
 1
FUNDAMENTALS OF
REAL - TIME SYSTEMS

1

Real-Time Systems Design and Analysis: Tools for the Practitioner, Fourth Edition.
Phillip A. Laplante and Seppo J. Ovaska.
© 2012 the Institute of Electrical and Electronics Engineers, Inc. Published 2012 by John Wiley
& Sons, Inc.

 The term “ real time ” is used widely in many contexts, both technical and con-
ventional. Most people would probably understand “ in real time ” to mean “ at
once ” or “ instantaneously. ” The Random House Dictionary of the English
Language (2nd unabridged edition, 1987), however, defi nes “ realtime ” as per-
taining to applications in which the computer must respond as rapidly as
required by the user or necessitated by the process being controlled . These defi -
nitions, and others that are available, are quite different, and their differences
are often the cause of misunderstanding between computer, software and
systems engineers, and the users of real - time systems. On a more pedantic
level, there is the issue of the appropriate writing of the term “ real - time. ”
Across technical and pedestrian literature, various forms of the term, such as
 real time , real - time , and realtime may appear. But to computer, software, and
systems engineers the preferred form is real - time , and this is the convention
that we will follow throughout this text.

 Consider a computer system in which data need to be processed at a regular
rate. For example, an aircraft uses a sequence of accelerometer pulses to
determine its position. Systems other than avionic ones may also require a
rapid response to events that occur at nonregular rates, such as handling an
overtemperature failure in a nuclear power plant. Even without defi ning the
term “ real - time, ” it is probably understood that those events demand timely
or “ real - time ” processing.

CO
PYRIG

HTED
 M

ATERIA
L

2 FUNDAMENTALS OF REAL-TIME SYSTEMS

 Now consider a situation in which a passenger approaches an airline check -
 in counter to pick up his boarding pass for a certain fl ight from New York to
Boston, which is leaving in fi ve minutes. The reservation clerk enters appropri-
ate information into the computer, and a few seconds later a boarding pass is
printed. Is this a real - time system?

 Indeed, all three systems — aircraft, nuclear power plant, and airline
reservations — are real - time, because they must process information within a
specifi ed interval or risk system failure. Although these examples may provide
an intuitive defi nition of a real - time system, it is necessary to clearly compre-
hend when a system is real - time and when it is not.

 To form a solid basis for the coming chapters, we fi rst defi ne a number of
central terms and correct common misunderstandings in Section 1.1 . These
defi nitions are targeted for practitioners, and thus they have a strong practical
point - of - view. Section 1.2 presents the multidisciplinary design challenges
related to real - time systems. It is shown that although real - time systems design
and analysis are subdisciplines of computer systems engineering, they have
essential connections to various other fi elds, such as computer science and
electrical engineering — even to applied statistics. It is rather straightforward
to present different approaches, methods, techniques, or tools for readers, but
much more diffi cult to convey the authors ’ insight on real - time systems to the
audience. Nevertheless, our intention is to provide some insight in parallel with
specifi c tools for the practitioner. Such insight is built on practical experiences
and adequate understanding of the key milestones in the fi eld. The birth of
real - time systems, in general, as well as a selective evolution path related to
relevant technological innovations, is discussed in Section 1.3 . Section 1.4 sum-
marizes the preceding sections on fundamentals of real - time systems. Finally,
Section 1.5 provides exercises that help the reader to gain basic understanding
on real - time systems and associated concepts.

 1.1 CONCEPTS AND MISCONCEPTIONS

 The fundamental defi nitions of real - time systems engineering can vary depend-
ing on the resource consulted. Our pragmatic defi nitions have been collected
and refi ned to the smallest common subset of agreement to form the vocabu-
lary of this particular text. These defi nitions are presented in a form that is
intended to be most useful to the practicing engineer, as opposed to the aca-
demic theorist.

 1.1.1 Defi nitions for Real - Time Systems

 The hardware of a computer solves problems by repeated execution of
machine - language instructions, collectively known as software. Software, on
the other hand, is traditionally divided into system programs and application
programs.

CONCEPTS AND MISCONCEPTIONS 3

 System programs consist of software that interfaces with the underlying
computer hardware, such as device drivers, interrupt handlers, task schedulers,
and various programs that act as tools for the development or analysis of
application programs. These software tools include compilers, which translate
high - level language programs into assembly code; assemblers, which convert
the assembly code into a special binary format called object or machine code;
and linkers/locators, which prepare the object code for execution in a specifi c
hardware environment. An operating system is a specialized collection of
system programs that manage the physical resources of the computer. As such,
a real - time operating system is a truly important system program (Anh and
Tan, 2009).

 Application programs are programs written to solve specifi c problems, such
as optimal hall - call allocation of an elevator bank in a high - rise building, inertial
navigation of an aircraft, and payroll preparation for some industrial company.
Certain design considerations play a role in the design of system programs and
application software intended to run in real - time environments.

 The notion of a “ system ” is central to software engineering, and indeed to
all engineering, and warrants formalization.

 Figure 1.1. A general system with inputs and outputs.

System

Mapping Function..
. ..

.

Inputs Outputs

Input Space Output Space

 Defi nition: System

 A system is a mapping of a set of inputs into a set of outputs.

 When the internal details of the system are not of particular interest, the
mapping function between input and output spaces can be considered as a
black box with one or more inputs entering and one or more outputs exiting
the system (see Fig. 1.1). Moreover, Vernon lists fi ve general properties that
belong to any “ system ” (Vernon, 1989):

 1. A system is an assembly of components connected together in an orga-
nized way.

 2. A system is fundamentally altered if a component joins or leaves it.
 3. It has a purpose.
 4. It has a degree of permanence.
 5. It has been defi ned as being of particular interest.

4 FUNDAMENTALS OF REAL-TIME SYSTEMS

 Figure 1.2. A real - time control system including inputs from a camera and multiple
sensors, as well as outputs to a display and multiple actuators.

Real-Time
Control System

... ...

Camera Display

Sensors Actuators

 Figure 1.3. A classic representation of a real - time system as a sequence of schedulable
jobs.

Real-Time
System

...

Job 1

Schedule

Job 2

Job 3

Job 4

Job n

[Job 3, Job 1, Job n, ...]

 Every real - world entity, whether organic or synthetic, can be modeled as a
system. In computing systems, the inputs represent digital data from hardware
devices or other software systems. The inputs are often associated with sensors,
cameras, and other devices that provide analog inputs, which are converted to
digital data, or provide direct digital inputs. The digital outputs of computer
systems, on the other hand, can be converted to analog outputs to control
external hardware devices, such as actuators and displays, or used directly
without any conversion (Fig. 1.2).

