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1.1 Principles of Reliable Communication
Ideally, design, development and deployment of communication systems aims at maximally efficient
utilization of available resources for transferring information reliably between a sender and a recipient.
In real systems, typically some amount of unreliability is tolerated in this transfer to achieve a predefined
level of consumption of limited resources. In modern communication systems, primary resources are
time, space, and power and frequency bandwidth of the electromagnetic radiation used to convey
information. Given such resources, systems must be designed to overcome distortions to transmitted
information caused mainly by elements within the system itself, possible external communications, and
the environment through which the information propagates. To achieve efficient utilization of available
resources, knowledge of the mechanisms that cause interference in a given transmission scenario must
be available in designing and analyzing a communication system.

In performance evaluation of wireless communication systems, significance of the communication
channel is emphasized, since the degradation of a signal propagating from a transmitter to a receiver is
strongly dependent on their locations relative to the external environment. Wireless mobile communica-
tion, where either the transmitter or the receiver is in motion, presents additional challenges to channel
modelling, as it is necessary to account for variation in the signal distortion as a function of time for
each transmitter–receiver pair. In developing and analyzing such systems, comprehensively modelling
the transmitter–receiver link is a complicated task.

In the following, distortions caused by typical communication channels to transmitted signals are
described. A common property of all communication channels is that the received signal contains
noise, which fundamentally limits the rate of communication. Noise is typically modelled as a Gaussian
stochastic process. The additive white Gaussian noise (AWGN) channel and its effects on typical digital
modulation methods are presented in Section 1.2. Noise is added to transmitted signals at the receiver.
Before arriving at the receiver terminal, signals are typically distorted according to various physical
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2 Modulation and Coding Techniques in Wireless Communications

characteristics of the propagation medium. These distortions attenuate the received signal, and thus
increase the detrimental effect of additive noise on the reliability of communication. In Section 1.3 to
1.5 typical cases of distortion in wireless communication channels and models for the effects of such
distortion on transmitted signals are presented.

1.2 AWGN
Distortions occurring in typical communication systems can be divided into multiplicative and additive
components. In the following, some remarks and relevant results concerning additive distortion – also
referred to simply as noise – are presented.

Additive noise is introduced to a wireless communication system both from outside sources – such
as atmospheric effects, cosmic radiation and electrical devices – and from internal components of the
receiver hardware, which produce thermal and shot noise [9]. Typically, additive distortion in a received
signal consists of a sum of a large number of independent random components, and is modelled as
additive white Gaussian noise, where the term white means that the noise is assumed to have a constant
power spectral density. The Gaussian, or normal, distribution of noise is motivated by the central limit
theorem (one of the fundamental theorems of probability theory), according to which the distribution of
a sum of a large number of random variables approaches a normal distribution, given that these variables
fulfill Lyapunov’s condition (for details, see for example [10]).

In some cases, the received signal is also distorted by a channel-induced superposition of different
components of the useful transmission, or by signals from other transmission systems. Such distortions
are called interference, and differ from additive noise in that typically some source-specific statistical
characteristics of interference are known. Thus interference is not in all cases best approximated as
an additive white Gaussian process. Interference effects are strongly dependent on the communication
systems and transmission scenarios under consideration. Later in this chapter, interference-causing
effects of wireless communication channels are considered. In the following, we focus on considering
the effects of additive white Gaussian noise on complex baseband modulation symbols. Principles of
digital modulation methods and the effects of noise on the reception of various types of transmitted
signals will be considered in more detail in Chapter 2; the following simple examples are meant to
illustrate the concept of additive noise and its effect on digital communication.

1.2.1 Baseband Representation of AWGN

In the following examples, we consider digital data which is mapped to binary phase shift keying
(BPSK), quaternary phase shift keying (QPSK/4-QAM), and 16-point quadrature amplitude modulation
(16-QAM) symbols. We consider complex baseband signals, that is, for our purposes the transmitted
modulation symbols corresponding to a given digital modulation scheme are represented simply as
complex numbers. The constellation diagrams for these examples are illustrated in Figure 1.1. The effect
of an AWGN channel is to shift these numbers in the complex plane. The receiver has to decide, based
on an observed shifted complex number, the most likely transmitted symbol. This decision is performed
by finding which, out of the set of known transmitted symbols, is the one with the smallest Euclidian
distance to the received noisy symbol. This is a rather abstract representation of digital signals and noise,
but sufficient for performing error performance analyses of different modulation schemes. For a more
detailed discussion on basic modulation methods and the corresponding signal forms, see Chapter 2.

As outlined above, in complex baseband signal-space representations, the effect of additive white
Gaussian noise in the receiver can be described as a complex number added to each transmitted mod-
ulation symbol value. The real and imaginary parts of these complex numbers are independent and
identically distributed Gaussian random variables with zero mean and variance equal to σ 2

N = P̄N /2,
where P̄N denotes the total average power of the complex noise process (that is, the power of the noise
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Figure 1.1 Example of signal constellations corresponding to BPSK, QPSK, and 16-QAM modulation schemes

is evenly distributed into the two signalling dimensions). In the following, the orthogonal components
of the noise process are denoted by a common notation X N ∼ N

(
0, P̄N /2

)
.

