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2 Frequently Asked Questions in Quantitative Finance

T here follows a speedy, roller-coaster of a ride through
the official history of quantitative finance, passing

through both the highs and lows. Where possible I give
dates, name names and refer to the original sources.1

1827 Brown The Scottish botanist, Robert Brown, gave his
name to the random motion of small particles in a liquid.
This idea of the random walk has permeated many scien-
tific fields and is commonly used as the model mechanism
behind a variety of unpredictable continuous-time processes.
The lognormal random walk based on Brownian motion is the
classical paradigm for the stock market. See Brown (1827).

1900 Bachelier Louis Bachelier was the first to quantify the
concept of Brownian motion. He developed a mathemati-
cal theory for random walks, a theory rediscovered later by
Einstein. He proposed a model for equity prices, a simple
normal distribution, and built on it a model for pricing the
almost unheard of options. His model contained many of the
seeds for later work, but lay ‘dormant’ for many, many years.
It is told that his thesis was not a great success and, natu-
rally, Bachelier’s work was not appreciated in his lifetime.
See Bachelier (1995).

1905 Einstein Albert Einstein proposed a scientific foundation
for Brownian motion in 1905. He did some other clever stuff
as well. See Stachel (1990).

1911 Richardson Most option models result in diffusion-type
equations. And often these have to be solved numerically.
The two main ways of doing this are Monte Carlo and finite
differences (a sophisticated version of the binomial model).

1A version of this chapter was first published in New Directions in
Mathematical Finance, edited by Paul Wilmott and Henrik Rasmussen,
John Wiley & Sons Ltd, 2002.
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The very first use of the finite-difference method, in which a
differential equation is discretized into a difference equation,
was by Lewis Fry Richardson in 1911, and used to solve the
diffusion equation associated with weather forecasting. See
Richardson (1922). Richardson later worked on the mathemat-
ics for the causes of war. During his work on the relationship
between the probability of war and the length of common
borders between countries he stumbled upon the concept of
fractals, observing that the length of borders depended on
the length of the ‘ruler.’ The fractal nature of turbulence was
summed up in his poem ‘‘Big whorls have little whorls that
feed on their velocity, and little whorls have smaller whorls
and so on to viscosity.’’

1923 Wiener Norbert Wiener developed a rigorous theory for
Brownian motion, the mathematics of which was to become
a necessary modelling device for quantitative finance decades
later. The starting point for almost all financial models, the
first equation written down in most technical papers, includes
the Wiener process as the representation for randomness in
asset prices. See Wiener (1923).

1950s Samuelson The 1970 Nobel Laureate in Economics, Paul
Samuelson, was responsible for setting the tone for subse-
quent generations of economists. Samuelson ‘mathematized’
both macro and micro economics. He rediscovered Bache-
lier’s thesis and laid the foundations for later option pricing
theories. His approach to derivative pricing was via expec-
tations, real as opposed to the much later risk-neutral ones.
See Samuelson (1955).

1951 Itô Where would we be without stochastic or Itô calcu-
lus? (Some people even think finance is only about Itô calcu-
lus.) Kiyosi Itô showed the relationship between a stochastic
differential equation for some independent variable and the
stochastic differential equation for a function of that variable.
One of the starting points for classical derivatives theory is
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the lognormal stochastic differential equation for the evolu-
tion of an asset. Itô’s lemma tells us the stochastic differential
equation for the value of an option on that asset.

In mathematical terms, if we have a Wiener process X with
increments dX that are normally distributed with mean zero
and variance dt, then the increment of a function F (X) is
given by

dF = dF
dX

dX + 1
2

d2F
dX2

dt

This is a very loose definition of Itô’s lemma but will suffice.
See Itô (1951).

1952 Markowitz Harry Markowitz was the first to propose a
modern quantitative methodology for portfolio selection. This
required knowledge of assets’ volatilities and the correlation
between assets. The idea was extremely elegant, resulting in
novel ideas such as ‘efficiency’ and ‘market portfolios.’ In
this Modern Portfolio Theory, Markowitz showed that com-
binations of assets could have better properties than any
individual assets. What did ‘better’ mean? Markowitz quan-
tified a portfolio’s possible future performance in terms of its
expected return and its standard deviation. The latter was to
be interpreted as its risk. He showed how to optimize a port-
folio to give the maximum expected return for a given level of
risk. Such a portfolio was said to be ‘efficient.’ The work later
won Markowitz a Nobel Prize for Economics but is problem-
atic to use in practice because of the difficulty in measuring
the parameters ‘volatility,’ and, especially, ‘correlation,’ and
their instability.

