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1.1 Introduction

Each day, biomedical researchers discover new insights about our biological
knowledge, augmenting by leaps our collective understanding of how our bodies
work and why they fail us at times. Today, in one minute we accumulate as
much information as we would have from an entire year just three decades ago.
Much of it is made available through publishing and databases. However, any
group’s effective comprehension of this full complement of knowledge is not
possible today; the stream of real-time publications and database uploads cannot
be parsed and indexed as accessible and application-ready knowledge yet. This
has become a major goal for the research community, so that we can utilize the
gains made through the all the funded research initiatives. This is what we mean
by biomedical knowledge-driven applications (KDAs).

Knowledge is a powerful concept and is central to our scientific pursuits.
However, knowledge is a term that too often has been loosely used to help sell
an idea or a technology. One group argues that knowledge is a human asset,
and that all attempts to digitally capture it are fruitless; another side argues that
any specialized database containing curated information is a knowledge system.
The label ‘knowledge’ comes to connote information contained by an agent or
system that (we wish) appears to have significant value (enough to be purchased).
Although the freedom to use labels and ideas should not be impeded, an agreed
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6 KNOWLEDGE-BASED BIOINFORMATICS

use of concepts like knowledge would help align community efforts, rather than
obfuscate them. Without this consensus, we will not be able to define and apply
principles of knowledge to relevant research and development issues that would
serve the public. The definition for knowledge needs to be clear, uncomplicated,
and practical:

(1) Some aspects of Knowledge can be digitized, since much of our lives
depends on the use of computers and the Internet.

(2) Knowledge is different from data or stored information; it must include
context and sufficient embedded semantics so that its relevancy to a prob-
lem can be determined.

(3) Information becomes Knowledge when it is applicable to more general
problems.

Knowledge is about understanding acquired and annotated (sometimes validated)
information in conjunction with the context in which it was originally observed
and where it had significance. The basic elements in the content need to be appro-
priately abstracted (classification) into corresponding concepts (usually existing)
so that they can be efficiently reapplied in more general situations. A future medi-
cal challenge may deal with different items (humans vs. animals), but nonetheless
share some of the situational characteristics and generalized ideas of a previously
captured biomedical insight. Finding this piece of knowledge at the right time
so that it can be applied to an analogous but distinct situation is what sepa-
rates knowledge from information. Since this is something humans have been
doing by themselves for a long time, we have typically been associating knowl-
edge exclusively with human endeavors and interactions (e.g., ‘sticky, local, and
contextual,’ Prusak and Davenport, 2000).

KDA is essential for both industrial and academic biomedical research; the
need to create and apply knowledge effectively is driven by economic incentives
and the nature of how the world works together. In industry, the access to public
and enterprise knowledge needs to be both available and in a form that allows
for seamless combinations of the two sets. Concepts must enable the bridging
between different sources, such that the connected union set provides a business
advantage over competitors. Academic research is not that different in having
internal and external knowledge, but once a novel combination has been found,
validated and expounded, the knowledge is then submitted to peer review and
published in an open community. Here, rather than supporting business drivers,
scientific advancement occurs when researchers strive to be recognized for their
contribution of novel and relevant scientific insights. The free and efficient
(and sometimes open) flow of knowledge is key in both cases (Neumann and
Prusak, 2007).

In preparation for the subsequent discussions, it is worth clarifying what will
be meant by data, information, and knowledge. The experimentalists’ defini-
tion of data will be used for the most part unless otherwise noted, and that is
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information measured or generated by experiments. Information will refer to all
forms of digitized resources (aka data by other definitions) that can be stored
and recalled from a program; it may or may not be structured. Finally, based
on the above discussion, knowledge refers to information that can be applied to
specific problems, usually separate from the sources and experiments from which
they were derived. Knowledge can exist in both humans and digital systems, the
former being more flexible to interpretation; the latter relies on the application
of formal logic and well-defined semantics.

This chapter begins by providing a review of historical and contemporary
knowledge discovery in bioinformatics, ranging from formal reasoning, to knowl-
edge representation, to the issues surrounding common knowledge, and to the
capture of new knowledge. Using this initial background as a framework, it then
focuses on individual current knowledge discovery applications, organized by the
various components and approaches: ontologies, text information extraction, gene
expression analysis, pathways, and genotype–phenotype mappings. The chapter
finishes by discussing the increasing relevance of the Web and the emerging
use of Linked Data (Semantic Web) ‘data aggregative’ and ‘data articulative’
approaches. The potential impact of these new technologies on the ongoing
pursuit of knowledge discovery in bioinformatics is described, and offered as
practical direction for the research community.

1.2 Formal reasoning for bioinformatics

Computationally based knowledge applications originate from AI projects back
in the late 1950s that were designed to perform reasoning and inferencing based
on forms of first-order logic (FOL). Specifically, inferencing is the processing
of available information to draw a conclusion that is either logically plausible
(inconclusive support) or logically necessary (fully sufficient and necessary).
This typically involves a large set of chained reasoning tasks that attempt to
exhaustively infer precise conclusions by looking at all available information
and applying specified rules.

Logical reasoning is divided into three main forms: deduction, induction, and
abduction. These all involve working with preconditions (antecedents), conclu-
sions (consequents), and the rules that associate these two parts. Each one tries
to solve for one of these as unknowns given the other two knowns. Deduction
is about solving for the consequent given the antecedent and the rule; induc-
tion is about finding the rule that determines the consequent based on the known
precondition; and abduction is about determining the precondition based on the
conclusions and the rules followed. Abduction is more prone to problems since
multiple preconditions can give rise to the same conclusions, and is not as fre-
quently employed; we will therefore focus only on deduction and induction here.

Deduction is what most people are familiar with, and is the basis for syllo-
gisms: ‘All men are mortal; Socrates is a man: Therefore Socrates is mortal!’
Deductive reasoning requires no further observations; it simply requires applying
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rules to information on preconditions. The difficulty is that in order to perform
some useful reasoning, one must have a lot of deep knowledge in the form of
rules so that one can produce solid conclusions. Mathematics lends itself well
here, but attempts to do this in biology are limited to simple problems: ‘P53 plays
a role in cancer regulation; Gene X affects P53: Therefore Gene X may play a
role in a cancer.’ The rule may be sound and generalized, but the main shortcom-
ing here is that most people could have performed this kind of inference without
invoking a computational reasoner. Evidence is still scant that such reasoning
can be usefully applied to areas such as genetics and molecular biology.

Induction is more computationally challenging, but may have more real-world
applications. It benefits from having lots of evidence and observations on which
to create rules or entailments, which, of course, there is plenty of in research.
Induction works on looking for patterns that are consistent, but can be relaxed
using statistical significance to allow for imperfect data. For instance, if one
regularly observes that most kinases downstream of NF-kB are up-regulated in
certain lymphomas, one can propose a rule that specifies this up-regulation rela-
tion in these cancers. Induction produces rule statements that have antecedents
and consequents. For induction to work effectively one must have (1) sufficient
data, including negative facts (when things didn’t happen); (2) sufficient associ-
ated data (metadata), describing the context and conditions (experimental design)
under which the data were created; and (3) a listing of currently known asso-
ciations which one can use to specifically focus on novel relations and avoid
duplication. Induction by itself cannot determine cause and effect, but with suf-
ficient experimental control, one can determine which rules are indeed causal.
Indeed, induction can be used to generate hypotheses from previous data in order
to design testable experiments.

