
1
HD Video Remote Collaboration
Application

Beomjoo Seo, Xiaomin Liu, and Roger Zimmermann
School of Computing, National University of Singapore, Singapore

1.1 Introduction

High-quality, interactive collaboration tools increasingly allow remote participants to
engage in problem solving scenarios resulting in quicker and improved decision-making
processes. With high-resolution displays becoming increasingly common and significant
network bandwidth being available, high-quality video streaming has become feasible and
innovative applications are possible. Initial work on systems to support high-definition
(HD) quality streaming focused on off-line content. Such video-on-demand systems for
IPTV (Internet protocol television) applications use elaborate buffering techniques that
provide high robustness with commodity IP networks, but introduce long latencies. Recent
work has focused on interactive, real-time applications that utilize HD video. A number
of technical challenges have to be addressed to make such systems a reality. Ideally, a
system would achieve low end-to-end latency, low transmission bandwidth requirements,
and high visual quality all at the same time. However, since the pixel stream from an
HD camera can reach a raw data rate of 1.4 Gbps, simultaneously achieving low latency
while maintaining a low transmission bandwidth – through extensive compression – are
conflicting and challenging requirements.

This chapter describes the design, architectural approach, and technical details of
the remote collaboration system (RCS) prototype developed under the auspices of the
Pratt & Whitney, UTC Institute for Collaborative Engineering (PWICE), at the University
of Southern California (USC).

The focus of the RCS project was on the acquisition, transmission, and rendering of
high-resolution media such as HD quality video for the purpose of building multisite,
collaborative applications. The goal of the system is to facilitate and speed up collab-
orative maintenance procedures between an airline’s technical help desk, its personnel

The Handbook of MPEG Applications: Standards in Practice Edited by Marios C. Angelides and Harry Agius
© 2011 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



34 The Handbook of MPEG Applications

Handheld

Wireless
Wired

Wired

Desktop

Network
Network Protocols

Error Correction

Stream

Query/API Interface
NAT Traversal

P2P Overlay

Room installation

Engine

Storage &
Retrieval

A/V Indexing

Gesture Recog

Localization

Multimodal Processing

Stream Events

...

Figure 1.1 RCS collaborative systems architecture.

working on the tarmac on an aircraft engine, and the engine manufacturer. RCS consists
of multiple components to achieve its overall functionality and objectives through the
following means:

1. Use high fidelity digital audio and high-definition video (HDV) technology (based on
MPEG-2 or MPEG-4/AVC compressed video) to deliver a high-presence experience
and allow several people in different physical locations to collaborate in a natural way
to, for example, discuss a customer request.

2. Provide multipoint connectivity that allows participants to interact with each other
from three or more physically distinct locations.

3. Design and investigate acquisition and rendering components in support of the above
application to optimize bandwidth usage and provide high-quality service over the
existing and future networking infrastructures.

Figure 1.1 illustrates the overall architecture of RCS with different possible end-stations:
room installations, desktop and mobile computers.

1.2 Design and Architecture

HD displays have become common in recent years and large network bandwidth is avail-
able in many places. As a result, high-quality interactive video streaming has become
feasible as an innovative application. One of the challenges is the massive amount of data
required for transmitting such streams, and hence simultaneously achieving low latency
and keeping the bandwidth low are often contradictory. The RCS project has focused on
the design of a system that enables HD quality video and multiple channels of audio to



HD Video Remote Collaboration Application 35

be streamed across an IP based network with commodity equipment. This has been made
possible due to the technological advancements in capturing and encoding HD streams
with modern, high-quality codecs such as MPEG-4/AVC and MPEG-2. In addition to
wired network environments, RCS extends HD live streaming to the wireless networks,
where bandwidth is limited and the packet loss rate can be very high.

The system components for one-way streaming from a source (capture device) to a sink
(media player) can be divided into four stages: media acquisition, media transmission,
media reception, and media rendering. The media acquisition component specifies how to
acquire media data from a capture device such as a camera. Media acquisition generally
includes a video compression module (though there are systems that use uncompressed
video), which reduces the massive amount of raw data into a more manageable quantity.
After the acquisition, the media data is split into a number of small data packets that will
then be efficiently transmitted to a receiver node over a network (media transmission).
Once a data packet is received, it will be reassembled into the original media data stream
(media reception). The reconstructed data is then decompressed and played back (media
rendering). The client and server streaming architecture divides the above stages naturally
into two parts: a server that performs media acquisition and transmission and a client that
executes media reception and rendering.

A more general live streaming architecture that allows multipoint communications may
be described as an extension of the one-way streaming architecture. Two-way live stream-
ing between two nodes establishes two separate one-way streaming paths between the two
entities. To connect more than two sites together, a number of different network topologies
may be used. For example, the full-mesh topology for multiway live streaming applies
two-way live streaming paths among each pair of nodes. Although full-mesh connectivity
results in low end-to-end latencies, it is often not suitable for larger installations and
systems where the bandwidth between different sites is heterogeneous.

For RCS, we present several design alternatives and we describe the choices made in
the creation of a multiway live streaming application. Below are introductory outlines of
the different components of RCS which will subsequently be described in turn.

Acquisition. In RCS, MPEG-2-compressed HD camera streams are acquired via a
FireWire interface from HDV consumer cameras, which feature a built-in codec
module. MPEG-4/AVC streams are obtained from cameras via an external Hauppauge
HD-PVR (high-definition personal video recorder) encoder that provides its output
through a USB connection. With MPEG-2, any camera that conforms to the HDV
standard1 can be used as a video input device. We have tested multiple models from
JVC, Sony, and Canon. As a benefit, cameras can easily be upgraded whenever better
models become available. MPEG-2 camera streams are acquired at a data rate of
20–25 Mbps, whereas MPEG-4/AVC streams require a bandwidth of 6.5–13.5 Mbps.

Multipoint Communication. The system is designed to accommodate the setup of many-
to-many scenarios via a convenient configuration file. A graphical user interface is
available to more easily define and manipulate the configuration file. Because the soft-
ware is modular, it can naturally take advantage of multiple processors and multiple
cores. Furthermore, the software runs on standard Windows PCs and can therefore take
advantage of the latest (and fastest) computers.

1 http://www.hdv-info.org/



36 The Handbook of MPEG Applications

Compressed Domain Transcoding. This functionality is achieved for our RCS
implementation on Microsoft Windows via a commercial DirectShow filter module. It
allows for an optional and custom reduction of the bandwidth for each acquired stream.
This is especially useful when streaming across low bandwidth and wireless links.

Rendering. MPEG-2 and MPEG-4/AVC decoding is performed via modules that take
advantage of motion compensation and iDCT (inverse discreet cosine transform) hard-
ware acceleration operation in modern graphics cards. The number of streams that can
be rendered concurrently is only limited by the CPU processing power (and in practice
by the size of the screens attached to the computer). We have demonstrated three-way
HD communication on dual-core machines.