1963 Sharpe, Lintner and Mossin William Sharpe of Stanford, John
Lintner of Harvard and Norwegian economist Jan Mossin
independently developed a simple model for pricing risky
assets. This Capital Asset Pricing Model (CAPM) also reduced
the number of parameters needed for portfolio selection
from those needed by Markowitz’s Modern Portfolio Theory,
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making asset allocation theory more practical. See Sharpe,
Alexander and Bailey (1999), Lintner (1965) and Mossin
(1966).

1966 Fama Eugene Fama concluded that stock prices were
unpredictable and coined the phrase ‘market efficiency.’
Although there are various forms of market efficiency, in
a nutshell the idea is that stock market prices reflect all
publicly available information, and that no person can gain
an edge over another by fair means. See Fama (1966).

1960s Sobol’, Faure, Hammersley, Haselgrove and Halton . . . Many
people were associated with the definition and development
of quasi random number theory or low-discrepancy sequence
theory. The subject concerns the distribution of points in an
arbitrary number of dimensions in order to cover the space
as efficiently as possible, with as few points as possible (see
Figure 1.1). The methodology is used in the evaluation of
multiple integrals among other things. These ideas would find
a use in finance almost three decades later. See Sobol’ (1967),
Faure (1969), Hammersley & Handscomb (1964), Haselgrove
(1961) and Halton (1960).

1968 Thorp Ed Thorp’s first claim to fame was that he
figured out how to win at casino Blackjack, ideas that were
put into practice by Thorp himself and written about in
his best-selling Beat the Dealer, the ‘‘book that made Las
Vegas change its rules.’’ His second claim to fame is that he
invented and built, with Claude Shannon, the information
theorist, the world’s first wearable computer. His third claim
to fame is that he used the ‘correct’ formulæ for pricing
options, formulæ that were rediscovered and originally
published several years later by the next three people on our
list. Thorp used these formulæ to make a fortune for himself
and his clients in the first ever quantitative finance-based
hedge fund. He proposed dynamic hedging as a way of
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Figure 1.1: They may not look like it, but these dots are distributed deter-
ministically so as to have very useful properties.

removing more risk than static hedging. See Thorp (2002) for
the story behind the discovery of the Black–Scholes formulæ.

1973 Black, Scholes and Merton Fischer Black, Myron Scholes
and Robert Merton derived the Black–Scholes equation for
options in the early seventies, publishing it in two separate
papers in 1973 (Black & Scholes, 1973, and Merton, 1973).
The date corresponded almost exactly with the trading of call
options on the Chicago Board Options Exchange. Scholes and
Merton won the Nobel Prize for Economics in 1997. Black had
died in 1995.
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The Black–Scholes model is based on geometric Brownian
motion for the asset price S

dS = μS dt + σS dX .

The Black–Scholes partial differential equation for the value
V of an option is then

∂V
∂t

+ 1
2
σ 2S2 ∂2V

∂S2
+ rS

∂V
∂S

− rV = 0

1974 Merton, again In 1974 Robert Merton (Merton, 1974)
introduced the idea of modelling the value of a company
as a call option on its assets, with the company’s debt
being related to the strike price and the maturity of the
debt being the option’s expiration. Thus was born the
structural approach to modelling risk of default, for if the
option expired out of the money (i.e. assets had less value
than the debt at maturity) then the firm would have to go
bankrupt.

Credit risk became big, huge, in the 1990s. Theory and prac-
tice progressed at rapid speed during this period, urged on
by some significant credit-led events, such as the Long Term
Capital Management mess. One of the principals of LTCM
was Merton who had worked on credit risk two decades
earlier. Now the subject really took off, not just along the
lines proposed by Merton but also using the Poisson process
as the model for the random arrival of an event, such as
bankruptcy or default. For a list of key research in this area
see Schönbucher (2003).

1977 Boyle Phelim Boyle related the pricing of options to the
simulation of random asset paths (Figure 1.2). He showed
how to find the fair value of an option by generating lots of
possible future paths for an asset and then looking at the
average that the option had paid off. The future important
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Figure 1.2: Simulations like this can be easily used to value derivatives.

role of Monte Carlo simulations in finance was assured. See
Boyle (1977).