Induction relies heavily on the available facts present in sources of knowledge.
These change with time, and consequently inductive reasoning may yield different
results depending on what information has recently been assimilated. In other
words, as new facts come to light, new conclusions will arise out of induction,
thereby extending knowledge. Indeed, a key reason that standardized databases
such as Gene Expression Omnibus (GEO, www.ncbi.nlm.nih.gov/geo/) exist is
so we can discover new knowledge by looking across many sets of experimental
data, longitudinally and laterally.

Often, reasoning requires one to make ‘open world assumptions’ (OWAs)
of the information (e.g., Ling-Ling is a panda), which means that if a relevant
statement is missing (Ling-Ling is human is absent), it must be assumed plausible
unless (1) proven false (Ling-Ling’s parents are not human), (2) shown to be
inconsistent (pandas and humans are disjoint), or (3) the negation of the statement
is provided (Ling-Ling is not human). OWAs affect deduction by expanding the
potential solution space, since some preconditions are unknown and therefore
unbounded (not yet able to be fixed). Hence, a receptor with no discovered
ligand should be treated as a potential receptor for many different signaling
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processes (ligands are often associated with biological processes). Once a ligand
is determined, the signaling consequences of the receptor are narrowed according
to the ligand.

With induction, inference under OWAs will usually be incomplete, since a
rule cannot be exactly determined if relevant variables are unknown. Hence some
partial patterns may be observed, but they will appear to have exceptions to the
rule. For example, a drug target for colon cancer may not respond to inhibitors
reliably due to regulation escape through an unbeknownst alternative pathway
branch. Once such a cross-talk path is uncovered, it becomes obvious to try
and inhibit two targets together, one in each pathway, to prevent any regulatory
escape (aka combinatoric therapy).

Another relevant illustration is the inclusion of Gene Ontology (GO) terms
within gene records. Their presence suggests that evidence exists to recommend
assigning a role or location to the gene. However, the absence of the attribute
‘regulation of cell communication’ could signify a few things: (1) the gene has
yet to be assessed for involvement in ‘regulation of cell communication’; (2) the
gene has been briefly reviewed, and no obvious evidence was found; and (3) the
gene has been thoroughly assessed by a sufficient inclusionary criteria. Since there
is no way to determine, today, what the absence of a term implies, this would
suggest that knowledge mining based on presence or absence of GO terms will
often be misleading.

OWAs often cannot be automatically applied to relational database manage-
ment systems (RDBMSs), since the absence of an entry or fact in a record may
indeed mean it was measured but not found. A relational database’s logical con-
sistency could be improved if it explicitly indicated which facts were always
measured (i.e., lack of fact implies measured and not observed), and which ones
were sometimes measured (i.e., if measured, always stated, therefore lack of fact
implies not measured). The measurement attribute would need to include this
semantic constraint in an accessible metamodel, such as an ontology.

Together, deduction and induction are the basis for most knowledge discovery
systems, and can be invoked in a number of ways, including non-formal logic
approaches, for example SQL (structured query language) in relational databases,
or Bayesian statistical methods. Applying inference effectively to large corpora of
knowledge requires careful planning and optimization, since the size of informa-
tion can easily outpace the computation resources required due to combinatorial
explosion. It should be noted that biology is notoriously difficult to generalize
completely into rules; for example, the statement ‘P is a protein iff P is triplet-
encoded by a Gene’ is almost always true, but not in the case of gramicidin D, a
linear pentadecapeptide that is synthesized de novo by a multi-enzyme complex
(Kessler et al., 2004). The failure of AI, 25 years ago, was in part due to not real-
izing this kind of real-world logic problem. We hope to have learned our lessons
from this episode, and to apply logical reasoning to large sets of bioinformatic
information more prudently.
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1.3 Knowledge representations

Knowledge Representations (KRs) are essential for the application of
reasoning methodologies, providing a precise, formal structure (ontology)
to describe instances or individuals, their relations to each other, and their
classification into classes or kinds. In addition to these ontological elements,
general axioms such as subsumption (class–subclass hierarchies) and property
restrictions (e.g., P has Child C iff P is a Father ∨ P is a Mother) can be defined
using common elements of logic. The emergence of the OWL Web ontology
language from the W3C (World Wide Web Consortium) means that such logic
expressions can be defined and applied to information resources (IRs) across the
Web, enabling the establishment of KRs that span many sites over the Internet
and many kinds of information resources. This is an attractive vision and could
generate enormous benefits, but in order for all KRs to work together, there still
needs to be coherence and consistency between the ontologies defined (in OWL)
and used. Efforts such as the OBO (Open Biomedical Ontologies) Foundry are
attempting to do this, but also illustrate how difficult this process is.

In the remainder of this chapter, we will take advantage of a W3C standard
format known as N3 (www.w3.org/TeamSubmission/n3/) for describing knowl-
edge representations and factual relations; the triple predicate form ‘A Brel C’ is
to be interpreted as ‘Entity A has relation Brel with entity C.’ Any term of the
form ‘?B’ signifies a named variable that can be anything that makes the predicate
true; for example ‘?g a Gene’ means ?g could be any gene, and the double clause
‘?p a Protein. ?p is_expressed_in Liver’ means any protein is expressed in liver.
Furthermore, ‘;’ signifies a conjunction between phrases with the same subject
but multiple predicates (‘?p a Protein ; is_expressed_in Liver’ as in the above).
Lastly, ‘[]’ brackets are used to specify any entity whose name is unknown
(or doesn’t matter) but which has relations contained within the brackets: ‘?p
is_expressed_in [a Neural_Tissue; stage Embryonic].’ One should recognize that
such sets of triples result in the formation of a system of entity nodes related to
other entity nodes, better known as a graph.

1.4 Collecting explicit knowledge

A major prerequisite of knowledge-driven approaches is the need to collect and
structure digital resources as KRs (a subset of IRs), to be stored in knowledge
bases (KBs) and used in knowledge applications. Resources can include digital
data, text-mined relations, common axioms (subsumption, transitivity), common
knowledge, domain knowledge, specialized rules, and the Web in general. Such
resources will often come from Internet-accessible sources, and it is assumed
that they can be referenced similarly from different systems. Web accessibility
requires the use of common and uniform resource identifiers (URIs) for each
entity as well as the source system; the additional restriction of uniqueness is not
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as easy to implement, and can be deferred as long as it is possible to determine
whether two or more identifiers refer to the same thing (e.g., owl:sameAs).

In biomedical research, recognizing where knowledge comes from is just as
important as knowing it. Phenomena in biology cannot be rigorously proven as
in mathematics, but rather are supported by layers of hypotheses and combina-
tions of models. Since these are advanced by researchers with different working
assumptions and based on evidence that often is local, keeping track of the con-
text surrounding each hypothesis is essential for proper reasoning and knowledge
management. Scientists have been working this way for centuries, and much
of this has been done through the use of references in publications whenever
(hypothetical) claims are compared, corroborated, or refuted. One recent activity
that is bridging between the traditional publication model and the emerging KR
approach is the SWAN project (Ciccarese et al., 2008), which has a strong focus
on supporting evidence-based reasoning for the molecular and genetic causes of
Alzheimer’s disease.