1.2.1 Media Processing Mechanism

We implemented our RCS package in two different operating system environments,
namely, Linux and Windows. Under Linux, every task is implemented as a process and
data delivery between two processes uses a pipe, one of the typical interprocess commu-
nication (IPC) methods, that transmit the data via standard input and output. In the Linux
environment, the pipe mechanism is integrated with the virtual memory management,
and so it provides effective input/output (I/O) performance. Figure 1.2a illustrates how a
prototypical pipe-based media processing chain handles the received media samples. A
packet receiver process receives RTP (real-time transport protocol)-similar packets from
a network, reconstructs the original transport stream (TS) by stripping the packet headers,
and delivers them to an unnamed standard output pipe. A multiplexer, embedded in a video
decoder process, waits on the unnamed pipe, parses incoming transport packets, consumes
video elementary streams (ES) internally, and forwards audio ES to its unnamed pipe.

Packet receiver
ts

Demultiplexer

Video decoder

Audio decoder
Video Audio

Packet receiver

Infinite tee Infinite tee

Infinite tee

Packet sender

Demultiplexer

Video decoder

Transcoder

Audio decoder

Multiplexer Packet sender

ts

Video

Audio
Audio

Video

ts

(Relaying)

(Transcoded relaying)

(Normal playback)

(Normal playback)

(a)

(b)

Figure 1.2 Example of delivery paths of received packets, using different media processing mech-
anisms: (a) pipe-based chaining and (b) DirectShow-based filter chaining.



HD Video Remote Collaboration Application 37

Lastly, an audio decoder process at the end of the process chain consumes the incoming
streams. Alternatively, the demultiplexer may be separated from the video decoder by
delivering the video streams to a named pipe, on which the decoder is waiting.

On the Windows platform, our investigative experiments showed that a pipe-based
interprocess data delivery mechanism would be very I/O-intensive, causing significant
video glitches. As an alternative design to the pipe mechanism, we chose a DirectShow
filter pipeline. DirectShow – previously known as ActiveMovie and a part of the DirectX
software development kit (SDK) – is a component object model (COM)-based stream-
ing framework for the Microsoft Windows platform. It allows application developers not
only to rapidly prototype the control of audio/video data flows through high-level inter-
faces (APIs, application programming interfaces) but also to customize low-level media
processing components (filters).

The DirectShow filters are COM objects that have a custom behavior implemented
along filter-specific standard interfaces and then communicate with other filters. User-
mode applications are built by connecting such filters. The collection of connected filters
is called a filter graph , which is managed by a high-level object called the filter graph
manager (FGM ). Media data is moved from the source filter to the sink filter (or renderer
filter) one by one along the connections defined in the filter graph under the orchestration
of the FGM. An application invokes control methods (Play, Pause, Stop, Run, etc.) on
an FGM and it may in fact use multiple FGMs. Figure 1.2b depicts one reception filter
graph among various filter graphs implemented in our applications. It illustrates how
media samples that are delivered from the network are processed along multiple branching
paths – that is, a relaying branch, a transcoded relaying branch, and normal playback. The
infinite tee in the figure is an SDK provided standard filter, enabling source samples to
be transmitted to multiple filters simultaneously.

Unlike the pipe mechanism under Windows, a DirectShow filter chain has several
advantages. First, communication between filters is performed in the same address space,
meaning that all the filters (which are a set of methods and processing routines) communi-
cate through simple function calls. The data delivery is via passed pointers to data buffers
(i.e., a zero-copy mechanism). Compared to IPC, this is much more efficient in terms of
I/O overhead. Second, many codecs are available as DirectShow filters, which enables
faster prototyping and deployments. During the implementation, however, we observed
several problems with the DirectShow filter chaining mechanism. First, the developer
has no control over the existing filters other than the methods provided by the vendors,
thus leaving little room for any further software optimizations to reduce the acquisition
and playback latency. Second, as a rather minor issue, some filter components can cause
synchronization problems. We elaborate on this in Section 1.6.1.

1.3 HD Video Acquisition

For HD video acquisition, we relied on solutions that included hardware-implemented
MPEG compressors. Such solutions generally generate high-quality output video streams.
While hardware-based MPEG encoders that are able to handle HD resolutions used to
cost tens of thousands of dollars in the past, they are now affordable due to the pro-
liferation of mass-market consumer products. If video data is desired in the MPEG-2
format, there exist many consumer cameras that can capture and stream HD video in real



38 The Handbook of MPEG Applications

time. Specifically, the HDV standard commonly implemented in consumer camcorders
includes real-time MPEG-2 encoded output via a FireWire (IEEE 1394) interface. Our
system can acquire digital video from several types of camera models, which transmit
MPEG-2 TS via FireWire interface in HDV format. The HDV compressed data rate is
approximately 20–25 Mbps and a large number of manufacturers are supporting this con-
sumer format. Our earliest experiments used a JVC JY-HD10U camera that produces 720p
video (1280 × 720 pixels); however, at only 30 frames per second, not the usual 60. More
recently, we have used Sony and Canon cameras that implement the 1080i HD standard.

In contrast, the more recent AVCHD (advanced video coding high definition) stan-
dard (which utilizes the MPEG-4/AVC codec) that is now common with HD consumer
camcorders does not support a FireWire interface. Therefore, these new cameras can-
not stream compressed HD video in real time. To overcome this obstacle, we used the
stand-alone Hauppauge HD-PVR model 1212 hardware compressor, which can acquire
HD uncompressed component signals (YCrCb) and encode them into an MPEG-4/AVC
stream. The HD-PVR is officially supported on the Windows platform; however, a Linux
driver also exists. Compressed data is streamed from the HD-PVR via a USB connection.
Data rates are software selectable between 1 and 13.5 Mbps. A reasonable quality output
is produced at 4 Mbps and above, while good quality output requires 6.5–13.5 Mbps.
Figure 1.3 illustrates our prototype setup with the HD-PVR.

Figure 1.3 Prototype setup that includes a Canon VIXIA HV30 high-definition camcorder and a
Hauppauge HD-PVR MPEG-4/AVC encoder.



HD Video Remote Collaboration Application 39

1.3.1 MPEG-4/AVC HD System Chain

For HD conferencing an end-to-end chain has to be established, including both the
acquisition and rendering facilities. At each end, a combination of suitable hardware
and software components must be deployed. Since the objective is to achieve good
interactivity, the delay across the complete chain is of crucial importance. Furthermore,
video and audio quality must also be taken into consideration. Figure 1.3 illustrates
our system setup when utilizing MPEG-4/AVC as the video encoding standard. We will
describe each component in more detail.

The end-to-end system chain consists of the following components:

• HD Video Camcorder. The acquisition device used to capture the real-time video and
audio streams. We utilize the uncompressed component signals that are produced with
negligible latency.

