
1 Biomarkers
and bioinformatics

This chapter discusses key concepts, problems and research directions. It provides an

introduction to translational biomedical research, personalized medicine, and biomar-

kers: types and main applications. It will introduce fundamental data types, computa-

tional and statistical requirements in biomarker studies, an overview of recent advances,

and a comparison between ‘traditional’ and ‘novel’ molecular biomarkers. Significant

roles of bioinformatics in biomarker research will be illustrated, as well as examples of

domain-specific models and applications. It will end with a summary of expected

learning outcomes, content overview, and a description of basicmathematical notation to

be used in the book.

1.1 Bioinformatics, translational research
and personalized medicine

In this book, the termbioinformatics refers to the design, implementation and application

of computational technologies, methods and tools for making ‘omic’ data meaningful.

This involves the development of information and software resources to support a more

open and integrated access to data and information. Bioinformatics is also used in the

context of emerging computational technologies for modelling complex systems and

informational patterns for predictive purposes. This book is about the discovery of

knowledge from human molecular and clinical data through bioinformatics. Knowledge

that represents ‘biomarkers’ of disease and clinically-relevant phenotypes.

Another key issue that this book addresses is the ‘translational’ role of bioinformatics

in the post-genome era. Translational research aims to aid in the transformation of

biological knowledge into solutions that can be applied in a clinical setting. In addition,
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this involves the incorporation of data, knowledge and feedback generated at the clinic

into the basic research environment, and vice versa, back and forward.

Bioinformatics, and related fields within computational biology, contributes to such

objectives with methodologies and technologies that facilitate a better understanding

of biological systems and the connections between health and disease. As shown in the

next chapters, this requires the analysis, visualization, modelling and integration of

different types of data. It should be evident that this has nothing to do with ‘number

crunching’ exercises or information technology service support. Bioinformatics is at

the centre of an iterative, incremental process of questioning, engineering and

discovery. This in turn allows researchers to improve their knowledge of the subtle

relation between health and disease, and gives way to a capacity to predict events rather

than simply describe them. Bioinformatics then becomes a translational discipline,

that is ‘translational bioinformatics’, a major player in the development of a more

predictive, personalized medicine.

Hypotheses about biological function and disease are typically made at the ‘wet

laboratory’. However, in a translational biomedical context, it is at the ‘bedside’ where

medically-relevant questions and requirements may be initially proposed and where

biological samples (fluids and solid tissue) are acquired frompatients. This, togetherwith

a diverse range of data about clinical responses and life-styles, provides the inputs to

different information platforms and processes. The resulting biological samples are

processed in the laboratory to extract different types of molecular data, such as DNA

sequences and the expression of genes and proteins. These questions and information

are expanded, redefined and explored by biologists and bioinformaticians in close

cooperation with clinical researchers.

Computational approaches and resources are required at both the clinic and the

laboratory. This is not only because informatic infrastructures and large-scale data

analysis are routinely required in these environments, but also because bioinformatics

can directly specify and address questions of scientific and clinical relevance. In the post-

genome era, this requires provision of alternative views of phenomena that goes beyond

the single-gene, hypothesis-driven paradigm. Figure 1.1 illustrates examples of key

aspects in the dialogue between the clinical, laboratory and computational research.

Within biomedical translational research, bioinformatics is crucial for accomplishing

a variety of specific challenges: From the implementation of laboratory management

systems, drug target discovery, through the development of platforms for supporting

clinical trials, to drug design. This book will focus on computational and statistical

approaches to disease biomarker discovery. This includes the detection of disease in

symptomatic and asymptomatic patients, the prediction of responses to therapeutic

interventions and the risk stratification of patients.

1.2 Biomarkers: fundamental definitions and research principles

Abiomarker is ‘a characteristic that is objectivelymeasured and evaluated as an indicator

of normal biological processes, pathogenic processes, or pharmacologic responses to a

therapeutic intervention’ (Biomarkers Definitions Working Group, 2001). According to

this definition, biomarkers can be divided into three main types: ‘Type 0’ represents

biomarkers used to estimate the emergence or development of a disease; ‘Type 1’
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includes biomarkers that predict the responses to therapeutic interventions; and ‘Type 2’

represents biomarkers that, in principle, could be used as surrogate clinical endpoints in

the course of clinical trials. An alternative classification that is commonly used in cancer

research specifies two main types of biomarkers: predictive and prognostic biomarkers

(Simon, 2008). The former refers to biomarkers used to predict therapeutic responses,

and the latter refers to biomarkers for disease classification or risk estimation. This book

will follow the categorization proposed by the US NIH Biomarkers DefinitionsWorking

Group.