Knowledge provenance is necessary when managing hypotheses as they either
acquire additional supporting evidence (accumulating but never conclusive), or
are disproved by a single critical fact that comes to light (single point of failure).
Modal logic (see below), which allows one to define hypotheses (beliefs) based
on partial and open world assumptions (Fagin et al., 1995), can dramatically
alter a given knowledge base when a new assumption or fact is introduced to
the reasoner (or researcher). As we begin to accumulate more hypotheses while
at the same time having to review new information, our knowledge base will be
subject to major and frequent inference-driven updates. This dependency argues
strongly for employing a common and robust provenance framework for both
scientific facts and (hypotheses) models. Without this capability, one will never
know for sure on what specific arguments or facts a model is based, hence
impeding effective Knowledge Discovery (KD). It goes without saying that this
capability will need to work on and across the Web.

The biomedical research community has, to a large extent, a vast set of com-
mon knowledge that is openly shared. New abstracts and new data are put on
public sites daily whenever they are approved or accepted, and many are indexed
by search engines and associated with controlled vocabulary (e.g., MeSH). How-
ever, this collection is not automatically or easily assimilated into individual
applications using knowledge representations, so that researchers cannot compare
or infer new findings against their existing knowledge. This barrier to knowledge
discovery could be removed by ensuring that new published reports and data are
organized following principles of common knowledge.

1.5 Representing common knowledge

Common knowledge refers to knowledge that is generally known (and
accessible) by everyone in a given community, and which can be formally
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described. Common knowledge usually differs from tacit knowledge (Prusak
and Davenport, 2000) and common sense, both of which are virtually impossible
to explicitly codify and which require assumptions that are non-deducible1. For
these reasons we will focus specifically on explicit common knowledge as it
applies to bioinformatic applications.

An example of explicit common knowledge is ‘all living things require an
energy source to live.’ More relevant to bioinformaticists is the central dogma
of biology which states: ‘genes are transcribed into mRNA which translate into
proteins; implying protein information cannot flow back to DNA,’ or formally:

∀ Protein ∃ Gene (Gene transcribes_into mRNA ∧ mRNA
translates_into

Protein) ⇒ ¬ (Protein reverse_translate Gene).

This is a very relevant chunk of common knowledge that not only maps proteins
to genes, but even constrains the gene and protein sequences (up to codon ambi-
guity). In fact, it is so common, that it has been (for many years) hard-wired into
most bioinformatic applications. The knowledge is therefore not only common,
but pervasive and embedded, to the point where we have no further need to
recode this in formal logic. However, this is not the case for more recent insights
such as SNP (single nucleotide polymorphism) associations with diseases, where
the polymorphism does not alter the codons directly, but the protein is either
truncated or spliced differently. Since the set of SNPs is constantly evolving,
it is essential to make these available using formal common knowledge. The
following (simplified) example captures this at a high level:

∀ Genetic_Disease ∃ Gene ∃ Protein ∃ SNP (SNP within
Gene ∧ Gene

expresses Protein ∧ SNP modifies Protein ∧ SNP associated
Genetic_Disease) ⇒ SNP root_cause_of Genetic_Disease.

Most of these relations (protein structure and expression changes) are being
curated into databases along with their disease and gene (and sequence) asso-
ciations. It would be a powerful supplement if such knowledge rules could be
available as well to researchers and their applications. An immediate benefit
would be to allow for application to extend their functionality without need for
software updates by vendors; simply download the new rules based on common
understanding to reason with local knowledge.

Due to the vastness of common knowledge around all biomedical domains
(including all instances of genes, diseases, and genotypes), it is very difficult to
explicitly formalize all of it and place it in a single KB. However, if one considers
public data sources as references of knowledge, then the amount of digitally

1 Tacit knowledge is often related to human habit and know-how, and is not typically encodable
and therefore not easily shared; common sense does involve logic but requires assumptions that
cannot be formally defined.
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encoded knowledge can be quickly and greatly augmented. This does require
some mechanism for wrapping these sources with formal logic, for example
associating entities with classes. Fortunately, the OWL-RDF (resource description
framework) model is a standard that supports this kind of information system
wrapping, whereby entities become identified with URIs and can be typed by
classes defined in separate OWL documents. Any logical constraints presumed
on database content (e.g., no GO process attribute means no evidence found
to date for gene) can be explicitly defined using OWL (and other axiomatic
descriptions); these would also be publicly accessible from the main source site.

Common knowledge is useful for most forms of reasoning, since it facil-
itates making connections between specific instances of (local) problems and
generalized rules or facts. Novel relations could be deduced on a regular basis
from the latest new findings, and deeper patterns induced from increasing num-
bers of data sets. Many believe that true inference is not possible without the
proper encoding of complete common knowledge. Though it will take time to
reach this level of common knowledge, it appears that there is interest in head-
ing towards such open knowledge environments (see www.esi-bethesda.com/
ncrrworkshops/kebr/index.aspx). If enough benefits are realized in biomedicine
along the way, more organized support will emerge to accelerate the process.

The process for establishing common knowledge can be handled by a form
of logic known as modal logic (Fagin et al., 1995), which allows different agents
(or scientists) to be able to reason with each other though they may have different
subsets of knowledge at a given time (i.e., each knows only part of the story).
The goal here is to somehow make this disjoint knowledge become common to
all. Here, common knowledge is (1) knowledge (ϕ) all members know about
(EGϕ), and importantly (2) something known by all members to be known to
the other members. The last item applies to itself as well, forming an infinite
chain of ‘he knows that she knows that he knows that. . .’ signifying complete
awareness of held knowledge

(
Cϕ = limn→∞En...E2E1

Gϕ
)
.

Another way to understand this, is that if Amy knows X about something, and
Bob knows only Y, and X and Y are both required to solve a research problem
(possibly unknown to Amy and Bob), then Amy and Bob need to combine
their respective sets as common knowledge to solve a given problem. In the
real world this manifests itself as experts (or expert systems) who are called
upon when there is a gap in knowledge, such as when an oncologist calls on a
bioinformatician to help analyze biomarker results. Automating this knowledge
expert process could greatly improve the efficiency for any researcher when
trying to deduce if their new experimental findings have uncovered new insights
based on current knowledge.

In lieu of a formal method for accessing common knowledge, researchers
typically resort to searching through local databases or using Google (discussed
later) in hopes of filling their knowledge gaps. However, when searching a
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RDBMS with a query, one must know how to pose the query explicitly. This
often results in not uncovering any new significant knowledge, since one requires
sufficient prior knowledge to enter the right query in the first place, in which
case one is searching only ‘under the street lamp.’ More likely, only partic-
ular instances of facts are uncovered, such as dates, numeric attributes and
instance qualia. This is a distinguishing feature that separates databases from
knowledge bases, and illustrates that databases can support at best very focused
and constrained knowledge discovery. Specifically, queries using SQL produce
limited knowledge, since they typically do not uncover generalized relations
between things. Ontological relations rely on the ability to infer classes, groups
of relations, transitivity (multi-joins), and rule satisfiability; these are the instru-
ments by which general and usable knowledge can be uncovered. Standard
relational databases (by themselves) are too restrictive for this kind of reason-
ing and do not properly encode (class and relation) information for practical
knowledge discovery.

In many cases, in the bioinformatics community this has come to be viewed as
knowledge within databases. For example, the curated protein database Swiss-
Prot/UniProt is accepted as a high quality source of reviewed and validated
knowledge for proteins, including mutational and splice variants, relations to
disorders, and the complexes which they constitute. In fact, it is often the case
that curated sets of information are informally raised to the level of knowledge
by the community. This definition is more about practice and interpretation than
any formal logic definition. Nonetheless, it is relevant and valid for the commu-
nity of researchers, who often do apply logic constraints on the application of
this information: if a novel protein polymorphism not in Swiss-Prot is discov-
ered and validated, it is accepted as real and eventually becomes included into
Swiss-Prot.

