
PART I

Introduction to Functional
Programming

CHAPTER 1: A Look at Functional Programming History

CHAPTER 2: Putting Functional Programming into a Modern Context

�

�

CH001.indd 1CH001.indd 1 3/4/11 7:37:02 AM3/4/11 7:37:02 AM

CO
PYRIG

HTED
 M

ATERIA
L

CH001.indd 2CH001.indd 2 3/4/11 7:37:07 AM3/4/11 7:37:07 AM

A Look at Functional
Programming History

 WHAT ’ S IN THIS CHAPTER?

 An explanation functional programming

 A look at some functional languages

 The relationship to object oriented programming

 Functional programming has been around for a very long time. Many regard the advent of the
language LISP, in 1958, as the starting point of functional programming. On the other hand,
LISP was based on existing concepts, perhaps most importantly those defi ned by Alonzo
Church in his lambda calculus during the 1930s and 1940s. That sounds highly mathematical,
and it was — the ideas of mathematics were easy to model in LISP, which made it the obvious
language of choice in the academic sector. LISP introduced many other concepts that are still
important to programming languages today.

 WHAT IS FUNCTIONAL PROGRAMMING?

 In spite of the close coupling to LISP in its early days, functional programming is generally
regarded a paradigm of programming that can be applied in many languages — even those
that were not originally intended to be used with that paradigm. Like the name implies, it
focuses on the application of functions. Functional programmers use functions as building
blocks to create new functions — that ’ s not to say that there are no other language elements
available to them, but the function is the main construct that architecture is built from.

 Referential transparency is an important idea in the realm of functional programming.
A function that is referentially transparent returns values that depend only on the input
parameters that are passed. This is in contrast to the basic ideas of imperative programming,

➤

➤

➤

 1

CH001.indd 3CH001.indd 3 3/4/11 7:37:08 AM3/4/11 7:37:08 AM

4 ❘ CHAPTER 1 A LOOK AT FUNCTIONAL PROGRAMMING HISTORY

where program state often infl uences return values of functions. Both functional and imperative
programming use the term function , but the mathematical meaning of the referentially transparent
function is the one used in functional programming. Such functions are also referred to as
pure functions, and are described as having no side effects.

 It ’ s often impossible to defi ne whether a given programming language is a functional language
or not. On the other hand, it is possible to fi nd out the extent to which a language supports
approaches commonly used in the functional programming paradigm — recursion, for example.
Most programming languages generally support recursion in the sense that programmers can call
into a particular function, procedure, or method from its own code. But if the compilers and/or
runtime environments associated with the language use stack - based tracking of return addresses
on jumps like many imperative languages do, and there are no optimizations generally available to
help prevent stack overfl ow issues, then recursion may be severely restricted in its applications. In
imperative languages, there are often specialized syntax structures to implement loops, and more
advanced support for recursion is ignored by the language or compiler designers.

 Higher order functions are also important in functional programming. Higher order functions
are those that take other functions as parameters or return other functions as their results. Many
programming languages have some support for this capability. Even C has a syntax to defi ne a
type of a function or, in C terms, to refer to the function through a function pointer. Obviously
this enables C programmers to pass around such function pointers or to return them from other
functions. Many C libraries contain functions, such as those for searching and sorting, that are
implemented as higher order functions, taking the essential data - specifi c comparison functions as
parameters. Then again, C doesn ’ t have any support for anonymous functions — that is, functions
created on - the - fl y, in - line, like lambda expressions, or for related concepts such as closures.

 Other examples of language capabilities that help defi ne functional programming are explored in
the following chapters in this book.

 For some programmers, functional programming is a natural way of telling the computer what it
should do, by describing the properties of a given problem in a concise language. You might have
heard the saying that functional programming is more about telling computers what the problem
is they should be solving, and not so much about specifying the precise steps of the solution. This
saying is a result of the high level of abstraction that functional programming provides. Referential
transparency means that the only responsibility of the programmer is the specifi cation of functions
to describe and solve a given set of problems. On the basis of that specifi cation, the computer
can then decide on the best evaluation order, potential parallelization opportunities, or even
whether a certain function needs to be evaluated at all.