 Modeling a real - time (control) system, as in Figure 1.2 , is somewhat differ-
ent from the more traditional model of the real - time system as a sequence of
jobs to be scheduled and performance to be predicted, which is comparable
with that shown in Figure 1.3 . The latter view is simplistic in that it ignores the
usual fact that the input sources and hardware under control may be highly
complex. In addition, there are other, “ sweeping ” software engineering con-
siderations that are hidden by the model shown in Figure 1.3 .

 Look again at the model of a real - time system shown in Figure 1.2 . In its
realization, there is some inherent delay between presentation of the inputs
(excitation) and appearance of the outputs (response). This fact can be formal-
ized as follows:

 Defi nition: Response Time

 The time between the presentation of a set of inputs to a system and the
realization of the required behavior, including the availability of all associ-
ated outputs, is called the response time of the system.

CONCEPTS AND MISCONCEPTIONS 5

 How fast and punctual the response time needs to be depends on the charac-
teristics and purpose of the specifi c system.

 The previous defi nitions set the stage for a practical defi nition of a real - time
system.

 Defi nition: Real - Time System (II)

 A real - time system is one whose logical correctness is based on both the
correctness of the outputs and their timeliness.

 Defi nition: Failed System

 A failed system is a system that cannot satisfy one or more of the require-
ments stipulated in the system requirements specifi cation.

 Defi nition: Real - Time System (I)

 A real - time system is a computer system that must satisfy bounded response -
 time constraints or risk severe consequences, including failure.

 But what is a “ failed ” system? In the case of the space shuttle or a
nuclear power plant, for example, it is painfully obvious when a failure has
occurred. For other systems, such as an automatic bank teller machine, the
notion of failure is less obvious. For now, failure will be defi ned as the
 “ inability of the system to perform according to system specifi cation, ” or,
more precisely:

 Because of this defi nition of failure, rigorous specifi cation of the system oper-
ating criteria, including timing constraints, is necessary. This matter is discussed
later in Chapter 5 .

 Various other defi nitions exist for “ real - time, ” depending on which source
is consulted. Nonetheless, the common theme among all defi nitions is that the
system must satisfy deadline constraints in order to be correct. For instance,
an alternative defi nition might be:

 In any case, by making unnecessary the notion of timeliness, every system
becomes a real - time system.

 Real - time systems are often reactive or embedded systems. Reactive
systems are those in which task scheduling is driven by ongoing interaction
with their environment; for example, a fi re - control system reacts to certain
buttons pressed by a pilot. Embedded systems can be defi ned informally as
follows:

6 FUNDAMENTALS OF REAL-TIME SYSTEMS

 For example, a modern automobile contains many embedded processors that
control airbag deployment, antilock braking, air conditioning, fuel injection,
and so forth. Today, numerous household items, such as microwave ovens, rice
cookers, stereos, televisions, washing machines, even toys, contain embedded
computers. It is obvious that sophisticated systems, such as aircraft, elevator
banks, and paper machines, do contain several embedded computer systems.

 The three systems mentioned at the beginning of this chapter satisfy the
criteria for a real - time system. An aircraft must process accelerometer data
within a certain period that depends on the specifi cations of the aircraft; for
example, every 10 ms. Failure to do so could result in a false position or veloc-
ity indication and cause the aircraft to go off - course at best or crash at worst.
For a nuclear reactor thermal problem, failure to respond swiftly could result
in a meltdown. Finally, an airline reservation system must be able to handle a
surge of passenger requests within the passenger ’ s perception of a reasonable
time (or before the fl ights leave the gate). In short, a system does not have to
process data at once or instantaneously to be considered real - time; it must
simply have response times that are constrained appropriately.

 When is a system real - time? It can be argued that all practical systems are
ultimately real - time systems. Even a batch - oriented system — for example,
grade processing at the end of a semester or a bimonthly payroll run — is real -
 time. Although the system may have response times of days or even weeks
(e.g., the time that elapses between submitting the grade or payroll informa-
tion and issuance of the report card or paycheck), it must respond within a
certain time or there could be an academic or fi nancial disaster. Even a word -
 processing program should respond to commands within a reasonable amount
of time or it will become torturous to use. Most of the literature refers to such
systems as soft real - time systems.

 Defi nition: Hard Real - Time System

 A hard real - time system is one in which failure to meet even a single dead-
line may lead to complete or catastrophic system failure.

 Defi nition: Soft Real - Time System

 A soft real - time system is one in which performance is degraded but not
destroyed by failure to meet response - time constraints.

 Defi nition: Embedded System

 An embedded system is a system containing one or more computers (or
processors) having a central role in the functionality of the system, but the
system is not explicitly called a computer.

 Conversely, systems where failure to meet response - time constraints leads to
complete or catastrophic system failure are called hard real - time systems.

CONCEPTS AND MISCONCEPTIONS 7

 Firm real - time systems are those systems with hard deadlines where some
arbitrarily small number of missed deadlines can be tolerated.

 TABLE 1.1. A Sampling of Hard, Firm, and Soft Real - Time Systems

 System Real - Time
Classifi cation

 Explanation

 Avionics weapons delivery
system in which pressing
a button launches an
air - to - air missile

 Hard Missing the deadline to launch the
missile within a specifi ed time
after pressing the button may
cause the target to be missed,
which will result in catastrophe

 Navigation controller for
an autonomous weed -
 killer robot

 Firm Missing a few navigation deadlines
causes the robot to veer out from
a planned path and damage some
crops

 Console hockey game Soft Missing even several deadlines will
only degrade performance

 Defi nition: Firm Real - Time System

 A fi rm real - time system is one in which a few missed deadlines will not lead
to total failure, but missing more than a few may lead to complete or cata-
strophic system failure.

 As noted, all practical systems minimally represent soft real - time systems.
Table 1.1 gives an illustrative sampling of hard, fi rm, and soft real - time systems.

 There is a great deal of latitude for interpretation of hard, fi rm, and soft
real - time systems. For example, in the automated teller machine, missing too
many deadlines will lead to signifi cant customer dissatisfaction and potentially
even enough loss of business to threaten the existence of the bank. This
extreme scenario represents the fact that every system can often be character-
ized any way — soft, fi rm, or hard — real - time by the construction of a support-
ing scenario. The careful defi nition of systems requirements (and, hence,
expectations) is the key to setting and meeting realistic deadline expectations.
In any case, it is a principal goal of real - time systems engineering to fi nd ways
to transform hard deadlines into fi rm ones, and fi rm ones into soft ones.