Nonetheless, databases are full of valuable information and could be
re-formatted or wrapped by an ontological layer that would support knowl-
edge inference and discovery, defined here as implicit knowledge resources
(IR → KR). If this were to happen, structured data stores could be federated
into a system of biomedical common knowledge: knowledge agents could be
created that apply modal logic reasoning to crawl across different knowledge
resources on the Web in search of new insights. Suffice it to say, practical
modal logic is still an emerging and incomplete area of research. Currently,
humans are best at identifying which new facts should be incorporated into
new knowledge regarding a specific subject or phenomenon; hence researchers
would be best served by being provided with intelligent knowledge assistants
that can help identify, review, compare, and assimilate new findings from these
biomedical IRs. There is a lot of knowledge in biology that could be formally
common, consequently there is a clear need to transform public biomedical
information sources to work in concert with knowledge applications and
practices. Furthermore, this includes the Web, which has already become a core
component of all scientific research communities.
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1.6 Capturing novel knowledge

Not everything can be considered common knowledge; there are large collections
of local-domain knowledge consisting of works and models (published and pre-
published) created by individual research groups. This is usually knowledge that
has not been completely vetted or validated yet (hypotheses and beliefs), but
nonetheless can be accessed by others who wish to refute or corroborate the
proposed hypotheses as part of the scientific method. This knowledge is connected
to and relies on the fundamentals of biology, which are themselves common
knowledge (since they form the basis of scientific common ground). So this
implies that we are looking for a model which allows connecting local knowledge
easily with common knowledge.

Research information is knowledge that is in flux; it is comprised of
assumptions and proposed models (mechanisms of action). In modal logic
(Fagin et al., 1995) this is comparable to the KD45 axioms: an agent (individual
or system) can believe in something not yet proven true, but if shown to
be false, the agent cannot believe in it anymore; that is, logic contradictions
are not allowed. KD45 succinctly sums up how the scientific process works
with competing hypotheses, and how all parallel hypotheses can co-exist until
evidence emerges that proves some to be incorrect.

Therefore, the finding (by a research group), that a mutation in the BRCA2
gene is always associated with type 2 breast cancer, strongly argues against any
other gene being the primary cause for type 2 susceptibility. Findings that have
strong causal relations, such as nucleotide level changes and phenotypes of people
always carrying these, are prime examples of how new-findings knowledge can
work together with common knowledge. As more data is generated, this process
will need to be streamlined and automated; and to prevent too many false posi-
tives from being retained, the balanced use of logic and statistics will be critical.

The onslaught of large volumes of information being generated by experi-
ments and subsequent analyses requires proper data set tracking, including the
capture of experimental conditions for each study. The key to managing all these
associated facts is enforcing data provenance. Without context and provenance,
most experimental data will be rendered unusable for other researchers, a
problem already identified by research agencies (Nature Editorial, 2009).
Provenance will ensure a reliable chain of evidence associated by conditions and
working hypotheses that can be used to infer high-value knowledge associations
from new findings.

1.7 Knowledge discovery applications

Once common and local knowledge are available to systems in a machine-
interpretable form, the construction and use of knowledge-discovery applications
that can work over these sources becomes practical and empowering. KDA has its
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roots in what has been labeled Knowledge Discovery and Data Mining (KDD,
Fayyad et al., 1996), which consists of several computational approaches that
came together in the mid 1990s under a common goal. The main objective of
KDD is to turn collected data into knowledge, where knowledge is something of
high value that can be applied directly to specific problems. Specifically, it had
become apparent that analysts were ‘drowning in information, but starving for
knowledge’ (Naisbitt, 1982). It was hoped that KDD would evolve into a formal
process that could be almost entirely computationally driven. It was to assist
knowledge workers during exploratory data analysis (EDA) when confronted by
large sets of data. The extraction of interesting insights via KDD follows more
or less inductive reasoning models.

KDD utilizes approaches such as first-order logic and data mining (DM) to
extract patterns from data, but distinguishes itself from DM in that the patterns
must be validated, made intelligently interpretable, and applicable to a problem.
More formally, KDD defines a process that attempts to find expression patterns
(E) in sets of Facts (F) that have a degree of certainty (C) and novelty (N)
associated with them, while also being useful (U) and simple (S) enough to
be interpreted. Statistics plays a strong role in KDD, since finding patterns
with significance requires the proper application and interpretation of statistical
theories. Some basic KDD tools include Decision Trees, Classification and
Regression, Probabilistic Graphs, and Relational Learning. Most of these can
be divided into supervised learning and unsupervised learning. Some utilize
propositional logic more than others.

Key issues that KDD was trying to address include:

• Data classification

• Interpretation of outcomes (uncovering relations, extraction of laws)

• Relevance and significance of data patterns

• Identification and removal of confounding effects (Simpson’s paradox,
http://plato.stanford.edu/entries/paradox-simpson/).

Patterns may be known (or hypothesized) in advance, but KDD is supposed
to aid in the extraction of such patterns based on the statistical structure of
the data and any available domain knowledge. Clearly, information comes in
a few flavors: quantitative and qualitative (symbolic). KDD was intended to
take advantage of both wherever possible. Symbolic relations embedded in both
empirical data (e.g., what conditions were different samples subjected to?) and
domain knowledge (e.g., patient outcomes are affected by their genotypes) begin
to demonstrate the true symbolic nature of information. That is, data is about
tying together relations and attributes, whether it is arranged as tables of values
or sets of assertions. The question arises, how can we use this to more efficiently
find patterns in data? The key here is understanding that relational data can be
generalized as data graphs: collections of nodes connected by edges, analogous
to how formal relational knowledge structures are to function (see above).
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Indeed, all the KDD tools listed have some form of graph representation: deci-
sion trees, classification trees, regression weighted nodes, probabilistic graphs,
and relational models (Getoor et al., 2007). The linked nodes can represent sam-
ples, observations, background factors, modeling components (e.g., θi), outcomes,
dependencies, and hidden variables. It would follow that a common way to rep-
resent data and relational properties using graphs could help generalize KDD
approaches and allow them to be used in concert with each other. This is sub-
stantial, since we now have a generalized way for any application to access and
handle knowledge and facts using a common format system, based on graph rep-
resentation (and serialized by the W3C standard formats, RDF-XML or RDF-N3).

More recently, work by Koller and others has shown that the structure of data
models (relations between different tables or sets of things) can be exploited to
help identify significant relations within the data (Getoor et al., 2007). That is, the
data must already be in a graph-knowledge form in order to be effectively mined
statistically. To give an example, if a table containing tested-subject responses for
a treatment is linked to the treatment-dosing table and the genetic alleles table,
then looking for causal response relations is a matter of following these links and
calculating the appropriate aggregate statistics. Specifically, if one compares all
the responses in conjunction with the drug and dosing used as well as the subject’s
genotype, then by applying Bayesian inference, strong interactions between both
factors can be identified. Hence data graph structures can be viewed as first-order
‘hypotheses’ for potential interactions.

By the mid 1990’s, the notion of publishing useful information on the Web
began to take off, allowing it to be linked and accessed by other sites: the Web as
a system of common knowledge took root and applications began to work with
this. This was followed by efforts to define ontologies in a way that would work
from anywhere on the Web, and with anything that was localized anywhere on the
Web. A proposal was eventually submitted to the DARPA (Defense Advanced
Research Projects Agency) program to support typing things on the Web. It
was funded in 2000 and became known as the DAML (DARPA Agent Mark-up
Language, www.daml.org/) project. This became the forerunner of the Semantic
Web, and eventually transformed into the OWL ontology language that is based
on Description Logic (DL).