On the basis of their application to the detection of disease, three main classes of

biomarkers may be specified: screening, diagnostic and prognostic biomarkers. Screen-

ing biomarkers are used to predict the potential occurrence of a disease in asymptomatic

patients. Diagnostic biomarkers are used to make predictions on patients suspected of

having the disease. Prognostic biomarkers are applied to predict the outcome of a patient

suffering from a disease. Most of the advances reported to date in the literature refer to

diagnostic and prognostic biomarkers. This may be partly explained by the challenges

posed by screening studies regarding the definition of complex phenotypes, independent

evaluations and reproducibility of findings, and the lack of evidence showing their

advantage in comparison with traditional disease risk factors.

Biomarkers can also be seen as indicators of functional and structural changes in

organs and cells. Such changes may be associated with either causal factors (disease

drivers) or consequences of normal and pathological events. Thus, biomarkers can be

used to predict and monitor molecular changes relevant to the current development or

future emergence of diseases, complications or responses. Moreover, biomarkers can

Clinical questions and requirements

Clinic

Sample extraction

Phenotype data acquisition

Computational research

Data pre-processing, feature extraction
and selection

Statistical analysis

Predictive modelling

“Wet” Laboratory

Refined / new hypotheses

Sample processing

Molecular (“omic”) data generation

Hypotheses

Figure 1.1 The dialogue between clinical, laboratory and computational research environments

in the context of translational biomedical research. Examples of typical tasks and applications
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also be considered as potential therapeutic targets, for example when their causal role in

disease is demonstrated.

Clinical tests based on biomarkers have been applied formore than fifty years, but their

potential applications for disease detection, patient stratification and drug discovery has

expanded since the beginning of the twenty-first century. More recently, the discovery of

novel biomarkers using genome-scale and different types of ‘omic’ data has become a

crucial goal in both academia and industry. This interest has been driven in part by

biomarkers’ potential to predict disease states. Also biomarkers can facilitate a more

comprehensive and deeper understanding of biological systems in the context of health

and disease. Moreover, biomarkers can be used to guide the development of new

therapies. For example, it has been suggested that biomarkers may reduce the time and

costs of phase I and II clinical trials. This may be possible thanks to their potential as

clinical endpoint substitutes (or surrogate endpoints), which are needed for assessing

treatment safety and effectiveness.

The discovery of biomarkers is based on the following research principle: The

comparison of physiological states, phenotypes or changes across control and case

(disease) patient groups (Vasan, 2006;Gerszten andWang, 2008).At themolecular level,

such differences can be reflected in the differential activity or concentrations of genes

proteins, metabolites and signalling pathways. Thus, biomarker discovery typically

relies on the idea that those molecular species (i.e. gene, proteins, etc.) that display the

greatest changes across phenotypes may be reported as potential biomarkers.

A traditional approach to discovering biomarkers for screening, diagnostic or prog-

nostic purposes consists of the analysis of a single gene or protein and the identification of

its ‘abnormal’ values, based on hypotheses biased toward specific biological processes or

pathways. In general there are three traditional methods for identifying abnormal

biomarker values: identification based on reference thresholds, based on discrimina-

tion thresholds and based on risk thresholds (Vasan, 2006). In the first approach the

distribution of biomarker values in a reference group that approximates the general

population is estimated and abnormal values are defined using extreme values on the

basis of percentile thresholds. For example, a protein concentration value above the

99th percentile value can be considered abnormal and an indication of disease or

clinical outcome. Discrimination thresholds can be defined after comparing the

distribution of biomarker values between patient groups (e.g. control vs. disease)

in terms of their differences or overlaps. For instance, a protein concentration

value greater than 100 pg/mL may be associated with a specific clinical complication

or disease. A discrimination threshold would aim to maximize the capacity of

distinguishing between these groups. The approach based on risk thresholds aims to

detect biomarker values that would be associated with a (disease or response) risk

increase beyond a critical point on follow-up. For example, a systolic blood pressure

value below 115 mmHg may be defined as ‘desirable’, as a value above this limit is

linked to an increase of the risk of vascular disease.