 Since this text is mostly concerned with hard real - time systems, it will use
the term real - time system to mean embedded, hard real - time system, unless
otherwise noted.

 It is typical, in studying real - time systems, to consider the nature of time,
because deadlines are instants in time. Nevertheless, the question arises,
 “ Where do the deadlines come from? ” Generally speaking, deadlines are
based on the underlying physical phenomena of the system under control. For

8 FUNDAMENTALS OF REAL-TIME SYSTEMS

example, in animated displays, images must be updated at least 30 frames per
second to provide continuous motion, because the human eye can resolve
updating at a slower rate. In navigation systems, accelerations must be read at
a rate that is a function of the maximum velocity of the vehicle, and so on. In
some cases, however, real - world systems have deadlines that are imposed on
them, and are based on nothing less than guessing or on some forgotten and
possibly eliminated requirement. The problem in these cases is that undue
constraints may be placed on the systems. This is a primary maxim of real - time
systems design — to understand the basis and nature of the timing constraints
so that they can be relaxed if necessary. In cost - effective and robust real - time
systems, a pragmatic rule of thumb could be: process everything as slowly as
possible and repeat tasks as seldom as possible .

 Many real - time systems utilize global clocks and time - stamping for synchro-
nization, task initiation, and data marking. It must be noted, however, that all
clocks keep somewhat inaccurate time — even the offi cial U.S. atomic clock must
be adjusted regularly. Moreover, there is an associated quantization error with
clocks, which may need to be considered when using them for time - stamping.

 In addition to the degree of “ real - time ” (i.e., hard, fi rm, or soft), also, the
punctuality of response times is important in many applications. Hence, we
defi ne the concept of real - time punctuality:

 Example: Where a Response Time Comes From

 An elevator door (Pasanen et al., 1991) is automatically operated, and it
may have a capacitive safety edge for sensing possible passengers between
the closing door blades. Thus, the door blades can be quickly reopened
before they touch the passenger and cause discomfort or even threaten the
passenger ’ s safety.

 What is the required system response time from when it recognizes that
a passenger is between the closing door blades to the instant when it starts
to reopen the door?

 Defi nition: Real - Time Punctuality

 Real - time punctuality means that every response time has an average value,
 t R , with upper and lower bounds of t R + ε U and t R − ε L , respectively, and
 ε U , ε L → 0 + .

 In all practical systems, the values of ε U and ε L are nonzero, though they may
be very small or even negligible. The nonzero values are due to cumulative
latency and propagation - delay components in real - time hardware and soft-
ware. Such response times contain jitter within the interval t ∈ [− ε L , + ε U]. Real -
 time punctuality is particularly important in periodically sampled systems with
high sampling rates, for example, in video signal processing and software radio.

CONCEPTS AND MISCONCEPTIONS 9

 Figure 1.4. A partial program fl owchart showing a conditional branch as a change in
fl ow of control.

Branch
?

 This response time consists of fi ve independent components (their pre-
sumably measured numerical values are for illustration purpose only):

 Sensor Response Time : t S_min = 5 ms, t S_max = 15 ms, t S_mean = 9 ms.

 Hardware Response Time : t HW_min = 1 μ s, t HW_max = 2 μ s, t HW_mean = 1.2 μ s.

 System Software Response Time : t SS_min = 16 μ s, t SS_max = 48 μ s, t SS_mean = 37 μ s.

 Application Software Response Time : t AS_min = 0.5 μ s, t AS_max = 0.5 μ s,
 t AS_mean = 0.5 μ s.

 Door Drive Response Time : t DD_min = 300 ms, t DD_max = 500 ms,
 t DD_mean = 400 ms.

 Now, we can calculate the minimum, maximum, and mean values of the
composite response time: t min ≈ 305 ms, t max ≈ 515 ms, and t mean ≈ 409 ms.

 Thus, the overall response time is dominated by the door - drive response
time containing the required deceleration time of the moving door blades.

 In software systems, a change in state results in a change in the fl ow - of - control
of the computer program. Consider the fl owchart in Figure 1.4 . The decision
block represented by the diamond suggests that the stream of program instruc-
tions can take one of two alternative paths, depending on the response
in question. case , if - then , and while statements in any programming
language represent a possible change in fl ow - of - control. Invocation of proce-
dures in Ada and C represent changes in fl ow - of - control. In object - oriented

10 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.2. Taxonomy of Events and Some Typical Examples

 Periodic Aperiodic Sporadic

 Synchronous Cyclic code Conditional branch Divide - by - zero
(trap) interrupt

 Asynchronous Clock interrupt Regular, but not
fi xed - period interrupt

 Power - loss alarm

 These items will be discussed further in Chapters 2 and 3 .

languages, instantiation of an object or the invocation of a method causes the
change in sequential fl ow - of - control. In general, consider the following
defi nition.

 Defi nition: Event

 Any occurrence that causes the program counter to change nonsequentially
is considered a change of fl ow - of - control, and thus an event.

 In scheduling theory, the release time of a job is similar to an event.

 Defi nition: Release Time

 The release time is the time at which an instance of a scheduled task is
ready to run, and is generally associated with an interrupt.

 Events are slightly different from jobs in that events can be caused by inter-
rupts, as well as branches.

 An event can be either synchronous or asynchronous. Synchronous events
are those that occur at predictable times in the fl ow - of - control, such as that
represented by the decision box in the fl owchart of Figure 1.4 . The change in
fl ow - of - control, represented by a conditional branch instruction, or by the
occurrence of an internal trap interrupt, can be anticipated.

 Asynchronous events occur at unpredictable points in the fl ow - of - control
and are usually caused by external sources. A real - time clock that pulses regu-
larly at 5 ms is not a synchronous event. While it represents a periodic event,
even if the clock were able to tick at a perfect 5 ms without drift, the point
where the tick occurs with the fl ow - of - control is subject to many factors. These
factors include the time at which the clock starts relative to the program and
propagation delays in the computer system itself. An engineer can never count
on a clock ticking exactly at the rate specifi ed, and so any clock - driven event
must be treated as asynchronous.

 Events that do not occur at regular periods are called aperiodic. Furthermore,
aperiodic events that tend to occur very infrequently are called sporadic. Table
 1.2 characterizes a sampling of events.

