
1

CHAPTER

1

Architecture Overview

If you refer to the preface you will see that there are many things on our agenda for this

book – we are going to address a wide range of topics. We’ll look at how web content is

managed, how interactive platforms are built and how personalisation can be brought in.

We’ll study modelling and design as well as infrastructure and deployment.

But before we go into the details, let’s study the big picture first. I’d like to develop the

patterns by piecemeal growth, beginning with the more fundamental principles and then

letting the big picture unfold to reveal more detailed aspects. This first chapter should

therefore get us started with an introduction into the overall architecture of a website or

web platform.

On the next few pages, I’d like to address the following basic questions:

■ What are the main components involved in a website architecture? What are their

responsibilities and how do they relate?

■ What are the dynamics underlying a website architecture? What do the processes

for content management and content delivery look like?

■ Which of the components are typically standard and which are typically custom

components? How can you bring in an individual design?

Where Code And Conte#E5DC6.book Page 1 Friday, August 7, 2009 3:41 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 Architecture Overview

■ What non-functional requirements are essential? What challenges are caused by

possibly conflicting requirements?

The big picture that I’ll give is independent of any technologies or any tools (as is the

whole book). It also abstracts over hardware equipment, load-balancing and the like. It

presents the logical model for an advanced website.

Of course a website is not that different from any other Internet-based system, or from

distributed systems in general. It is no surprise that we can adopt many of the solutions

that people have successfully applied in a broader context. Patterns from software archi-

tecture in general (Buschmann Meunier Rohnert Sommerlad Stal 1996) are a valuable

source of information. Many of the patterns in Martin Fowler’s book on Enterprise Ap-
plication Architecture (Fowler 2003) apply. The same is true for Paul Dyson and Andy

Longshaw’s patterns on Architecting Enterprise Solutions (Dyson Longshaw 2004).

Our context is more specific, though. Our emphasis is on the amalgam of content and

code, and therefore we are specifically interested in patterns that address the synthesis of

content management and web application development. The overview diagram in Figure

4 gives you an initial impression of what this chapter has in store for you.

By the end of the chapter we should have achieved a common understanding of some

fundamental architectural principles and of the underlying terminology. In a field as diverse

CONTENT
MANAGEMENT AND
CONTENT DELIVERY

(1.1)

SENSIBLE CLIENT-SIDE
INTERACTION (1.3)

LAYERED
ARCHITECTURE FOR
CONTENT DELIVERY

(1.5)

Figure 4: Road map to the patterns for the architecture overview

improves the maintainability
of software for

avoids consistency
problems in the presence ofDYNAMIC CONTENT

DELIVERY PLUS
CACHING (1.2)

improves the usability
of a strategy based on

can be smoothly
integrated using

LISTENER-BASED
SYNCHRONISATION

(1.4)

improves the
maintainability of
software implementing

Where Code And Conte#E5DC6.book Page 2 Friday, August 7, 2009 3:41 PM

1.1 Content Management and Content Delivery 3

as Internet-based software systems, this common understanding will be crucial for the

follow-up chapters that will look at more specialised aspects.

1.1 Content Management and Content Delivery

Context

You plan to build a website using today’s technology. The idea is to use a content man-

agement system that allows a team of editors to create, update and maintain the content

that should be made available to the site’s visitors. Visitors should be able to navigate the

site, search for content and interact with the system.

Problem

How can you accommodate both the users’ and the content editors’ needs?

Example

The House of Effects is a museum of nature and science. The plan is to launch a new web-

site for this museum, featuring online presentations, announcements, an event calendar

and an online shop. Figure 5 shows how a typical page is going to look – in this case an

exhibition announcement.

There will be a group of content editors who will be in charge of putting the necessary

information together. They will maintain presentations, announcements, calendars,

product information and so on. It will be their job to make sure that content is accurate,

that proper proofreading takes place and that content is updated at reasonable intervals.

Users will be able to view the content once it is delivered to the web. Visiting the site

with their web browsers, users will be able to view online presentations, read announce-

ments or make purchases from the online shop. Navigation mechanisms and search func-

tions will help them find their way through the pages. To some degree, users will also be

able to make contributions to the site, for example by sharing comments or by rating a

shop item.

Forces

There are two distinct groups of people who take distinct perspectives on a website or web

platform: users and content editors.

Users primarily think of content as the information that is presented to them on a set

of web pages. They think of text, pictures and multimedia objects. They’re aware of nav-

igation mechanisms and search functions that are available to them. They may see blogs

and newsletters to which they can subscribe. In the days of Web 2.0 they may be able to

Where Code And Conte#E5DC6.book Page 3 Friday, August 7, 2009 3:41 PM

4 Chapter 1 Architecture Overview

contribute user-generated content. We’re all familiar with this perspective – it’s the per-

spective we all take when we visit a site.

Content editors, however, see things differently: they look behind the scenes. They are

concerned with the information model (or content model) that underlies a website or web

platform.

In her book on Content Management for Dynamic Web Delivery, JoAnn Hackos ex-

plains that an information model is ‘an organizational framework that you use to cate-

gorize your information resources’ (Hackos 2002). Louis Rosenfeld and Peter Morville,

in their book on Information Architecture, use the term content model and point out that

a content model consists of ‘chunks, relationships and metadata’ (Rosenfeld Morville

2006). These explanation summarise the content editors’ view quite accurately.

Actually, content editors are concerned with content artefacts that can represent all

kinds of digital information. In addition, they maintain relationships between these arte-

Figure 5: Exhibition announcement for the House of Effects

Where Code And Conte#E5DC6.book Page 4 Friday, August 7, 2009 3:41 PM

1.1 Content Management and Content Delivery 5

facts, provide metadata and establish classification schemes. Relationships between con-

tent artefacts are relevant to how web pages are composed from these artefacts, and may

result in hyperlinks. Classification schemes and metadata are, among other things, im-

portant for ensuring a content artefact’s findability on the web.

Moreover, content editors have to be aware of content life cycles and workflow process-

es. Content is created and updated, edited and published, until eventually it expires and

is removed. Teamwork among content editors can, for example, result in the application

of a four-eye principle prior to publication.

It’s clear from this discussion that there is more to a website than meets the user’s eye.

Users and content editors may look at the same thing, but their perspectives are very dif-

ferent.

Solution

Provide software for two distinct purposes. On one hand, you need content management
software that supports the content editors in their job. On the other, you need content
delivery software that makes content available to the web and controls possible user
interaction. You won’t have to develop the complete software yourself – a content
management system typically provides some of the necessary functionality – but you
must expect to develop a certain amount of custom software.

No content management system can foresee the specific requirements for your site. The

more non-standard functionality you want, and the more you wish to integrate your site

with backend systems, the more you’ll have to expect to develop custom software that

goes beyond merely customising the components that your content management system

may provide.