• HD MPEG-4/AVC Encoder. The Hauppauge HD-PVR is a USB device that encodes
the component video and audio outputs of the HD video camcorder. It utilizes the
colorspace of YUV 420p at a resolution of 1920 × 1080 pixels and encodes the compo-
nents inputs in real time using the H.264/MPEG-4 (part 10) video and AAC (advanced
audio coding) audio codecs. The audio and video streams are then multiplexed into a
slightly modified MPEG-2 TS container format. The bitrate is user selectable from 1
to 13.5 Mbps.

• Receiver Demultiplexing. A small library called MPSYS, which includes functions
for processing MPEG-2 TS, is used. A tool called ts allows the extraction of ES from
the modified MPEG-2 multiplexed stream.

• Decoding and Rendering. Tools based on the ffplay library are utilized to decode the
streams, render the audio and video data, and play back the output to the users.

1.3.1.1 End-to-End Delay

Video conferencing is very time sensitive and a designer must make many optimization
choices. For example, a different target bitrate of the encoder can affect the processing and
transmission latencies. End-to-end delays with our implementation at different encoding
rates are presented in Figure 1.4.

The results show that with our specific setup at a bitrate of 6.5 Mbps, the latency is
lowest. At the same time, the video quality is very good. When the bitrate is below
4 Mbps, the latency is somewhat higher and the video quality is not as good. There are
many blocking artifacts. When the bitrate is above 6.5 Mbps, the latency increases while
the video quality does not improve very much. Figure 1.5 illustrates the visual quality of
a frame when the video is streamed at different bitrates.

Encoding streams with the MPEG-4/AVC codec has several advantages. It offers the
potential for a higher compression ratio and much flexibility for compressing, transmitting,
and storing video. On the other hand, it demands greater computational resources since
MPEG-4/AVC is more sophisticated than earlier compression methods (Figure 1.6).



40 The Handbook of MPEG Applications

1 2 4 6.5 7 8 10

350

400

450

500

550

600

Encoding bitrate (Mbps)

E
nd

-t
o-

en
d 

de
la

y 
(m

s)

Figure 1.4 End-to-end delay distribution for different encoding bitrates with the hardware and
software setup outlined in this chapter. Ten measurements were taken for each bitrate value.

1.4 Network and Topology Considerations

The streams that have been captured from the HD cameras need to be sent via traditional
IP networks to one or more receivers. Audio can be transmitted either by connecting
microphones to the cameras and multiplexing the data with the same stream as the video
or transmitting it as a separate stream. The RCS transmission subsystem uses the RTP
on top of the universal datagram protocol (UDP). Since IP networks were not originally
designed for isochronous data traffic, packets may sometimes be lost between the sender
and the receiver. RCS uses a single-retransmission algorithm (Papadopoulos and Parulkar
1996; Zimmermann et al . 2003) to recover lost packets. Buffering in the system is kept
to a minimum to maintain a low latency.

To meet flexible requirements, we designed RCS’ software architecture to be aware of
the underlying network topology. We further reached the design decision that real-time
transcoding should be integrated with the architecture to support lower bandwidth links.
This requirement becomes especially critical when a system is scaled up to more than
a few end user sites. Quite often some of the links may not be able to sustain the high
bandwidth required for HD transmissions.

In addition to network bandwidth challenges, we also realized that the rendering quality
of the video displayed on today’s high-quality LCD and plasma screens suffers when the
source camera produces interlaced video. The artifacts were especially noticeable with
any fast moving motions. We describe how we addressed this issue in a later section.



HD Video Remote Collaboration Application 41

(a) (b)

(c) (d)

(e) (f)

Figure 1.5 Comparison of picture quality at various encoding bitrates: (a) original image;
(b) details from the original image; (c) encoded @ 2 Mbps; (d) encoded @ 4 Mbps; (e) encoded @
6.5 Mbps; (f) encoded @ 10 Mbps.

Figure 1.6 Single end-to-end delay measurement of an MPEG-4/AVC video stream from an HD-
PVR encoder at a rate of 6.5 Mbps. The delay is (887 − 525 = 362) ms. The delay is measured
by taking snapshot images of both the original display (left) and the transmitted video (right) of a
running clock.



42 The Handbook of MPEG Applications

Video

Audio

Packetizer

Packetizer
TS mux

Video ES Video PES

Audio PES

(MPEG 2 Video or H.264)

(MP3 or AAC) 

Camcorder or encoder

Sender

TS demux

TS

Video decoder

Audio decoder

RTP

Receiver
TS

Audio ES

Video ES

Audio ES

Figure 1.7 Captured media samples (MPEG-2 TS format) are packetized in the RTP format and
reconstructed as a sequence of transport stream packets.

1.4.1 Packetization and Depacketization

Figure 1.7 illustrates how RTP packets are generated and delivered in the network. First,
camcorders and encoders used for our application generate MPEG-TS packets, whose
format is specified in the specification MPEG-2 Part 1, Systems (or ISO/IEC standard
13818-1 ) (ISO/IEC 1994). The acquisition process encapsulates a number of TS packets
with an RTP header and transmits them over the network. At the receiver side, an RTP
reception process recognizes the RTP packets and converts their payload data to a number
of TS packets. Next, it separates individual streams by packet identifier (PID) values, and
passes them to their corresponding decoders.

A TS packet, whose length is fixed at 188 bytes, has at least a 4-byte header. Each TS
header starts with a sync byte (0 × 47) and contains a 13-bit PID, which enables the TS
demultiplexer to efficiently extract individual packetized elementary streams (PES) sepa-
rately. Every video or audio bitstream or ES cannot be converted to TS packets directly,
since the TS format expects PES as input streams. Thus, every ES needs to be converted
to a number of PES packets, whose maximum length is limited to 64 KB. Usually, every
camcorder vendor assigns a unique PID numbers for each PES. For example, the PID of
JVC video ES is 4096, Sony uses 2064, and that of the Hauppauge HD-PVR is 4113.
Since identifying the PIDs of individual streams takes a longer time without a priori
information, we hard-coded such information that is used during the TS demultiplexing
in our application.

Once TS packets are acquired via a FireWire or a USB, they need to be aligned at
the TS boundary to be transformed into RTP packets. To find the exact offset from the
given raw samples, we first attempt to scan the first 188 bytes to locate the position of
the sync byte, since the raw data should contain at least one sync byte within the first
188 bytes. Once multiple candidate offsets have been found, the detection continues to
check whether their next 188th byte equals to a sync byte. These steps are repeated until
only one offset remains. After the aligned offset is detected, the data acquisition software
passes 188-byte aligned media samples to the rest of the delivery chain.

A single RTP packet can encapsulate multiple TS packets. To maximally utilize the net-
work bandwidth, we used a maximum transmission unit (MTU) of 1500 bytes; therefore,



HD Video Remote Collaboration Application 43

the RTP packet could encapsulate up to seven TS packets (≈1500/188). To minimize
multiple PES losses from a single RTP packet loss, we separately assign a new RTP
packet for each newly arriving PES packet. This condition is detected by examining the
payload unit start indicator field in the TS header.