 For example, an interrupt generated by a periodic external clock represents
a periodic but asynchronous event. A periodic but synchronous event is one

CONCEPTS AND MISCONCEPTIONS 11

represented by a sequence of invocation of software tasks in a repeated, cir-
cular fashion. A typical branch instruction that is not part of a code block and
that runs repeatedly at a regular rate represents a synchronous but aperiodic
event. A branch instruction that happens infrequently, say, on the detection of
some exceptional condition, is both sporadic and synchronous. Finally, inter-
rupts that are generated irregularly by an external device are classifi ed as
either asynchronous aperiodic or sporadic, depending on whether the inter-
rupt is generated frequently or not with respect to the system clock.

 In every system, and particularly in an embedded real - time system, main-
taining overall control is extremely important. For any physical system, certain
states exist under which the system is considered to be out of control; the
software controlling such a system must therefore avoid these states. For
example, in certain aircraft guidance systems, rapid rotation through a 180 °
pitch angle can cause loss of gyroscopic control. Hence, the software must be
able to anticipate and avert all such scenarios.

 Another characteristic of a software - controlled system is that the processor
continues to fetch, decode, and execute instructions correctly from the program
area of memory, rather than from data or other unwanted memory regions.
The latter scenario can occur in poorly tested systems and is a catastrophe
from which there is almost no hope of recovery.

 Software control of any real - time system and associated hardware is main-
tained when the next state of the system, given the current state and a set of
inputs, is predictable. In other words, the goal is to anticipate how a system
will behave in all possible circumstances.

 Defi nition: Deterministic System

 A system is deterministic, if for each possible state and each set of inputs,
a unique set of outputs and next state of the system can be determined.

 Event determinism means the next states and outputs of a system are known
for each set of inputs that trigger events. Thus, a system that is deterministic
is also event deterministic. Although it would be diffi cult for a system to be
deterministic only for those inputs that trigger events, this is plausible, and so
event determinism may not imply determinism.

 It is interesting to note that while it is a signifi cant challenge to design
systems that are completely event deterministic, and as mentioned, it is pos-
sible to inadvertently end up with a system that is nondeterministic, it is defi -
nitely hard to design systems that are deliberately nondeterministic. This
situation arises from the utmost diffi culties in designing perfect random
number generators. Such deliberately nondeterministic systems would be
desirable, for example, as casino gaming machines.

 Finally, if in a deterministic system the response time for each set of outputs
is known, then the system also exhibits temporal determinism.

12 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.3. CPU Utilization (%) Zones

 Utilization (%) Zone Type Typical Application

 < 26 Unnecessarily safe Various
 26 – 50 Very safe Various
 51 – 68 Safe Various
 69 Theoretical limit Embedded systems
 70 – 82 Questionable Embedded systems
 83 – 99 Dangerous Embedded systems
 100 Critical Marginally stressed systems
 > 100 Overloaded Stressed systems

 A side benefi t of designing deterministic systems is that guarantees can be
given that the system will be able to respond at any time, and in the case of
temporally deterministic systems, when they will respond. This fact reinforces
the association of “ control ” with real - time systems.

 The fi nal and truly important term to be defi ned is a critical measure of
real - time system performance. Because the central processing unit (CPU)
continues to fetch, decode, and execute instructions as long as power is applied,
the CPU will more or less frequently execute either no - ops or instructions that
are not related to the fulfi llment of a specifi c deadline (e.g., noncritical “ house-
keeping ”). The measure of the relative time spent doing nonidle processing
indicates how much real - time processing is occurring.

 Defi nition: CPU Utilization Factor

 The CPU utilization or time - loading factor, U , is a relative measure of the
nonidle processing taking place.

 A system is said to be time - overloaded if U > 100%. Systems that are too
highly utilized are problematic, because additions, changes, or corrections
cannot be made to the system without risk of time - overloading. On the other
hand, systems that are not suffi ciently utilized are not necessarily cost - effective,
because this implies that the system was overengineered and that costs could
likely be reduced with less expensive hardware. While a utilization of 50% is
common for new products, 80% might be acceptable for systems that do not
expect growth. However, 70% as a target for U is one of the most celebrated
and potentially useful results in the theory of real - time systems where tasks
are periodic and independent — a result that will be examined in Chapter 3 .
Table 1.3 gives a summary of certain CPU utilizations and typical situations
in which they are associated.

 U is calculated by summing the contribution of utilization factors for each
(periodic or aperiodic) task. Suppose a system has n ≥ 1 periodic tasks, each
with an execution period of p i , and hence, execution frequency, f i = 1/ p i . If task
 i is known to have (or has been estimated to have) a worst - case execution time
of e i , then the utilization factor, u i , for task i is

CONCEPTS AND MISCONCEPTIONS 13

 u e pi i i= . (1.1)

 Furthermore, the overall system utilization factor is

 U u e pi

i

n

i i

i

n

= =
= =
∑ ∑

1 1

. (1.2)

 Note that the deadline for a periodic task i , d i , is a critical design factor that
is constrained by e i . The determination of e i , either prior to, or after the code
has been written, can be extremely diffi cult, and often impossible, in which
case estimation or measuring must be used. For aperiodic and sporadic tasks,
 u i is calculated by assuming a worst - case execution period, usually the minimum
possible time between corresponding event occurrences. Such approximations
can infl ate the utilization factor unnecessarily or lead to overconfi dence
because of the tendency to “ not worry ” about its excessive contribution. The
danger is to discover later that a higher frequency of occurrence than budgeted
has led to a time - overload and system failure.

 The utilization factor differs from CPU throughput, which is a measure
of the number of machine - language instructions per second that can
be processed based on some predetermined instruction mix. This type of mea-
surement is typically used to compare CPU throughput for a particular
application.

 Example: Calculation of the CPU Utilization Factor

 An individual elevator controller in a bank of high - rise elevators has the
following software tasks with execution periods of p i and worst - case execu-
tion times of e i , i ∈ {1, 2, 3, 4}:

 Task 1 : Communicate with the group dispatcher (19.2 K bit/s data rate
and a proprietary communications protocol); p 1 = 500 ms, e 1 = 17 ms.

 Task 2 : Update the car position information and manage fl oor - to - fl oor
runs, as well as door control; p 2 = 25 ms, e 2 = 4 ms.

 Task 3 : Register and cancel car calls; p 3 = 75 ms, e 3 = 1 ms.