If the absolute value of either the real or the imaginary noise component is larger than half of the
Euclidian distance d between adjacent modulation symbols, a transmitted symbol may be erroneously
decoded into any symbol within a complex half-plane, as illustrated in the QPSK example of Figure
1.2. The probability of one of the independent and identically distributed noise components having such
values can be written as:

P (X N > d/2) =
∫ ∞

d/2

1
√

π P̄N

exp

(
− x2

P̄N

)
dx = 1 −

∫ d√
2P̄N

−∞

1√
2π

exp

(
− x2

2

)
dx (1.1)

where the final expression is given in terms of the cumulative distribution function of a normalized
Gaussian random variable. Error probabilities are usually specified in this form, since the Q-function
Q (α) = 1 − ∫ α

−∞
1√
2π

exp(− x2

2 ) is widely tabulated in mathematical reference books, and easily cal-
culated with programs such as Matlab. The expression (1.1) gives directly the probability of error for
BPSK, and can be used to calculate the average probability of error for larger QAM constellations. In
Figure 1.3, the principle of calculating the symbol error probability of QPSK using (1.1) is illustrated.
The same principle is applied in Figure 1.4 to 16-QAM, where several different error cases have to be
considered, and averaged to obtain the total probability of symbol error.

Figure 1.2 The effect of noise on a QPSK signal constellation. Left: imaginary component of noise is larger than
d/2 – transmitted symbols s0 and s3 will be erroneously decoded either as s1 or s2. Right: real component of noise is
larger than d/2 – transmitted symbols s0 and s1 will be erroneously decoded either as s2 or s3
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Figure 1.3 Principle of calculating the probability of symbol error for a QPSK signal constellation, assuming s0 is
transmitted. Left: 2P(XN > d/2) includes twice the probability of receiving a value in the diagonally opposite quadrant.
Right 2P(XN > d/2)- P(XN > d/2)2 is the correct probability of symbol error

In the preceeding examples, the error probabilities are calculated in terms of the minimum distance
of the constellations and the average noise power. However, it is more convenient to consider error
probabilities in terms of the ratio of average signal and noise powers. For any uniform QAM constellation,
the distance between any pair of neighbouring symbols (that is, the minimum distance) is easily obtained
as a function of the average transmitted signal power P̄S – which is calculated as the average over the
squared absolute values of the complex-valued constellation points – as:

d =

⎧
⎪⎪⎨

⎪⎪⎩

2
√

P̄S

2
√

P̄S/2

2
√

P̄S/10

(BPSK)

(QPSK)

(16 − QAM)

The average symbol error probability for each of the cases above is now obtained by calculating averages
over demodulation error probabilities for the signal sets as a function of the average signal-to-noise
ratio, given by P̄S/P̄N =̂λ. Using the equations given above, the average symbol error probabilities are

Figure 1.4 Principle of calculating the probability of symbol error for a 16-QAM signal constellation. Left: for
the four corner symbols, the probability of symbol error is 2P(XN > d/2)-P(XN > d/2)2. Center: for the eight outer
symbols, 3P(XN > d/2)-2P(XN > d/2)2. Right: for the middle symbols, 4P(XN > d/2)-4P(XN > d/2)2. The total
probability of symbol error is the weighted average of these probabilities
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obtained, following the principle outlined in the examples of Figures 1.3 and 1.4, as:

ps (λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q
(√

2λ
)

2Q
(√

λ
)

− Q
(√

λ
)2

3Q
(√

λ/5
)

− 9

4
Q

(√
λ/5

)2

(BPSK)
(QPSK)

(16 − QAM)

1.2.2 From Sample SNR to Eb/N0

Assume the transmitted symbols are mapped to rectangular baseband signal pulses of duration Tsymb,
sampled with frequency fsampl, with complex envelopes corresponding to the constellation points of the
signal-space representation used above. These rectangular pulses are then modulated by a given carrier
frequency, transmitted through a noisy channel, downconverted in a receiver and passed to a matched
filter or correlator for signal detection.

Figure 1.5 shows an example of two BPSK symbols transmitted and received as described above. In
this example, the signal-to-noise ratio per sample is defined as SNR = A2/σ n

2, where σ n
2 is the sample

variance of the real-valued noise process. It can be seen that, based on any individual sample of the
received signals, the probability of error is quite large. However, calculating the averages (plotted with
dashed lines in Figure 1.5) of the signals over their entire durations (0.1 s, containing 100 samples) gives
values for the signal envelopes that are very close to the correct values −1 and 1, thus reducing the effect
of the added noise considerably. It is clear that in this case, the sample SNR is no longer enough to
determine the probability of error at the receiver. The relevant question is how should the sample SNR
be scaled to obtain the correct error probability? We study this using BPSK as an example.

Figure 1.5 Two noisy signal envelopes and their averages. For this example, Tsymb = 0.1 s, fsampl= 1000 Hz, A1 =
–A0 = 1, Eb/N0 = 15 dB ↔ SNR = –5 dB
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As above, the probability of symbol (bit) error based on the signal-space representation for BPSK
over an AWGN channel is:

Pe = P (N < −A1) =
∫ −A1

−∞

1

σn

√
2π

exp

(
− x2

2σ 2
n

)
dx

where N is a normally distributed random variable with standard deviation σ n and zero mean, and it is
assumed (without loss of generality) that the signal amplitude A1 > 0 (corresponding to a 1 being sent).
This can be thought of as transmitting a single sample of the signal envelope. Sampling a received signal
envelope S(t) + N(t) at k points produces a sequence of samples S(i·Tsampl) + N(i·Tsampl), where Tsampl =
1/fsampl, and i = 1. . .k. A correlator receiver for BPSK may use the following test statistic to decide
whether a 1 was most likely to be transmitted:

Z = A1

(
k∑

i=1

(
S

(
i · Tsampl

) + N
(
i · Tsampl

))
)

=
k∑

i=1

(
A1 S

(
i · Tsampl

)) +
k∑

i=1

(
A1 N

(
i · Tsampl

))

Assuming that a 1 was indeed sent, a false decision will be made if:

A1

k∑

i=1

N
(
i · Tsampl

)
< −k · A2

1 ⇔ 1

k
N

(
i · Tsampl

)
< −A1

or

N̄ < −A1

denoting the sample mean of the noise as N̄ . We note that the expression is the same as for the single
sample case, only with the normal random variable replaced by the sample mean of k samples from a
normal distribution. Basic results of statistics state that this sample mean is also normally distributed, in
this case with mean zero and standard deviation σN̄ = σn/

√
k. We thus find that the error probability in

this example is determined by the ratio k · (σ 2
s /σ 2

n ), or k times the sample SNR.
It should be noted that although we used BPSK as an example to simplify the relevant expressions,

the above result is not restricted only to BPSK. In fact, the obtained expression k · (σ 2
s /σ 2

n ) is generally
used in a form derived as follows:

k · σ 2
s

σ 2
n

= Tsymb

Tsampl
· P̄S

P̄N
= P̄S · Tsymb(

1/ fsampl
) · N0 Bn

= ES

N0

In the above, N0 is the noise power spectral density and Bn is the noise bandwidth. Note that the signal
energy ES = P̄S · Tsymb, and that Bn = fsampl (this is based on the Shannon-Nyquist sampling theorem
applied for complex samples). Note also that here it is implicitly assumed that the signal bandwidth
corresponds to the Nyquist frequency; if the signal is oversampled, care should be taken in performance
analysis to include only the noise bandwidth which overlaps with the spectrum of the signal. Finally,
the ratio of energy per bit to noise power spectral density Eb/N0, very commonly used as a measure for
signal quality, is obtained as:

Eb

N0
= 1

nb

Es

N0

where nb is the number of bits per transmitted symbol.

1.3 Fading Processes in Wireless Communication Channels
Additive noise is present in all communication systems. It is a fundamental result of information
theory that the ratio of signal and noise powers at the receiver determines the capacity, or maximum
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Figure 1.6 System model for transmitting information through a channel with additive white Gaussian noise

achievable rate of error-free transmission of information, of a channel. Generally, multiplicative effects
of a communication channel, or fading, can be represented as a convolution of the transmitted signal
with the channel impulse response, as illustrated in Figure 1.6. A general effect of fading is to reduce the
signal power arriving at the receiver. Since the noise power at the receiver is independent of the useful
signal, and the noise component does not experience fading, a fading channel generally reduces the ratio
of the signal power to the noise power at the receiver, thus also reducing the transmission capacity.

The distortion, or noise, caused by a communication channel to the transmitted signal can be divided
into multiplicative and additive components; the latter was considered above. Multiplicative noise,
or fading, can be defined as the relative difference between the powers contained in corresponding
sections of the transmitted and received signals. Factors that typically contribute to the fading in wireless
communication systems are the transmitter and receiver antenna and analog front-end characteristics,
absorption of the signal power by the propagation media, and reflection, refraction, scattering and
diffraction caused by obstacles in the propagation path. The receiver experiences the combined effect of
all these physical factors, which vary according to the positions of the receiver and transmitter within
the propagation environment. It should be noted that it is generally possible to describe the effects of
a communication channel entirely by its impulse response as illustrated in Figure 1.6. However, it is
typical that estimation of the average power conveyed by a transmission channel is performed separately
from the modelling of the channel’s impulse response, which is then power-normalized. We also apply
this principle in the following discussion on fading processes in wireless channels.

Fading in wireless channels is in literature typically characterized as a concatenation or superposition
of several types of fading processes. These processes are often classified using the qualitative terms path
loss, shadowing, and multipath fading, which is also often referred to as fast fading. However, these
fading processes cannot in general be considered fully independent of each other, and indeed in many
references (for example in [1],[12]) path loss and shadowing are not considered as separate processes.
Justification for this will be subsequently considered in more detail. In the following, fading is primarily
classified according to the typical variation from the mean attenuation over a spatial region of given
magnitude. The terms large-scale, medium-scale, and small-scale fading are thus used.

Small-scale fading corresponds directly to multipath fading, and involves signal power variations of
magnitude up to 40 dB on a spatial scale of a half-wavelength (for example 50 cm at 300 MHz). Averaging
the total fading in the receiver over a spatial interval significantly larger than a half-wavelength provides
information on the medium-scale fading, or shadowing. Over spatial intervals of magnitude hundreds of
meters, medium-scale fading involves signal power variations up to magnitude 20 dB. Again, averaging
the total fading over a spatial interval of several hundred meters provides an estimate for the large-scale
fading, which may vary up to 150 dB over the considered coverage area. [9] These denominations do not
suggest a different origin or effect for the fading types, but rather signify that typically different variation
around the mean attenuation is observed at different spatial scales, or observation windows.

1.3.1 Large-Scale Fading (Path Loss)

Large-scale fading, or path loss, is commonly modelled for signals at a given carrier frequency as a
deterministic function of the distance between the transmitter and receiver, and is affected by several
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parameters such as antenna gains and properties of the propagation environment between the transmitter
and receiver. Main physical factors that contribute to large-scale fading are free-space loss, or the
dispersion of the transmitted signal power into surrounding space, plane earth loss, and absorption of the
signal power by the propagation medium.

