Nature of Variability

There is no engineering product so simple that only one source of variability
affects its dimensions or properties. Take two examples of products which
are relatively simple in their physical appearance — high-carbon steel wire
and milk bottles.

The tensile strength of steel wire depends on numerous factors: the carbon
content of the ingot from which rods were made in the rolling mill; the
temperature of the heat treatment furnace through which the rods were
passed; the rate of passage through the furnace; the temperature of the
quenching bath; the ambient temperature in the heat treatment shop;
the number of dies through which the rods were drawn to finished wire
size; the rate of drawing; the ambient temperature in the wire mill, etc.
Variability in any of these factors is likely to generate variability in tensile
strength.

One of the hazards of a milkman’s life is the possibility of being stopped in
the street by a weights and measures inspector. Milk bottles are filled to a
predetermined level on automatic machines. The capacity at that level is
determined by the external profile of the bottle and by its wall thickness. The
bottles are made on multi-head automatic machines by dropping gobs of
molten glass into metal moulds (one at each work station), piercing them
hollow, then inflating them with compressed air until they fill the moulds.
The external profile can be affected by different settings at each work station,
by mould differences, by fluctuations in air pressure, by sagging after release
from the moulds, and by malfunctioning of the automatic timing gear which
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controls the various functions. The wall thickness is determined by the
setting of the gob feeder and this in its turn is affected by the viscosity of
the glass, the forehearth temperature, and the action of the shears which cut
off successive gobs from the continuous flow of the feeder. Variability in any
of these process factors may contribute to variability in the volumetric
capacity of bottles in continuous production.

It must be assumed that most engineering products which are infinitely
more complex than steel wire or milk bottles will be equally susceptible to a
multitude of factors located in raw materials, components, processes and the
environment which are capable of affecting the properties and dimensions of
a finished product. It is therefore important for engineers to have an under-
standing of the way in which random combinations of independent sources
can affect the variability of a finished product.

This can be demonstrated with random combinations of the variables R, Y
and B in Table 1.1. These single-digit numbers in the range 0-9 were gener-
ated by throwing twenty-faced icosahedron coloured dice (red, yellow and
blue) with the numbers zero to nine engraved twice on each die. The dice
were invented in 1950/60 by Mr Yasushi Ishida and patented by Tokyo-
Shibaura Electric Company. They were marketed and distributed by the
Japanese Standards Association for demonstrating the principles of statisti-
cal quality control. In the discussion that follows the data in Table 1.1 will be
used to demonstrate some of the phenomena of variability that are encoun-
tered in engineering data without resort to the mathematics of probability
theory. It is hoped this will help the reader to understand the relevance of
statistical methods to be described later.

Table 1.1 Dice scores

R Y B R+Y+B Mean Range RxY
0 6 5 11 0
0 8 9 17 0
4 6 5 15 13.8 6 24
7 0 6 13 0
9 4 0 13 36
1 9 4 14 9
7 0 3 10 0
7 3 6 16 12.2 9 21
2 4 1 7 8
1 9 4 14 9

Continued for one hundred trials
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One hundred trials were conducted, but only the first ten are recorded in
the table.

Readers who are not convinced that the trials are properly reported are at
liberty to conduct their own time-consuming experiments. Also recorded in
the table are the sums R + Y + B, and the products R x Y, along with the mean
and the range of groups of five. In statistical terms, the mean of a set of data is
the sum of the individuals divided by the number of individuals. The range
is the difference between the largest and smallest individuals.

The frequency distributions are as follows;

R,Yand B  Frequency R+Y+B  Frequency
0 30 0,1 0
1 38 2,3 1
2 20 4,5 2
3 38 6,7 7
4 29 8,9 12
5 31 10,11 15
6 29 12,13 24
7 32 14,15 17
8 21 16,17 4
9 32 18,19 9

20,21 5
22,23 3
24,25 1
26,27 0

These can be represented graphically in Figures 1.1 and 1.2.

In a perfect world one might expect Figure 1.1 to display 30 scores in each
of the 10 categories 0-9, but the bar chart (or histogram, to use a statistical
term) shows some degree of irregularity. If bias was suspected it would be
necessary to run a much more extensive series of trials to show whether the
dice were loaded in favour of scores 1 and 3 at the expense of scores 2 and 8.
In the absence of such evidence it can be assumed that the scoring conforms
to a rectangular distribution and that the irregularity is no more than is
commonly encountered in real life collections of data.

In sharp contrast, the bar chart for the sum of the three colours (Figure 1.2)
shows an entirely different pattern of distribution. There is a marked central
tendency around a mean score of 13.5 which is easy to explain. All possible
combinations of scores on the three dice are equally likely. There are many
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different combinations, yielding totals of 10, 11, 12, 13, 14 or 15, but very few
which can yield extreme values of 0, 1, 2, 3 or 24, 25, 26, 27. In fact there is only
one combination 0 + 0+ 0 which could yield 0 and only one other combina-
tion 9+9+9 which could yield 27, and neither occurred in this relatively
small set of trials.