 Task 4 : Miscellaneous system supervisions; p 4 = 200 ms, e 4 = 20 ms.

 What is the overall CPU utilization factor?

 U e pi i

i

= = + + + ≈
=
∑

1

4 17
500

4
25

1
75

20
200

0 31.

 Hence, the utilization percentage is 31%, which belongs to the “ very safe ”
zone of Table 1.3 .

14 FUNDAMENTALS OF REAL-TIME SYSTEMS

 The choice of task deadlines, estimation and reduction of execution
times, and other factors that infl uence CPU utilization will be discussed in
Chapter 7 .

 1.1.2 Usual Misconceptions

 As a part of truly understanding the nature of real - time systems, it is important
to address a number of frequently cited misconceptions. These are summarized
as follows:

 1. Real - time systems are synonymous with “ fast ” systems.
 2. Rate - monotonic analysis has solved “ the real - time problem. ”
 3. There are universal, widely accepted methodologies for real - time systems

specifi cation and design.
 4. There is no more a need to build a real - time operating system, because

many commercial products exist.
 5. The study of real - time systems is mostly about scheduling theory.

 The fi rst misconception, that real - time systems must be fast, arises from the
fact that many hard real - time systems indeed deal with deadlines in the tens
of milliseconds, such as the aircraft navigation system. In a typical food -
 industry application, however, pasta - sauce jars can move along the conveyor
belt past a fi lling point at a rate of one every fi ve seconds. Furthermore, the
airline reservation system could have a deadline of 15 seconds. These latter
deadlines are not particularly fast, but satisfying them determines the success
or failure of the system.

 The second misconception is that rate - monotonic systems provide a simple
recipe for building real - time systems. Rate - monotonic systems — a periodic
system in which interrupt (or software task) priorities are assigned such that
the faster the rate of execution, the higher the priority — have received a lot
of attention since the 1970s. While they provide valuable guidance in the
design of real - time systems, and while there is abundant theory surrounding
them, they are not a panacea. Rate - monotonic systems will be discussed in
great detail in Chapter 3 .

 What about the third misconception? Unfortunately, there are no univer-
sally accepted and infallible methods for the specifi cation and design of real -
 time systems. This is not a failure of researchers or the software industry, but
is because of the diffi culty of discovering universal solutions for this demand-
ing fi eld. After nearly 40 years of research and development, there is still no
methodology available that answers all of the challenges of real - time specifi ca-
tion and design all the time and for all applications.

 The fourth misconception is that there is no more a need to build a real -
 time operating system from scratch. While there are a number of cost - effective,
popular, and viable commercial real - time operating systems, these, too, are not

MULTIDISCIPLINARY DESIGN CHALLENGES 15

a panacea. Commercial solutions have certainly their place, but choosing when
to use an off - the - shelf solution and choosing the right one are challenges that
will be considered in Chapter 3 .

 Finally, while it is scholarly to study scheduling theory, from an engineering
standpoint, most published results require impractical simplifi cations and
clairvoyance in order to make the theory work. Because this is a textbook for
practicing engineers, it avoids any theoretical results that resort to these
measures.

 1.2 MULTIDISCIPLINARY DESIGN CHALLENGES

 The study of real - time systems is a truly multidimensional subdiscipline of
computer systems engineering that is strongly infl uenced by control theory,
operations research, and, naturally, software engineering. Figure 1.5 depicts
some of the disciplines of computer science, electrical engineering, systems
engineering, and applied statistics that affect the design and analysis of
real - time systems. Nevertheless, those representative disciplines are not the
only ones having a relationship with real - time systems. Because real - time
systems engineering is so multidisciplinary, it stands out as a fascinating study
area with a rich set of design challenges. Although the fundamentals of real -
 time systems are well established and have considerable permanence, real -
 time systems is a lively developing area due to evolving CPU architectures,
distributed system structures, versatile wireless networks, and novel applica-
tions, for instance.

 Figure 1.5. A variety of disciplines that affect real - time systems engineering.

Real-Time
Systems

Software
Engineering

Programming
Languages Operating

Systems

Data
Structures

Algorithms

Operations
Research

Queuing
Theory Computer

Architecture

Control
Theory

Systems
Theory

16 FUNDAMENTALS OF REAL-TIME SYSTEMS

 1.2.1 Infl uencing Disciplines

 The design and implementation of real - time systems requires attention to
numerous practical issues. These include:

 • The selection of hardware and system software, and evaluation of the
trade - off needed for a competitive solution, including dealing with
distributed computing systems and the issues of concurrency and
synchronization.

 • Specifi cation and design of real - time systems, as well as correct and inclu-
sive representation of temporal behavior.

 • Understanding the nuances of the high - level programming language(s)
and the real - time implications resulting from their optimized compilation
into machine - language code.

 • Optimizing (with application - specifi c objectives) of system fault tolerance
and reliability through careful design and analysis.

 • The design and administration of adequate tests at different levels of
hierarchy, and the selection of appropriate development tools and test
equipment.

 • Taking advantage of open systems technology and interoperability. An
open system is an extensible collection of independently written applica-
tions that cooperate to function as an integrated system. For example,
several versions of the open operating system, Linux, have emerged for
use in various real - time applications (Abbott, 2006). Interoperability can
be measured in terms of compliance with open system standards, such as
the real - time CORBA (common object request broker architecture) stan-
dard (Fay - Wolfe et al., 2000).

 • Finally, estimating and measuring response times and (if needed) reducing
them. Performing a schedulability analysis, that is, determining and guar-
anteeing deadline satisfaction, a priori .

 Obviously, the engineering techniques used for hard real - time systems can be
used in the engineering of all other types of systems as well, with an accom-
panying improvement of performance and robustness. This alone is a signifi -
cant reason to study the engineering of real - time systems.

 1.3 BIRTH AND EVOLUTION OF REAL - TIME SYSTEMS

 The history of real - time systems, as characterized by important developments
in the United States, is tied inherently to the evolution of the computer.
Modern real - time systems, such as those that control nuclear power plants,
military weapons systems, or medical monitoring equipment, are sophisticated,
yet many still exhibit characteristics of those pioneering systems developed in
the 1940s through the 1960s.

BIRTH AND EVOLUTION OF REAL-TIME SYSTEMS 17

 1.3.1 Diversifying Applications

 Embedded real - time systems are so pervasive and ubiquitous that they are
even found in household appliances, sportswear, and toys. A small sampling
of real - time domains and corresponding applications is given in Table 1.4 . An
excellent example of an advanced real - time system is the Mars Exploration
Rover of NASA shown in Figure 1.6 . It is an autonomous system with extreme
reliability requirements; it receives commands and sends measurement data
over radio - communications links; and performs its scientifi c missions with the
aid of multiple sensors, processors, and actuators.

