FUNDAMENTALS OF
REAL-TIME SYSTEMS

The term “real time” is used widely in many contexts, both technical and con-
ventional. Most people would probably understand “in real time” to mean “at
once” or “instantaneously.” The Random House Dictionary of the English
Language (2nd unabridged edition, 1987), however, defines “realtime” as per-
taining to applications in which the computer must respond as rapidly as
required by the user or necessitated by the process being controlled. These defi-
nitions, and others that are available, are quite different, and their differences
are often the cause of misunderstanding between computer, software and
systems engineers, and the users of real-time systems. On a more pedantic
level, there is the issue of the appropriate writing of the term “real-time.”
Across technical and pedestrian literature, various forms of the term, such as
real time, real-time, and realtime may appear. But to computer, software, and
systems engineers the preferred form is real-time, and this is the convention
that we will follow throughout this text.

Consider a computer system in which data need to be processed at a regular
rate. For example, an aircraft uses a sequence of accelerometer pulses to
determine its position. Systems other than avionic ones may also require a
rapid response to events that occur at nonregular rates, such as handling an
overtemperature failure in a nuclear power plant. Even without defining the
term “real-time,” it is probably understood that those events demand timely
or “real-time” processing.
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Now consider a situation in which a passenger approaches an airline check-
in counter to pick up his boarding pass for a certain flight from New York to
Boston, which is leaving in five minutes. The reservation clerk enters appropri-
ate information into the computer, and a few seconds later a boarding pass is
printed. Is this a real-time system?

Indeed, all three systems—aircraft, nuclear power plant, and airline
reservations—are real-time, because they must process information within a
specified interval or risk system failure. Although these examples may provide
an intuitive definition of a real-time system, it is necessary to clearly compre-
hend when a system is real-time and when it is not.

To form a solid basis for the coming chapters, we first define a number of
central terms and correct common misunderstandings in Section 1.1. These
definitions are targeted for practitioners, and thus they have a strong practical
point-of-view. Section 1.2 presents the multidisciplinary design challenges
related to real-time systems. It is shown that although real-time systems design
and analysis are subdisciplines of computer systems engineering, they have
essential connections to various other fields, such as computer science and
electrical engineering—even to applied statistics. It is rather straightforward
to present different approaches, methods, techniques, or tools for readers, but
much more difficult to convey the authors’ insight on real-time systems to the
audience. Nevertheless, our intention is to provide some insight in parallel with
specific tools for the practitioner. Such insight is built on practical experiences
and adequate understanding of the key milestones in the field. The birth of
real-time systems, in general, as well as a selective evolution path related to
relevant technological innovations, is discussed in Section 1.3. Section 1.4 sum-
marizes the preceding sections on fundamentals of real-time systems. Finally,
Section 1.5 provides exercises that help the reader to gain basic understanding
on real-time systems and associated concepts.

1.1 CONCEPTS AND MISCONCEPTIONS

The fundamental definitions of real-time systems engineering can vary depend-
ing on the resource consulted. Our pragmatic definitions have been collected
and refined to the smallest common subset of agreement to form the vocabu-
lary of this particular text. These definitions are presented in a form that is
intended to be most useful to the practicing engineer, as opposed to the aca-
demic theorist.

1.1.1 Definitions for Real-Time Systems

The hardware of a computer solves problems by repeated execution of
machine-language instructions, collectively known as software. Software, on
the other hand, is traditionally divided into system programs and application
programs.
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System programs consist of software that interfaces with the underlying
computer hardware, such as device drivers, interrupt handlers, task schedulers,
and various programs that act as tools for the development or analysis of
application programs. These software tools include compilers, which translate
high-level language programs into assembly code; assemblers, which convert
the assembly code into a special binary format called object or machine code;
and linkers/locators, which prepare the object code for execution in a specific
hardware environment. An operating system is a specialized collection of
system programs that manage the physical resources of the computer. As such,
a real-time operating system is a truly important system program (Anh and
Tan, 2009).

Application programs are programs written to solve specific problems, such
as optimal hall-call allocation of an elevator bank in a high-rise building, inertial
navigation of an aircraft, and payroll preparation for some industrial company.
Certain design considerations play a role in the design of system programs and
application software intended to run in real-time environments.

The notion of a “system” is central to software engineering, and indeed to
all engineering, and warrants formalization.

Definition: System

A system is a mapping of a set of inputs into a set of outputs.