1977 Vasicek So far quantitative finance hadn’t had much to
say about pricing interest rate products. Some people were
using equity option formulæ for pricing interest rate options,
but a consistent framework for interest rates had not been
developed. This was addressed by Vasicek. He started by
modelling a short-term interest rate as a random walk and
concluded that interest rate derivatives could be valued using
equations similar to the Black–Scholes partial differential
equation.
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Oldrich Vasicek represented the short-term interest rate by a
stochastic differential equation of the form

dr = μ(r, t) dt + σ (r, t) dX .

The bond pricing equation is a parabolic partial differential
equation, similar to the Black–Scholes equation. See Vasicek
(1977).

1979 Cox, Ross and Rubinstein Boyle had shown how to price
options via simulations, an important and intuitively reason-
able idea, but it was these three, John Cox, Stephen Ross and
Mark Rubinstein, who gave option-pricing capability to the
masses.

The Black–Scholes equation was derived using stochastic
calculus and resulted in a partial differential equation. This
was not likely to endear it to the thousands of students inter-
ested in a career in finance. At that time these were typically
MBA students, not the mathematicians and physicists that
are nowadays found on Wall Street. How could MBAs cope?
An MBA was a necessary requirement for a prestigious career
in finance, but an ability to count beans is not the same as
an ability to understand mathematics. Fortunately Cox, Ross
and Rubinstein were able to distil the fundamental concepts
of option pricing into a simple algorithm requiring only addi-
tion, subtraction, multiplication and (twice) division. Even
MBAs could now join in the fun. See Cox, Ross & Rubinstein
(1979) and Figure 1.3.

1979–81 Harrison, Kreps and Pliska Until these three came onto
the scene quantitative finance was the domain of either
economists or applied mathematicians. Mike Harrison and
David Kreps, in 1979, showed the relationship between option
prices and advanced probability theory, originally in discrete
time. Harrison and Stan Pliska in 1981 used the same ideas
but in continuous time. From that moment until the mid
1990s applied mathematicians hardly got a look in. Theorem,
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proof everywhere you looked. See Harrison & Kreps (1979)
and Harrison & Pliska (1981).

1986 Ho and Lee One of the problems with the Vasicek frame-
work for interest-rate derivative products was that it didn’t
give very good prices for bonds, the simplest of fixed-income
products. If the model couldn’t even get bond prices right,
how could it hope to correctly value bond options? Thomas
Ho and Sang-Bin Lee found a way around this, introducing the
idea of yield-curve fitting or calibration. See Ho & Lee (1986).

1992 Heath, Jarrow and Morton Although Ho and Lee showed
how to match theoretical and market prices for simple bonds,
the methodology was rather cumbersome and not easily gen-
eralized. David Heath, Robert Jarrow and Andrew Morton
(HJM) took a different approach. Instead of modelling just
a short rate and deducing the whole yield curve, they mod-
elled the random evolution of the whole yield curve. The
initial yield curve, and hence the value of simple interest
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rate instruments, was an input to the model. The model can-
not easily be expressed in differential equation terms and so
relies on either Monte Carlo simulation or tree building. The
work was well known via a working paper, but was finally
published, and therefore made respectable in Heath, Jarrow
& Morton (1992).

1990s Cheyette, Barrett, Moore and Wilmott When there are many
underlyings, all following lognormal random walks, you can
write down the value of any European non-path-dependent
option as a multiple integral, one dimension for each asset.
Valuing such options then becomes equivalent to calculating
an integral. The usual methods for quadrature are very inef-
ficient in high dimensions, but simulations can prove quite
effective. Monte Carlo evaluation of integrals is based on
the idea that an integral is just an average multiplied by a
‘volume.’ And since one way of estimating an average is by
picking numbers at random we can value a multiple inte-
gral by picking integrand values at random and summing.
With N function evaluations, taking a time of O(N) you can
expect an accuracy of O(1/N1/2), independent of the num-
ber of dimensions. As mentioned above, breakthroughs in
the 1960s on low-discrepancy sequences showed how clever,
non-random, distributions could be used for an accuracy of
O(1/N), to leading order. (There is a weak dependence on the
dimension.) In the early 1990s several groups of people were
simultaneously working on valuation of multi-asset options.
Their work was less of a breakthrough than a transfer of
technology.