Dozens of applications for KDD have been proposed in many different
domains, but its effectiveness in any one area over the other is unclear. To this
end, an open challenge has been initiated, called the KDDCup (www.kdnuggets
.com/datasets/kddcup.html), to see how well KDD can be applied to different
problem spaces. It has gained a large following in bioinformatics, addressing
such diverse areas as:

• Prediction of gene/protein function and localization

• Prediction of molecular bioactivity for drug design

• Information extraction from biomedical articles

• Yeast gene regulation prediction
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• Identification of pulmonary embolisms from three-dimensional computed
tomography data

• Computer Aided Detection (CAD) of early stage breast cancer from X-ray
images.

KDD was conceived during a time when the shortcomings of AI had surfaced, and
the Web’s potential was just emerging. We are now in an age where documents
can be linked by other documents anywhere in the world; where communities
can share knowledge and experiences; where data can be linked to meaning. The
most recent rendition of this progress is the Semantic Web.

1.8 Semantic harmonization: the power
and limitation of ontologies

One of the most important requirements for data integration or aggregation is
for all data producers and consumers to utilize common semantics (Rubin et al.,
2006). In the past, it had been assumed that data integration was about common
formats (syntax), but that assumed that if one knows the structure, one can infer
the data meaning (semantics). This is now known to be grossly oversimplified,
and semantics must also be clearly defined. RDF addressed the syntax issue by
forcing all data relations to be binary based, therefore modeling all components
as triples (subject, relation/property, object).

The emergence of the W3C OWL ontology standard has enabled the formal
definition of many biological and medical concepts and relations. OWL is based
on description logic, a FOL formalism that was developed in the 1980s to support
class (concept) subsumption and relations between instances of classes. Using
OWL, a knowledge engineer can create class hierarchies of concepts that map to
real-world observations; for instance, ‘Genes are encoded in DNA and themselves
encode proteins.’ OWL’s other key feature is that it can be referenced from
anywhere on the Web (e.g., used by a database) and incorporated into other
non-local logical structures (ontology extension). It was designed to so that any
defined ontological components are identifiable nodes on the Web; that is, all
users can refer to the same defined Class. The most current version of OWL is
OWL2, based on SROIQ logic supporting more expressive logic (Horrocks et al.,
2006). The OWL format is modeled after the Resource Description Framework
(RDF) that will be described later.

The OWL standard allows knowledge systems to utilize ontologies defined by
various groups, such as Gene Ontology, UniProt, BioPAX, and Disease Ontol-
ogy. Data sets that one wishes to align with the ontologies now can apply a
well-specified mechanism: simply reference the ontology URI from within a
data documents and system. By doing so, all the data in the system is formally
associated with concepts, as well as the relations concepts have with each other.
Any third party also looking at the data can instantly find (over the Web) which
ontologies were used to define the set.
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Many of the current activities around developing ontologies in OWL are about
defining common sets of concepts and relations for molecular biology (genes,
proteins, and mechanisms) and biomedicine (diseases and symptoms). However,
there is still no general agreement of how (completely) to define basic concepts
(e.g., gene, protein) or what upper-level biological ontologies should look like
or do. It is not inconceivable that this process will take many years still.

1.9 Text mining and extraction

One common source of knowledge that many scientists wish to access is from the
unstructured text of scientific publications. Due to the increasing volume of pub-
lished articles, it is widely recognized (Hunter and Cohen, 2006) that researchers
are unable to keep up with the flow of new research findings. Much expectation
is placed on using computers to help researchers deal with this imbalance by
mining the content for the relevant findings of each paper. However, there are
many different things that can be mined out of research papers, and to do so
completely and accurately is not possible today. Therefore, we will focus here
only on the extraction of specific subsets of embedded information, including
gene and biomolecule causal effects, molecular interactions and compartments,
phenotype–gene associations, and disease treatments.

One way to mine content is simply to index key words and phrases based
on text patterns and usage frequency. This is all search engines do, including
Google. This does quite well in finding significant occurrences of words;
however it fails to find exactly what is being said about something, that is,
its semantics. For instance, indexing the phrase ‘. . . cytokine modulation may
be the basis for the therapeutic effects of both anti-estrogens in experimental
SLE.’ One can readily identify cytokine modulation (CM) and its association
with therapeutic effects (TE) or experimental SLE (xSLE), but the assertion that
‘CM is a TE for xSLE’ cannot be inferred from co-occurrence. Hence, limited
knowledge about things being mentioned can be obtained using indexing, such
as two concepts occurring in the same sentence, but the relation between them
(if there is one) remains ambiguous.

Word-phrase indexing is very practical for search, but for scientific knowl-
edge inquiries it is insufficient; what is specifically needed is the extraction of
relations R(A, B). Although more challenging, there has been a significant effort
invested to mine relations about specific kinds of entities from natural language.
This is referred to as Information Extraction (IE), and it relies much more
heavily on understanding some aspects of phrase semantics. Clearly this hinges
on predefining classes of entities and sets of relations that are semantically
mapped to each other (ontology). The objective of this is to quickly glean key
relations about things like biomolecules, biostructures, and bioprocesses from
research articles, thereby permitting the rapid creation of accessible knowledge
bases (KBs) about such entities.

As an example, if one wanted to find out (from published research) if a
particular gene is associated with any known disease mechanisms, one would
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query the KB for any relation of the form ?gene ?rel [a Disease] (as well as
[a Disease] ?rel ?gene). This form would allow any relation to a gene to be
identified from the KB, where ?rel could mean ‘is associated with,’ ‘influences,’
‘suppresses,’ or ‘is over expressed in.’ These relations should be defined in an
ontology and the appropriate domain and range entity classes explicitly included.
For IE to be most effective, it is useful to focus only on specific kinds of relations
one is interested in, rather than trying to support a universal set. This helps reduce
dealing with all the complexities of finding and interpreting specific relations from
word-phrase patterns in natural languages, a problem that is far from being solved
generically. Hence, it is desirable to have modules or cartridges for different IE
target tasks, and which utilize different ontologies and controlled vocabularies.

Several open source or publicly accessible IE systems exist, including
GATE, Geneways, OpenCalais, TextRunner, and OpenDMAP. OpenDMAP is
specifically designed to extract predicates defined in the OBO system of ontolo-
gies (Relationship Ontology, RO), specifically those involved in protein transport,
protein–protein interactions, and the cell-specific gene expression (Hunter
et al., 2008). They had applied it to over 4000 journals, where they extracted
72 460 transport, 265 795 interaction, and 176 153 expression statements, after
accounting for errors (type 1 and type 2). Many of the errors are attributable to
misidentification of genes and protein names. This issue will not be resolved by
better semantic tools, since it is more basic and related to entity identification.

One possibility being considered by the community is that future publica-
tions may explicitly include formal identifiers for entities in the text, as well
as controlled vocabularies, linked ontologies, and a specific predicate statement
regarding the conclusion of the paper. Automated approaches that create such
embedded assignments are being investigated throughout the research commu-
nity, but so far show varying degrees of completeness and correctness, that is,
both type 1 and type 2 errors. Much of this may be best avoided if the authors
would include such embedding during the writing of their papers. Attractive as
this sounds, it will require the development of easy to use and non-invasive tools
for authors that do not impact on their writing practices. It will be quite interesting
to follow the developments in this technology area over the next few years.