When the internal details of the system are not of particular interest, the
mapping function between input and output spaces can be considered as a
black box with one or more inputs entering and one or more outputs exiting
the system (see Fig. 1.1). Moreover, Vernon lists five general properties that
belong to any “system” (Vernon, 1989):

1. A system is an assembly of components connected together in an orga-
nized way.

2. A system is fundamentally altered if a component joins or leaves it.
3. It has a purpose.
4. It has a degree of permanence.
5. It has been defined as being of particular interest.
Inputs Outputs
— —
’ System '
Input Space ) — | > ( Output Space
— . . —
: Mapping Function :
— B

Figure 1.1. A general system with inputs and outputs.
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Figure 1.2. A real-time control system including inputs from a camera and multiple
sensors, as well as outputs to a display and multiple actuators.

Job 1 ———»
Job 2 ———»
Job 3 Real-Time

Job4d ——»  system > Schedule

[Job 3, Job 1, Job n, ...]
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Figure 1.3. A classic representation of a real-time system as a sequence of schedulable
jobs.

Every real-world entity, whether organic or synthetic, can be modeled as a
system. In computing systems, the inputs represent digital data from hardware
devices or other software systems. The inputs are often associated with sensors,
cameras, and other devices that provide analog inputs, which are converted to
digital data, or provide direct digital inputs. The digital outputs of computer
systems, on the other hand, can be converted to analog outputs to control
external hardware devices, such as actuators and displays, or used directly
without any conversion (Fig. 1.2).

Modeling a real-time (control) system, as in Figure 1.2, is somewhat differ-
ent from the more traditional model of the real-time system as a sequence of
jobs to be scheduled and performance to be predicted, which is comparable
with that shown in Figure 1.3. The latter view is simplistic in that it ignores the
usual fact that the input sources and hardware under control may be highly
complex. In addition, there are other, “sweeping” software engineering con-
siderations that are hidden by the model shown in Figure 1.3.

Look again at the model of a real-time system shown in Figure 1.2. In its
realization, there is some inherent delay between presentation of the inputs
(excitation) and appearance of the outputs (response). This fact can be formal-
ized as follows:

Definition: Response Time

The time between the presentation of a set of inputs to a system and the
realization of the required behavior, including the availability of all associ-
ated outputs, is called the response time of the system.
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How fast and punctual the response time needs to be depends on the charac-
teristics and purpose of the specific system.

The previous definitions set the stage for a practical definition of a real-time
system.

Definition: Real-Time System (I)

A real-time system is a computer system that must satisfy bounded response-
time constraints or risk severe consequences, including failure.

But what is a “failed” system? In the case of the space shuttle or a
nuclear power plant, for example, it is painfully obvious when a failure has
occurred. For other systems, such as an automatic bank teller machine, the
notion of failure is less obvious. For now, failure will be defined as the

“inability of the system to perform according to system specification,” or,
more precisely:

Definition: Failed System

A failed system is a system that cannot satisfy one or more of the require-
ments stipulated in the system requirements specification.

Because of this definition of failure, rigorous specification of the system oper-
ating criteria, including timing constraints, is necessary. This matter is discussed
later in Chapter 5.

Various other definitions exist for “real-time,” depending on which source
is consulted. Nonetheless, the common theme among all definitions is that the
system must satisfy deadline constraints in order to be correct. For instance,
an alternative definition might be:

Definition: Real-Time System (II)

A real-time system is one whose logical correctness is based on both the
correctness of the outputs and their timeliness.

In any case, by making unnecessary the notion of timeliness, every system
becomes a real-time system.

Real-time systems are often reactive or embedded systems. Reactive
systems are those in which task scheduling is driven by ongoing interaction
with their environment; for example, a fire-control system reacts to certain
buttons pressed by a pilot. Embedded systems can be defined informally as
follows:
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Definition: Embedded System

An embedded system is a system containing one or more computers (or
processors) having a central role in the functionality of the system, but the
system is not explicitly called a computer.

For example, a modern automobile contains many embedded processors that
control airbag deployment, antilock braking, air conditioning, fuel injection,
and so forth. Today, numerous household items, such as microwave ovens, rice
cookers, stereos, televisions, washing machines, even toys, contain embedded
computers. It is obvious that sophisticated systems, such as aircraft, elevator
banks, and paper machines, do contain several embedded computer systems.