Independently of their categorization, application domain or discovery approach, a

fundamental objective in biomarker research is to detect a disease, response or

complication at an early stage to aid in the selection of a treatment strategy. Such a

prediction process should be sufficiently non-invasive, reproducible and inexpensive. In

some clinical areas another important quality criterion is to maximize the predictive

specificity (or reduction of false-positive rates, for example low rate of control patients
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incorrectly assigned to a pathological condition). This optimization is important because

even relatively small false-positive rates can lead to unnecessary and expensive

diagnostic or treatment procedures. In other areas the cost of missing a potential ‘true

positive’ prediction of the disease is the main priority. Therefore, the selection and

interpretation of prediction quality indicators are domain-specific, and may require the

combination and optimization of different clinically-meaningful indicators. Chapters 2

and 3 include more detailed discussions on the evaluation of biomarkers and prediction

models.

These prediction tasks will also directly influence the capacity to offer a more

personalized management and treatment of patients. Moreover, it has applications in

the assessment of therapeutic efficacy and toxicity. These prediction models can aid in

the selection of those patients for whom treatment could offer an optimal benefit, and

which could in turn reduce unnecessary therapy on patients with a better expected

clinical outcome. Overall, this may directly contribute to the reduction of treatment and

hospitalization costs.

1.3 Clinical resources for biomarker studies

Biomarker research relies on two main types of data acquisition strategies (Pepe et al.,

2001): Retrospective and prospective studies.

Retrospective studies.These studies are based on clinical samples collected before the

design of the biomarker study, and before any comparison with control samples have

been carried out. After a pre-determined period of follow-up, clinical outcomes or

phenotypes are specified, and case and control samples are compared. Biomarker

discovery based on retrospective studies looks back at past, recorded data to find

evidence of marker-disease relationships.

Depending on the study objectives, the control samples may be derived from healthy

populations or from those subjects that did not show the positive clinical outcome under

study (e.g. individuals who did not develop the disease, die or show complications).

These studies may involve the identification of biomarkers to distinguish between

patients at first time of consultation, or as a function of time (i.e. several clinical

evaluation times) before determining the predictive capacity of the biomarkers. These

studies also require investigations on the classification ability of covariates (other

predictive cofactors), for example standard biomarkers or life-style information. Com-

parisons of multiple combinations of potential biomarkers with traditional biomarkers

are fundamental. There is no universal standard for defining the length of follow-up

times, which will be specific to clinical purposes, resource and biological constraints and

economic costs. Matching of case-control samples on the basis of individual-based

characteristics is important, as well as matching of subjects on the date of study

enrolment when possible. Different classification quality indicators and techniques may

be used to estimate the predictive or classification capacity of the biomarkers (Chapters 2

and 3). For instance, different prediction quality indicators, corresponding to the

different follow-up periods can be estimated and compared for different classification

models. The main goal is to identify those prediction models capable of identifying

patients with the clinical outcome at a number of months (or years) after the biomarkers

are measured.

1.3 CLINICAL RESOURCES FOR BIOMARKER STUDIES 5



Prospective studies. In this type of study, the biomarker-based prediction or

classification model is applied on patients at the time of patient enrolment. Clinical

outcomes or disease occurrence are unknown at the time of enrolment. Thus, selected

subjects are followed during a pre-determined period time, that is prospective studies

look forward in time. At the end of such a period, information about the clinical

outcomes is acquired and analysed to assess the prediction or discrimination capacity

of the biomarkers.

In some applications, such as the independent validation of a new biomarker model in

a real clinical setting, those patients testing positive would undergo further diagnostic or

prognostic procedures. This will allow the estimation of themodel capacity to detect true

positive cases, disease stage and other characteristics. In addition, these studies would

not only drive the classification or risk assessment of patients, but also the selection of

treatments.