To demultiplex incoming TS packets, we use the MPSYS library2 by embedding it
with the video decoder or running it as a separate process in Linux. The small-footprint
library efficiently parses MPEG-TS streams and stores them as either individual PES or
ES. In the Windows environment we used an MPEG-2 demultiplexer DirectShow filter
when running on the DirectShow platform, or we used the MPSYS library when running
the application via the Windows pipe mechanism.

Our packetization scheme, however, has several drawbacks when handling MPEG-
4/AVC videos. As specified in RFC 3984 (Wenger et al . 2005), the RTP payload scheme
for MPEG-4/AVC recommends the use of a network abstraction layer (NAL) unit.
The NAL unit that encapsulates a number of slices containing multiple macroblocks is
designed for the efficient transmission of the MPEG-4/AVC video over packet networks
without any further packetization; therefore, the single loss of an RTP packet does not
propagate to adjacent video frames, resulting in better error-resilience. Since the NAL
unit works with TS packets, the direct use of the NAL units minimizes the packet
overhead. For example, our TS-encapsulated RTP scheme consumes at least the following
overhead for headers: 20 (IP) + 8 (UDP) + 12 (RTP) + 7 × 4 (7 TS packet headers) +
8 (PES header, if necessary) = 76 bytes, while the NAL-aware RTP scheme requires
the following headers: 20 IP + 8 UDP + 12 RTP = 40 bytes (MacAulay et al . 2005).
Although we have not implemented this scheme due to its higher parsing complexity to
reconstruct the raw MPEG-4/AVC bitstreams, it possesses many undeniable advantages
over our TS-aware RTP scheme.

1.4.2 Retransmission-Based Packet Recovery

Our packet recovery algorithm has the following features:

• Reuse of the existing retransmission-based packet recovery solution.
• Reduction of the response time of a retransmission request.

There are many alternative solutions to recover lost packets. One popular solution is to
use redundant data such as a forward error correction (FEC)-enabled coding scheme. This
approach removes the delay associated with a retransmission request, while somewhat
overutilizing the network bandwidth more than the minimally required rate and may
require significant on-line processing power.

We validated our single-pass retransmission scheme in a loss-free networking environ-
ment by simulating a loss-prone network. For the simulation purposes, we included a
probabilistic packet loss model and a deterministic delay model at the receiver side. The
packet loss model drops incoming packets probabilistically before delivering them to a
receiver application session. The receiver application detects missing packets by examin-
ing the sequence numbers in the RTP headers. If the algorithm finds any missing packets,

2 http://www.nenie.org/misc/mpsys/



44 The Handbook of MPEG Applications

it immediately issues a retransmission request to the sender. The delay model postpones
the delivery of the retransmission requests by a given amount of time. We used a two-
state Markov model, widely known as the Gilbert model , to emulate a bursty packet loss
behavior in the network.

We used a fixed 10 ms delay, since it represents the maximum round trip delay in our
target network infrastructure. We varied the packet loss rates as follows: 1, 5, and 10%.
For lost packets, our recovery mechanism sends at most a single-retransmission request.

Figure 1.8 reveals that our software recovered a lot of lost packets and maintained a
tolerable picture quality with noticeable, but not overwhelming, glitches even in extremely
loss-prone network environments such as with a packet loss rate of 10%. This applies as
long as the network can utilize more than the required available bandwidth. As seen in the
figure, our retransmission scheme recovered lost packets very successfully in a 1% packet
loss environment. The retransmission scheme with a 5% packet loss environment also
showed a similar trend as for the 1% packet loss environment. Our real-world experiments
also confirmed the effectiveness of the retransmission-based recovery mechanism, even
with a video conference between cross-continental multisites.

(a) (b)

(c) (d)

(e) (f)

Figure 1.8 Artifacts of retransmission-based packet recovery algorithm: (a, c, and e) show the
picture quality without retransmission policy with 10, 5, and 1% loss, respectively. (b, d, and f)
show the picture quality with retransmission policy with 10, 5, and 1% loss, respectively.



HD Video Remote Collaboration Application 45

1.4.3 Network Topology Models

The next step-up in complexity from traditional two-way conferencing is to scale the
system to three sites. Unlike in audio conferencing applications where multisite sound
data can be mixed together, a three-way video conferencing system requires at least
two incoming video channels and one outgoing channel per participating node. This
may become a limiting factor in terms of bandwidth and decoding processing resources.
Our design also took into consideration real-world factors such as the characteristics
of corporate networks which may be asymmetric and heterogeneous and which require
optimizations with respect to the underlying available network bandwidth.

Our airline maintenance application involved three sites designated A, B, and C, where
A and B are connected via a 1 Gbps dedicated link, while C is connected to other sites
via a 25 Mbps public link, thus being limited to one HD stream at a time. In fact, all
the video traffic to and from C had to pass through B. Moreover, participants at A are
expected to experience all HD quality. This unique situation affected the design of our
communication model, and we explored a number of alternative scenarios. To compare
these alternatives, we present four possible scenarios, shown in Figure 1.9.

• The full-mesh model , illustrated in Figure 1.9a, is a simple three-way communication
model, where every site has an individual path with every other site. In its deployment,
however, we encountered a fundamental obstacle, as there did not exist enough network
bandwidth on the path from C to B. The constraint was largely due to the design
of the underlying physical topology. In fact, the path from C to A in the physical
network bypasses B, doubling the network utilization of the path from C to A. Without
any topology awareness, the logical path would result in intolerable image corruption,
resulting from heavy network congestion at the low-bandwidth link.

• The partial-relay model in Figure 1.9b tackles the link stress problem of the previous
model by relaying the traffic at B. The visual experience at an end user site is the same

B1

A

B2

BA C

CBA C

(a) (b)

(c) (d)

BA C

Figure 1.9 Different application-level network topologies for three-way HD conferencing:
(a) full-mesh model, (b) partial-relay model, (c) full-relay model, (d) off-loading model. Bold
arrows represent an HD path, while normal arrows represent a transcoded SD path.



46 The Handbook of MPEG Applications

as that of the conceptual model with a little time shifting due to the newly introduced
relay delay. In the meanwhile, the traffic generated from A is still transmitted to B and
C, separately. Thus, the outgoing traffic of A will be one HD plus one SD (standard-
definition) quality stream.

• The full-relay model , shown in Figure 1.9c, additionally minimizes the link stress
redundantly imposed on the path from A to C for the logical connection from A to
C via relaying at B. This model eventually equals to a centralized model, since B
moderates all the traffics. If the required bandwidth for SD video were, however, much
smaller than that of HD video and the link capacity of A and B were so high enough
to ignore small SD traffics, this optimization would not be benefited any more.