The three systems mentioned at the beginning of this chapter satisfy the
criteria for a real-time system. An aircraft must process accelerometer data
within a certain period that depends on the specifications of the aircraft; for
example, every 10 ms. Failure to do so could result in a false position or veloc-
ity indication and cause the aircraft to go off-course at best or crash at worst.
For a nuclear reactor thermal problem, failure to respond swiftly could result
in a meltdown. Finally, an airline reservation system must be able to handle a
surge of passenger requests within the passenger’s perception of a reasonable
time (or before the flights leave the gate). In short, a system does not have to
process data at once or instantaneously to be considered real-time; it must
simply have response times that are constrained appropriately.

When is a system real-time? It can be argued that all practical systems are
ultimately real-time systems. Even a batch-oriented system—for example,
grade processing at the end of a semester or a bimonthly payroll run—is real-
time. Although the system may have response times of days or even weeks
(e.g., the time that elapses between submitting the grade or payroll informa-
tion and issuance of the report card or paycheck), it must respond within a
certain time or there could be an academic or financial disaster. Even a word-
processing program should respond to commands within a reasonable amount
of time or it will become torturous to use. Most of the literature refers to such
systems as soft real-time systems.

Definition: Soft Real-Time System

A soft real-time system is one in which performance is degraded but not
destroyed by failure to meet response-time constraints.

Conversely, systems where failure to meet response-time constraints leads to
complete or catastrophic system failure are called hard real-time systems.

Definition: Hard Real-Time System

A hard real-time system is one in which failure to meet even a single dead-
line may lead to complete or catastrophic system failure.
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Firm real-time systems are those systems with hard deadlines where some
arbitrarily small number of missed deadlines can be tolerated.

Definition: Firm Real-Time System

A firm real-time system is one in which a few missed deadlines will not lead
to total failure, but missing more than a few may lead to complete or cata-
strophic system failure.

As noted, all practical systems minimally represent soft real-time systems.
Table 1.1 gives an illustrative sampling of hard, firm, and soft real-time systems.

There is a great deal of latitude for interpretation of hard, firm, and soft
real-time systems. For example, in the automated teller machine, missing too
many deadlines will lead to significant customer dissatisfaction and potentially
even enough loss of business to threaten the existence of the bank. This
extreme scenario represents the fact that every system can often be character-
ized any way—soft, firm, or hard—real-time by the construction of a support-
ing scenario. The careful definition of systems requirements (and, hence,
expectations) is the key to setting and meeting realistic deadline expectations.
In any case, it is a principal goal of real-time systems engineering to find ways
to transform hard deadlines into firm ones, and firm ones into soft ones.

Since this text is mostly concerned with hard real-time systems, it will use
the term real-time system to mean embedded, hard real-time system, unless
otherwise noted.

It is typical, in studying real-time systems, to consider the nature of time,
because deadlines are instants in time. Nevertheless, the question arises,
“Where do the deadlines come from?” Generally speaking, deadlines are
based on the underlying physical phenomena of the system under control. For

TABLE 1.1. A Sampling of Hard, Firm, and Soft Real-Time Systems

System Real-Time Explanation
Classification
Avionics weapons delivery Hard Missing the deadline to launch the
system in which pressing missile within a specified time
a button launches an after pressing the button may
air-to-air missile cause the target to be missed,
which will result in catastrophe
Navigation controller for Firm Missing a few navigation deadlines
an autonomous weed- causes the robot to veer out from
killer robot a planned path and damage some
crops
Console hockey game Soft Missing even several deadlines will

only degrade performance
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example, in animated displays, images must be updated at least 30 frames per
second to provide continuous motion, because the human eye can resolve
updating at a slower rate. In navigation systems, accelerations must be read at
a rate that is a function of the maximum velocity of the vehicle, and so on. In
some cases, however, real-world systems have deadlines that are imposed on
them, and are based on nothing less than guessing or on some forgotten and
possibly eliminated requirement. The problem in these cases is that undue
constraints may be placed on the systems. This is a primary maxim of real-time
systems design—to understand the basis and nature of the timing constraints
so that they can be relaxed if necessary. In cost-effective and robust real-time
systems, a pragmatic rule of thumb could be: process everything as slowly as
possible and repeat tasks as seldom as possible.

Many real-time systems utilize global clocks and time-stamping for synchro-
nization, task initiation, and data marking. It must be noted, however, that all
clocks keep somewhat inaccurate time—even the official U.S. atomic clock must
be adjusted regularly. Moreover, there is an associated quantization error with
clocks, which may need to be considered when using them for time-stamping.