1.10 Gene expression

Gene Expression Analytics (GEA) is one of the most widely applied method-
ologies in bioinformatics, mixing data mining with knowledge discovery. Its
advantage is that it combines experimentally controlled conditions with large-
scale genomic measurements; as a technology platform has become commodi-
tized so it can be applied cost effectively to large samples. Its weakness is
that at best it is an average of many cells and cell types, which may be varied
states, resulting in confounder effects; in addition, transcript levels usually do not
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correspond to protein levels. It has become one of a set of tools to investigate
and identify biomarkers that can be applied to the research and treatment of dis-
eases. There is great expectation here to successfully apply knowledge-driven
approaches around these applications, justifying the enormous investment in
funded research and development to create knowledge to support the plethora
of next-generation research.

GEA works with experimentally derived data, but shows best results when
used in conjunction with gene annotations and sample-associated information;
in essence, the expression patterns for many genomic regions (including multi-
ple transcript regions per gene in order to handle splice variants) under various
sample conditions (multiple affected individuals, genotypes, therapeutic perturba-
tions, dosing, time-course, recovery). The data construct produced is an N × K

matrix, M , of expression levels, where N is the number of probes and K the num-
ber of samples. Much of the analytic enhancements have depended on performing
appropriate statistics using replicate samples. This allowed the separation of vari-
ance arising from individual sample uncertainty and errors from the experimental
factors that were being applied. The numeric data by itself can only support near-
est neighbor comparisons, resulting in the construction of cluster trees: one for
the relatedness of the expressing genes probed, the other for the relatedness of the
tissue samples expressing the transcripts. Although many researchers try to find
meaning in these cluster patterns (trees), they are for the most part artificial, due
primarily to the experimental design, and have very little basis in normal biology.

More has been gained by associating additional knowledge to this matrix M ,
such that both genes and samples have linked attributes that can be utilized in
deeper analyses. Examples include utilizing the GO ontology for each gene to see
if a correlation exists between the nearness of genes within the M -derived gene
cluster tree and the association of the genes with similar GO processes (Stoeck-
ert et al., 2002). Other gene relations can be utilized as well common pathways
(Slonim, 2002), common disease associations, and common tissue compartmen-
tation. The same approach can be applied to the samples themselves, including
variation in nutrients, genotypes (Cheung and Spielman, 2002), administered
drugs, dosing, and clinical outcomes (Berger and Iyengar, 2009).

What is worthwhile remarking here is that all these different experimental
design applications have a direct common correspondence with the mining of
the numerically derived structures of the data in M . That is, all the attributes
associated with genes or samples can be viewed as formal relations linked to
each instance or a gene or of a sample. For example, all genes Gi with attribute
Ak can be evaluated for their possible correlation with higher expression values
(Mij >z) over all samples Sj by testing for P(Mij > z|Gi.Ak), or even a sub-
set of samples Sj with similar characteristics Cl , P(Mij >z|Gi.Ak, Sj .Cl). As
described earlier, this generalization supports many forms of knowledge min-
ing, and therefore opens any applications of microarrays or biomarkers as fertile
ground for KDD.
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1.11 Pathways and mechanistic knowledge

Pathways are the abstraction of molecular mechanisms that are the basis for
molecular functions and processes. They appear as graphs with directional flow;
however the edges can have multiple meanings, such as catalyzed stoichiometric
reactions (substrate, product as input, output respectively), protein signaling
cascades and transcription factor and binding site activation/repression of
genes. These structures can be further broken down into all the interactions
each of the molecules participates in, yielding interaction graphs that are not
obviously mapped to the process-oriented pathways. In each of these cases, the
structures can be represented as graph objects, that is, sets of nodes connected
by edges (Figure 1.1).

Fundamental to note is that pathways are not data; that is, they are not derived
from single experiments. Rather, they are the result of hypothesis building and
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Figure 1.1 Assimilated knowledge around the GSK3b gene from HEFalMp
(Huttenhower et al., 2009), and its relations to other genes involved in similar
processes.
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re-visioning over many experiments (and many years), and reflect our current
knowledge of how biomolecules work together. In this regard, pathways are one
manifestation of biological knowledge, and can be coded as a series of statements
relating things to other things, that is, as graph objects with semantics (Losko and
Heumann, 2009). The linked entities (nodes) can be mapped to existing protein
and gene entities in other databases, thereby allowing pathways to be accessed
and queried via entities from these other external sources (see Section 1.14.3).

Pathway structures lend themselves well to knowledge representations (ADH1
catalyzes Ethanol_Acetylaldehyde_Reaction), and can therefore aggregate addi-
tional facts and relations onto them. Annotations that describe possible regulations
can be overlaid on top of these structures, possibly in another adjunct file (or
graph). By using references to pathway models, it is possible to build layers of
knowledge on top of more fundamental (canonical) pathways. These smart layers
can include additional interactions, disease associations, and known polymorphic
effects. Layers also provide a mechanism to describe and share additional knowl-
edge that can be easily connected to existing pathway models via any software
supporting the knowledge format. Reducing reliance on closed-vendor formats by
increasing application independence is an important goal for making knowledge
approaches successful.

The BioPax.owl ontology (currently as version 3) supports many kinds of
relations within pathways (pathway steps, biochemical reactions, catalysis, mod-
ulation, part of complex, stoichiometric groups), and provides an exchange format
supported by many pathway databases (Joshi-Tope et al., 2005). Basing pathway
information on an ontology means it is semantically structured, not just syntac-
tically. Not only can it be used to find substructures of interest, but one can also
infer new relations from it based on existing relations. As an example, if a kinase
K is known to down-regulate another signaling protein S, one can infer that all
the downstream proteins of S(D) will also be affected by the K kinase; this can
be expressed as a rule and applied whenever one wishes to find all downstream
affected components:

K down-regulates S AND S up-regulates D ⇒ K down-regulates D.

In addition, since molecular complexes are also modeled in BioPAX, a protein
P which is part of a complex X, which is also part of another complex Y , is
therefore also (P ) part of complex Y , based on transitivity. Sets of these basic
rules can be collected and applied strategically through a rule engine to help
scientists find things such as potential disease mechanisms or candidate targets
(Berger and Iyengar, 2009). Alternatively, mechanistic associations in conjunc-
tion with disease phenotypes can be used to explore novel drug applications (Qu
et al., 2009).This form of knowledge discovery has only begun to be explored,
and since its application potential is great, it will be important to see how it
evolves in the coming years. Its success depends largely on how much material
is accessible as digital knowledge, which recently has begun to look promising
(see Section 1.14.3).
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Often, pathways are used in parallel with GEA to better understand the roles
and dynamics of various components under different conditions, including pro-
gression of cancer. By clustering genes by expression changes one can investigate
if some pathways show correspondence of the encoded proteins with their loca-
tion within a pathway structure, for instance downstream of a key control point.
The summarization of many sources of evidence can be compiled into a compre-
hensive knowledge graph and used by researchers to find potential functionally
associated gene relations (Huttenhower et al., 2009; see Figure 1.1). Pathway
knowledge can also be combined with genotypic information to elucidate the
effects gene variations have on mechanisms (Holford et al. 2009).