In a biomarker development project, prospective studies typically follow the com-

pletion of retrospective studies in order to further evaluate the clinical potential of the

proposed biomarkers and prediction models. Although more expensive and time-

consuming, prospective studies are considered a less biased andmore objective approach

to collecting and analysing data for biomarker discovery.

1.4 Molecular biology data sources for biomarker research

Traditional and large-scale molecular biology generates data needed to reflect physi-

ological states in modern biomarker discovery. The availability of new data sources

originating from different ‘omic’ approaches, such as genomic variation and mRNA

expression analysis, are allowing a more systematic and less biased discovery of novel

biomarkers in different clinical areas. Moreover, some of such new biomarkers are

orthogonal, that is biomarkers with relatively low statistical, biological or clinical

dependencies between them.

Major sources ofmolecular data for biomarker discovery are (Vasan, 2006;Gersztenand

Wang, 2008): DNA-based variation studies (Chapter 4), gene expression or transcrip-

tomics (Chapter 5), protein expression and large-scale proteomics, and the measurement

of metabolite and small molecule concentrations (metabolomics) (Chapter 6).

In genomic variability studies, a key discovery approach is the analysis of single-

nucleotide polymorphisms (SNPs) in cases versus control subjects. Variants with

potential screening, prognostic or diagnostic potential have been proposed based on

the analysis of candidate genes and genome-wide association studies (Chapter 4) in

different medical areas, including cancer and cardiovascular research. However, the

independent validation or reproducibility of these results has been proven to be more

difficult than anticipated. Examples of recent advances include SNPs biomarkers

for early-onset of myocardial infarction and premature atherosclerosis (Gerszten and

Wang, 2008).

In some areas, such as cardiovascular research, the discovery of disease biomarkers

using gene expression analysis has been traditionally limited by the difficulty in

obtaining tissue samples. Different studies using cardiomyocites in culture, in vitro

models and tissue extracted from transplant patients have suggested a great variety of

potential diagnostic and prognostic biomarkers, for example mortality in patients with
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heart failure. The development of less invasive techniques based on peripheral blood

gene expression profiling represents a promising approach in this and other medical

domains (Chapter 5).

Proteomics and metabolomics have become promising technologies for biomarker

discovery. These technologies enable the analysis of the clinically-relevant catalogues of

proteins and metabolites (Chapter 6). Metabolites are sets of biochemical substances

produced bymetabolic processes (e.g. sugars, lipids and amino acids). These approaches

represent powerful complementary views of the molecular state of a cell at a particular

time. Amajor challenge is the diversity of cell types contributing to the human proteome

and metabolome (e.g. plasma proteome) and the low concentration levels of many of the

proteins suggested as disease biomarkers. On the other hand, it has been suggested that

the size of the humanmetabolomemight be represented by a relatively small set (�3000)

of metabolites (Gerszten and Wang, 2008).

Independently of the types of ‘omic’ resources investigated, there is the possibility that

the molecular profiles or patterns observed in the potential biomarkers may not be true

reflections of primary molecular events initiating or modulating a disease. Instead, they

may reflect a consequence of downstream events indirectly caused by the studied

pathology at later stages.

Modern biomarker discovery research aims to extract information from these re-

sources, independently or in an integrated fashion, to design predictivemodels of disease

occurrence or treatment responses. The integration of different types of clinical and

‘omic’ data also motivates the extraction of biological knowledge from diverse distrib-

uted repositories of functional annotations and curated molecular pathway information

(Ginsburg, Seo and Frazier, 2006; Deschamps and Spinale, 2006; Camargo and Azuaje,

2007) (Chapter 7). This, in turn, promotes the implementation of advanced predictive

integration-based approaches (Chapter 8), that is biomarker-based models of disease or

treatment response that combine quantitative evidence extracted from different data

sources (Camargo andAzuaje, 2008; Ideker and Sharan, 2008). These tasks are facilitated

through significant computational advances accumulated over the past 20 years in

connection with information standardization, ontologies for supporting knowledge

representation and exchange, and data mining (Chapter 9).