The overall architecture for a website or web platform is illustrated in Figure 6. Let’s

now dig a little deeper and explore the two clouds in this diagram. We’ll start with the

cloud on the right-hand side – the software for content management:1

■ Content management software has to provide functionality for creating and

maintaining content artefacts, based on an underlying information model. This

includes not only the definition of the actual content elements, but also the

assignment of metadata and the linking of content elements.

■ Because content editors need a feel for how their content will ultimately look, most

content management software comes with a preview function that gives editors an

impression of the resulting web pages.

1 There is no unambiguous definition of the term ‘content management’, neither in the literature nor in practical

web application development. Sometimes content management is supposed to include content delivery,

sometimes it’s not. Throughout this book I’ll assume a narrower but more precise meaning: content
management includes the techniques and processes necessary for the creation and maintenance of content.
Content delivery is outside this definition of content management.

Where Code And Conte#E5DC6.book Page 5 Friday, August 7, 2009 3:41 PM

6 Chapter 1 Architecture Overview

■ Content management software usually has to support workflow processes for

content editors. This includes access permissions as well as rules that specify and

control the collaboration between content editors.

■ Content management software usually has to include import and export functions.

Typically relying on an XML-based format, such functions make it possible to

exchange content with other data sources.

Most content management systems offer tools that provide this functionality. There is

usually an editor client, which could be a stand-alone application or one that’s integrated

into the web browser. Import and export functions might be integrated into the editor,

although normally they come as a separate application.

Experience shows that on the content management side customisation is often suffi-

cient to meet site-specific requirements. Developing your own tools, such as your editor

client, should be the exception rather than the rule.

Things look different on the content delivery side. The software here is usually faced

with more complex, site-specific requirements, so more custom software is necessary.

Here are the main aspects of what content delivery software has to do:

■ Before web pages can be delivered to the web they have to be generated from

content artefacts stored in the content repository. This includes the choice of a

User client (web browser) Editor client (CMS client or web browser)

Content repository

Figure 6: Content management and content delivery

Content delivery
– page generation
– personalisation
– page delivery to the web
– user interaction

Content management
– content creation and updating
– previews
– workflow processes
– import / export

Where Code And Conte#E5DC6.book Page 6 Friday, August 7, 2009 3:41 PM

1.1 Content Management and Content Delivery 7

layout as well as the creation of hyperlinks and interaction elements. For the time

being, let’s not make any assumptions about how or when this is going to happen.

Suffice it say that web pages have to be generated somehow.

■ Page generation gets more complex for a personalised site, as pages need to be

tailored to specific users or user groups. Typically this means that, prior to page

generation, content elements have to be selected that match a user’s profile, so that

the resulting pages include precisely the information intended for that user.

■ After a web page has been generated, it is ready to be delivered to the web. Software

is therefore necessary to react to requests received from a user’s browser. This is

primarily the job of a web server, but it may also involve a search engine or other

backend components, depending on the domain logic that must be processed to

fulfil the request. Custom software is usually necessary to implement the domain

logic, which typically requires some kind of application server.

■ Collaborative sites allow users to contribute content themselves. Strictly speaking

the upload of user-generated content isn’t an aspect of content delivery – the

direction is actually the other way round, from the user to the site. The upload of

user-generated content, however, is of course handled within the same request

response scheme that is otherwise applied to content delivery. The difference is that

a user request might result in write access to the content repository, so additional

software is necessary to examine and process the user-generated content that is

submitted.

In a rather simplistic scenario, a web server and a few off-the-shelf components from your

content management system are all you need. In such cases you can typically specify the

layout for your site by providing page templates in some scripting language, or by config-

uring the existing ones.

However, a larger and more complex site usually requires a good deal of custom soft-

ware, especially for the implementation of domain logic and for embedding the site into

a larger application landscape. Many content management systems react to this require-

ment by providing a framework that offers more hooks for you to customise the site. This

can cause the software for your site to become a mix of prefabricated and custom com-

ponents. In such cases it is wise to choose a content management system with a relatively

‘open’ architecture – one that is reasonably flexible and makes a smooth integration of

your own components possible.

Figure 6 summarises the overall architecture, but intentionally leaves the details open.

It emphasises the distinct chunks of software for content management and content deliv-

ery, but doesn’t try to show what they look like in detail: what is covered by the clouds in

Figure 6 can actually be implemented in many different ways.

Example resolved

The website for the House of Effects isn’t just a collection of web pages. We are going to

integrate a search engine, a personalisation engine and an online shop, so an out-of-the-

Where Code And Conte#E5DC6.book Page 7 Friday, August 7, 2009 3:41 PM

8 Chapter 1 Architecture Overview

box solution won’t do. As far as content delivery is concerned, we’ll have to develop cus-

tom software for implementing the domain logic and for gluing the pieces together.

However, we will be happy to use off-the-shelf components for the technical infrastruc-

ture, so we won’t have to worry about XML processing, HTML generation, HTTP re-

quests and the like. Ideally these things will be covered by our content management

system, so we’re looking for a system that allows us to use several prefabricated compo-

nents and to bring in our own components at the same time.

For content management the plan is to use the editor client that the content manage-

ment system provides. Ideally, this will be a web-based client that doesn’t require a roll-

out to all workplaces. It’s clear that a configuration with regard to the underlying content

model and workflow specification will be required, but no software development for the

client should be necessary.

Benefits

+ The solution supports what is often considered to be the most fundamental

principle of content management – the separation of content and layout. Content,

when it’s created and maintained, is completely decoupled from any layout aspects,

which are only added later as part of the content delivery process. Content mainte-

nance becomes straightforward, as it focuses on content and content alone.

+ Because content and layout are clearly decoupled, it is easy to create different layouts

for the same content element. In other words, you can create different sites based on

the same content, like an intranet and an extranet. Similarly, you can to support

different output channels, such as browsers and mobile devices.

+ The solution emphasises the importance of the software on the content

management side. A well-designed editor client makes life easier for content editors:

well-chosen workflow processes help them work efficiently and ultimately

contribute to higher content quality.

+ The solution also emphasises the flexibility that’s necessary on the content delivery

side. As you are able to integrate your own custom components, you can ensure that

the site implements the domain logic you want it to implement.

Liabilities

– An information or content model is required as the basis for all content

management and content delivery software. You have to define a model that reflects

the domain-driven requirements on your site. The definition of a CONTENT TYPE

HIERARCHY (2.1) is a good starting point.

– The solution emphasises the fact that web pages have to be generated from content

artefacts, but it intentionally doesn’t reveal when and how this should take place.

While several strategies are possible, DYNAMIC CONTENT DELIVERY PLUS CACHING

(1.2) is usually best.

Where Code And Conte#E5DC6.book Page 8 Friday, August 7, 2009 3:41 PM

1.2 Dynamic Content Delivery plus Caching 9

– You’ll have to develop custom software for the server side. When you do this, several

more fine-grained components will turn out to be useful, including CONTENT

SERVICES (3.1), a NAVIGATION MANAGER (3.2), a SEARCH MANAGER (3.3) and a

SYSTEM OF INTERACTING TEMPLATES (3.4).