They used ideas from the field of number theory and applied
them to finance. Nowadays, these low-discrepancy sequences
are commonly used for option valuation whenever random
numbers are needed. A few years after these researchers
made their work public, a completely unrelated group at
Columbia University successfully patented the work. See
Oren Cheyette (1990) and John Barrett, Gerald Moore & Paul
Wilmott (1992).
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1994 Dupire, Rubinstein, Derman and Kani Another discovery was
made independently and simultaneously by three groups of
researchers in the subject of option pricing with determin-
istic volatility. One of the perceived problems with classical
option pricing is that the assumption of constant volatility is
inconsistent with market prices of exchange-traded instru-
ments. A model is needed that can correctly price vanilla
contracts, and then price exotic contracts consistently. The
new methodology, which quickly became standard market
practice, was to find the volatility as a function of underly-
ing and time that when put into the Black–Scholes equation
and solved, usually numerically, gave resulting option prices
which matched market prices. This is what is known as an
inverse problem: use the ‘answer’ to find the coefficients in
the governing equation. On the plus side, this is not too diffi-
cult to do in theory. On the minus side, the practice is much
harder, the sought volatility function depending very sensi-
tively on the initial data. From a scientific point of view there
is much to be said against the methodology. The resulting
volatility structure never matches actual volatility, and even
if exotics are priced consistently it is not clear how to best
hedge exotics with vanillas in order to minimize any model
error. Such concerns seem to carry little weight, since the
method is so ubiquitous. As so often happens in finance,
once a technique becomes popular it is hard to go against
the majority. There is job safety in numbers. See Emanuel
Derman & Iraj Kani (1994), Bruno Dupire (1994) and Mark
Rubinstein (1994).

1996 Avellaneda and Parás Marco Avellaneda and Antonio
Parás were, together with Arnon Levy and Terry Lyons, the
creators of the uncertain volatility model for option pricing.
It was a great breakthrough for the rigorous, scientific side
of finance theory, but the best was yet to come. This model,
and many that succeeded it, was nonlinear. Nonlinearity in
an option pricing model means that the value of a portfolio
of contracts is not necessarily the same as the sum of the
values of its constituent parts. An option will have a different
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value depending on what else is in the portfolio with it,
and an exotic will have a different value depending on what
it is statically hedged with. Avellaneda and Parás defined
an exotic option’s value as the highest possible marginal
value for that contract when hedged with any or all available
exchange-traded contracts. The result was that the method
of option pricing also came with its own technique for static
hedging with other options. Prior to their work the only
result of an option pricing model was its value and its delta,
only dynamic hedging was theoretically necessary. With this
new concept, theory became a major step closer to practice.
Another result of this technique was that the theoretical
price of an exchange-traded option exactly matched its
market price. The convoluted calibration of volatility surface
models was redundant. See Avellaneda & Parás (1996).

1997 Brace, Gatarek and Musiela Although the HJM interest rate
model had addressed the main problem with stochastic
spot rate models, and others of that ilk, it still had two
major drawbacks. It required the existence of a spot rate
and it assumed a continuous distribution of forward rates.
Alan Brace, Dariusz Gatarek & Marek Musiela (1997) got
around both of those difficulties by introducing a model
which only relied on a discrete set of rates – ones that
actually are traded. As with the HJM model the initial data
are the forward rates so that bond prices are calibrated
automatically. One specifies a number of random factors,
their volatilities and correlations between them, and the
requirement of no arbitrage then determines the risk-neutral
drifts. Although B, G and M have their names associated with
this idea many others worked on it simultaneously.

2000 Li As already mentioned, the 1990s saw an explosion
in the number of credit instruments available, and also in
the growth of derivatives with multiple underlyings. It’s not
a great step to imagine contracts depending on the default of
many underlyings. Examples of these are the once ubiquitous
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Collateralized Debt Obligations (CDOs). But to price such
complicated instruments requires a model for the interaction
of many companies during the process of default. A proba-
bilistic approach based on copulas was proposed by David
Li (2000). The copula approach allows one to join together
(hence the word ‘copula’) default models for individual com-
panies in isolation to make a model for the probabilities of
their joint default. The idea was adopted universally as a
practical solution to a complicated problem. However with
the recent financial crisis the concept has come in for a lot of
criticism.