 In the introductory paragraphs of this chapter, some real - time systems were
mentioned. The following descriptions provide more details for each system,
while others provide additional examples. Clearly, these descriptions are not
rigorous specifi cations. The process of specifying real - time systems unambigu-
ously but concisely is discussed in Chapter 5 .

 Consider the inertial measurement system for an aircraft. The software
specifi cation states that the software will receive x , y , and z accelerometer
pulses at a 10 ms rate from special hardware. The software will determine the
acceleration components in each direction, and the corresponding roll, pitch,
and yaw of the aircraft.

 The software will also collect other information, such as temperature at a
1 - second rate. The task of the application software is to compute the actual
velocity vector based on the current orientation, accelerometer readings, and
various compensation factors (such as for temperature effects) at a 40 ms rate.
The system is to output true acceleration, velocity, and position vectors to a
pilot ’ s display every 40 ms, but using a different clock.

 TABLE 1.4. Typical Real - Time Domains
and Diverse Applications

 Domain Applications

 Aerospace Flight control
 Navigation
 Pilot interface

 Civilian Automotive systems
 Elevator control
 Traffi c light control

 Industrial Automated inspection
 Robotic assembly line
 Welding control

 Medical Intensive care monitors
 Magnetic resonance imaging
 Remote surgery

 Multimedia Console games
 Home theaters
 Simulators

18 FUNDAMENTALS OF REAL-TIME SYSTEMS

 These tasks execute at four different rates in the inertial measurement
system, and need to communicate and synchronize. The accelerometer read-
ings must be time - relative or correlated; that is, it is not allowed to mix an x
accelerometer pulse of discrete time instant k with y and z pulses of instant
 k + 1. These are critical design issues for this system.

 Next, consider a monitoring system for a nuclear power plant that will be
handling three events signaled by interrupts. The fi rst event is triggered by any
of several signals at various security points, which will indicate a security
breach. The system must respond to this signal within one second. The second
and most important event indicates that the reactor core has reached an over-
temperature. This signal must be dealt with within 1 millisecond (1 ms). Finally,
an operator ’ s display is to be updated at approximately 30 times per second.
The nuclear - power - plant system requires a reliable mechanism to ensure that
the “ meltdown imminent ” indicator can interrupt any other processing with
minimal latency.

 As another example, recall the airline reservation system mentioned earlier.
Management has decided that to prevent long lines and customer dissatisfac-
tion, turnaround time for any transaction must be less than 15 seconds, and no
overbooking will be permitted. At any time, several travel agents may try to
access the reservations database and perhaps book the same fl ight simultane-
ously. Here, effective record - locking and secure communications mechanisms

 Figure 1.6. Mars Exploration Rover; a solar - powered, autonomous real - time system
with radio - communications links and a variety of sensors and actuators. Photo courtesy
of NASA.

BIRTH AND EVOLUTION OF REAL-TIME SYSTEMS 19

are needed to protect against the alteration of the database containing the
reservation information by more than one clerk at a time.

 Now, consider a real - time system that controls all phases of the bottling of
jars of pasta sauce as they travel along a conveyor belt. The empty jars are
fi rst microwaved to disinfect them. A mechanism fi lls each jar with a precise
serving of specifi c sauce as it passes beneath. Another station caps the fi lled
bottles. In addition, there is an operator ’ s display that provides an animated
rendering of the production line activities. There are numerous events trig-
gered by exceptional conditions, such as the conveyor belt jamming and a
bottle overfl owing or breaking. If the conveyor belt travels too fast, the bottle
will move past its designated station prematurely. Therefore, there is a wide
range of events, both synchronous and asynchronous, to be dealt with.

 As a fi nal example, consider a system used to control a set of traffi c lights
at a four - way traffi c intersection (north - , south - , east - , and west - bound traffi c).
This system controls the lights for vehicle and pedestrian traffi c at a four - way
intersection in a busy city like Philadelphia. Input may be taken from cameras,
emergency - vehicle transponders, push buttons, sensors under the ground, and
so on. The traffi c lights need to operate in a synchronized fashion, and yet
react to asynchronous events — such as a pedestrian pressing a button at a
crosswalk. Failure to operate in a proper fashion can result in automobile
accidents and even fatalities.

 The challenge presented by each of these systems is to determine the appro-
priate design approach with respect to the multidisciplinary issues discussed
in Section 1.2 .

 1.3.2 Advancements behind Modern Real - Time Systems

 Much of the theory of real - time systems is derived from the surrounding dis-
ciplines shown in Figure 1.5 . In particular, certain aspects of operations
research (i.e., scheduling), which emerged in the late 1940s, and queuing theory
in the early 1950s, have infl uenced most of the more theoretical results.

 Martin published one of the fi rst and certainly the most infl uential early
book on real - time systems (Martin, 1967). Martin ’ s book was soon followed
by several others (e.g., Stimler, 1969), and the infl uence of operations research
and queuing theory can be seen in these works. It is also educational to study
these texts in the context of the great limitations of the hardware of the time.

 In 1973, Liu and Layland published their seminal work on rate - monotonic
theory (Liu and Layland, 1973). Over the last nearly 40 years, signifi cant refi ne-
ment of this theory has made it a practical theory for use in designing real - time
systems.

 The 1980s and 1990s saw a proliferation of theoretical work on improving
predictability and reliability of real - time systems, and on solving problems
related to multitasking systems. Today, a rather small group of experts contin-
ues to study pure issues of scheduling and performance analysis, while a larger
group of generalist systems engineers tackles broader issues relating to the

20 FUNDAMENTALS OF REAL-TIME SYSTEMS

implementation of practical systems. An important paper by Stankovic et al.
(Stankovic et al., 1995) described some of the diffi culties in conducting research
on real - time systems — even with signifi cant restriction of the system, most
problems relating to scheduling are too diffi cult to solve by analytic
techniques.

 Instead of any single “ groundbreaking ” technology, the new millennium
saw a number of important advancements in hardware, viable open - source
software for real - time systems, powerful commercial design and implementa-
tion tools, and expanded programming language support. These advancements
have in some ways simplifi ed the construction and analysis of real - time systems
but on the other hand introduced new problems because of the complexities
of systems interactions and the masking of many of the underlying subtleties
of time constraints.