Free-space loss corresponds to dispersion of transmitted signal power into the space surrounding the
transmitter antenna. The most simple free-space loss estimation is obtained by assuming that signals
are transmitted omnidirectionally, that is, power is radiated equally to all directions, and there are no
obstacles within or around the transmission area, which would affect the propagation of electromagnetic
signals. With such assumptions, the power density at a distance d meters from the transmitter can be
written as:

pR = PT

4πd2
(watts/m2)

where PT is the total transmitted signal power. This expression is obtained simply by dividing the
transmitted power over the surface area of a sphere surrounding the transmitter antenna.

The assumptions specified above are not practical in most communication scenarios. Ignoring for now
the likely presence of obstacles around the transmitter and receiver, the free-space loss defined above
can be modified into a more realistic expression by taking into account the antenna characteristics of the
transmitter and receiver. Specifically, the actual received power depends on the effective aperture area
of the receiver antenna, which can be written as:

AR = λ2G R

4π
(m2)

where λ is the wavelength of the transmitted signal and GR is the receiver antenna gain, which is affected
by the directivity of the antenna – specifically the antenna radiation patterns in the direction of the
arriving signal. It should be noted that the above expression means that the received power decreases
along with an increase in the carrier frequency. Finally, taking into account the transmitter antenna gain
factor GT, the received power after free-space loss can be written as:

PR = GT pR AR = PT GT G Rλ2

(4πd)2
(W)

Note that in the above, the variables are assumed to be given in the linear scale, that is, not in decibels.
Figure 1.7 shows examples of the received power as a function of distance from the transmitted antenna
for different carrier frequencies, with the antenna gains and transmitted signal power normalized to
unity. Formally, an expression for the path loss PL, that is, attenuation of the transmitted signal, is
obtained from the above in decibels as:

PL ,dB = 10 log10

PT

PR
=10 log10

(4πd)2

GT G Rλ2
= 20 log10(4πd) − 10 log10(GT ) − 10 log10(G R) − 20 log10(λ)

Real signals do not follow the simple free-space attenuation model partly due to the presence of the
ground plane close to the transmitter and receiver. This causes so called plane earth loss, where signal
components reflected from the ground plane destructively interfere with the received useful signal. The
amount of plane earth loss depends on the distance and heights of the transmitter and receiver antennas.
Another significant cause for attenuation is the absorption of signal power by atmospheric gases and
hydrometeors (such as clouds, rain, snow etc.).

In addition to these factors, large-scale fading is typically defined to include the average of the
shadowing and multipath fading effects. Thus the type of propagation environment must be taken into
account in the total power loss. This has been done for example in the widely used Okumura-Hata
[13],[14] and COST 231 [15] models by approximating the parameters for the propagation loss for
specific environments and transmission setups from sets of field measurements [1]. As an example, the
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Figure 1.7 Examples of free-space loss for different carrier frequencies fC, with the antenna gains and transmitted
power normalized to 1

Hata model, which is based on the empirical work of Okumura, gives the following expression for path
loss in urban areas (in dB):

PL ,dB(d) = 69.55 + 26.16 log10( fC ) − 13.82 log10(hT ) − a(h R) + [
44.9 − 6.55 log10(hT )

]
log10(d)

where fC is again the carrier frequency, hT and hR are the heights of the transmitter and receiver antennas,
respectively, and a(hR) is a correction factor, which is specified according to the size of the considered
reception area. For large urban areas with the carrier frequencies of magnitude fC>300 MHz, this
correction factor is given as:

a(h R) = 3.2(log10(11.75h R))2 − 4.97

For other propagation scenarios, such as suburban and various rural areas, correction terms for the path
loss expression given above are specified.

The Hata model is considered to be valid roughly in the carrier frequency range 150—1500 MHz and
for distances d > 1 km, which means that it is not generally valid for example for modelling modern
cellular systems with high carrier frequencies and small cell sizes [19]. In the European COST 231
cooperation, an extension to the Hata model was specified, where the carrier frequency is restricted
between 1.5 and 2 GHz, the transmitter antenna height between 30 to 200 m, the receiver antenna
between 1 and 10 m, and the transmission distance between 1 and 20 km. With these limitations, the
path loss for an urban scenario according to the COST 231 extension to the Hata model is obtained from
[15] as:

PL ,dB(d) = 46.3 + 33.9 log10( fC ) − 13.82 log10(hT ) − a(h R) + [
44.9 − 6.55 log10(hT )

]
log10(d) + C

where a(hR) is as in the Hata model, and C is 0 dB for medium-size urban areas and suburbs, and 3 dB
for metropolitan areas.

The empirical path loss models outlined above are determined by averaging the results of large
sets of measurements performed in propagation environments with specific characteristics. Similar
path loss models can be obtained using analytic methods by assuming a statistical terrain description,
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where obstacles of suitable geometry are distributed randomly in the propagation environment, and
by calculating the average propagation loss based on such approximations. For example, [11] contains
a detailed description of deriving functions for path loss in various land environments using analytic
methods. The physical mechanisms that cause the environment-specific propagation loss are the same
for large-scale fading as for medium-scale fading, and are considered in more detail shortly.