– You will have to choose an appropriate content management system. Most available

systems support the two distinct perspectives described in this pattern, but when it

comes to details content management systems differ widely. The ability to define a

domain-driven content model in a straightforward way, an easy-to-use editor client

and a sufficiently ‘open’ architecture are among the key requirements you should

place on a tool. We will come across more criteria in some of the follow-up patterns.

A checklist at the end of the book will help you to select a tool for your specific

purposes.

1.2 Dynamic Content Delivery plus Caching

Context

You’re in the process of defining the architecture for a website or a web platform. The big

picture includes software for CONTENT MANAGEMENT AND CONTENT DELIVERY (1.1),

so now a more refined architecture for content delivery and user interaction is required.

Personalisation and user involvement may be on your agenda, too, and the architecture

has to acknowledge that.

Problem

How can you ensure that the site is always up-to-date and reflects the latest changes made
by the content editors? How can you lay the foundation for interaction and personali-
sation?

Example

Like other museums, the House of Effects relies on its website as a primary publicity

channel. The owners therefore have an obvious interest in presenting accurate and up-to-

date content. New content should be made available to visitors as soon as it’s available.

In addition, the site is supposed to present personalised content to registered visitors, so

our software will have to take users’ profiles into account when delivering any web pages.

Moreover, the site is going to be highly interactive. For example, there are going to be

interactive online presentations to attract visitors. Next, registered users should be able

to leave comments, buy books or DVDs from the online shop and rate shop items, which

of course imposes more requirements on the content delivery software. The software ar-

chitecture therefore has to ensure that these requirements can be met in an effective and

efficient way.

Where Code And Conte#E5DC6.book Page 9 Friday, August 7, 2009 3:41 PM

10 Chapter 1 Architecture Overview

Forces

Before pages can actually be delivered to the web they have to be assembled from content

elements. This process, known as page generation or page rendering, consists of several

smaller tasks: obtaining the required content artefacts from the repository, applying do-

main logic, adding links to other pages, perhaps adding personalised information, gener-

ating the actual HTML page, adding stylesheets.

Different strategies exist for the point at which page generation should take place. Stat-
ic delivery assumes that pages are generated off line after publication and are stored in

the repository in HTML format. Dynamic delivery assumes that pages are rendered on

request – that is, when the server receives an HTTP request from a browser. Hybrid de-
livery is an intermediate strategy that combines static and dynamic delivery. These strat-

egies have different pros and cons.

Static delivery is extremely fast, but dynamic delivery is much more flexible. First, dy-

namic delivery allows changes to the content to be reflected on the web pages immediately

on publication, while static delivery might yield pages that are slightly outdated. Second,

user interaction and personalisation usually require dynamic delivery, since the pages that

are delivered depend on user input and the identity of the current user.

These days, most sites prefer dynamic delivery for its greater flexibility. Dynamic deliv-

ery is supported by almost all content management systems available on the market –

which, however, leaves us with the performance issue to be resolved.

Solution

Combine dynamic content delivery with powerful caching strategies. Choose a content
management system that generates web pages on request and offers caching mechanisms
sufficient to meet your performance requirements.

Assuming dynamic content delivery, we can now draw a more concrete picture of what

happens when pages are requested from a browser and are delivered to the web. It’s clear

that a web server is necessary to react to browser requests, and usually an application

server is necessary as well to host the components that implement the domain logic. Fig-

ure 7 shows an overview of an architecture that implements this concept. This is a refine-

ment of the cloud representing content delivery that appears on the left-hand side in

Figure 6.

The following list provides an overview of the possible steps that constitute the page

delivery process:

■ The web server accepts a page request as well as possible user input from a browser.

The request is mapped onto a template or other component that should be invoked

to generate the response. This is essentially a lookup functionality that is usually

provided by the content management system.

■ The component that is invoked obtains the necessary content elements from the

repository. Applying the underlying domain logic, it processes the content

Where Code And Conte#E5DC6.book Page 10 Friday, August 7, 2009 3:41 PM

1.2 Dynamic Content Delivery plus Caching 11

elements, performs link management and, if necessary, calls other backend

components to collect all the information that should go into the web page.

■ If required, personalisation is applied. What content elements are included and

how they are processed may depend on the current user. Details vary, as

personalisation can take on different forms.

■ Finally, HTML has to be generated for the web page, which includes the assembly

of page fragments representing the individual content elements and the addition of

CSS styles. This is usually done by templates that implement the desired page

layout.

■ Once this is completed, the page can be sent to the browser.

Caching can take place throughout these steps. The general idea behind caching is al-

ways the same – frequently used objects are stored somewhere that offers fast access, as

User client (web browser)

Figure 7: Dynamic content delivery and caching

– accept page requests and user input
– retrieve content elements from the repository
– apply personalisation
– generate pages from content elements
– deliver web pages

Web / application server

Content repository

– cache elements
– retrieve elements from cache

Where Code And Conte#E5DC6.book Page 11 Friday, August 7, 2009 3:41 PM

12 Chapter 1 Architecture Overview

Paul Dyson and Andy Longshaw explain in their book on Architecting Enterprise Solu-
tions (Dyson Longshaw 2004).

However, different caching strategies are possible and are applied at different levels of

granularity.

■ An initial option is to keep content artefacts from the repository cached within the

application server. Because content artefacts are typically requested over and over

again, this strategy clearly reduces the number of repository calls, which are usually

calls to a remote machine.

■ A further option is to cache objects that are composed from content elements from

the repository. These elements, as well as the way they are composed, represent the

domain-driven content model.

■ This strategy not only reduces the number of repository calls, but also reuses the

application of domain logic.

■ Finally, caching can be applied to HTML fragments or complete web pages. This

allows HTML to be reused across user requests, which not only reduces the effort

for the application of domain logic, but also reuses the application of templates or

other components in charge of HTML generation.

All caching strategies require that cached objects be invalidated when their original

source changes. Whenever a content element is updated in the repository, any cached ob-

ject that relies on the element becomes invalid, meaning that it has to be regenerated if

requested.

The more complex and dynamic is a cached object, the smaller the probability that it

can be successfully reused before it undergoes invalidation. For example, personalised el-

ements can easily become too numerous to be cached, as they will typically differ between

one user and another. Similarly, page elements that depend on user input aren’t easy tar-

gets for caching strategies. In general, content artefacts from the repository are more ge-

neric and can therefore be reused more easily than HTML fragments. It is therefore

important to be careful when choosing the level of granularity at which caching should

be applied.

Caching can be difficult to implement, and the need for content invalidation isn’t going

to make things any easier. Fortunately many content management systems come with

their own – often quite powerful – caching mechanisms. Different systems favour differ-

ent strategies, and may even combine several strategies to achieve significant performance

improvements. Ideally you can rely on the capabilities of your content management sys-

tem and won’t have to implement any caching yourself.