 The origin of the term real - time computing is unclear. It was probably fi rst
used either with project Whirlwind, a fl ight simulator developed by IBM for
the U.S. Navy in 1947, or with SAGE, the Semiautomatic Ground Environment
air defense system developed for the U.S. Air Force in the late 1950s. Both of
these projects qualify as real - time systems even by today ’ s defi nitions. In addi-
tion to its real - time contributions, the Whirlwind project included the fi rst use
of ferrite core memory (“ fast ”) and a form of high - level language compiler
that predated Fortran.

 Other early real - time systems were used for airline reservations, such as
SABRE (developed for American Airlines in 1959), as well as for process
control, but the advent of the national space program provided even greater
opportunities for the development of more advanced real - time systems for
spacecraft control and telemetry. It was not until the 1960s that rapid develop-
ment of such systems took place, and then only as signifi cant nonmilitary
interest in real - time systems become coupled with the availability of equip-
ment adapted to real - time processing.

 Low - performance processors and particularly slow and small memories
handicapped many of the earliest systems. In the early 1950s, the asynchronous
interrupt was introduced and later incorporated as a standard feature in the
Univac Scientifi c 1103A. The middle 1950s saw a distinct increase in the speed
and complexity of large - scale computers designed for scientifi c computation,
without an increase in physical size. These developments made it possible to
apply real - time computation in the fi eld of control systems. Such hardware
improvements were particularly noticeable in IBM ’ s development of SAGE.

 In the 1960s and 1970s, advances in integration levels and processing speeds
enhanced the spectrum of real - time problems that could be solved. In 1965
alone, it was estimated that more than 350 real - time process control systems
existed (Martin, 1967).

 The 1980s and 1990s have seen, for instance, distributed systems and non -
 von Neumann architectures utilized in real - time applications.

 Finally, the late 1990s and early 2000s have set new trends in real - time
embedded systems in consumer products and Web - enabled devices. The avail-

SUMMARY 21

ability of compact processors with limited memory and functionality has reju-
venated some of the challenges faced by early real - time systems designers.
Fortunately, around 60 years of experience is now available to draw upon.

 Early real - time systems were written directly in microcode or assembly
language, and later in higher - level languages. As previously noted, Whirlwind
used an early form of high - level language called an algebraic compiler to
simplify coding. Later systems employed Fortran, CMS - 2, and JOVIAL, the
preferred languages in the U.S. Army, Navy, and Air Force, respectively.

 In the 1970s, the Department of Defense (DoD) mandated the develop-
ment of a single language that all military services could use, and that provided
high - level language constructs for real - time programming. After a careful
selection and refi nement process, the Ada language appeared as a standard in
1983. Shortfalls in the language were identifi ed, and a new, improved version
of the language, Ada 95, appeared in 1995.

 Today, however, only a small number of systems are developed in Ada. Most
embedded systems are written in C or C + + . In the last 10 years, there has been
a remarkable increase in the use of object - oriented methodologies, and lan-
guages like C + + and Java in embedded real - time systems. The real - time aspects
of programming languages are discussed later in Chapter 4 .

 The fi rst commercial operating systems were designed for the early main-
frame computers. IBM developed the fi rst real - time executive, the Basic
Executive, in 1962, which provided diverse real - time scheduling. By 1963, the
Basic Executive II had disk - resident system and user programs.

 By the mid - 1970s, more affordable minicomputer systems could be found
in many engineering environments. In response, a number of important real -
 time operating systems were developed by the minicomputer manufacturers.
Notable among these were the Digital Equipment Corporation (DEC) family
of real - time multitasking executives (RSX) for the PDP - 11, and Hewlett -
 Packard ’ s Real - Time Executive (RTE) series of operating systems for its HP
2000 product line.

 By the late 1970s and early 1980s, the fi rst real - time operating systems
for microprocessor - based applications appeared. These included RMX -
 80, MROS 68K, VRTX, and several others. Over the past 30 years, many
commercial real - time operating systems have appeared, and many have
disappeared.

 A selective summary of landmark events in the fi eld of real - time systems
in the United States is given in Table 1.5 .

 1.4 SUMMARY

 The deep - going roots of real - time systems were formed during the historical
years of computers and computing — before the microprocessor era. However,
the fi rst “ boom ” of real - time systems took place around the beginning of 1980s,
when appropriate microprocessors and real - time operating systems became

22 FUNDAMENTALS OF REAL-TIME SYSTEMS

 TABLE 1.5. Landmarks in Real - Time Systems History in the United States

 Year Landmark Developer Development Innovations

 1947 Whirlwind IBM Flight simulator Ferrite core
memory
(“ fast ”),
high - level
language

 1957 SAGE IBM Air defense Designed for
real - time

 1958 Scientifi c
1103A

 Univac General purpose Asynchronous
interrupt

 1959 SABRE IBM Airline reservation “ Hub - go - ahead ”
policy

 1962 Basic
Executive

 IBM General purpose Diverse real - time
scheduling

 1963 Basic
Executive II

 IBM General purpose Disk - resident
system/user
programs

 1970s RSX, RTE DEC, HP Real - time
operating
systems

 Hosted by
minicomputers

 1973 Rate -
 monotonic
system

 Liu and
Layland

 Fundamental
theory

 Upper bound on
utilization for
schedulable
systems

 1970s
and
1980s

 RMX - 80,
MROS 68K,
VRTX, etc.

 Various Real - time
operating
systems

 Hosted by
microprocessors

 1983 Ada 83 U.S. DoD Programming
language

 For mission -
 critical
embedded
systems

 1995 Ada 95 Community Programming
language

 Improved version
of Ada 83

 2000s – – Various advances
in hardware,
open - source, and
commercial
system software
and tools

 A continuously
growing range
of innovative
applications
that can be
 “ real - time ”

available (to be used in embedded systems) for an enormous number of elec-
trical, systems, as well as mechanical and aerospace engineers. These practicing
engineers did not have much software or even computer education, and, thus,
the initial learning path was laborious in most fi elds of industry. In those early
times, the majority of real - time operating systems and communications proto-

SUMMARY 23

cols were proprietary designs — applications people were developing
both system and application software themselves. But the situation started
to improve with the introduction of more effective high - level language
compilers, software debugging tools, communications standards, and, gradu-
ally, also methodologies and associated tools for professional software
engineering.