 For some other programmers, functional programming is not the starting point. They come from
a procedural, imperative, or perhaps object oriented background. There ’ s much anecdotal evidence
of such programmers analyzing their day - to - day problems, both the ones they are meant to solve
by writing programs, and the ones they encounter while writing those programs, and gravitating
toward solutions from the functional realm by themselves. The ideas of functional programming
often provide very natural solutions, and the fact that you can arrive there from different directions
reinforces that point.

CH001.indd 4CH001.indd 4 3/4/11 7:37:10 AM3/4/11 7:37:10 AM

 FUNCTIONAL LANGUAGES

 Functional programming is not language specifi c. However, certain languages have been around
in that space for a long time, infl uencing the evolution of functional programming approaches just
as much as they were themselves infl uenced by those approaches to begin with. The largest parts
of this book contain examples only in C#, but it can be useful to have at least an impression of the
languages that have been used traditionally for functional programming, or which have evolved
since the early days with functional programming as a primary focus.

 Here are two simple functions written in LISP:

(defun calcLine (ch col line maxp)
 (let
 ((tch (if (= col (- maxp line)) (cons ch nil) (cons 46 nil))))
 (if (= col maxp) tch (append (append tch (calcLine ch (+ col 1) line maxp)) tch))
)
)

(defun calcLines (line maxp)
 (let*
 ((ch (+ line (char-int #\A)))
 (l (append (calcLine ch 0 line maxp) (cons 10 nil)))
)
 (if (= line maxp) l (append (append l (calcLines (+ line 1) maxp)) l))
)
)

 The dialect used here is Common Lisp, one of the main dialects of LISP. It is not important to
understand precisely what this code snippet does. A much more interesting aspect of the LISP family
of dialects is the structure and the syntactic simplicity exhibited. Arguably, LISP ’ s Scheme dialects
enforce this notion further than Common Lisp, Scheme being an extremely simple language with
very strong extensibility features. But the general ideas become clear immediately: a minimum of
syntax, few keywords and operators, and obvious blocks. Many of the elements you may regard as
keywords or other built - in structures — such as defun or append — are actually macros, functions,
or procedures. They may indeed come out of the box with your LISP system of choice, but they
are not compiler magic. You can write your own or replace the existing implementations. Many
programmers do not agree that the exclusive use of standard round parentheses makes code more
readable, but it is nevertheless easy to admire the elegance of such a basic system.

 The following code snippet shows an implementation of the same two functions, the same
algorithm, in the much newer language Haskell:

calcLine :: Int - > Int - > Int - > Int - > String
calcLine ch col line maxp =
 let tch = if maxp - line == col then [chr ch] else “.” in
 if col == maxp
 then tch

Functional Languages ❘ 5

CH001.indd 5CH001.indd 5 3/4/11 7:37:11 AM3/4/11 7:37:11 AM

6 ❘ CHAPTER 1 A LOOK AT FUNCTIONAL PROGRAMMING HISTORY

 else tch ++ (calcLine ch (col+1) line maxp) ++ tch

calcLines :: Int - > Int - > String
calcLines line maxp =
 let ch = (ord ‘A’) + line in
 let l = (calcLine ch 0 line maxp) ++ “\n” in
 if line == maxp
 then l
 else l ++ (calcLines (line+1) maxp) ++ l

 There is a very different style to the structure of the Haskell code. Different types of brackets are
used to create a list comprehension. The if...then...else construct is a built - in, and the ++
operator does the job of appending lists. The type signatures of the functions are a common practice
in Haskell, although they are not strictly required. One very important distinction can ’ t readily be
seen: Haskell is a strongly typed language, whereas LISP is dynamically typed. Because Haskell has
extremely strong type inference, it is usually unnecessary to tell the compiler about types explicitly;
they are known at compile time. There are many other invisible differences between Haskell and
LISP, but that ’ s not the focus of this book.

 Finally, here ’ s an example in the language Erlang, chosen for certain Erlang specifi c elements:

add(A, B) - >
 Calc = whereis(calcservice),
 Calc ! {self(), add, A, B},
 receive
 {Calc, Result} - > Result
 end.

mult(A, B) - >
 Calc = whereis(calcservice),
 Calc ! {self(), mult, A, B},
 receive
 {Calc, Result} - > Result
 end.

loop() - >
 receive
 {Sender, add, A, B} - >
 Result = A + B,
 io:format(“adding: ~p~n”, [Result]),
 Sender ! {self(), Result},
 loop();
 {Sender, mult, A, B} - >
 Result = A * B,
 io:format(“multiplying: ~p~n”, [Result]),
 Sender ! {self(), Result},
 loop();
 Other - >
 io:format(“I don’t know how to do ~p~n”, [Other]),
 loop()
 end.