Example resolved

The House of Effects website requires dynamic content delivery. First, this ensures that

the site reflects changes made by the content editors immediately. Second and more im-

portantly, dynamically generated pages are essential in the presence of interaction and

personalisation. Dynamic delivery is a precondition for ensuring that, for example, pages

Where Code And Conte#E5DC6.book Page 12 Friday, August 7, 2009 3:41 PM

1.2 Dynamic Content Delivery plus Caching 13

can be tailored to the current user, or that comments left by users become visible imme-

diately.

Obviously we have to expect specific page elements to be requested many times and by

many different users, so we let the content management system apply caching whenever

possible. For the time being, let’s assume that our content management system offers ad-

vanced caching mechanisms and is able to combine caching strategies at different levels

of granularity, so as to effectively improve performance even in the presence of interaction

and personalisation. Fortunately for us, there is little we need to do at this point.

Benefits

+ Because all web pages are generated on request, they are up-to-date when they are

delivered to the user. Changes made by content editors are reflected immediately on

publication.

+ Dynamic delivery sets the stage for creating a website rich with user interaction.

Because pages are generated dynamically, their contents can depend on user input.

This gives you the chance to integrate interactive forms, display results from search

engines and incorporate backend systems to build web applications.

+ Dynamic delivery also makes a personalised site possible, in which content is

tailored specifically to the current user. Since pages are generated on request, the

content chosen for inclusion on a web page can depend on who is currently logged

in.

+ Caching speeds up the site, as it can significantly reduce the volume of remote calls

and database access. Caching is particularly useful for large objects such as pictures

or multimedia artefacts.

Liabilities

– Since dynamic page delivery and caching strategies both involve a series of non-

trivial tasks, maintainability and scalability problems can occur. A LAYERED ARCHI-

TECTURE FOR CONTENT DELIVERY (1.5) supports the separation of concerns and so

offers a good solution.

– There is a limit to the usefulness of caching, especially for personalised and heavily

interactive sites. Personalisation and caching are natural enemies, as are interaction

and caching. As we have mentioned before, one way to alleviate the problem is to

apply caching to relatively generic elements such as artefacts from the repository.

However, there are other techniques that tackle this problem. At the HTML level, a

well-tailored SYSTEM OF INTERACTING TEMPLATES (3.4) can increase the effec-

tiveness of caching. If personalisation is applied to user segments rather than to

individual users, SEGMENT-SPECIFIC CACHING (4.3) can improve efficiency.

Where Code And Conte#E5DC6.book Page 13 Friday, August 7, 2009 3:41 PM

14 Chapter 1 Architecture Overview

– Dynamic page delivery requires content stored in the repository to be well-formed

and consistent, or problems might occur during page generation. WORKFLOW-

BASED VALIDATION (2.5) can help you ensure reasonable content quality.

– Cache invalidation requires that the cache be informed of all significant changes

made to content artefacts in the repository. A LISTENER-BASED SYNCHRONISATION

(1.4) between the repository and the application server can provide the necessary

information.

– Caching isn’t the only way to make a site faster. Moving functionality from the

server to the browser is an option, especially for a heavily interactive site. This is the

idea behind SENSIBLE CLIENT-SIDE INTERACTION (1.3).

1.3 Sensible Client-Side Interaction

Context

You are in the process of defining the architecture for a website or a web platform. The

overall architecture embraces components for CONTENT MANAGEMENT AND CONTENT

DELIVERY (1.1), and applies DYNAMIC CONTENT DELIVERY PLUS CACHING (1.2) to en-

sure the presentation of up-to-date content and meet the demands of user interaction and

personalisation.

Problem

How can you ensure that your site features the desired degree of interaction and user
participation while maintaining reasonable system performance?

Example

The website for the House of Effects is going to offer various kinds of interaction. Users

will be able to navigate the site, submit search requests and filter and sort the search re-

sults. There will be interactive online presentations. Users will be able to submit com-

ments, buy items from the online shop and rate shop items. Essentially there are two

different ways in which the necessary user interaction can be implemented: on the server

or on the client.

To go into more detail, let’s look at the event calendar shown in Figure 8. Users can se-

lect a tab (‘Mathematics’, ‘Physics’, ‘Chemistry’ or ‘Biology’) and so apply a filter to the

list of events shown below. Implementing these tabs can be done in different ways, either

by using standard hyperlinks and traditional server communication or by Ajax-based

event handling that involves only the client. Which is preferable?

Where Code And Conte#E5DC6.book Page 14 Friday, August 7, 2009 3:41 PM

1.3 Sensible Client-Side Interaction 15

Forces

With the advent of Web 2.0 a high degree of interaction has become increasingly common

among websites world-wide. On the technical level, Ajax (Asynchronous JavaScript and

XML) is the key concept behind Web 2.0 (Garrett 2005). Ajax makes it possible to react

to user events directly in the browser without having to direct any HTTP requests to the

server, provided that the necessary event-handling mechanisms have been deployed to the

browser in the first place. Although it’s not a precondition for the ‘Collaborative Web’,

Ajax can facilitate the implementation of user participation and collaboration.

There is no doubt that this type of client-side interaction has some powerful

advantages. First, the browser can sometimes process input submitted by a user without

having to load a new page, which reduces network traffic. Second, asynchronous loading

Figure 8: Event calendar for the House of Effects

Where Code And Conte#E5DC6.book Page 15 Friday, August 7, 2009 3:41 PM

16 Chapter 1 Architecture Overview

is possible, which means that large objects such as multimedia artefacts can sometimes

be loaded in the background while a page is already displayed. The combination of both

techniques makes a degree of interaction possible that is unknown from traditional

websites.

Traditional websites aren’t necessarily a thing of the past, but it’s clear that Web 2.0

techniques play a more important role than they did a few years ago. Because Ajax-based

sites can be both more interactive and faster, Ajax technology has become an integral part

of today’s advanced websites.

But there are drawbacks to Ajax technology. First, extensive use of Ajax can blur the

concept of a web page. If navigation can be handled by the browser, content that used to

be distributed over several web pages may end up on what is technically no more than a

single page. As a consequence, bookmarkability suffers – only a page can be book-

marked, but not the pieces of information loaded into it by a client-side JavaScript mech-

anism. Similarly, search engines have a hard time referring to information contained

within an interactive page, as they can only return links to full pages and not to any con-

tent fragments that are made available by client-side functionality.

A second important disadvantage lies in the fact that code written in scripting languag-

es such as JavaScript is notoriously difficult to understand, test and maintain. In defence,

there are Ajax libraries on the market that alleviate this problem, and to some extent it is

possible to produce well-structured JavaScript code. But larger applications remain tricky

when written in JavaScript.

Yet another disadvantage lies in the browser dependencies that are inevitable once Ajax

is introduced. Users must have JavaScript switched on if they want to use an Ajax-based

site, and not everybody has. Some users rely on a speech or Braille output device for which

JavaScript isn’t available, which raises an accessibility issue. Even if you can assume that

all users have JavaScript turned on, exactly what they see in their browser still depends on

the browser they’re using. A lack of standardisation causes different browsers to interpret

JavaScript slightly differently, at least for the time being.