Symmetrical bell-shaped distributions exhibiting a central tendency
are commonplace in engineering data. It is not unreasonable to argue these
are indicative of random combination of independent factors contributing to
the variability of the data and to suggest that analytical statistical methods
might be used to identify and control them.

However, it must not be assumed that other patterns of distribution will
not occur in engineering data. The distribution of products of red and yellow
scores, R x Y is highly skewed (i.e. asymmetric) as shown in Figure 1.3.

Skewed distributions do occur in engineering when the effect of a con-
tributory factor is one-sided. For example, in a thermionic valve electrons are
emitted from the heated cathode and are attracted by a positive voltage on
the anode. They have to pass through the grid (a helix of fine wire) to which a
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negative voltage is applied to control the current. Any lack of uniformity in
the grid helix can only increase, not reduce, the anode current. Again, in a
cylindrical mechanical product zero ovality is the ultimate degree of perfec-
tion. Any finite degree of ovality is positive if it is regarded as the excess of
the major diameter over the minor without regard to orientation. In such
circumstances skewed data distributions are inevitable.

Fortunately statistical methods are available which are not confined exclu-
sively to data that conforms to a symmetrical distribution. When skewed
distributions are encountered in engineering data they can often be handled
more easily by making a logarithmic transformation of the data.

The data in Table 1.1 can be used to demonstrate relationships between
samples and populations. This is a matter of considerable importance to engi-
neers who often have to draw valid conclusions from quite small samples of
data. For example, in the early stages of development of a new product it is
necessary to check measurements of a few prototypes to determine whether
the population will be on target and whether the (unavoidable) spread of
variability will lie comfortably within specification tolerance limits. In this
instance the prototype data can be treated as a sample from a population that
does not yet exist, yet a prediction has to be made.

This situation is simulated in the third and fourth columns of Table 1.1 by
taking the mean value and range of R + Y + B scores in successive groups of
five trials. This resulted in the following 20 mean values, not one of which
coincided with the mean of the original set of R+ Y + B scores (12.9). The
nearest was 13.2, but the extreme examples were 10.2 and 15.2. Clearly, there
were many instances in which the sample mean would not have given a good
estimate of the population mean.

13.8 12.2 13.4 11.2 12.2 11.2 12.0 14.0 10.8 15.0
13.8 14.4 15.2 12.2 14.0 12.2 13.2 14.2 13.2 10.2

The range of R+ Y + B scores over each group of five trials gave the
following results.

6 9 13 16 10 15 4 9 8 12 15 19 12 5 13 7 9 17 13 7

If the range is taken as a crude measure of overall variability (as many
development engineers have been known to do in the past when writing
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specification tolerances) it is clear that not even the highest value (19)
recorded in this set of trials would embrace the span of the distribution
shown in Figure 1.2. Most of the others would fall very far short of this
requirement.

The relatively small sets of data used by engineers at the development
stage of anew product can be regarded as samples from a population which
will exist when full-scale production starts. The discrepancies in mean
value and variability which can exist between a sample, and the population
from which it is drawn, identify a serious hazard along the road from
design, through development to production of manufactured products.
It is to be hoped that the straightforward demonstration of the risks given
above will alert engineers to the dangers and persuade them to listen more
carefully to the advice of statisticians, or (better still) develop some statis-
tical skill on their own account. So, if range is not to be regarded as a
satisfactory measure of overall variability what else can we do? Consider
the following small set of data:

16 18 16 10 14

The location of the data on a scale of measurement can be identified by
calculating the mean value.

(16 +18+16+10+14)/5=74/5=14.8
The deviates of the individuals from the mean are

16.0-148= 12
18.0-148 = 32
16.0-148 = 12
10.0 -14.8 = —4.8
14.0-14.8 =-0.8

The sum of these deviates, taking account of positive and negative signs,
will be zero. Suppose we square them before adding them together?

1.22 4322 +122 + (—4.8)2+(—0.8)2=1.44 +10.24 + 1.44 +23.04 + 0.64
=36.80

This sum of squares is a powerful overall measure of variability which gives
equal weight to all of the individuals, not just the extreme values. It does,
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however, respond to the size of the data. If data from the same source had
10 values the sum of squares would be (roughly) twice as large.

This can be overcome by dividing the sum of squares by the number of

individuals to give a mean square:
36.80
= = 7.36

In some situations the divisor should be one less than the number of
individuals, but more of that later in Section 2.2!

Summing squares to measure variability is the foundation on which
statistical analysis is built. In modern usage ‘statistics” implies much more
than simply recording events. In the hands of a competent engineer statistical
analysis is a powerful tool which should not be neglected. Now read on!
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