The tools of KDD can be applied here to help mine any possible correspon-
dence between molecular interactions and classes of genes and their regulatory
elements. Specifically, a pathway can be viewed as a proposed model structure S
that can be the basis for analyzing expression dynamics using Bayesian network
analysis P(E|S, θ). If one allows the model to evolve to better match expression
data, the new relations can be interpreted as additional regulatory components
on top of the pathway that were not known before.

1.12 Genotypes and phenotypes

As a final case study of knowledge-driven analysis, consider the complex problem
of trying to identify relations between genotypes and phenotypes. This mapping
has become increasingly relevant as researchers attempt to associate large num-
bers of human gene polymorphisms with observed traits, typically referred to as
genome-wide associations (GWA). This analysis relies on the following existing
resources in order to work: (1) detailed maps of genes in vicinities of polymor-
phisms, and (2) observed traits from familial studies that link sets of phenotypes
and disorder symptoms to measured polymorphisms (Daly, 2010).

GWA by themselves cannot determine which specific gene is associated with
a disorder, just that the influence seems to be nearby a polymorphism. Since there
are multiple genes in these neighborhoods (∼100 Mb), the actual affecting gene
could be any one of these or even none of them. To further identify good gene
candidates for the trait, one needs to analyze multiple sources of information and
knowledge, including interactions and process membership (enrichment sets) with
other proteins known to be associated with the related trait. Evidence may also
come from animal models showing a related phenotype linked to the homologous
gene. Then there might also be corroboration by way of common tissue expression
for some of the genes, or even correlated expression changes due to a disease.
In reality, there are many lines of reasoning with potential evidence, so the need
for broad and flexible knowledge utilization is paramount.

Research into trait associations is ongoing and new evidence is continu-
ously being generated. In order to validate an association, one must support an
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accumulative knowledge model that can work with many kinds of relations and
assertions, implying no hard defined data schema. This is beyond the capability
of standard databases, and illustrates that traditional IT storage approaches will
not be sufficient to support most forms of knowledge discovery. Once again this
argues strongly for a linked relational approach such as using RDF.

Where one hopes this is heading is that one day we can bring together
all forms of information and knowledge to any set of experimental data and
hypotheses, and efficiently identify all possible logical explanations of a bio-
logical phenomenon, or the causes of a disease, or the possible treatments of
a cancer, or the prediction of responses to a therapy based on an individual’s
genotype and lifestyle.

1.13 The Web’s role in knowledge mining

We have seen how search has evolved over the last few years, and become a staple
of general computer use – clearly the simpler interface is a critical factor in the
case of Google. With the focus on knowledge, we should not lose sight of how the
interface of a knowledge system will determine its utility for different groups of
users. As a common example, the appearance of faceted browsing enables users
to better assess overall content and quickly direct focus onto relevant subsections
of it. This highlights a shift away from the ‘magic one-query’ paradigm to one
of quickly zooming onto the critical subset of assertion.

Biomedicine is about combining many forms of information effectively
towards the formation of predictive and causal models. The models themselves
define relations that are based on our abstracted knowledge, which applies to
many instances of systems: common molecular mechanisms in cells of similar
tissue types; altered regulation of cell growth in normal and neoplastic cells;
pathological similarities between human disease and animal models; variations in
cellular processes arising from genotypic differences between individuals. Fur-
thermore, many of our recent discoveries come from cross-pollination between
areas: mathematical models of evolving networks and neural development;
Green Fluorescent Protein (GFP) from algae and microscopy of cellular changes.

The scope of the required KD solutions must be broad enough to handle all
the sources of information that biomedicine and life science researchers need
in their increasingly interdisciplinary activities. That implies the utilization of
ontologies that can bridge the concepts and information sets related to these
sources. However, such ontologies should be defined not to impose our current
snapshot of how we think biology works, but rather serve as a set of components,
by which we can effectively describe new phenomena and derived hypotheses;
in other words, ontologies for constructions of new proposed models and views.

Since knowledge should not be thought of as having imposed boundaries, the
KD approaches offered must support the combination of data and ideas.
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1.14 New frontiers

1.14.1 Requirements for linked knowledge discovery

As previously described, most information potentially available for knowledge
applications is embedded within relational databases (RDBMSs). This is the most
common queriable storage format, upon which enormous infrastructures, both pub-
lic and private, have been built. RDBMSs have the following desirable benefits:

Information can be structured as needed, and defined in a schema.
The content is selected and cleaned before uploading to meet functional

quality.
SQL is a well-defined and validated query algebra that can be optimized.
Access control to databases is managed.

They also have the following limitations that arise out of these same advantages:

Their applications are limited by the original design goals.
The content cannot be easily expanded to include new kinds of information.
The database schema typically has no means to apply formal logic.
The query capability is limited to within a single database.
It is not straightforward to combine multiple databases over a network.

These limitations have hindered advancing knowledge discovery in life science
research environments by making the cost to extend systems prohibitively expen-
sive2. More so, in a world where scientific data arises from many locations and
with very different structures, scientists have been impeded from taking full
advantage of available knowledge from the community via the Internet. Bioin-
formatics has a strong hacker component that is constantly writing widgets and
shims to bridge existing but incompatible resources (Hull et al., 2004).

Several computer scientists have argued that ontologies are the solution to
this problem, but as pointed to above, broad validated ontologies are not easy to
create and do not trivially insert themselves into existing data systems. Ontologies
represent a mechanism (along with a community process) for specifying content
semantics, not a technology for bringing content together. The Linked Data model
attempts to address most of these issues, providing a mapping to contemporary
databases that supports federated queries and aggregation over the network. At
the same time, linked data enable the incorporation of ontologies, even multiple
ones. Two components necessary for data linking can be described using the
concepts of data aggregation and data articulation, which now will be addressed.

1.14.2 Information aggregation

Aggregation is the process to efficiently find and correctly (semantically) link
together information from multiple sources on the Web, based on relations

2 Indeed this has spurred a culture of ‘rebuild from scratch rather than build-upon.’



KNOWLEDGE-BASED BIOINFORMATICS 27

specified either in the content, or by a validated bridge source (look-up). This
works best if the sources are already semantically defined and linking utilizes
a referential linking model such as RDF triples. Aggregation also implies that
not all information needs to be imported (i.e., massive data exchange) to build
aggregate information, since the reference to a node is enough to state that all
its other information is virtually connected as well. As an example, given the
following two information sets:

PCKMz isa Kinase_Gene ; is_expressed_in Neural_Tissue .

LTP is_necessary_for short-term_memory ; occurs_in
Hippocampus_Tissue ;

is_caused_by local_Neural_Stimulation .

These two data sets (graphs) are disjoint (unconnected) except for the implied
relation of Hippocampus_Tissue is a part of Neural_Tissue. If one now
creates (or obtains from another researcher) the following statements:

PCKMz inhibited_by XC3751 . XC3751 blocks LTP . PCKMz
has_role_in LTP .

Then once combined with the rest, these have the effect of connecting the pre-
vious statements (structurally and semantically) via the common LTP reference.
Indeed, just knowing these facts is enough to connect the previous sets without
having to explicitly transport any of the actual statements: their connections are
available for discovery simply by accessing their URIs (e.g., all related informa-
tion of LTP) through the Web.

I can formulate a query to ask: ‘Which genes affect any kind of memory?’ I
could even do this using general concepts without using the specifics:

?aGene isa Gene; involved_in ?memProc . ?memProc isa
Memory_Process .

Where the relation involved_in can be transitively inferred from the back-to-
back has_role_in and is_necessary_for relations. The answer returned is:

PCKMz isa Gene .