1.5 Basic computational approaches to biomarker discovery:
key applications and challenges

Advances in computational research and bioinformatics are essential to the management

and understanding of data for biomarker discovery. Examples of such contributions are

the storage (including acquisition and encoding), tracking (including laboratory man-

agement systems) and integration of data and information (Azuaje, Devaux andWagner,

2009a, 2009b). Data integration involves the design of ‘one-stop’ software solutions for

accessing and sharing data using either datawarehousing or federated architectures. This

has allowed a more standardized, automated exploration, analysis and visualization of

clinical and ‘omic’ data using a great variety of classic statistical techniques andmachine

learning (Azuaje, Devaux and Wagner, 2009a, 2009b).

Biomarker discovery from ‘omic’ data also relies on exploratory visualization tools,

data clustering, regression and supervised classification techniques (Frank et al., 2004;
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Camargo and Azuaje, 2008). Feature selection (Saeys, Inza and Larrañaga, 2007) also

represents a powerful approach to biomarker discovery by exploiting traditional

statistical filtering (e.g. statistical analysis of multiple hypotheses) or models ‘wrapped’

around classifiers to identify powerful discriminators of health and disease (Chapter 3).

The resulting significant features can then be used as inputs to different machine learning

models for patient classification or risk estimation, such as neural networks and support

vector machines (Chapter 3).

Other important challenges for bioinformatics are the relative lack of data together

with the presence of different potential sources of false positive biomarker predictions,

including experimental artefacts or biological noise, data incompleteness and scientific

bias (Ginsburg, Seo and Frazier, 2006; Azuaje and Dopazo, 2005; Jafari and Azuaje,

2006). This further adds complexity to the task of evaluating the predictive capability

of disease prediction models, particularly those based on the integration of multiple

biomarkers.

A key challenge in biomarker development is the reduction of experimental

variability and noise in the data, as well as the accomplishment of reproducibility at

the different stages of sample acquisition, measurement, data analysis and evaluation.

Potential sources of experimental variability are related to sample extraction, data

storage and processing. This may result in inter-laboratory variability driven by factors

such as diversity of reagents, experimental platforms and protocols. Recommendations

and standards have been proposed by technology manufactures and international

community groups, which define practices for sample handling, quality control and

replication.

Apart from minimizing variability related to experimental factors, it is crucial to

address patient- and data-related sources of variability, such as intra- and inter-

individual variability. Such variability may be caused by factors ranging from age,

gender and race to drug treatments, diet or physical activity status. Depending on the

suspected factors influencing these differences, prediction model stratification or

statistical adjustments may be required. Standards and recommendations for support-

ing better reproducibility of data acquisition (e.g.MIAME) and analysis (e.g. replicate

and pre-processing procedures) have also been proposed by manufacturers and the

international research community (Brazma, Krestyaninova and Sarkans, 2006).

Additionally, the accurate and sufficient reporting of biomarker studies, for example

diagnostic accuracy results, has motivated the development of specific community-

driven guidelines (Chapter 10).

Research in bioinformatics shares the responsibility to lead efforts to standardize and

report biomarker study results, to provide extensive prediction model evaluation, and to

develop advanced infrastructures to support research beyond the ‘single-marker’ anal-

ysis approach. There is still a need to develop more user-friendly tools tailored to

biomarker discovery, which should also be able to operate in open and dynamic data and

user environments. Despite the availability of ‘generic’ bioinformatic tools, such as

statistical analysis packages and platforms for the design of machine learning systems,

the biomarker research community will continue requiring novel solutions to deal with

the requirements and constraints imposed by the translational research area. Table 1.1

reflects the diversity of computational technologies and applications for biomarker

discovery. It shows how different requirements and problems are connected to specific

fields and technologies.
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From a data analysis perspective, biomarker discovery can be seen as an iterative,

incremental process (Figure 1.2). Differential pattern recognition, classification, asso-

ciation discovery and their integration with diverse information resources, such as

functional pathways, are central to this idea. The main expected outcomes, from a

translational research perspective, could be new diagnostic or prognostic kits (e.g. new

biochips or assays) and computational prediction systems for screening, diagnostic and

prognostic purposes. The validity and potential clinical relevance of these outcomes will

depend on the successful implementation of evaluations using independent samples.

Moreover, the applicability of new biomarkers, especially multi-biomarker prediction

models, will also depend on their capacity to outperform conventional (or standard)

markers already incorporated into the clinical practice.