Deterministic large-scale fading models – where estimations of the path loss are obtained as functions
of the propagation distance – are useful in applications where it is sufficient to have rough estimates on
the average attenuation of signal power over a large transmission area, or it is impractical to approximate
signal attenuation in more detail. These models are typically used for example in radio resource manage-
ment and planning of large wireless networks. It should be noted that expressions for large-scale fading
can be obtained for generic environments using statistical methods as outlined above or for specific
transmission sites by averaging over a site-specific approximation of medium-scale fading. However,
this is typically a computationally involved task, as described in the following.

1.3.2 Medium-Scale Fading (Shadowing)

As with large-scale fading, methods for modelling medium-scale fading can typically be categorized as
statistical or site-specific. In the statistical approach, the fading is typically assumed – based on empirical
data – to follow a lognormal distribution. The mean for this distribution can be obtained for a given carrier
frequency and distance from the transmitter using expressions for large-scale fading as outlined in the
previous subsection. The standard deviation and autocorrelation of the lognormal distribution are model
parameters, which must be selected according to the propagation environment. This standard deviation
is known as the location variability, and it determines the range of fluctuation of the signal field strength
around the mean value. Its value increases with frequency, and is also dependent on the propagation
scenario – for example, the standard deviation is typically larger in suburban areas than in open areas.
The standard deviation is typically in the range of 5 to 12 dB. Spatial correlation of shadowing is usually
modelled using a first-order exponential model [20]:

ρ(d) = e−d/dcorr

where dcorr is the distance over which the correlation is reduced by e−1. This distance is typically of the
same order as the sizes of blocking objects or object clusters within the transmission area.

An intuitive justification for the applicability of a lognormal model for medium-scale, or shadow fading,
can be obtained by considering the total attenuation of the signal components arriving at the receiver in
an environment with a large number of surrounding obstacles. Typically the signal components arriving
at the receiver have passed through a number of obstacles of random dimensions, each attenuating the
signal power by some multiplicative factor. The product of these fading factors contributes to the total
power attenuation. In the logarithmic scale, the product of several fading components is represented as
the sum of their logarithms, and again according to the central limit theorem the distribution of this sum
approaches a normal distribution. Figure 1.8 shows examples of log-normal medium-scale fading for
standard deviation 10 dB, and correlation distances 20 and 50 meters.

If site-specific data on the terrain profile and obstructions along the propagation path from the trans-
mitter to the receiver are available, an approximation for medium-scale fading can be calculated as
summarized in [9]:

1. Locate the positions and heights of the antennas.
2. Construct the great circle – or geodesic – path between the antennas. This represents the shortest

distance between the two terminals measured across the Earth’s surface.
3. Derive the terrain path profile. These are readily obtained from digital terrain maps, but it is of course

also possible to use traditional contour profile maps.
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Figure 1.8 Examples of lognormal medium-scale fading processes with standard deviation 10 dB, and correlation
distances 20 and 50 meters

4. Uplift the terrain profile by representative heights for any known buildings along the path.
5. Select a value for the effective Earth radius factor appropriate to the percentage of time being

designed for; modify the path profile by this value. The effective Earth radius factor is a constant
used to increase the effective radius of the Earth as seen by the propagating signal. This is due
to tropospheric refraction, which makes the propagation paths curve slightly towards the ground.
Since the atmospheric refractivity varies with pressure, temperature and water vapour pressure of the
atmosphere, the correct effective Earth radius factor will vary according to location and time.

6. Calculate the free-space loss for the path.
7. If any obstructions exist within 0.6 times the first Fresnel zone of the propagation path, calculate

diffraction over these obstructions and account for the excess loss in the fading. The Fresnel zones
can be thought of as containing the main propagating energy in the wave; obstructions occupying less
than 0.6 times the first Fresnel zone lead to an approximately 0 dB loss of signal power.

8. Compute the path length which passes through trees and add the corresponding extra loss.

Detailed descriptions for each of the steps above are given in [9]. It should be noted that the approach
outlined above accounts only for obstructions along the direct propagation path between the transmitter
and receiver. Considering propagation paths corresponding to reflections from objects not along the
direct path leads to small-scale fading models, considered in the following sections.

1.3.3 Small-Scale Fading (Multipath Propagation)

Small-scale fading is caused by the interference between several reflected, diffracted or scattered signals
arriving at the receiver. This effect is commonly called multipath propagation. Since the reflected
propagation paths may be of different lengths, corresponding to different arrival times for variously
faded copies of the transmitted signal at the receiver, the effect of small-scale fading is in the digital
domain similar to a finite impulse response (FIR) filter with complex-valued coefficients between the
transmitter and receiver. Thus, depending on the path delay profile of the channel, small-scale fading
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Figure 1.9 Examples of small-scale Rayleigh fading processes with normalized average power, and carrier fre-
quencies of 30 and 100 Hz

may vary rapidly not only in the temporal and spatial domains, but also in the frequency domain. The
rate of spatial variation of small-scale power attenuation is generally dependent on the carrier frequency
of the transmitted signal. Figure 1.9 shows examples of small-scale fading for carrier frequencies 30
and 100 Hz. Figure 1.10 shows an example of the combined effects of large- medium- and small-scale
fading.

Again, small-scale fading models can be divided into statistical and site-specific approaches. Site-
specific models typically apply ray-tracing methods, where detailed three-dimensional models of the
propagation environment are used to calculate propagation paths between the transmitter and receiver.
Such techniques were originally developed for indoor environments, but have also been extended to
dense urban outdoor areas [1]. Especially for modelling unconfined outdoor environments, ray-tracing
models require large amounts of data and are computationally demanding. In the rest of this chapter we
focus on statistical models for multipath propagation.