You can avoid all these disadvantages if you restrict your site to server-side interaction.

But this would slow down response time and, as a consequence, would make highly in-

teractive platforms virtually impossible.

Solution

Use Ajax-based client-side interaction, but use it with care. Retain the concept of a web
page and apply server-side event handling for all navigation purposes, but also apply
event handling inside the browser to adjust the way in which information elements are
presented within a web page. Combine this with asynchronous server calls if the browser
has to load data from the server.

The idea is not to set up a single page and let Ajax-based techniques load whatever in-

formation is requested. Such an approach, referred to as Ajax deluxe in Michael Mahe-

moff’s book on Ajax Design Patterns, can be the right choice for web applications that

Where Code And Conte#E5DC6.book Page 16 Friday, August 7, 2009 3:41 PM

1.3 Sensible Client-Side Interaction 17

should ‘feel similar to a desktop in that the browser is driving the interaction’ (Mahemoff

2006).

Things look different, though, for a web platform that is supposed to combine infor-

mation with a certain amount of user interaction. It makes perfect sense to have several

web pages and so to distribute information over some kind of navigational space. The

trick is to combine traditional server calls for travelling from page to page with Ajax-

based event handling for the presentation of information in the browser. Michael Mahe-

moff calls this strategy Ajax lite. It is a well-balanced approach in which Ajax mecha-

nisms are carefully used in those places where they can do good.

Exactly what interaction should happen on the client (the browser) and what should

take place on the server? Although to some degree a decision will be a matter of personal

taste, it is possible to give some concrete advice.

Michael Mahemoff describes two fundamental Ajax patterns for display manipula-

tion, ‘display morphing’ and ‘page rearrangement’ (Mahemoff 2006). Both have in com-

mon that they alter the view of what is presented on a page through relatively simple

manipulations of the domain object model (DOM). Interactions that result in this kind

of display manipulation are best handled inside the browser with Ajax-based techniques.

The following list presents a few typical examples:

■ Tabs and scrolling, or similar GUI techniques for making information visible on the

screen. Well-known from desktop applications, these techniques often make sense

for websites too. Ajax allows you to use these techniques on a web page without

making any server calls.

■ Filtering and sorting lists of items. Lists of items are common enough, and users are

often given the choice of how such a list should be presented. With Ajax-based

techniques you can allow users to change the sort order or apply a filter without

having to make a server call.

■ Interactive forms. Choosing values from selection boxes and the like can easily be

dealt with on the client side. It is also common for forms to spawn additional fields

depending on the input already made by the user. While this is generally impossible

with static HTML, Ajax allows you to implement dynamic forms in a

straightforward way.

■ Asynchronous loading of large objects, such as videos or other multimedia objects.

Loading such an object is typically invoked by the page that contains it, directly

after the page itself has been loaded. The page is made available to the user while

some of its contents are still loading in the background, for example by using some

kind of streaming mechanism.

■ Use of multimedia objects, once they have been loaded. For example, events for

starting or stopping a video should be handled directly in the browser, with no

server-side event handling at all.

■ Content updates. Certain content elements, such as news items, booking

information and so on can change frequently. You can apply Ajax-based

Where Code And Conte#E5DC6.book Page 17 Friday, August 7, 2009 3:41 PM

18 Chapter 1 Architecture Overview

asynchronous loading, which is usually triggered by the client that requests up-to-

date content from the server at regular intervals.

On the other hand, what kinds of user interaction are better handled on the server side?

The following list gives some typical examples:

■ Pages addressing different topics. Imagine a logical, domain-driven site map, in

which different topics are represented by different pages. What appears as a distinct

page in this logical model should be technically implemented as a distinct web page

as well. This allows travelling from page to page to become a matter of server-side

event handling. The concept of web pages is retained.

■ Pages with different layouts. If two pages have different layouts, then it’s probably

a good idea to keep them as separate pages and not map them onto one. The

different layouts suggest that they present different kinds of information to visitors.

■ Form submissions. While filling in an interactive form can usually be handled on

the client side alone, the submission of the form marks the end of a use case and

typically triggers a backend transaction. In most cases this justifies a new page

(invoked by a server-side event) so that the user is informed of the transaction being

completed.

User client (web browser)

client-side event handling for:
– tabs and scrolling
– filtering and sorting
– management of interactive forms
– asynchronous loading of large objects
– use of multimedia objects
– asynchronous content updates

Figure 9: Event handling for user interaction

server-side event handling for:
– travelling between pages covering different topics
– travelling between pages with different layouts
– form submissions

Web / application server

Where Code And Conte#E5DC6.book Page 18 Friday, August 7, 2009 3:41 PM

1.3 Sensible Client-Side Interaction 19

Neither of the two lists is necessarily complete, but they should still give you a good

impression of the two types of interaction and how to tell them apart. Figure 9 gives a

brief summary.

Finally, there are two things you should keep in mind when implementing this pattern.

First, make sure you use Ajax libraries whenever possible. Several good libraries are avail-

able these days, some of which have been published by open source projects (www.icefac-

es.org, labs.jboss.org/jbossrichfaces). Using such libraries helps you to reduce the amount

of client-side functionality that you have to develop yourself.

Second, you need to be concerned with accessibility issues, especially if you develop a

public administration site or any other site that has to comply with accessibility stand-

ards. If you can’t be sure that the output devices you have to support are capable of Ajax-

based mechanisms, you’ll have to supply a version of your site that is completely inde-

pendent of any browser functionality and relies on server-side event handling alone. In

such a case, the server has to check for the availability of an Ajax-capable browser when

receiving a page request, and deliver the correct version accordingly.

Example resolved

We are going to use Ajax techniques to add rich interaction to the House of Effects site.

For example, the event calendar from Figure 8 is going to be implemented using Ajax.

The page will contain a complete list of events, but its actual view will be adjusted when-

ever the user selects a tab without any server-side event handling becoming necessary. We

will also be using Ajax for the interactive online presentations that we plan to implement.

On the other hand, the House of Effects site is going to use traditional server-side event

handling for all navigation purposes. All navigation elements and other references to re-

lated pages will be implemented through HTTP requests, as will the submission of a

search term, booking requests and purchase orders. The idea of a website as a navigation-

al space will, after all, remain intact.

What about accessibility? We don’t have to meet any special requirements, but what if

we did? We could offer a completely Ajax-free version if we tested, at the start of each

session, whether the user had JavaScript switched off, and delivered traditional HTML in

this case. This would represent extra effort, though, and as it’s not required we have no

plans to implement this option.

Benefits

+ Client-side interaction gives your site a higher degree of interaction. You can embed

interactive mechanisms simply that would not be possible if every user input

resulted in a new page request. Starting or stopping a video embedded in a page is

only one example – the interaction needed for user participation is another. You can

turn your site into an interactive platform and improve its usability.