Bioinformatics research for biomarker discovery also exploits existing public data and

information repositories, which have been mainly the products of several publicly-

funded initiatives. Different approaches have shown how novel biomarker discovery

based on the integrative data analysis of different public data sets can outperform single-

resource (or single site) studies, and provide new insights into patient classification and

Table 1.1 Examples of key computational technologies and applications for biomarker discovery.

Circles inserted in cells represent a significant connection between a bioinformatics technology or

research area (columns) and applications relevant to biomarker discovery research (columns)

Stat ML GNT IV KE SD SM

Estimation of significant

relationships/differences

between patients

. . .

Selection of optimum

biomarker sets

. . .

Integrated access to data and

information

. .

Integrated analysis of data and

information for prediction

modelling

. . .

Laboratory information

management and tracking

systems

. .

Biobanks . .

Literature search and mining .

Data and information

annotation

. . .

Discovery infrastructures,

automated distributed

services

. .

Patient classification and risk

score assessment

. .

Stat: Statistical analysis including hypothesis testing, ML: Statistical and machine learning, GNT: Graph and

network theory, IV: Information visualization, KE: Information and knowledge engineering and management,

including natural language processing, SD: Software development and Internet technologies, SM: Complex

systems modelling including simulation tools.
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processes underlying a disease (Camargo and Azuaje, 2008; Butte, 2008a, 2008b).

Currently different online projects and repositories freely offer genomic variation data

(e.g. human genomic polymorphisms), gene expression (e.g. public repositorieswith raw

public data), proteomics (e.g. plasma proteome, antibodies), and human health-specific

pathways (e.g. metabolic, signalling and genetic interactions) (Mathew et al., 2007).

Chapter 9 will review relevant bioinformatic infrastructures, information resources and

software tools for supporting biomarker discovery. Chapters 8 and 10 will discuss the

analysis of multiple public data and information resources.

1.6 Examples of biomarkers and applications

Molecular biomarkers are measured in biological samples: solid tissues, blood or other

fluids. In the area of cardiovascular diseases, for example, a typical clinical situation for

the application of biomarkers is when a patient presents severe chest pain. This would

trigger questions such as: Is this patient experiencing amyocardial infarction or unstable

angina? If the patient is experiencing a myocardial infarction, what is the likelihood that

this patient will respond to a specific therapy? What is the amount of myocardial

damage? What is the likelihood of a future recurrence? What is the likelihood of

progressing to heart failure or death in the near future? Protein biomarkers, for instance,

may be applied to help doctors to answer these questions.

Samples (known clinical classes)

Prior knowledge

''Omic'' data

Differences between (sample) classes

Integrative, predictive modelling

Potential biomarkers, classification and
prediction models

Independent validations

Diagnostic or prognostic systems

Figure 1.2 A typical biomarker discovery framework
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In principle, new biomarkers will be of clinical value only if the following factors can

be demonstrated: predictive or classification accuracy, reproducibility, their acceptance

by patient and clinician, high sensitivity and specificity, direct relation with changes in a

pathology or clinical conditions, and measurable impacts in patient management.

However, depending on the type of application, some of these (and other) factors will

be more or less relevant. In screening applications, high predictive performance quality

(e.g. overall accuracy, sensitivity and specificity) and relative low costs could be themost

critical factors. These factors are also important in diagnostic applications of biomarkers,

together with other factors, such as high tissue specificity and potential to be applied at

point-of-care setting. In some prognostic applications, quality indicators such as

specificity and sensitivity may be less critical than the reduction of intra-individual

variation. Chapter 10 provides a more detailed discussion on the assessment of clinical

relevance in biomarker research.

The increasing availability of large-scale data sources originating from diverse ‘omic’

approaches, such as genomics and transcriptomics, are allowing a more systematic and

less biased discovery of novel disease biomarkers in different clinical areas. Figure 1.3

illustrates relevant examples of biomarkers from the cardiovascular research area, which

are based on different types of ‘omic’ approaches and technologies.