The causes of multipath propagation may be different in different channels. For example, it may be
caused by reflections from buildings, objects or the ground surface in wireless communication channels,
the reflection from walls and objects in wireless local area networks, reflections from the ionosphere in
high-frequency radio transmission, and so on. Multipath propagation may be schematically described as
in Figure 1.11, and mechanisms causing it are listed in Table 1.1 [21],[22]. As can be seen from Table
1.1, fading and propagation delay dispersion may arise even during wired transmission.

Small-scale fading is caused by the interference of multiple signals with random relative phases. Such
interference causes random variation of the amplitude of the received signal. This increases the error
probability in the system, since it reduces the signal-to-noise ratio. Dispersion of the delays of signal
components arriving at a receiver is caused by the difference in the lengths of different propagation paths.
If the delay difference is comparable with the symbol period, then the delayed responses from one signal
may impose on the next signal, causing intersymbol interference (ISI) and frequency-selective fading.

One of the most common models for delay-dispersive wireless propagation channels is the representa-
tion of the channel as a linear filter. The channel is described by a time-varying impulse response h(τ, t).
Applying the Fourier transform to h(τ, t) by the variable τ gives the time-varying frequency response
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Figure 1.10 Combined effects of the three considered fading processes (large/medium/small-scale). The normalized
received power is shown for carrier frequency 300 Hz, transmitted power and antenna gains set to unity, standard
deviation of lognormal shadowing 10 dB with correlation distance 20 m, and average power of Rayleigh-distributed
small-scale fading set to unity

Figure 1.11 Multi-level spreading
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Table 1.1 Multipath mechanisms

System Multipath mechanism

1 HF radio Reflection from multiple ionospheric layers
2 Mobile and personal radio Reflection and scattering from buildings, terrain, etc.
3 Microwave point-to-point links Atmospheric refraction and reflection
4 Atmospheric refraction and reflection Ground and building reflection
5 Radio LAN/indoor radio Reflection from walls and building structure
6 Diffuse infra-red Reflection from walls
7 Multimode optical fibre Multimode propagation
8 Telephone/cable network Reflections from terminations

H ( f, t), while the Fourier transform of h(τ, t) by the variable t gives the scattering function S(τ, ν),
which determines the Doppler spectrum of received signal as a function of the delay. The mean squared
amplitudes of the channel impulse response define the power delay profile of the channel. An example of
such a profile is shown in Figure 1.12. In the following section we consider in more detail this statistical
model for multipath propagation outlined above.

1.4 Modelling Frequency-Nonselective Fading

1.4.1 Rayleigh and Rice Distributions

Let µ1, µ2 be two normally distributed random variables with zero mean and variance σ 0
2: µ1,µ2∼N(0,

σ 0
2). A random variable R1, defined as R1 =

√
µ2

1 + µ2
2 has the probability density function:

pR1 (r ) =
⎧
⎨

⎩

r

σ 2
0

exp

(
− r 2

2σ 2
0

)

0
,

r ≥ 0
r < 0

and is said to be Rayleigh distributed.
Defining a random variable R2 as R2 =

√
(µ1 + a)2 + µ2

2, a ∈ 	 results in the probability density
function:

pR1 (r ) =
⎧
⎨

⎩

r

σ 2
0

exp

(
−r 2 + a2

2σ 2
0

)
I0

(
ra

σ 2
0

)

0
,

r ≥ 0
r < 0

where I0 is the modified Bessel function of the first kind and zero order. R2 is said to be Rice distributed.
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Figure 1.12 Impulse response of a delay-dispersive propagation channel
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1.4.2 Maximum Doppler Frequency Shift

In the following, the maximum frequency shift of the received signal experienced by a moving receiver
due to the Doppler effect is denoted as fD, and can be obtained from:

fD = |
v|
c

fC (1.2)

where 
v is the receiver velocity (a stationary transmitter is assumed), c is the speed of light, and fC

is the carrier frequency of the signal. Of course, different frequency components in wideband signals
experience different Doppler shifts, which causes some spreading of the signal bandwidth, but this
difference is considered small enough to be neglected, as the ratio between the signal bandwidth and
carrier frequency is typically small.

The maximum Doppler shift given by (1.2) is an absolute value that corresponds to situations where
the receiver is moving radially towards (corresponding to a Doppler shift of +fD) or away from the
transmitter (corresponding to −fD). The Doppler shift corresponding to other directions of movement
can be obtained as:

fD,α = fD cos α

where α is the angle between directions of the receiver velocity and the arriving signal.

1.4.3 Wide-Sense Stationary Stochastic Processes

A stochastic process is a family of random variables{Xt }t∈T , where T can be any set. If T = ℵ, the
stochastic process is simply a sequence of random variables Xn. Such a sequence is called strict-sense
stationary if and only if for any n = 0,1, . . . , and any k = 1,2, . . . , (X0, . . . ,Xn) and (Xk, . . . , Xk+n) have
the same distribution. [10]

A stochastic process is said to be wide-sense stationary (WSS) if the mean and autocorrelation of the
random variables Xn are invariant to a shift of the origin. More specifically, for any n = 0,1, . . . , k =
0,1, . . . , E[Xn] has a constant value and:

E
[
X∗

n Xk

] = rXX (|n − k|)
where the asterisk denotes complex conjugation and rXX(τ ) is an autocorrelation function whose value
depends only on the time shift τ [16]. Wide-sense stationarity is a weaker condition than strict-sense
stationarity, that is, every strict-sense stationary process is wide-sense stationarity, but not vice versa.