 What is left from those pioneering years approximately 30 years ago? Well,
the foundation of real - time systems is still remarkably the same. The core
issues, such as the different degrees of real - time and deterministic require-
ments, as well as real - time punctuality, are continuing to set major design
challenges. Besides, the basic techniques of multitasking and scheduling, and
the accompanying inter - task communication and synchronization mechanisms,
are used even in modern real - time applications. Hence, real - time systems
knowledge has a long lifetime. Nonetheless, much fruitful development is
taking place in real - time systems engineering worldwide: new specifi cation and
design methods are introduced; innovative processor and system architectures
become available and practical; fl exible and low - cost wireless networks gain
popularity; and numerous novel applications appear continuously, for example,
in the fi eld of ubiquitous computing.

 We can fairly conclude that real - time systems engineering is a sound and
timely topic for junior - senior level, graduate, and continuing education; and it
offers growing employment potential in various industries. In the coming
chapters, we will cover a broad range of vital themes for practicing engineers
(see Fig. 1.7). While the emphasis is on software issues, the fundamentals of
real - time hardware are carefully outlined as well. Our aim is to provide a
comprehensive text to be used also in industrial settings for new real - time
system designers, who need to get “ up to speed ” quickly. That aim is high-
lighted in this fourth edition of Real - Time Systems Design and Analysis , with
the descriptive subtitle Tools for the Practitioner .

 Figure 1.7. Composition of this unique text from nine complementary chapters.

2. Hardware for
Real-Time Systems

7. Performance
Analysis Techniques

6. Software Design
Approaches

9. Future Visions
on Real-Time

Systems

1. Fundamentals of
Real-Time Systems

3. Real-Time
Operating Systems

4. Programming
Languages for

Real-Time Systems

5. Requirements
Engineering

Methodologies

Real-Time Systems
Design and Analysis+

8. Additional
Considerations for

the Practitioner

24 FUNDAMENTALS OF REAL-TIME SYSTEMS

 1.5 EXERCISES

 1.1. Consider a payroll processing system for an elevator company. Describe
three different scenarios in which the system can be justifi ed as hard,
fi rm, or soft real - time.

 1.2. Discuss whether the following are hard, fi rm, or soft real - time systems:

 (a) The Library of Congress print - manuscript database system.
 (b) A police database that provides information on stolen automobiles.
 (c) An automatic teller machine in a shopping mall.
 (d) A coin - operated video game in some amusement park.
 (e) A university grade - processing system.
 (f) A computer - controlled routing switch used at a telephone company

branch exchange.

 1.3. Consider a real - time weapons control system aboard a fi ghter aircraft.
Discuss which of the following events would be considered synchronous
and which would be considered asynchronous to the real - time comput-
ing system.

 (a) A 5 - ms, externally generated clock interrupt.
 (b) An illegal - instruction - code (trap) interrupt.
 (c) A built - in - test memory failure.
 (d) A discrete signal generated by the pilot pushing a button to fi re a

missile.
 (e) A discrete signal indicating “ low on fuel. ”

 1.4. Describe a system that is completely nonreal - time, that is, there are no
bounds whatsoever for any response time. Do such systems exist in
reality?

 1.5. For the following systems concepts, fi ll in the cells of Table 1.2 with
descriptors for possible events. Estimate event periods for the periodic
events.

 (a) Elevator group dispatcher: this subsystem makes optimal hall - call
allocation for a bank of high - speed elevators that service a 40 - story
building in a lively city like Louisville.

 (b) Automotive control: this on - board crash avoidance system uses data
from a variety of sensors and makes decisions and affects behavior
to avoid collision, or protect the occupants in the event of an immi-
nent collision. The system might need to take control of the auto-
mobile from the driver temporarily.

 1.6. For the real - time systems in Exercise 1.2, what are reasonable response
times for all those events?

REFERENCES 25

 1.7. For the example systems introduced (inertial measurement, nuclear -
 power - plant monitoring, airline reservation, pasta bottling, and traffi c -
 light control) enumerate some possible events and note whether they
are periodic, aperiodic, or sporadic. Discuss reasonable response times
for the events.

 1.8. In the response - time example of Section 1.1 , the time from observing a
passenger between the closing door blades and starting to reopen the
elevator door varies between 305 and 515 ms. How could you further
justify if these particular times are appropriate for this situation?

 1.9. A control system is measuring its feedback quantity at the rate of 100 μ s.
Based on the measurement, a control command is computed by a heu-
ristic algorithm that uses complex decision making. The new command
becomes available 27 – 54 μ s (rather evenly distributed) after each sam-
pling moment. This considerable jitter introduces harmful distortion to
the controller output. How could you avoid (reduce) such a jitter? What
(if any) are the drawbacks of your solution?

 1.10. Reconsider the CPU utilization factor example of Section 1.1 . How short
could the execution period of Task 1, e 1 , be made to maintain the CPU
utilization zone no worse than “ questionable ” (Table 1.3)?

 REFERENCES

 D. Abbott , Linux for Embedded and Real - Time Applications , 2nd Edition . Burlington,
MA : Newnes , 2006 .

 T. N. B. Anh and S. - L. Tan , “ Real - time operating systems for small microcontrollers , ”
 IEEE Micro , 29 (5), pp. 30 – 45 , 2009 .

 V. Fay - Wolfe et al., “ Real - time CORBA , ” IEEE Transactions on Parallel and Distributed
Systems , 11 (10), pp. 1073 – 1089 , 2000 .

 C. L. Liu and J. W. Layland , “ Scheduling algorithms for multi - programming in a hard
real - time environment , ” Journal of the ACM , 20 (1), pp. 46 – 61 , 1973 .

 J. Martin , Design of Real - Time Computer Systems . Englewood Cliffs, NJ : Prentice - Hall ,
 1967 .

 J. Pasanen , P. Jahkonen , S. J. Ovaska , H. Tenhunen , and O. Vainio , “ An integrated digital
motion control unit , ” IEEE Transactions on Instrumentation and Measurement ,
 40 (3), pp. 654 – 657 , 1991 .

 J. A. Stankovic , M. Spuri , M. Di Natale , and G. C. Buttazzo , “ Implications of classical
scheduling results for real - time systems , ” IEEE Computer , 28 (6), pp. 16 – 25 , 1995 .

 S. Stimler , Real - Time Data - Processing Systems . New York : McGraw - Hill , 1969 .
 P. Vernon , “ Systems in engineering , ” IEE Review , 35 (10), pp. 383 – 385 , 1989 .

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