The two relay models are still exposed to another problem. As shown in Figure 1.9c,
B simultaneously captures and delivers one HD video as follows: receives two HD
videos from the network, simultaneously renders them in parallel, relays one HD video,
and transcodes one captured HD video to SD and delivers the reduced video. These
operations are simultaneously executed on a single machine, resulting in significant
CPU load. As an improvisational remedy for such a heavy load, we proposed the
off-loading solution illustrated in Figure 1.9d.

• The off-loading model off-loads the traffic coming from A by redirecting it to B2,
which is geographically located near the B1 site; thus, a B participant can view two
HD videos transmitted from A and C on separate monitors. However, we found that
the B1 machine was still overloaded. Another suggestion to reduce the B1 load is to
move the HD streaming path to B2.

1.4.4 Relaying

A relay node can play an important role in alleviating bandwidth bottlenecks and in reduc-
ing redundant network traffic. However, it may require full knowledge of the underlying
physical network topology. In the RCS model, one node may serve as both a regular
video participant and as a relay agent.

The relay program is located in the middle of the network, thus being exposed to any
occurring network anomalies. To recover from any possible packet losses effectively, the
relay host should maintain some small FIFO (first in first out) network buffers that can
be used to resequence out-of-order packets and to request lost packets. Packets are then
delivered to the destinations after the data cycles through the buffers. It is important to note
that a larger buffer size introduces longer delays. Careful selection of the trade-off between
the buffer size and the delay is a primary concern of the recovery mechanism. Furthermore,
the relay software should be light-weight and not interfere with other programs, because
multiple programs may be running on the same machine. In summary, the relay module
should satisfy the following requirements:

• recover lost packets (through buffering);
• have an acceptably low relay delay;
• require minimal CPU load.

To implement the relay functionality, we modified the existing network transmission
modules. At a traditional receiver, incoming packets sent from another site are temporarily



HD Video Remote Collaboration Application 47

buffered and then pipelined to the video rendering engine as soon as the small local buffer
is full. Our relaying mechanism augmented the existing code by writing the full
buffer into the user-specified pipe area (or named pipe). The relay sender simply reads
data from the pipe and sends the data continuously to the network. Our augmented relay
transmission module supports both delivery policies. The relay receiver also included the
retransmission-based error recovery algorithm.

However, our experiments showed that the local pipe mechanism, even though it is
simple and light-weight, suffered from irregular load fluctuations, resulting in significant
quality degradations. Under Linux, it seemed that the pipe mechanism was closely related
with the unbalanced CPU load, which made it less useful in some environments. Such
oscillations could potentially be a side effect of uneven load scheduling of two separate
programs, the receiver and the sender. Thus, the relay operation would probably benefit
from running as a single program.

1.4.5 Extension to Wireless Networks

There are numerous challenges when designing and implementing HD streaming over a
wireless network. Some existing technologies, for example, 802.11a/g, provide for a max-
imum sustained bandwidth of approximately 23 Mbps. This is significantly lower than the
theoretical and advertised maximum of 54 Mbps. Furthermore, the channel characteristics
in wireless networks are very dynamic and variable. As such, packet losses, bandwidth
fluctuations, and other adverse effects are a frequent occurrence and require a careful
design of the transmission protocol and rendering algorithms. An early prototype of our
RCS implementation for wireless networks is shown operational in a laboratory environ-
ment in Figure 1.10. In our real-world application, we were able to demonstrate wireless
HD streaming in a large aircraft hangar with high visual quality and minimal interfer-
ence. Figure 1.11 shows the multisite system during a test scenario with the wireless
video transmission shown in the upper right corner.

Figure 1.10 HD transmission over a wireless, ad hoc link (802.11a) between two laptops in the
laboratory.



48 The Handbook of MPEG Applications

Figure 1.11 HD multiparty conference with two wired (top left and bottom) and one wireless HD
transmission (from an aircraft hangar).

1.5 Real-Time Transcoding

Transcoding refers to a process of converting digital content from one encoding format to
another. Owing to its broad definition, it can be interpreted in a number of different ways:
conversion from a given video format to another (format conversion); lowering of the
bitrate without changing the format (bitrate reduction); reduction of the image resolution
to fit to a target display (image scaling); or naively performing complete decoding and
re-encoding (cascaded pixel-domain transcoding). Since transcoding allows the adaptation
of the video bandwidth to the different requirements of various end users, it is a vital
component in the toolkit of a multiway video conference solution, and we narrow the focus
of our discussion to three types of bitrate reduction architectures: cascaded pixel-domain
transcoding, closed-loop transcoding, and open-loop transcoding.

The cascaded pixel-domain architecture fully decodes compressed bitstreams to recon-
struct original signals and then re-encodes them to yield the desired bitstream. While
achieving the best performance in terms of video quality, it presents significant compu-
tational complexity mainly due to the two iDCT and one DCT processes required. The
closed-loop method is the approximation of the cascaded architecture. At the expense of
accuracy, and only by using a pair of iDCT and DCT stages, it improves the transcoding
complexity significantly.

The open-loop architecture modifies only DCT coefficients in the encoded bitstream by
increasing the quantization step size (requantization) or by dropping high-frequency coef-
ficients (data partitioning). In particular, the requantization method converts the encoded
bitstream into the DCT domain through variable length decoding (VLD) and then applies
coarse-grained quantization to the intermittent signals, which eventually results in more
DCT coefficients becoming zero and variable length codes becoming shorter. Since the
open-loop approach does not use any DCT/iDCT stages, it achieves minimal processing
complexity, but it is exposed to a drift problem. A drift error is caused by the loss of
high-frequency information, which damages the reconstruction of reference frames and



HD Video Remote Collaboration Application 49

their successive frames. On the other hand, the cascaded and closed-loop architectures
are free from this problem.

In our application, the transcoding component should satisfy the following criteria:

• acceptable video quality;
• acceptable transcoding latency;
• minimal use of local resources.

All three requirements are crucial for a software-driven transcoding component, and
it added significant flexibility to our RCS three-way video communication. We started
our experiments by customizing an existing transcoding utility, called mencoder , which
implements the cascaded pixel-domain or the closed-loop system. It is available as
one of the utilities for the open-source MPlayer video player software package. In the
Linux environment, MPlayer is very popular for rendering a multitude of video formats,
including the latest video standard such as MPEG-4/AVC. The mencoder was configured
to decode incoming MPEG-2 TS packets and then to encode them into a designated
video format. We tested two types of transcoded video formats: MPEG-2 program
streams (PS) and MPEG-2 TS.