For the small-scale fading models described in the following, it is assumed that signals propagate to
the receiver antenna along a horizontal plane. Furthermore, it is assumed that the angles of arrival of
electromagnetic waves at the receiver antenna are uniformly distributed and that the receiver antenna
has a circular-symmetric radiation pattern. As mentioned before, the transmitter antenna is assumed to
be stationary, while the receiver moves with velocity 
v.

1.4.4 Rayleigh and Rice Models for Frequency-Nonselective Fading

If the propagation delay differences of the reflected and scattered signal components at the receiver
are negligible compared to the symbol interval of the transmission, the channel impulse response can
in practice be approximated by a single delta function multiplied by a random variable that describes
the amplitude fading. Thus there will be no significant interference caused by overlapping successive
transmitted symbols at the receiver, or intersymbol interference, ISI. Also, the channel affects all fre-
quency components of the signal similarly, and the term frequency-nonselective fading can be used. In
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this case, the small-scale fading is wholly characterized by the distribution and time-variant behaviour
of the channel coefficient random variable.

In non-line-of-sight (NLOS) conditions, where there is no direct, unobstructed propagation path from
the transmitter to the receiver, both the in-phase and quadrature parts of the received signal are assumed
to consist of sums of large numbers of independently faded scattered components. Thus, by the central
limit theorem, the fading of the in-phase and quadrature – or real and imaginary – components of the
signal can be approximated as independent normally distributed random variables. As described above,
this leads to a Rayleigh distribution for the amplitude of the complex fading coefficient. The phase for
the complex fading is uniformly distributed between 0 and 2π .

In line-of-sight (LOS) conditions, the received signal can be characterized as a sum of Rayleigh faded
NLOS components as described above, and a coherent LOS component with relatively constant power
determined by the medium-scale fading. This can be approximated by adding a constant representing
the amplitude of the line-of-sight signal contribution to the real part of the complex fading coefficient,
which leads to a Rice distribution for the fading amplitude.

As small-scale fading is a function of the receiver location, it is clear that the rate of variation of the
fading in time is dependent on the speed of the receiver. Analytically, the receiver velocity determines the
Doppler frequency shift of the received signal as given in Section 1.2.3. Based on the maximum Doppler
frequency and the angular probability distribution of the received signal components the probability
density function of the Doppler frequencies can be calculated. This probability density function is
directly proportional to the Doppler power spectral density of the received in-phase and quadrature
signal components, the inverse Fourier transform of which gives the autocorrelation function of the
channel fading coefficient [16]. It should also be noted that the primary detrimental effect of the Doppler
shift in a wireless channel is due to the random directions of arrival of the reflected signal components
arriving at the receiver. This randomness means that the received signals are randomly Doppler shifted
between –fD and fD, which causes a nontrivial broadening of the signal spectrum, and corresponding
interference between signal components adjacent in the frequency domain.

Given the assumptions specified in Section 1.2.3, for the NLOS case the Doppler power spectral
distribution is completely determined by the maximum Doppler frequency shift given by (1.2), and
follows the so called Jakes power spectral density, or Clarke power spectral density. The LOS case
differs from the above in that the Doppler power spectrum also contains a component corresponding to
the power and Doppler shift of the line-of-sight signal component. Figure 1.13 illustrates the probability
density function of the Doppler shifts and the corresponding autocorrelation function for the Rayleigh
fading process. The autocorrelation function can be written as given in [16]:

rXX(τ ) = 2σ 2
0 J0 (2π fDτ )

where J0(.) is the zeroth-order Bessel function of the first kind. The coherence time TC of the fading
process can be defined as the time interval that fulfills |rXX(TC)| = 0.5 rXX(0), that is, the time interval
after which the value of the autocorrelation has decreased to half of the value at the origin. For the
above, J0 (2π fDτ ) ≈ 0.5 ⇔ 2π fDτ ≈ 1.52. Thus TC ≈ 1.52/(2π fD). It should however be noted that the
coefficient 0.5 assumed above is in no way unique, and also other values for the coherence time could
be assigned. However, regardless of the numerical definition, it is important to note that the coherence
time is reciprocally proportional to the maximum Doppler frequency fD.

In practice, the time-variant channel coefficient for small-scale frequency-nonselective fading can
be generated by drawing two sequences of normally distributed random numbers – or white Gaussian
noise – corresponding to the components of the desired Rayleigh or Rice fading. One way to obtain the
correct autocorrelation for the fading is then to low pass filter both of these sequences of random
numbers according to the Jakes Doppler spectrum, producing coloured Gaussian noise. Using the
filtered sequences as the real and imaginary components of the complex fading coefficient results in
approximately the desired probability distribution and autocorrelation described above. Non-ideality
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Figure 1.13 Probability density function for Doppler frequency shifts corresponding to the Jakes power spectral
density (upper plot), and the corresponding autocorrelation function (lower plot)

arises with this approach mainly from the fact that neither white Gaussian noise nor ideal filters can be
realized exactly.

In modelling small-scale fading as described above, the mean and autocorrelation function are typically
kept constant, which means that the fading process is wide-sense stationary as defined in Section 1.4.3.
It is clear that the mean value of the small-scale fading is dependent on medium-and large-scale fading
processes, and thus the assumption of wide-sense stationarity is not generally valid. However, it has been
empirically found that small-scale fading can be approximated as a WSS process for short distances (of
order tens of wavelengths).