CH001.indd 6CH001.indd 6 3/4/11 7:37:12 AM3/4/11 7:37:12 AM

 This is a very simple learning sample of Erlang code. However, it uses constructs pointing at the
Actor model based parallelization support provided by the language and its runtime system. Erlang
is not a very strict functional language — mixing in the types of side effects provided by io:
format wouldn ’ t be possible this way in Haskell. But in many industrial applications, Erlang has an
important role today for its stability and the particular feature set it provides.

 As you can see, functional languages, like imperative ones, can take many different shapes. From
the very simplistic approach of LISP to the advanced syntax of Haskell or the specifi c feature set of
Erlang, with many steps in between, there ’ s a great spectrum of languages available to programmers
who want to choose a language for its functional origins. All three language families are available
today, with strong runtime systems, even for .NET in the case of the LISP dialect Clojure. Some of
the ideas shown by those languages will be discussed further in the upcoming chapters.

 THE RELATIONSHIP TO OBJECT ORIENTED PROGRAMMING

 It is a common assumption that the ideas of functional programming are incompatible with those
of other schools of programming. In reality, most languages available today are hybrid in the sense
that they don ’ t focus exclusively on one programming technique. There ’ s no reason why they should,
either, because different techniques can often complement one another.

 Object oriented programming brings a number of interesting aspects to the table. One of them is a
strong focus on encapsulation, combining data and behavior into classes and objects, and defi ning
interfaces for their interaction. These ideas help object oriented languages promote modularization
and a certain kind of reuse on the basis of the modules programmers create. An aspect that ’ s
responsible for the wide adoption object oriented programming languages have seen in mainstream
programming is the way they allow modeling of real - world scenarios in computer programs. Many
business application scenarios are focused on data storage, and the data in question is often related
to physical items, which have properties and are often defi ned and distinguished by the way they
interact with other items in their environments. As a result, object oriented mechanisms are not just
widely applicable, but they are also easy to grasp.

 When looking at a complicated industrial machine, for example, many programmers immediately
come up with a way of modeling it in code as a collection of the wheels and cogs and other parts.
Perhaps they consider viewing it as an abstract system that takes some raw materials and creates
an end product. For certain applications, however, it may be interesting to deal with what the
machine does on a rather abstract level. There may be measurements to read and analyze, and
if the machine is complex enough, mathematical considerations might be behind the decisions for
the parts to combine and the paths to take in the manufacturing process. This example can be
abstractly extended toward any non - physical apparatus capable of generating output from input.

 In reality, both the physical and the abstract viewpoints are important. Programming doesn ’ t have
a golden bullet, and programmers need to understand the different techniques at their disposal and
make the decision for and against them on the basis of any problem with which they are confronted.
Most programs have parts where data modeling is important, and they also have parts where
algorithms are important. And of course they have many parts where there ’ s no clear distinction,

The Relationship to Object Oriented Programming ❘ 7

CH001.indd 7CH001.indd 7 3/4/11 7:37:12 AM3/4/11 7:37:12 AM

8 ❘ CHAPTER 1 A LOOK AT FUNCTIONAL PROGRAMMING HISTORY

where both data modeling and algorithms and a wide variety of other aspects are important.
That ’ s why so many modern programming languages are hybrid. This is not a new idea either — the
fi rst object oriented programming language standardized by ANSI was Common Lisp.

 SUMMARY

 Today ’ s .NET platform provides one of the best possible constellations for hybrid software
development. Originally a strong, modern and newly developed object oriented platform, .NET has
taken major steps for years now in the functional direction. Microsoft F# is a fully supported hybrid
language on the .NET platform, the development of which has infl uenced platform decisions since
2002. At the other end of the spectrum, albeit not all too far away, there ’ s C#, a newly developed
language strongly based in object orientation, that has been equally infl uenced by functional ideas
almost from its invention. At the core of any program written in either language there ’ s the .NET
Framework itself, arguably the strongest set of underlying libraries that has ever been available for
application development.

CH001.indd 8CH001.indd 8 3/4/11 7:37:13 AM3/4/11 7:37:13 AM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2011-03-11T06:07:53-0500
	Certified PDF 2 Signature