Our earlier experiments in transcoding were a partial success. We were able to
successfully transcode MPEG-2 TS into MPEG-2 PS or newly encode an MPEG-2 TS
stream. However, two problems were found. First, the transcoding delay was so high
that the final end-to-end delay measured about 2 s. Secondly, the machines at one of
our sites could not transcode the original HD videos into SD-quality video, due to
its underpowered processor. When reproducing the SD-quality video, the transcoder
continuously dropped frames, causing frequent video hiccups even without any network
retransmissions. Through a series of parameter reconfigurations, we found the optimal
video resolution of 300 × 200 pixels that did not cause any frame drops or video hiccups.
Even then, the CPU load was very high, more than 50% on a single core Pentium
machine. Thus, we were not able to run two transcoding instances simultaneously on
a single machine. The mencoder tended to grab more CPU cycles if any idle time was
detected. Such overloads resulted in highly uneven CPU utilization, sometimes causing
random program terminations. Transcoding was such an expensive operation that we
needed to separate it from other running programs.

Another alternative for software-based transcoding was to use a rather simple, but
fast, requantization method, one of the open-loop architectures. Compared to mencoder,
this approach does not fully decode and encode the streams, but quantizes pixels at the
compressed level. Such a technique would perform much faster and overall be more
light-weight.

We experimented with a commercialized DirectShow filter from Solveig Multimedia,
called requantizer , for our RCS Windows implementation. It was inserted in the middle of
several filter chains to convert a 20 Mbps MPEG-2 TS into 10 Mbps MPEG-2 TS in real
time. Experimental results showed that the requantizer was able to reduce the bitrate by
half while maintaining the same video resolution without any noticeable artifacts caused
by drift error. Its CPU utilization was consistently measured to be negligible at less than
1%. It also had no negative effects on any increase in the end-to-end delay from a filter
source to a sink. Since the requantization-based transcoding met our criteria, we finally
chose the open-loop architecture as our transcoding scheme for the implementation.



50 The Handbook of MPEG Applications

One drawback of the requantization scheme was that its bitrate reduction was very
limited. Although it met our application needs to some degree, it failed to achieve a
bitrate reduction of more than a factor of 2. When reducing the bitrate by more than 50%,
we found that the result was a serious deterioration of the picture quality.

1.6 HD Video Rendering

Once a media stream is transmitted over a network, the rendering component requires
an MPEG-2 or MPEG-4 HD decoder. While we use specialized hardware assistance for
encoding, we considered various hardware and software options for decoding of streams
with the goal of achieving the best quality video with minimal latency. With RCS, we
tested the following three solutions:

1. Hardware-Based (MPEG-2). When improved quality and picture stability are of
paramount importance, we experimented with the CineCast HD decoding board from
Vela Research. An interesting technical aspect of this card is that it communicates
with the host computer through the SCSI (small computer systems interface) protocol.
We have written our own Linux device driver as an extension of the generic Linux
SCSI support to communicate with this unit. An advantage of this solution is that
it provides a digital HD-SDI (high-definition serial digital interface; uncompressed)
output for very high picture quality and a genlock input for external synchronization.
Other hardware-based decoder cards also exist.

2. Software-Based (MPEG-2). Utilizing standard PC hardware, we have used the
libmpeg2 library – a highly optimized rendering code that provides hardware-assisted
MPEG-2 decoding on current-generation graphics adapters. Through the XvMC
extensions of Linux X11 graphical user interface, libmpeg2 utilizes the motion
compensation and iDCT hardware capabilities on modern graphics GPUs (graphics
processing units; e.g., nVidia). This is a very cost-effective solution. In our earliest
experiments, we used a graphics card based on an nVidia FX 5200 GPU, which
provides low computational capabilities compared to current-generation GPUs. Even
with the FX 5200 GPU, our software setup achieved approximately 70 fps @
1280 × 720 with a 3 GHz Pentium 4.

3. Software-Based (MPEG-4/AVC). The ffplay player is used as the main playback soft-
ware to decode and render the streams. It is a portable media player based on the
ffmpeg and the SDL libraries. The player supports many options for users to choose
such as to select which kind of video and audio format will be played. For our exper-
iments, the ES extracted by the ts tool are input into ffplay while we also specify the
input video format using the options.

For MPEG-4/AVC rendering, our prototype system configuration had the following
specifications:

• Quad core CPU: Intel(R) Core(TM)2 Extreme CPU X9650 @ 3.00 GHz.
• Video card: nVidia Corporation Quadro FX 1700.



HD Video Remote Collaboration Application 51

• Sound card: Intel Corporation 82801I (ICH9 Family) HD Audio Controller.
• Operating system: Ubuntu 9.10 with Linux kernel version 2.6.31-17 SMP.
• Main memory: 3.25 GB.

To quantify the image quality of different encoding rates of a Hauppauge HD-PVR
box, we use a simple but still widely used performance metric, peak signal-to-noise ratio
(PSNR). Especially, the PSNR of the luminance component (Y) for a given image is
known to be more suitable for the evaluation of a color image than the normal PSNR. In
our experiment, we prerecord a reference video through a Sony HDV camcorder, replay
it for the HD-PVR box to re-encode analogous video output with five different encoding
rates (1, 2, 4, 8, and 10 Mbps), and obtain the PSNR values of every encoded image from
the reference picture. The encoded video resolution was equally configured to that of the
reference video – that is, 1920 × 1080 i.

Figure 1.12 depicts the evaluation results of 300 video frames (corresponding to 10 s) for
all encoded videos. As shown in the figure, the encoding rate of 4 Mbps could reproduce
a very comparable image quality to those of high bitrate videos. Although not shown
in this figure, the encoding rate more than 5 Mbps tends to show better treatments on
dynamically changing scene. Additionally, we also observe that higher bitrate more than
8 Mbps does no longer improve the picture quality significantly.

0 50 100 150 200 250 300
37

38

39

40

41

42

43

44

45

46

Video frame sequence

Y
 P

S
N

R

1 Mbps
2 Mbps
4 Mbps
8 Mbps
10 Mbps

Figure 1.12 The luma PSNR values of different encoding rates by a HD-PVR box are plotted
over 300 video frames.



52 The Handbook of MPEG Applications

1.6.1 Rendering Multiple Simultaneous HD Video Streams
on a Single Machine

In RCS, we performed extensive experiments with a three-way connection topology. Every
site was able to watch at least two other participants. Hence, every machine was equipped
with the necessary resources to render two HD streams. In our early measurements, one
HD decoding process occupied approximately 20% of the CPU load based on our hardware
platform. Thus, we naturally expected that every machine could render two simultaneous
HD videos locally. Rendering two SD streams was also expected to present a lighter load
compared with two HD streams because of the comparatively lower rendering complexity.

We had no problem to display two HD video streams on a single machine. Originally,
we were uncertain whether the machines at two sites could support two HD rendering
processes simultaneously because of their rather low-end single core CPU architectures.
In a slower single core CPU model in our lab, the two HD displays occasionally showed
unbalanced CPU loads during tests. We were able to run two HD video renderers and
two audio renderers simultaneously on some machines. However, the weaker computers
could not run two audio players concurrently while running two video player instances.