Where Code And Conte#E5DC6.book Page 19 Friday, August 7, 2009 3:41 PM

20 Chapter 1 Architecture Overview

+ Client-side interaction doesn’t depend on network resources and is much faster than

a series of server requests. In addition, asynchronous server communication allows

you to load large objects in the background. Client-side interaction has a positive

impact on your site’s performance.

+ The moderate use of client-side interaction retains the concept of a web page.

Bookmarkability and searchability therefore aren’t impaired, as they would be if you

used Ajax extensively.

+ The moderate use of client-side interaction also means that less JavaScript code

becomes necessary, as opposed to a heavily Ajax-based site. As you only adjust the

view of page elements but don’t use Ajax to change an entire page’s content, client-

side interaction will not result in any fundamental changes to the domain object

model (DOM) behind a web page. To implement the necessary SELF-CONTAINED

PAGES (3.6), a small amount of standard JavaScript code will do, which you should

probably be able to find in typical JavaScript libraries. Because you don’t have to

develop extensive JavaScript functionality yourself, comprehensibility, maintaina-

bility and scalability are clearly improved.

Liabilities

– Client-side interaction, even if applied in a disciplined way, introduces browser

dependencies. Either you accept the fact that different browsers might present your

site slightly differently, or you have to develop functionality targeted specifically at

different browser types. This, of course, represents an additional effort for software

development.

– If accessibility is an issue, you may even be forced to provide a non-Ajax version of

your site. If, for example, you’re required to support speech or Braille output

devices, current technology demands that you make a version of your site available

that is independent of client-side interaction altogether. This has an influence on the

entire architecture for your website, and you must expect significant additional

effort for its development.

– Testing a platform that uses both client-side and server-side interaction is more

difficult than testing a site that relies on server-side interaction alone. This is

partially due to the inherent complexity of a more sophisticated architecture, and

partially due to the lack of support for client-side interaction by today’s devel-

opment environments. The latter may change – it is likely that development tools

will soon become available that support Ajax better than most do today. The

increased complexity will still take its toll on the development effort, however.

– Security requirements demand that users must not be able to tamper with critical

data. Some data shouldn’t even be visible to users. It’s a wise strategy to assign

functionality to the client only if this functionality doesn’t have to process any data

that users shouldn’t be able to modify, let alone data that users shouldn’t be able to

see.

Where Code And Conte#E5DC6.book Page 20 Friday, August 7, 2009 3:41 PM

1.4 Listener-Based Synchronisation 21

1.4 Listener-Based Synchronisation

Context

You’re in the process of defining the architecture for a website or a web platform. The

overall architecture consists of software for CONTENT MANAGEMENT AND CONTENT

DELIVERY (1.1). The actual content is stored in a repository where it is maintained by con-

tent editors following specific workflows. DYNAMIC CONTENT DELIVERY PLUS CACHING

(1.2) is applied to ensure the presentation of up-to-date content and to meet the demands

of user interaction and personalisation. Additional components such as a search engine

or a personalisation engine might also be part of the overall architecture.

Problem

How can you avoid inconsistencies between content in the repository and content stored
by other components?

Example

The content management system’s repository is, of course, the primary place where con-

tent for the House of Effects site will be stored. This is where editors will create and main-

tain content according to workflow processes.

However, it will be necessary to store content in other places as well. An initial example

is the content management system’s cache, which keeps copies of elements that are fre-

quently requested. A second example is the search engine. It may not store complete con-

tent elements, but it will maintain links to pages that are generated from content

elements, along with specific metadata that’s necessary for processing a search request. A

further example is the personalisation engine. Regardless of whether this engine is part

of the content management system or a stand-alone application, it must know about the

content elements that are subject to personalisation. A final example is the fact that the

software required to support our online shop will have to keep lists of shop items as well

as pricing information, which may overlap with the information stored in the content re-

pository.

It’s clear that in all these cases inconsistencies have to be avoided.

Forces

Although there is no question that the content repository is the primary source for con-

tent elements throughout the system, some components may have to store their own cop-

ies of content elements. There are different reasons for this.

The first and most important is performance. Most notably, a cache stores objects

redundantly so that they can be retrieved quickly, and so to some extent avoids the

normally costly access to the content repository. However there is a price to pay if you

Where Code And Conte#E5DC6.book Page 21 Friday, August 7, 2009 3:41 PM

22 Chapter 1 Architecture Overview

want to reduce remote calls and database access. Whether the cache is part of your

content management system or part of the custom software, whether the cache stores

objects from the domain model or HTML fragments, in either case cached elements must

be invalidated when their source in the repository undergoes a change.

A second reason is the use of a third-party component that requires its own repository.

Examples include an external search engine, an external personalisation engine, online

shop software or a billing component. It is highly likely that there are overlaps with the

content repository, so replicating the necessary content elements is the straightforward

solution. But then again, you introduce redundant data, so if you want to avoid things

such as invalid search results, inaccurately personalised pages or invalid transactions,

consistency has to be ensured.

In fact, ensuring consistency has to be done in a way that’s quick and robust. Interested

components must learn of changes in the content repository immediately. Whatever no-

tification mechanism you use, it must be able to deal with any of the components involved

being down.

Solution

Establish repository listeners – asynchronous processes that react to specific workflow
events and notify interested components of relevant changes made to content artefacts in
the repository.

Good content management systems offer a listener interface or a similar mechanism

that you can use to react to specific events in the content management workflow. Typical

events include the creation, change, publication or deletion of a content element. On such

an event, a listener can be invoked and will then execute a call-back method. You can im-

plement repository listeners that notify other components of all relevant events.

In principle, you need a repository listener for each component that has to be informed

of content changes. Typically though, you won’t have to implement all listeners yourself:

■ If your content management system uses a built-in cache (which it probably does),

it will also have a built-in listener that invokes the necessary content invalidation

mechanisms for that cache.

■ If your content management system uses a built-in search engine, it will also have a

built-in listener that notifies the search engine of any events that make it necessary

to rebuild the index.

■ Similarly, any other redundant data storage that is internal to your content

management system should come with its own repository listener.

Since repository listeners react to workflow events, they usually run on the content

management server – the machine that hosts the content editor workflows. The content

management server is a core component of any content management system, therefore

little custom software should be necessary here. Nonetheless, it is here where you have to

register your custom repository listeners in order to add them to the built-in ones. Figure

10 gives an overview, representing notification by dotted lines.2

Where Code And Conte#E5DC6.book Page 22 Friday, August 7, 2009 3:41 PM

1.4 Listener-Based Synchronisation 23

This architecture is an implementation of the Publisher-Subscriber pattern

(Buschmann Meunier Rohnert Sommerlad Stal 1996), which is a large-scale variant of the

Observer pattern (Gamma Helm Johnson Vlissides 1995). The sole source of all content

2 Bear in mind that Figure 10 shows a logical architecture. Concrete installations can deviate from this. For

example, the search engine and personalisation engine could either be stand-alone components or be hosted by

the application server. The cache typically resides in the application server and is visualised here only to

underline its importance. The content management server and the content repository may be hosted by

different machines or by the same machine.