Examples of diagnostic cardiovascular biomarkers incorporated into clinical practice

are the brain natriuretic peptide (BNP) for heart failure, and troponin I and troponin T for

myocardial infarction (Gerszten andWang, 2008). In addition, it has been suggested that

these biomarkers also have prognostic applications. Examples of potential screening

biomarkers include those that may be associated with inflammation (e.g. C-reactive

protein and interleukin-6), thrombosis (e.g. fibrinogen) and other vascular complications

(Gerszten and Wang, 2008). However, it is important to stress that their clinical utility

still remains a topic of exploration and discussion. The capacity of novel prediction or

classification models, based on the combination of novel biomarkers, to outperform

traditional biomarkers has not been widely demonstrated. For instance, a report from

the Framingham Heart Study evaluated the predictive capacity of several molecular

markers of death and cardiovascular complications. This investigation concluded that

multi-marker prediction models can only add a moderate improvement in prediction

performance, in comparison with (single-marker) conventional models. However,

these relative small effects may also account for an over-emphasis put on standard

quality indicators for sample classification without adequately considering other

measures and design factors, such as specific prediction goals and sample class

imbalances (Chapter 3).

Genetic variation

Locus on 9p21 CXCL 12 CRP ST2 BNP, NT-
ProBNP

Atherosclerosis

MRP14 MMPs (e.g.
MMP9)

Myocardial infraction Cardiac remodelling or heart failure

Biological source

Biomarkers

Cardiovascular
disease

Gene expression Protein expression

Figure 1.3 Examples of cardiovascular biomarkers and their relationship to different ‘omic’

technologies and diseases (Vasan, 2006; Gerszten and Wang, 2008)
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Another potential obstacle is that the majority of reported biomarkers may be biased

towards well-studied functional pathways, such as those linked to inflammation and

cholesterol synthesis in the case of cardiovascular biomarkers (Gerszten and Wang,

2008). Moreover, multi-marker models may be based on correlated biomarkers, which

may in turn reduce the classification ability of themodels. In the datamining andmachine

learning areas it is well-known that, for classification purposes, the combination of

several correlated predictive features is less informative than the combination of fewer

uncorrelated (or orthogonal) biomarkers. These difficulties and limitations are also found

in other medical areas.

Natriuretic peptides have become the major prognostic reference in heart failure

diagnosis, prognosis and treatment planning (Maisel, 2007). In particular, BNP and NT-

proBNP have become powerful indicators of heart failure in acute dyspnoea patients and

of clinical outcomes in advanced heart failure. The correlation between their patho-

physiology and heart failure is strong enough to allow, for example, effective treatment of

some patients through the exogenous administration ofBNP.Thus, this is an example of a

biomarker that satisfies some of the key requirements in biomarker discovery: biomar-

kers should not only represent strong indicators of disease, but also they should be useful

for the early detection and treatment of the disease. BNP levels have also been used to

indicate admission in emergency units, level and types of treatments, aswell as prognosis

during treatment. For example, low BNP levels in patients under treatment may call for

the application of additional treatments (Maisel, 2007).

However, natriuretic peptides have not been widely adopted for robust, accurate

patient stratification or for the early detection of heart failure onset. For example, strong

correlations between some levels of BNP (e.g. 100–400 pg/ml) and clinical outcomes

may not always be possible to observe, and there are important level overlaps between

different clinical groups (Maisel, 2007).Moreover, for patient classification or screening,

there is no conclusive evidence on how this information may consistently be applied to

improve classification sensitivity or specificity in comparison to more traditional

methods. This is another reason to explore the potential of multiple biomarkers

integrated by advanced statistical analysis and machine learning techniques.

Recent advances in the use of multiple biomarkers include the prediction of death

from cardiovascular disease in the elderly (Zethelius et al., 2008). In this example,

protein expression biomarkers relevant to different functional pathways, such as cell

damage and inflammation, improved risk prediction in comparison to traditional

clinical and molecular biomarkers, such as age, blood pressure and cholesterol. The

proposed and reference prediction models were based on traditional survival analysis

during a follow-up period of more than 10 years, and were comparatively evaluated

using standard indicators of predictive quality (Chapters 2 and 3).

1.7 What is next?

The next chapters will discuss the analysis of different types of ‘omic’ data for identifying

and evaluating disease biomarkers, including diagnostic and prognostic systems. It will

offer principles and methods for assessing the bioinformatics/biostatistics limitations,

strengths and challenges in biomarker discovery studies. Examples of studies and

applications based on different techniques and in several clinical areas will be explained.
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Descriptions and discussions take into account the diverse technical backgrounds and

research roles of the target readership. A major objective is to increase the awareness of

problems, advances and possible solutions. But also we expect that it will facilitate a

more critical approach to designing, interpreting and evaluating biomarker studies. The

book targets users and designers of bioinformatic technologies and applications.