In summary, we confirmed that two HD renderings including network transmission
modules worked fine at sufficiently powerful sites. However, CPU utilization was a little
bit higher than we expected; thus, it was unclear whether the video transcoding utility
would be runnable in parallel on a single machine.

1.6.1.1 Display Mode

In order to provide flexibility at each of the end user sites, we implemented a number of
display mode presets that a user could easily access in our software. The display mode in
RCS specifies how to overlay multiple videos on a single window. The single mode
shows only one video at a time (Figure 1.13). The grid mode divides the video screen
into multiple equisized rectangular cells and shows one video per grid cell (Figure 1.14).
Since we did not plan to support more than eight incoming streams, the maximum number
of grid cells was fixed at eight. The last mode, picture-in-picture (PIP) mode, shows two

Figure 1.13 Single display mode.



HD Video Remote Collaboration Application 53

Figure 1.14 Grid display mode (side-by-side).

Figure 1.15 Picture-in-picture display mode.

video streams simultaneously: one main video stream in the background and the other
small subvideo screen at the right bottom corner in the foreground (Figure 1.15).

We also provided a navigational method that quickly switches from one video stream
to another by pressing the arrow keys. Let us assume an example where there is a need
to display three video streams (1, 2, and 3). In single mode, the display order upon any
right arrow key stroke is 1 → 2 → 3 → 1. The left key reverses the display order to
1 → 3 → 2 → 1. In grid mode, the ordering for the right arrow key is 1,2,3 → 3,1,2
→ 2,3,1 → 1,2,3 and for the left key 1,2,3 → 2,3,1 → 3,1,2 → 1,2,3. In PIP mode,
the order for a right arrow key press is 1,2 → 3,1 → 2,3 → 1,2 and for the left key 1,2
→ 2,3 → 3,1 → 1,2. The up and down arrow keys are assigned to change the display
modes. The cycling order of the up key is single → grid → PIP → single. The down
key reverses the order: single → PIP → grid → single.

One crucial issue in this display mode is related to the limitation of the DirectShow
filter chaining mechanism: synchronized rendering. When all the videos are connected
to a single video mixing render (VMR) filter for a unified display on a single video
plane, the starting times of individual video renderings are synchronized with the longest
start-up latency among all the individual video renderers. This is primarily due to a



54 The Handbook of MPEG Applications

VMR implementation policy, where the video mixing operation starts only after all media
samples of its input filters are available. On the other hand, as exemplified in Figure 1.12,
when video rendering chains are separated and running as different processes, such time
synchronization problems do not exist.

1.6.2 Deinterlacing

We tested a number of Sony HD camcorders whose video format is interlaced video
output (1080i). As long as the interlaced videos are displayed on an interlaced television
and progressive videos are shown on a monitor-like screen, different video modes will
not be a problem. However, many new big-screen displays are now progressive in nature
and thus they might produce interlacing artifacts during display. Although our test plasma
television technically supported interlaced rendering, it turned out to be difficult to enable
the computer graphics cards to output interlaced signals, and the autodetection mechanism
usually defaulted to a progressive mode. This practical problem may be solvable with
further investigations into the compatibility between video drivers and display capabilities.
However, even if the interlaced mode can be set successfully, we would be somewhat
hesitant to use it because, from our experience, the interlaced display of text output is
very unsatisfactory.

In response, we decided to add a deinterlacing routine to the video rendering software. It
eliminated the interlacing artifacts produced by alternating odd and even fields of frames.
Again, such a module should be light-weight as it will postprocess signals during the last
stage of the video rendering process. If its processing load is too heavy, it may result in
a failure to display two simultaneous HD renderings.

We implemented the linear blending deinterlacing algorithm at the very end of video
rendering pipeline, right before the pixels were displayed on the screen. The approach is
to interpolate consecutive even and odd lines. Specifically, the algorithm computes the
average values of the pixels of the previous three lines (prioritizing the odd lines or the
even lines) and then using them as the final pixel values as follows:

ith pixel value of j th line = [ith pixel of (j − 3)th line
+2 × (ith pixel of (j − 2)th line) + ith pixel of (j − 1)th line]/4

Our blending implementation does not use previously rendered video frames. As a
result, the artifacts such as “mouse teeth” and “tearing” are noticeably eliminated after
applying the averaging mechanism. However, it does have the side effect of blurring the
images. Fast motions tend to show less clear images, resulting in poorer video quality.
Moreover, interlacing artifacts are still present for fast motions. Our deinterlacing solution
did not cause any noticeable performance degradation and its CPU load still remained
consistent and stable, similar to the case without it.

In the Windows environment, we tested a hardware supported deinterlacing method,
the PureVideo technology available from nVidia Corporation. It performs the motion
estimations and compensations through the hardware accelerator on an nVidia graphics
card. Surprisingly, its video rendering occupies just about 10% of the CPU load with
excellent deinterlaced video output results. We realized that a number of off-the-shelf
deinterlacing software libraries available for the Windows environment produced a very
decent deinterlaced quality with acceptable CPU load.



HD Video Remote Collaboration Application 55

As a result, we reached the conclusion to use such off-the-shelf deinterlacing libraries
available freely when we moved our development platform to Windows. The only remain-
ing question was whether the video rendering software would still be able to maintain the
same degree of low latency that we achieved on the Linux platform.

1.7 Other Challenges

1.7.1 Audio Handling

Multichannel echo cancellation is a largely open research problem. Researchers are pur-
suing both near-term- and long-term solutions to address the needs of high-quality audio
acquisition challenges in conference type environments. Echo cancellation for a single
audio channel has been identified as a needed component. Optimal microphone and
speaker placements are other design issues. Finally, the output audio quality require-
ments need to be contrasted and optimized for meeting type environments (as compared
to, for example, theater type production environments).

1.7.2 Video Streaming

Optimization of high-quality video in terms of QoS (quality of service)/usability require-
ments in conjunction with objective performance metrics such as latency is an ongoing
research problem. Video streaming issues must be studied in various configurations and
settings with new algorithms as well as through usability testing. It should be noted
that RCS focuses on HDV quality. As a consequence, a minimum amount of bandwidth
must exist in the network, otherwise it is physically impossible to achieve high-quality
transmissions. Furthermore, there are constraints on the hardware, which must provide
the capabilities and performance required. For example, the RCS rendering system is
carefully designed around MPEG-2 and MPEG-4 software decompression modules. To
achieve high performance, it is desirable to utilize the hardware capabilities of modern
graphics cards. In our current design, a specific combination of graphics hardware, drivers,
and software components is necessary to achieve the best possible performance. Further
research is required to investigate these trade-offs and to improve performance. It is also
important to understand the operating environment in which a remote conferencing sys-
tem will operate. Public and corporate networks have different characteristics in different
parts of the globe.