User client (web browser)

Web / application server
– accept page requests

and user input
– retrieve content elements

from the repository
– apply personalisation
– generate pages from

content elements
– deliver web pages

Content repository

Personalisation engine

Search engine

•••

Editor client

Cache

Figure 10: Repository listeners

Content management
server
– create and update

content
– provide previews
– run workflow

processes
– invoke import and

export

Where Code And Conte#E5DC6.book Page 23 Friday, August 7, 2009 3:41 PM

24 Chapter 1 Architecture Overview

artefacts, the content repository acts as the publisher, while the components that require

notification take on the role of subscriber.

To work reliably, all repository listeners must be able to cope with the content reposi-

tory, the content server or any other component being down. When you implement a re-

pository listener, be sure to apply buffering logic at both ends:

■ Let a listener look for past events during its start-up – events that occurred while

the listener was down.

■ Let a listener write all notifications into a queue from which a notification is only

removed once the subscriber has successfully processed it.

This ensures that neither repository events nor notifications can get lost, turning the

listeners into fail-safe synchronisation mechanisms between the different components of

your architecture.

Example resolved

Let’s make the (realistic) assumption that our content management system has a built-in

mechanism for cache invalidation. As we don’t implement any caching ourselves, no cus-

tom listener is necessary here.

However, there are three listeners that we will provide. First, we have to implement a

repository listener that reacts to changes in the published content and feeds the search en-

gine with the necessary indexing information. Second, we have to implement a listener

that notifies our personalisation engine of any relevant changes in the repository, such as

updates to user segments. Third, we have to implement a listener that reacts to changes

made to item descriptions and informs the online shop system.

To ensure robustness, our repository listeners will implement a buffering logic. First,

each listener uses a persistent time stamp to document its last activity, and will at start-

up ask the content management server for all events after that time. Second, each listener

stores the notifications it generates in a queue, from which they are only removed after

they have been received and acknowledged by the target component.

Benefits

+ One of the most prominent examples of listener-based synchronisation is cache

invalidation. This pattern therefore facilitates the implementation of caching strat-

egies (either as part of a content management system or as a custom component)

and so contributes to a website’s efficiency.

+ Listener-based synchronisation makes it possible to keep content consistent across

several components. It is therefore the precondition for successful and robust

integration of different software modules. Listener-based synchronisation allows

you to pursue a best-of-breed strategy when it comes to choosing tools – a content

management system, a search engine, a personalisation engine, shop software and

so on.

Where Code And Conte#E5DC6.book Page 24 Friday, August 7, 2009 3:41 PM

1.5 Layered Architecture for Content Delivery 25

Liabilities

– Content consistency relies on the fact that all repository listeners work reliably. If a

listener is down, its subscribers are no longer informed of relevant workflow events.

To avoid inconsistencies (which, for a while, might even go unnoticed by content

editors and users alike) you can establish watchdog processes to make sure that

repository listeners are restarted automatically.

– The solution assumes that your content management system provides a listener

interface that you can implement. You should make the possibility of implementing

and registering repository listeners an evaluation criterion when choosing a content

management system.

1.5 Layered Architecture for Content Delivery

Context

You plan to develop a website or web platform. You have set up the overall software ar-

chitecture, whose most important constituents are the software packages for CONTENT

MANAGEMENT AND CONTENT DELIVERY (1.1). Along the way, you have applied DYNAM-

IC CONTENT DELIVERY PLUS CACHING (1.2), SENSIBLE CLIENT-SIDE INTERACTION (1.3)

and LISTENER-BASED SYNCHRONISATION (1.4) to refine the architecture, which allows

you to meet important functional and non-functional requirements.

Perhaps a few – but typically not many – custom components will become necessary

on the content management side. Your content management system should provide most

of the required functionality – a small amount of customisation is usually all you need.

However, the content delivery side often requires a considerable quantity of custom com-

ponents, as it is here where most of the domain logic has to be implemented.

Problem

How can you prevent the server-side custom software for content delivery from becoming
difficult or impossible to maintain? How can you avoid a server-side architecture that
doesn’t scale properly?

Example

The website for the House of Effects doesn’t require much custom software for content

management. We certainly have to configure the content management server to match the

underlying content model, we have to specify workflow processes, and we have to imple-

ment a few repository listeners. However, this isn’t exactly what you would call extensive

custom software development.

Where Code And Conte#E5DC6.book Page 25 Friday, August 7, 2009 3:41 PM

26 Chapter 1 Architecture Overview

We need a good deal of custom software development on the content delivery side,

though, as many web platforms do. Among other things, we have to define our own do-

main logic, design templates that match our layout requirements, and implement some

personalisation functionality. We have to integrate third-party components such as a

search engine and an online shop. All in all, we had better not underestimate the amount

of custom software.

Of course, the site owners are interested in keeping the website maintainable, despite

the undeniable complexity. Future changes must be possible with reasonable effort. The

owners are also interested in keeping it scalable. It must be possible to adapt the architec-

ture should the amount of content or the number of users increase.

Forces

Dynamic delivery often involves a large number of different components. Server-side

components have to retrieve content elements from the repository, apply domain logic,

maintain a session state, apply personalisation, apply templates to generate HTML and

apply caching. If there is going to be client-side interaction, then server-side components

must provide the JavaScript functionality that is to be executed in the browser. Finally,

third-party products may have to be integrated. Examples include a search engine, a per-

sonalisation engine or shop software. A content management system usually covers some

of this functionality, but typically a considerable amount of custom software remains.

As you implement much of the necessary functionality yourself, you have to be con-

cerned with important non-functional requirements such maintainability, extensibility

and scalability. The more you make use of a content management system’s open architec-

ture – the possibility of integrating custom components smoothly – the more you’re re-

sponsible for the architecture that evolves.

Moreover, you will typically come across different technologies and different program-

ming languages. Usually there is some scripting code (JSP or the like) for HTML gener-

ation, programming language code (especially for the domain logic) and JavaScript (for

the functions that will be executed directly in the browser). This adds to the architecture’s

complexity.

However, unmanaged complexity makes software difficult to understand, maintain

and extend. Yet experience shows that in existing websites and web platforms the server-

side software is often a mess, especially if server pages are used extensively. In his book on

Enterprise Application Architecture, Martin Fowler notes: ‘When domain logic starts

turning up on server pages it becomes far too difficult to structure it well and far to easy

to duplicate it across different server pages. All in all, the worst code I’ve seen in the last

few years has been server page code.’ (Fowler 2003).

Where Code And Conte#E5DC6.book Page 26 Friday, August 7, 2009 3:41 PM

1.5 Layered Architecture for Content Delivery 27

Solution

Define a server-side architecture that consists of three distinct layers. The bottom layer
encapsulates all access to the content repository. The middle layer provides the domain
logic. The top layer contains the templates that are used for page generation.

