuals of (1.9) yield the usual least
squares residuals

eOLS = y − Xβ̂OLS

for the first n observations and zero residuals for the next To observations. This means
that e∗ ′ = (e′

OLS, 0′) and e∗ ′e∗ = e′
OLSeOLS with the same residual sum of squares. The

number of observations in (1.9) are n + To and the number of parameters estimated is
k + To. Hence, the new degrees of freedom in (1.9) are (n + To) − (k + To) = (n − k) =
the degrees of freedom in the regression of y on X. Hence, s∗2 = e∗ ′e∗/(n − k) =
e′

OLSeOLS/(n − k) = s2.

(c) Using partitioned inverse formulas on (X∗ ′X∗) one gets

(X∗ ′X∗)−1 =
[

(X′X)−1 −(X′X)−1X′
o

−Xo(X
′X)−1 ITo + Xo(X

′X)−1X′
o

]

Hence, s∗2(X∗ ′X∗)−1 = s2(X∗ ′X∗)−1 and is given by (1.11).
(d) If we replace yo by 0 and ITo by −ITo in (1.9), we get[

y

0

]
=

[
X 0
Xo −ITo

] [
β

γ

]
+

[
u

uo

]
or y∗ = X∗δ + u∗. Now

X∗ ′X∗ =
[
X′ X′

o

0 −ITo

] [
X 0
Xo −ITo

]
=

[
X′X + X′

oXo −X′
o

−Xo ITo

]

and X∗ ′y∗ =
[
X′y

0

]
. The OLS normal equations yield

(X′X)β̂OLS + (X′
oXo)β̂OLS − X′

oγ̂OLS = X′y

and

−Xoβ̂OLS + γ̂OLS = 0

From the second equation, it immediately follows that γ̂OLS = Xoβ̂OLS = ŷo, the forecast
of the To observations using the estimates from the first n observations. Substituting this in
the first equation yields

(X′X)β̂OLS + (X′
oXo)β̂OLS − X′

oXoβ̂OLS = X′y
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which gives β̂OLS = (X′X)−1X′y. Alternatively, one could apply the FWL theorem using

X1 =
[

X

Xo

]
and X2 =

[
0

−ITo

]
. In this case, X′

2X2 = ITo and PX2 = X2X
′
2 =

[
0 0
0 −ITo

]
as before. This means that P X2 = In+To − PX2 =

[
In 0
0 0

]
.

As in part (a), premultiplying by P X2 omits the last To observations and yields β̂OLS based
on the regression of y on X from the first n observations only. The last To observations yield
zero residuals because the dependent and independent variables for these To observations
have zero values. For this to be true in the original regression, it must be true that 0 −
Xoβ̂OLS + γ̂OLS = 0, which yields γ̂OLS = Xoβ̂OLS = ŷo as expected. The residuals are still
(e′

OLS, 0′) and s∗2 = s2 for the same reasons given above. Also, using partitioned inverse,
one gets

(X∗ ′X∗)−1 =
[

(X′X)−1 (X′X)−1X′
o

Xo(X
′X)−1 ITo + Xo(X

′X)−1X′
o

]

Hence, s∗2(X∗ ′X∗)−1 = s2(X∗ ′X∗)−1 and the diagonal elements are as given in (1.11).