PCKMz has_role_in LTP .

LTP is_necessary_for short-term_memory .

:= PCKMz involved_in short-term_memory .

These applications of aggregations do not happen trivially over the Web;
reasoners require them to be pulled together in memory, either in one big
batch, or incrementally as information is needed. Since there is no restriction
(besides memory) on what one can aggregate, a researcher may wish to have all
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necessary information locally for computational efficiency. Aggregation simply
makes the task of finding, transporting and building linked data much more
efficient without needing to develop complex software architectures de novo;
this has been well illustrated by the Linked Open Data initiative.

1.14.3 The Linked Open Data initiative

As a specific example of data linking and aggregation on a grand scale, the Linked
Open Data (LOD, http://linkeddata.org/) initiative, which began in Banff at the
WWW2007 conference, is continuously aggregating many public data sources.
At the time of this writing, LOD has grown to over 7.7 billion triples over 130
different data sources (http://esw.w3.org/topic/TaskForces/CommunityProjects/
LinkingOpenData/DataSets/Statistics).

LOD addresses two points: (1) data from different sources are explicitly con-
nected (rather than pages), and (2) the full set can be queried together based
on their combined schema. LOD combines the notion of cloud computing and
public access to connected and queriable data (not just Web pages). The URIs
contained within serve as data identifiers that exactly pinpoint that record while
at the same time are the points of linking between different data sets, for example
ClinicalTrial and DrugBank. More recently, the Linked Open Drug Data (http://
esw.w3.org/topic/HCLSIG/LODD) component of LOD just won the 2009 tripli-
fication award for largest and most useful data sets converted to RDF (http://
triplify.org/Challenge/2009).

LOD is a live, Web-based proof-of-concept of what is possible if public data
can be connected. Most of the original data relations are preserved, and new ones
have been added between different sources when the relations where obvious.
All these sets can now be queried using SPARQL (Figure 1.2, clinical trials
data at http://linkedCT.org rendered with the Cytoscape S*QL plug-in). LOD is
to serve as a starting point as to what is possible within the public Web. As
discussed earlier, large-scale knowledge discovery requires robust and structured
accessibility to large sets of information, complete with semantic relations and
associated class definitions. LOD is helping point out how to move beyond our
current reliance on local databases, and prepare us to begin using structured
information on the Web to help solve complex, real-world challenges.

1.14.4 Information articulation

Pulling together information from different sources only gets you so far; infor-
mation can be collected, but it may be in a form that does not provide significant
value to specific inquiries, such as new insights that could arise from combined
relations between instances. This is a limitation with the current forms of linked
data, where data is available as a collected set, but does not necessarily offer any
deeper logical insights. This limitation is primarily semantic, and indicates that
there is more to knowledge mining than information models; additional logical
relations are usually required to pose deeper inquiries.
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Figure 1.2 Results of a SPARQL query on LinkedCT, a LOD resource from Clin-
icalTrials.gov, showing all the cancer clinical trials surrounding their respective
specific cancer groups. Concentricity indicates studies investigating multiple can-
cers together.

For example, if a data set of customers can be linked to a data set of prod-
ucts from multiple vendors, one can readily query and find which customers tend
to buy specific things from certain vendors, and which vendors offer products
sold most frequently. However the insight into which vendor products are sold
together (product–product relation) requires additional analytics and an expres-
sion to represent such novel associations (e.g., bought_with). The ability to infer
new meaningful relations from existing semantics and incorporate these as addi-
tional assertions into the existing knowledge set is defined here as information
articulation . The new relations increase the degrees of freedom of data nodes
and thereby the reusability of data sets; in essence, the new relations articulate
the data .

Information articulation can be best compared to the use of a spreadsheet
whereby a user inserts a new column whose cell values are the direct result
(computational output) of other existing columns from the same or different
worksheets. However, rather than cells being created with new values, existing
nodes (entities) are being linked by new (inferred) relations, or new nodes are
being created to hold N-ary (fused) relations. This can be in the form of transitive
closure (if A is part of B and B is part of C, then A is part of C) or other
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common rules (if Gene G is associated with Type 2 Diabetes, and Gene G is part
of Pathway P, then Pathway P is involved in Type 2 Diabetes). The articulation
takes the form of a rule: sets of specific relations create new deeper relations. The
knowledge of when to apply the rule comes from a deeper domain understanding.
Such knowledge may be defined within ontologies, but often a complex rule set
cannot be coded using standard ontological frameworks.

Articulation is usually monotonic, only adding new relations to existing ones,
without any deletions. The goal of information articulation is to create new usable
insights by making novel connections between existing knowledge and new
empirical data. Since novel relations must always be built from/on top of existing
substrates, there needs to be flexibility for adding them onto existing structures,
and this is what enables articulation. Another way to think about it is that when
one performs inferences on knowledge, the resulting ‘new findings’ need to be
connected with the input information so that they are retrievable and remain in
context. These relations must make semantic sense for their respective domains.

Information articulation requires a sufficient degree of domain semantics to
be known in order to make such inferences from initial entity sources (son-father-
brother → uncle). This also implies that one cannot know everything about the
information model in advance; the extension of knowledge needs to be done
in such a way that it does not create inconsistencies (UNCLE 
⊂ WOMAN).
Information articulation also helps differentiate between extensional sets (data
facts) and intensional sets (implied by semantics and reasoning). Intensional sets
are often more endowed with usable meaning for future inferencing. Knowledge
discovery will require that we can build upon facts by using tools and structures
that can further articulate information with usable meaning.

1.14.5 Next-generation knowledge discovery

We have presented an overview of the relation between information and knowl-
edge and how one can computationally apply knowledge to information to create
new knowledge. Much of the theory has emerged from decades of research, but
in the last several years, the combined expansion of the Web in conjunction with
advances in semantic standards and technologies have dramatically opened the
possibility of performing knowledge discovery on a global scale. Bioinformatics
is one domain that can begin to take advantage of these resources to advance our
understanding of biology and help us conquer diseases.

The key elements of knowledge discovery – logic, abstraction, relational
graphs, and statistical induction – must be combined in consistent and flexible
ways in order to address the richness of biomedical information. Once all of
the biomedical information has been structurally and semantically normalized,
many kinds of applications become possible. Comprehension of biological mech-
anisms will be critical for new therapeutics, and knowledge of one disease will
often be key to the understanding of a very different disease. Biology itself is
highly interlinked, so we will require information tools and logic that can match
these structures.
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In the near future, we will see new knowledge coming from multiple
communities over many projects. Standards for information are important, but
simply agreeing on the same formats and ontologies will not be sufficient.
Applications that search, aggregate, and analyze diverse information will have to
apply deeper logic fundamentals that cannot be addressed by ontologies alone.
Information articulation will be key to performing deeper inductive-driven
discovery across large volumes of information.

Pushing these new paradigms in the right direction is essential. New standards
need to used and assessed, and if validated, the community must be encouraged
to incorporate them into all our various resources, public as well as local. We still
have a long way to go for increased awareness and general acceptance. For the
most part, this will be driven by successful demonstrations of these information
technologies in the context of scientific research and as part of the scientific
process. In other cases they will become incorporated in commercial technologies
driven by new opportunities in biotechnology research and personalized medicine.
However, in all cases they will be chosen to realize benefits and improvements to
knowledge discovery. A scientific community based on the sharing and commerce
of knowledge discovery practices is closer at hand now than at any previous time
in our history.
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