The Layers pattern, a long-valued architectural principle, achieves a separation of con-

cerns through vertical decomposition. The introduction of layers allows you to decom-

pose an application into groups of subtasks at different levels of abstraction (Buschmann

Meunier Rohnert Sommerlad Stal 1996).

The architecture sketched in Figure 11 is the result of applying the Layers pattern to

content delivery software. The server-side architecture consists of three layers, much in

agreement with the three principle layers that Martin Fowler recommends for web appli-

cations in general (Fowler 2003). Similar ideas are expressed in Michael Weiss’s Patterns
for Web Applications, especially a strict separation of content and presentation and the

use of services to provide an application with the content it requires (Weiss 2006).

Let’s go through these layers from bottom to top:

■ The repository layer encapsulates all access to the content repository. Every content

management system provides an interface for accessing content in the repository,

and the modules behind this interface could very well constitute the repository

layer. However, you may choose to develop some custom software that wraps this

interface and provides, for example, syntactical validation or simple formatting

routines. This allows the repository layer to make ‘polished up’ content elements

available to the logical layer.

■ The logical layer hosts the domain logic. This is where domain objects are

composed from content elements, which may involve link management, session

handling and personalisation. The logical layer is usually connected to external

components such as a search engine, a personalisation engine, or arbitrary backend

systems. The logical layer makes domain objects available in two different ways.

First, it makes them available to the template layer. Second, it makes them available

through a web service interface that client-side Ajax modules can use for server

communication. While a content management system may provide a framework for

integrating all this functionality, you must expect a good deal of custom software

to be necessary to implement the domain logic.

■ The template layer is where HTML generation takes place. This is the only place

where server pages seem appropriate, though alternative techniques (such as

servlets) could also be used. Relying on domain objects provided by the logical

layer, templates generate web pages and include style sheets and possible client-side

functionality that embody the page layout.

Caching can, in principle, take place in all layers. Depending on the layer, different

kinds of objects can be subject to caching, ranging from content artefacts on the reposi-

tory layer, through domain objects on the logical layer, to HTML fragments on the tem-

plate layer. Which of these options becomes effective depends, of course, on your content

Where Code And Conte#E5DC6.book Page 27 Friday, August 7, 2009 3:41 PM

28 Chapter 1 Architecture Overview

Template layer

Figure 11: Layered architecture for dynamic content delivery

Web server / application server

HTTP API

Logical layer

Repository layer

– generate HTML
– include CSS styles

– apply domain logic
– perform link management
– maintain session information
– integrate search functionality
– apply personalisation
– provide client-side functionality

– access the content repository
– check content elements for validity

Client (web browser)

Web service API

Content repository

Personalisation engine

Search engine

•••

Client layer
– present HTML
– execute client-side functionality

Where Code And Conte#E5DC6.book Page 28 Friday, August 7, 2009 3:41 PM

1.5 Layered Architecture for Content Delivery 29

management system or on your own caching strategies, should you decide to implement

any yourself.

Figure 11 gives a rather general picture of a layered architecture for content delivery.

The details depend on your content management system, the interfaces it offers and the

underlying technology. Details vary with regard to the programming language (which

may or may not be Java), available frameworks (such as Struts or Spring), backend inte-

gration and caching strategies.

Whatever content management system you use and whatever architectural conse-

quences this has, you should aim for a layered architecture that implements a separation

of concerns at different levels of abstraction.

Example resolved

We choose a Java-based content management system that allows us to integrate custom

components into the content delivery process. Since maintainability is a critical issue for

the House of Effects site, we make sure that the components for content delivery will be

organised in a layered architecture.

The repository layer is going to be quite simple. It deals with the various kinds of con-

tent artefacts that are stored in the repository – multimedia objects such as online pres-

entations, announcements, shop item descriptions and so on.

The domain objects on the logical layer are more complex than this. Things like pres-

entations or announcements are meaningful in the domain, but there are also domain ob-

jects that relate or aggregate several content elements. Examples includes lists of events

for the event calendar, complete with references to individual events, or comprehensive

online presentations including detailed background information and user comments. Per-

sonalisation is applied too, so the way in which domain objects are composed may de-

pend on the current user’s profile. As we have opted for a Java-based architecture, Java

beans are the natural choice for implementing these objects.

The template layer relies on JSP technology, but also uses tag libraries to reduce the

amount of server page code. There are tags for smooth integration of domain objects into

the final web page, so the actual server page code only defines the page structure, includes

the CSS sheets that specify the page layout and provides the JavaScript functions that the

browser needs for client-side interaction.

Benefits

+ A layered architecture avoids monolithic blocks and so decreases the coupling

between system components. The vertical decomposition – the clear separation of

domain logic and presentation – leads to reduced dependencies between compo-

nents of all kinds, which improves comprehensibility and maintainability.

Where Code And Conte#E5DC6.book Page 29 Friday, August 7, 2009 3:41 PM

30 Chapter 1 Architecture Overview

+ Different layers can be implemented using different technologies and different

programming languages. This, too, contributes to improved comprehensibility and

maintainability. In particular, the use of server pages is confined to the template

layer, which avoids the feared ‘spaghetti code’ scenario of extensive domain logic

implemented in a scripting language.

+ The software from different layers can be deployed onto different physical machines.

Scalability can therefore be improved, as you can effectively address performance

requirements by selecting appropriate hardware for each layer specifically.

+ There are several places where caching can be applied. Different caching strategies

can be combined to achieve significant performance improvements. For example,

you can cache content on the repository level if it is subject to personalisation, and

use the template level to cache HTML fragments that are unaffected by personali-

sation. This allows you to maximise the efficiency benefits that caching brings.

+ The domain logic implemented on the logical layer can be used in two distinct ways:

by the templates that generate HTML and by client-side functions for browser-

server communication. The introduction of a well-defined logical layer therefore

avoids redundant domain logic code to a large extent.

Liabilities

– There are few drawbacks associated with the definition of a layered architecture.

The most critical issue is that the solution requires the content management system

to support the vertical decomposition of custom components, and not every system

on the market does. In fact, if your content management system is inflexible, imple-

menting a layered architecture may turn out to be difficult. In such cases the ultimate

recommendation is to consider using a different content management system. Better

yet, make sure initially that you select a system that gives you the necessary freedom

to organise your own server-side components.

– Since the introduction of layers is a high-level architectural pattern, it cannot extend

so far as to facilitate good designs for the individual layers. There is no doubt that

on a more fine-grained level there is still work to be done. Once you have imple-

mented this pattern, you can start designing the individual layers and think about

the introduction of CONTENT SERVICES (3.1), a NAVIGATION MANAGER (3.2), a

SEARCH MANAGER (3.3) and a SYSTEM OF INTERACTING TEMPLATES (3.4).

Where Code And Conte#E5DC6.book Page 30 Friday, August 7, 2009 3:41 PM