In addition to the degree of “real-time” (i.e., hard, firm, or soft), also, the
punctuality of response times is important in many applications. Hence, we
define the concept of real-time punctuality:

Definition: Real-Time Punctuality

Real-time punctuality means that every response time has an average value,
fr, with upper and lower bounds of tz + €y and tr — €, respectively, and
eu.eL — 0™

In all practical systems, the values of ey and g are nonzero, though they may
be very small or even negligible. The nonzero values are due to cumulative
latency and propagation-delay components in real-time hardware and soft-
ware. Such response times contain jitter within the interval t € [—€;,+¢ey]. Real-
time punctuality is particularly important in periodically sampled systems with
high sampling rates, for example, in video signal processing and software radio.

Example: Where a Response Time Comes From

An elevator door (Pasanen et al., 1991) is automatically operated, and it
may have a capacitive safety edge for sensing possible passengers between
the closing door blades. Thus, the door blades can be quickly reopened
before they touch the passenger and cause discomfort or even threaten the
passenger’s safety.

What is the required system response time from when it recognizes that
a passenger is between the closing door blades to the instant when it starts
to reopen the door?



CONCEPTS AND MISCONCEPTIONS 9

This response time consists of five independent components (their pre-
sumably measured numerical values are for illustration purpose only):

Sensor Response Time: ts pin =5 MS, ts_pax = 15 MS, 5 mean = 9 MS.
Hardware Response Time: tyw min = 1 US, tw max = 2 US, W mean = 1.2 US.
System Software Response Time: tss yin = 16 IS, tss max = 48 LS, fss_ mean = 37 US.

Application Software Response Time: tas min = 0.5 US, fas max = 0.5 Us,
IAS_mean = 0.5 us.
Door Drive Response Time: tpp_mn = 300 ms, tpp_max = 500 ms,
tDDimean = 400 ms.

Now, we can calculate the minimum, maximum, and mean values of the
composite response time: t,;, = 305 ms, f,,x = 515 ms, and #,e,, = 409 ms.

Thus, the overall response time is dominated by the door-drive response
time containing the required deceleration time of the moving door blades.

In software systems, a change in state results in a change in the flow-of-control
of the computer program. Consider the flowchart in Figure 1.4. The decision
block represented by the diamond suggests that the stream of program instruc-
tions can take one of two alternative paths, depending on the response
in question. case, if-then, and while statements in any programming
language represent a possible change in flow-of-control. Invocation of proce-
dures in Ada and C represent changes in flow-of-control. In object-oriented

l

A

Figure 1.4. A partial program flowchart showing a conditional branch as a change in
flow of control.
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languages, instantiation of an object or the invocation of a method causes the
change in sequential flow-of-control. In general, consider the following
definition.

Definition: Event

Any occurrence that causes the program counter to change nonsequentially
is considered a change of flow-of-control, and thus an event.

In scheduling theory, the release time of a job is similar to an event.

Definition: Release Time

The release time is the time at which an instance of a scheduled task is
ready to run, and is generally associated with an interrupt.

Events are slightly different from jobs in that events can be caused by inter-
rupts, as well as branches.

An event can be either synchronous or asynchronous. Synchronous events
are those that occur at predictable times in the flow-of-control, such as that
represented by the decision box in the flowchart of Figure 1.4. The change in
flow-of-control, represented by a conditional branch instruction, or by the
occurrence of an internal trap interrupt, can be anticipated.

Asynchronous events occur at unpredictable points in the flow-of-control
and are usually caused by external sources. A real-time clock that pulses regu-
larly at 5 ms is not a synchronous event. While it represents a periodic event,
even if the clock were able to tick at a perfect 5 ms without drift, the point
where the tick occurs with the flow-of-control is subject to many factors. These
factors include the time at which the clock starts relative to the program and
propagation delays in the computer system itself. An engineer can never count
on a clock ticking exactly at the rate specified, and so any clock-driven event
must be treated as asynchronous.

Events that donot occur at regular periods are called aperiodic. Furthermore,
aperiodic events that tend to occur very infrequently are called sporadic. Table
1.2 characterizes a sampling of events.

For example, an interrupt generated by a periodic external clock represents
a periodic but asynchronous event. A periodic but synchronous event is one

TABLE 1.2. Taxonomy of Events and Some Typical Examples

Periodic Aperiodic Sporadic
Synchronous Cyclic code Conditional branch Divide-by-zero
(trap) interrupt
Asynchronous Clock interrupt Regular, but not Power-loss alarm

fixed-period interrupt

These items will be discussed further in Chapters 2 and 3.
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represented by a sequence of invocation of software tasks in a repeated, cir-
cular fashion. A typical branch instruction that is not part of a code block and
that runs repeatedly at a regular rate represents a synchronous but aperiodic
event. A branch instruction that happens infrequently, say, on the detection of
some exceptional condition, is both sporadic and synchronous. Finally, inter-
rupts that are generated irregularly by an external device are classified as
either asynchronous aperiodic or sporadic, depending on whether the inter-
rupt is generated frequently or not with respect to the system clock.