2002 Hagan, Kumar, Lesniewski and Woodward There has always
been a need for models that are both fast and match traded
prices well. The interest-rate model of Pat Hagan, Deep
Kumar, Andrew Lesniewski and Diana Woodward (2002),
which has come to be called the SABR (stochastic, α, β, ρ)
model, is a model for a forward rate and its volatility, both
of which are stochastic. This model is made tractable by
exploiting an asymptotic approximation to the governing
equation that is highly accurate in practice. The asymptotic
analysis simplifies a problem that would otherwise have to be
solved numerically. Although asymptotic analysis has been
used in financial problems before, for example in modelling
transaction costs, this was the first time it really entered
mainstream quantitative finance.

August 2007 quantitative finance in disrepute In early August
2007 several hedge funds using quantitative strategies
experienced losses on such a scale as to bring the field of
quantitative finance into disrepute. From then, and through
2008, trading of complex derivative products in obscene
amounts using simplistic mathematical models almost
brought the global financial market to its knees: Lend to the
less-than-totally-creditworthy for home purchase, repackage
these mortgages for selling on from one bank to another, at
each stage adding complexity, combine with overoptimistic
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ratings given to these products by the ratings agencies, with
a dash of moral hazard thrown in, base it all on a crunchy
base of a morally corrupt compensation scheme, and you
have the recipe for the biggest financial collapse in decades.
Out of this many people became very, very rich, while in
many cases the man in the street lost his life savings. And
financial modelling is what made this seem all so simple
and safe.
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Schönbucher, PJ 2003 Credit Derivatives Pricing Models. John Wiley &
Sons Ltd

Sharpe, WF, Alexander, GJ & Bailey, JV 1999 Investments.
Prentice–Hall

Sloan, IH & Walsh, L 1990 A computer search of rank two lattice
rules for multidimensional quadrature. Mathematics of Computation
54 281–302

Sobol’, IM 1967 On the distribution of points in cube and the
approximate evaluation of integrals. USSR Computational Mathe-
matics and Mathematical Physics 7 86–112



18 Frequently Asked Questions in Quantitative Finance

Stachel, J (ed.) 1990 The Collected Papers of Albert Einstein. Princeton
University Press

Thorp, EO 1962 Beat the Dealer. Vintage

Thorp, EO 2002 Wilmott magazine, various papers

Thorp, EO & Kassouf, S 1967 Beat the Market. Random House

Traub, JF & Wozniakowski, H 1994 Breaking intractability. Scientific
American January 102–107

Vasicek, OA 1977 An equilibrium characterization of the term struc-
ture. Journal of Financial Economics 5 177–188

Wiener, N 1923 Differential space. Journal of Mathematics and Physics
58 131–174

And Now a Brief Unofficial History!
Espen Gaarder Haug, as well as being an option trader,
author, lecturer, researcher, gardener, soldier, and collector
of option-pricing formulæ, is also a historian of derivatives
theory. In his excellent book Derivatives: Model on Models
(John Wiley and Sons Ltd, 2007) he gives the ‘alternative’
history of derivatives, a history often ignored for various
reasons. He also keeps us updated on his findings via his
blog http://www.wilmott.com/blogs/collector. Here are a few of the
many interesting facts Espen has unearthed.

1688 de la Vega Possibly a reference to put–call parity. But
then possibly not. De la Vega’s language is not particularly
precise.

1900s Higgins and Nelson They appear to have some grasp of
delta hedging and put–call parity.

1908 Bronzin Publishes a book that includes option formulæ,
and seems to be using risk neutrality. But the work is rapidly
forgotten!
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1915 Mitchell, 1926 Oliver and 1927 Mills They all described the
high-peak/fat-tails in empirical price data.

1956 Kruizenga and 1961 Reinach They definitely describe
put–call parity. Reinach explains ‘conversion,’ which is what
we know as put–call parity, he also understands that it does
not necessarily apply for American options.

1962 Mandelbrot In this year Benoit Mandelbrot wrote his
famous paper on the distribution of cotton price returns,
observing their fat tails.

1970 Arnold Bernhard & Co They describe market-neutral delta
hedging of convertible bonds and warrants. And show how to
numerically find an approximation to the delta.

For more details about the underground history of derivatives
see Espen’s excellent book (2007).
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