1.7.3 Stream Format Selection

The RCS software is designed to capture, transmit, and decode MPEG-2 and MPEG-4
bitstreams in the TS format. Although the video rendering software is capable of playing
both MPEG-2 formatted TS and PS videos, the software chain was significantly rewritten
to optimize the transmission and rendering of TS video streams effectively. The transcoded
video output can be either TS or PS formatted.

RCS has also shown the usefulness of a single-pass retransmission mechanism in a lossy
network. Some of the retransmitted packets may arrive late or are dropped in the network.
The RCS receiver software, aware of the underlying data format, selectively issues a



56 The Handbook of MPEG Applications

retransmission request for each lost packet. Changes in the software design, for example,
as a result of new transcoding modules, may produce data formats other than TS. These are
design choices that need to be carefully analyzed in the context of the overall architecture.

1.8 Other HD Streaming Systems

There are several commercial systems available that focus on high-quality video
conferencing (i.e., with a visual quality beyond SD). Among them, two popular
high-end systems are highlighted here. The TelePresence system from Cisco Systems
provides a specially engineered room environment per site, integrating cameras, displays,
meeting table, and sound systems (Szigeti et al . 2009). The video images taken from
custom-designed high-resolution 1080p video cameras are encoded as 720p or 1080p
H.264 bitstreams. The encoded bitrates range either from 1 to 2.25 Mbps for 720p or
from 3 to 4 Mbps for 1080p. Unlike the usual MPEG-based compression algorithms,
reference frames are constructed aperiodically to encode more efficiently. Individual
sound samples, acquired from microphones that are positioned at special locations, are
encoded with AAC-LD (advanced audio coding low delay). The encoded bitrate and
coding delay are 64 kbps and 20 ms, respectively. The encoded media data are then
packetized and multiplexed, using the RTP. The system does not employ any packet
loss recovery mechanism, but a receiver, after detecting the packet losses, requests a
sender to send a reference frame to rebuild the video image, while disposing unusable
frames quickly. The end-to-end latency between two systems, excluding the transmission
delay, is estimated less than 200 ms. The Halo system from HP3 features similar room
installations with fully assembled hardware communicating over a private, dedicated
network. While the cameras used in Halo are SD, the video streams are upconverted
to HD at the display side. Each stream requires about 6 Mbps and each room generally
supports four streams. The Halo system is turnkey and fully proprietary. While the above
two high-end systems are extremely expensive because of their professional setup, several
companies offer an affordable solution. For example, LifeSize4 features 720p cameras
and displays. Its proprietary compressor provides very low bandwidth (e.g., 1.1 Mbps for
720p video). While the camera and compressor are proprietary, the display is generic.

A number of research prototypes similar to our solution were implemented in differ-
ent research communities; they can be classified into two groups. The first group uses
uncompressed HD video streams, which are especially useful for very time-sensitive appli-
cations such as distributed musical collaborations. Among them is the UltraGrid system,
which transmits uncompressed HD at a bandwidth requirement close to or above 1 Gbps
(Gharai et al . 2006). The Ultra-Videoconferencing project at McGill University5 was
designed especially for low-latency video conferencing applications. It delivers uncom-
pressed 720p HD sources using HD-SDI at 1.5 Gbps and 12 channels of 24-bit raw PCM
(pulse code modulation) data with 96 kHz sampling rate.

The second group uses compressed HD videos and audios, captured from commodity
MPEG-2 HD camcorders. Kondo et al . at Hiroshima University in Japan experimented

3 http://www.hp.com/halo/index.html
4 http://www.lifesize.com/
5 http://www.cim.mcgill.ca/sre/projects/rtnm/



HD Video Remote Collaboration Application 57

with an HD delivery system for multiparty video conferencing applications in Linux
environment (Kondo et al . 2004). Their prototype system captures MPEG-2 transport bit-
streams from hardware encoders such as JVC HD camcorder or Broadcom kfir MPEG-2
encoder card, embeds FEC codes (using the Reed–Solomon method) on the fly, inter-
weaves them, and finally shuffles the transmission order of the packets to minimize the
effect of burst packet losses. While requiring 10%–50% more transmission bandwidth,
its error resilience showed two orders of magnitude packet loss rate reduction. The one-
way delay was reported around 600 ms for hardware decoder and 740 ms for software
decoder (VLC Client). Audio streams were separately transmitted through a customized
RAT (robust audio tool). Similar software packages that were developed for the Windows
environment reported much longer latencies (around 1–2 s one-way delay). Compared
with these, our system features much lower end-to-end delay with the same capturing
setup (due to our software optimization efforts), software-based real-time video transcod-
ing capability, and bandwidth-saving packet relaying mechanism.

1.9 Conclusions and Future Directions

We have discussed design challenges for multiway HD video communications and have
reported on recent experimental results of specific approaches built into a prototype system
called RCS. We implemented real-time transcoding, a relay mechanism, and deinterlaced
video rendering, and deployed these mechanisms successfully, including two simultaneous
HD renderers per computer. In case of the transcoding output format, we could obtain
MPEG-2 TS or PS formatted 300 × 200 video output from the original MPEG-2 HD
TS videos. Both formats could be supported easily, but we found the TS format to be
more resilient.

References

Gharai, L., Lehman, T., Saurin, A. and Perkins, C. (2006) Experiences with High Definition Interactive Video
Conferencing. IEEE International Conference on Multimedia & Expo (ICME), Toronto, Canada.

ISO/IEC 13818–1 (1994). Information Technology – Generic Coding of Moving Pictures and Associated
Audio: Systems Recommendation H.222.0, International Standard, National Organization for Standardiza-
tion, ISO/IEC JTC1/SC29/WG11, NO801, 13 November, 1994.

Kondo, T., Nishimura, K. and Aibara, R. (2004) Implementation and evaluation of the robust high-quality
video transfer system on the broadband internet. IEEE/IPSJ International Symposium on Applications and
the Internet , 135.

MacAulay, A., Felts, B. and Fisher, Y. (2005) Whitepaper – IP streaming of MPEG-4: Native RTP vs MPEG-2
transport stream Technical Report, Envivio, Inc.

Papadopoulos, C. and Parulkar, G.M. (1996) Retransmission-based Error Control for Continuous Media Appli-
cations . Proceedings of the 6th International Workshop on Network and Operating Systems Support for
Digital Audio and Video (NOSSDAV 1996), Zushi, Japan.

Szigeti, T., McMenamy, K., Saville, R. and Golwacki, A. (2009) Cisco TelePresence Fundamentals , 1st edn,
Cisco Press, Indianapolis, Indiana.

Wenger, S., Hannuksela, M., Stockhammer, T., Westerlund, M. and Singer, D. (2005) RTP Payload Format for
H.264 Video. RFC 3984.

Zimmermann, R., Fu, K., Nahata, N. and Shahabi, C. (2003) Retransmission-Based Error Control in a Many-to-
Many Client-Server Environment . SPIE Conference on Multimedia Computing and Networking (MMCN),
Santa Clara, CA.