In every system, and particularly in an embedded real-time system, main-
taining overall control is extremely important. For any physical system, certain
states exist under which the system is considered to be out of control; the
software controlling such a system must therefore avoid these states. For
example, in certain aircraft guidance systems, rapid rotation through a 180°
pitch angle can cause loss of gyroscopic control. Hence, the software must be
able to anticipate and avert all such scenarios.

Another characteristic of a software-controlled system is that the processor
continues to fetch, decode, and execute instructions correctly from the program
area of memory, rather than from data or other unwanted memory regions.
The latter scenario can occur in poorly tested systems and is a catastrophe
from which there is almost no hope of recovery.

Software control of any real-time system and associated hardware is main-
tained when the next state of the system, given the current state and a set of
inputs, is predictable. In other words, the goal is to anticipate how a system
will behave in all possible circumstances.

Definition: Deterministic System

A system is deterministic, if for each possible state and each set of inputs,
a unique set of outputs and next state of the system can be determined.

Event determinism means the next states and outputs of a system are known
for each set of inputs that trigger events. Thus, a system that is deterministic
is also event deterministic. Although it would be difficult for a system to be
deterministic only for those inputs that trigger events, this is plausible, and so
event determinism may not imply determinism.

It is interesting to note that while it is a significant challenge to design
systems that are completely event deterministic, and as mentioned, it is pos-
sible to inadvertently end up with a system that is nondeterministic, it is defi-
nitely hard to design systems that are deliberately nondeterministic. This
situation arises from the utmost difficulties in designing perfect random
number generators. Such deliberately nondeterministic systems would be
desirable, for example, as casino gaming machines.

Finally, if in a deterministic system the response time for each set of outputs
is known, then the system also exhibits temporal determinism.
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A side benefit of designing deterministic systems is that guarantees can be
given that the system will be able to respond at any time, and in the case of
temporally deterministic systems, when they will respond. This fact reinforces
the association of “control” with real-time systems.

The final and truly important term to be defined is a critical measure of
real-time system performance. Because the central processing unit (CPU)
continues to fetch, decode, and execute instructions as long as power is applied,
the CPU will more or less frequently execute either no-ops or instructions that
are not related to the fulfillment of a specific deadline (e.g., noncritical “house-
keeping”). The measure of the relative time spent doing nonidle processing
indicates how much real-time processing is occurring.

Definition: CPU Ugtilization Factor

The CPU utilization or time-loading factor, U, is a relative measure of the
nonidle processing taking place.

A system is said to be time-overloaded if U > 100%. Systems that are too
highly utilized are problematic, because additions, changes, or corrections
cannot be made to the system without risk of time-overloading. On the other
hand, systems that are not sufficiently utilized are not necessarily cost-effective,
because this implies that the system was overengineered and that costs could
likely be reduced with less expensive hardware. While a utilization of 50% is
common for new products, 80% might be acceptable for systems that do not
expect growth. However, 70% as a target for U is one of the most celebrated
and potentially useful results in the theory of real-time systems where tasks
are periodic and independent—a result that will be examined in Chapter 3.
Table 1.3 gives a summary of certain CPU utilizations and typical situations
in which they are associated.

U is calculated by summing the contribution of utilization factors for each
(periodic or aperiodic) task. Suppose a system has n > 1 periodic tasks, each
with an execution period of p;, and hence, execution frequency, f; = 1/p;. If task
i is known to have (or has been estimated to have) a worst-case execution time
of ¢;, then the utilization factor, u;, for task i is

TABLE 1.3. CPU Utilization (%) Zones

Utilization (%) Zone Type Typical Application
<26 Unnecessarily safe Various

26-50 Very safe Various

51-68 Safe Various

69 Theoretical limit Embedded systems

70-82 Questionable Embedded systems

83-99 Dangerous Embedded systems

100 Critical Marginally stressed systems

>100 Overloaded Stressed systems
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w; = e/ p;. (1.1)

Furthermore, the overall system utilization factor is

Uziu,- =ie,-/pi. (1.2)
i=1 i=1

Note that the deadline for a periodic task i, d;, is a critical design factor that
is constrained by e;. The determination of e;, either prior to, or after the code
has been written, can be extremely difficult, and often impossible, in which
case estimation or measuring must be used. For aperiodic and sporadic tasks,
u;is calculated by assuming a worst-case execution period, usually the minimum
possible time between corresponding event occurrences. Such approximations
can inflate the utilization factor unnecessarily or lead to overconfidence
because of the tendency to “not worry” about its excessive contribution. The
danger is to discover later that a higher frequency of occurrence than budgeted
has led to a time-overload and system failure.