Similarly, it can benefit biologists and clinical researchers with an interest in improving

their knowledge of how bioinformatics can contribute to biomarker discovery. Readers

will benefit by learning about: (1) key requirements and diversity of data resources

available for biomarker discovery in different clinical domains; (2) statistical and data

mining foundations for identifying, selecting and evaluating biomarkers and prediction

systems; (3) major advances and challenges in bioinformatics and biomarker research;

(4) computational and statistical requirements for implementing studies involving

different types of biomarkers; (5) major bioinformatic advances and approaches to

support biomedical translational research; and (6) the integration of ‘omic’ data and prior

knowledge for designing and interpreting prediction models.

Although the book will emphasize examples of problems and applications in

cardiovascular and cancer research, the computational solutions and advances discussed

here are also relevant and applicable to other biomedical areas. Some of the chapters will

be complemented by short commentaries from highly esteemed researchers to provide

alternative views of biomedical problems, technologies and applications.

This book will focus on how fundamental statistical and data mining approaches can

support biomarker discovery and evaluation. Another key aspect will be the discussion of

design factors and requirements for implementing emerging approaches and applica-

tions. The book will not deal with specific design or implementation problems related to

pharmaceutical research and development, such as the assessment of treatment responses

in drug clinical trials. However, many of the design and evaluation techniques covered

here may be extended to different problems and applications.

The next two chapters are ‘foundation’ chapters, which will provide readers with the

knowledge needed to assess the requirements, design tasks and outputs of disease

biomarker research. These sections also introduce some of the most relevant compu-

tational approaches and techniques for ‘omic’ data analysis. This will be followed by

detailed discussions of methodologies and applications based on specific types of ‘omic’

data, as well as their integration for biomarker discovery. Such chapters will reflect the

‘how’ and ‘what’ aspects of these research areas. Chapters 9 and 10 will focus on the

critical assessment of key bioinformatic resources, knowledge gaps, and challenges, as

well as emerging and promising research directions. These final sections will underscore

the ‘why’ and ‘when’ aspects of problems and applications. Thus, one of themain goals is

to focus on fundamental problems, common challenges across information types and

clinical areas, and design principles.

At this point, it is necessary to introduce basic mathematical notation and terminology

to facilitate the understanding of the techniques and applications. Formost statistical and

machine learning analyses, it will be assumed that data sources can be, at least to some

extent, represented as data matrices. Capital letters in bold will be used to refer to this

type of resources. For example, D represents a data set with m� n values, with m

representing the number of rows, and n representing the number of columns inD. A row

(or column) can represent samples, biomarkers or other ‘omic’ profiles, which will be

represented by bold and lower case letters. For example, s represents a vector ofm values,
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with biomarker values extracted from a single patient. References to individual data

values will be expressed by using lower case letters. Subscripts will be used to refer to

specific vectors (e.g. samples or biomarkers) or values. The term ‘class’ will be used

to refer to specific phenotypes, patient groups or biological processes. When using

networks to represent data, a network node will represent a biological entity, such as a

gene or potential biomarker. A network edge, linking two or more nodes, encodes any

biologically-meaningful relation, such as different types of functional interactions.

It is evident that time and publication space constraints would not allow one to cover

all major methodologies, tools and applications in detail. However, the content of the

chapters have been selected to avoid, or at least reduce, methodological bias or

preferences for specific data mining techniques or algorithms. This is particularly

relevant when one considers the speed of progress in computational and data analysis

research. Therefore, the book structure has been shaped bymajor (‘omic’) data types and

problems, rather than specific techniques.

Although a spectrum of data mining techniques for biomarker discovery will be

introduced in Chapter 3, the book does not intend to offer a detailed coverage of specific

algorithms or techniques. Emphasis will be put on design and evaluation requirements

and questions, interpretation of inputs and outcomes, adaptation and combination of

approaches, and advanced approaches to combining hypothesis- and discovery-driven

research.
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