1.4.5 SNR in Rayleigh Fading Channels

In fading channels, the average power of the received signal should be considered a random variable
as specified above. Thus, denoting for example the instantaneous signal-to-noise ratio for a Rayleigh
channel by random variable �R, the SNR can be written as:

�R = P̄S R2

P̄N

where R is the Rayleigh distributed channel coefficient amplitude. The average SNR, denoted by ρ, is
obtained as:

ρ = E
[
R2

]
P̄S

P̄N
= 2σ 2

0 P̄S

P̄N

where σ0 is the variance of the Gaussian components used to define the Rayleigh distribution in Section
1.2.3. In simulations, the average power conveyed by a Rayleigh channel can thus be normalized by
selecting σ0 = 1/

√
2. The probability distribution function of �R is obtained as presented for example
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in reference [9], and can be written as:

p� (λR) = 1

ρ
exp

(−λR

ρ

)
, λR > 0

1.5 WSSUS Models for Frequency-Selective Fading

1.5.1 Basic Principles

If the range of propagation delay times from the transmitter to the receiver is not negligible compared
to the symbol duration of the transmitted signal, additional distortions of the received signal, such as
intersymbol interference and frequency-selective fading, are introduced. In such cases, the frequency-
nonselective fading models described above are not generally sufficient to describe the channel.

Adhering to the assumptions given in the previous section, a physical basis for modelling a frequency-
selective channel can be found in the ellipses model illustrated for example in [9] and [16]. In this
simplified representation of the scattering environment the transmitter and receiver are thought to be at
the focal points of elliptical scattering zones, where each ellipse – or set of points with a fixed value for
the sum of distances to the transmitter and receiver – defines the geometries of all propagation paths
corresponding to a given propagation delay value. This principle is illustrated in Figure 1.14. Thus it is
possible to consider the signal components corresponding to each discrete delay value as sums of large
numbers of scattered signals with uniform distributions for the angle of arrival at the receiver. This in
turn makes it possible to determine the time-variant fading coefficient for each discrete delay value as
specified in the previous subsection for frequency-nonselective fading.

Frequency-selective channel models are typically implemented as FIR filters with time-variant com-
plex coefficients by selecting Nt fixed discrete delay values corresponding to the nonzero filter coef-
ficients. The average power for each of the Nt delayed signal components is selected according to a
specific power-delay profile (PDP). Given the average powers of each of the nonzero components of
the FIR filter, the time-variant complex values for the filter coefficients are generated as WSS fading
processes, as described in the previous section. The Nt discrete scattering components of the channel
are typically defined as being statistically uncorrelated, which leads to the denomination wide-sense
stationary uncorrelated scattering, or WSSUS, models.
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Figure 1.14 Elliptical scattering zones and a corresponding power delay profile
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The parameters that characterize a WSSUS channel model according to a given transmission scenario
are the PDP, the number and delays of the discrete filter coefficients, or taps, and the types of fading
processes and Doppler spectra applied for the individual taps. Typically the continuous-time power delay
profile is selected according to an exponential decrease of received signal power as a function of the prop-
agation delay, although sometimes also mixtures of exponential distributions are used. Furthermore, the
tap amplitudes are most commonly modelled as Rayleigh fading processes, with possibly a short-delay
component defined as line-of-sight, and thus Rice distributed. The Doppler spectra for the independent
tap fading processes are typically assumed to have the Jakes distribution, although for long-delay com-
ponents, or far echoes, Gaussian power spectral densities have been found more accurate in some cases.

1.5.2 Definitions

For a channel with a continuous exponential power delay profile of the form S (τ ) =
(1/α) exp(−τ/α), τ > 0,α > 0, the mean delay is obtained as τ̄ = α and the delay spread SD as the
square root of the second moment S2

D = α2. The Fourier transform of S(τ ) is:

ψ ( f ) = 1/α

1/α + j2π f

which gives a measure of the correlation of the fading for a frequency separation of f Hz. The coherence
bandwidth BC can be defined – similarly to the coherence time TC considered previously – as the frequency
interval that fulfils |ψ(BC)| = 0.5 ψ(0), which is obtained by writing

√
(1/α)2 + (2π BC )2 = 2/α, and

results in:

BC =
√

3

2π SD

Again, regardless of the numerical definition it is clear that the coherence bandwidth is reciprocally pro-
portional to the delay spread of an exponential-PDP WSSUS channel. It is also evident that a continuous
exponential distribution is characterized by the single free parameter α, which can be selected according
to a given delay spread SD or coherence bandwidth BC. After defining the continuous distribution, it still
remains to determine a discrete power-delay profile that sufficiently describes the selected distribution.

A discrete power-delay profile consists of sets of propagation delay values τ i, and average scattered
signal powers Pi,i = 1, . . . ,Nt. In the discrete case, the delay spread can be written as:

SD =

√√
√
√ 1

PT

Nt∑

i=1

Piτ
2
i −

(
1

PT

Nt∑

i=1

Piτi

)2

where PT is the total power conveyed by the channel, given by PT = ∑Nt
i=1 Pi . Unless more specific

information on the propagation scenario to be modelled is available, it is reasonable to assume that
the delay times between consecutive nonzero components in the discrete PDP follow an exponential
distribution. This means that the number of channel components within a given delay range follows a
Poisson distribution, and those components are uniformly distributed within the given delay range.
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