The utilization factor differs from CPU throughput, which is a measure
of the number of machine-language instructions per second that can
be processed based on some predetermined instruction mix. This type of mea-
surement is typically used to compare CPU throughput for a particular
application.

Example: Calculation of the CPU Ultilization Factor

An individual elevator controller in a bank of high-rise elevators has the
following software tasks with execution periods of p; and worst-case execu-
tion times of e;, i € {1,2, 3, 4}:

Task 1: Communicate with the group dispatcher (19.2 K bit/s data rate
and a proprietary communications protocol); p; = 500 ms, e; = 17 ms.

Task 2: Update the car position information and manage floor-to-floor
runs, as well as door control; p, = 25 ms, e, = 4 ms.

Task 3: Register and cancel car calls; p; = 75 ms, e; = 1 ms.

Task 4: Miscellaneous system supervisions; p, = 200 ms, e, = 20 ms.
What is the overall CPU utilization factor?

L1, 20
U= = +2 031
ze/p 500 25 75" 200

Hence, the utilization percentage is 31 %, which belongs to the “very safe”
zone of Table 1.3.
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The choice of task deadlines, estimation and reduction of execution
times, and other factors that influence CPU utilization will be discussed in
Chapter 7.

1.1.2 Usual Misconceptions

As a part of truly understanding the nature of real-time systems, it is important
to address a number of frequently cited misconceptions. These are summarized
as follows:

1. Real-time systems are synonymous with “fast” systems.
2. Rate-monotonic analysis has solved “the real-time problem.”

3. There are universal, widely accepted methodologies for real-time systems
specification and design.

4. There is no more a need to build a real-time operating system, because
many commercial products exist.

S. The study of real-time systems is mostly about scheduling theory.

The first misconception, that real-time systems must be fast, arises from the
fact that many hard real-time systems indeed deal with deadlines in the tens
of milliseconds, such as the aircraft navigation system. In a typical food-
industry application, however, pasta-sauce jars can move along the conveyor
belt past a filling point at a rate of one every five seconds. Furthermore, the
airline reservation system could have a deadline of 15 seconds. These latter
deadlines are not particularly fast, but satisfying them determines the success
or failure of the system.

The second misconception is that rate-monotonic systems provide a simple
recipe for building real-time systems. Rate-monotonic systems—a periodic
system in which interrupt (or software task) priorities are assigned such that
the faster the rate of execution, the higher the priority—have received a lot
of attention since the 1970s. While they provide valuable guidance in the
design of real-time systems, and while there is abundant theory surrounding
them, they are not a panacea. Rate-monotonic systems will be discussed in
great detail in Chapter 3.

What about the third misconception? Unfortunately, there are no univer-
sally accepted and infallible methods for the specification and design of real-
time systems. This is not a failure of researchers or the software industry, but
is because of the difficulty of discovering universal solutions for this demand-
ing field. After nearly 40 years of research and development, there is still no
methodology available that answers all of the challenges of real-time specifica-
tion and design all the time and for all applications.

The fourth misconception is that there is no more a need to build a real-
time operating system from scratch. While there are a number of cost-effective,
popular, and viable commercial real-time operating systems, these, too, are not



MULTIDISCIPLINARY DESIGN CHALLENGES 15

a panacea. Commercial solutions have certainly their place, but choosing when
to use an off-the-shelf solution and choosing the right one are challenges that
will be considered in Chapter 3.

Finally, while it is scholarly to study scheduling theory, from an engineering
standpoint, most published results require impractical simplifications and
clairvoyance in order to make the theory work. Because this is a textbook for
practicing engineers, it avoids any theoretical results that resort to these
measures.

1.2 MULTIDISCIPLINARY DESIGN CHALLENGES

The study of real-time systems is a truly multidimensional subdiscipline of
computer systems engineering that is strongly influenced by control theory,
operations research, and, naturally, software engineering. Figure 1.5 depicts
some of the disciplines of computer science, electrical engineering, systems
engineering, and applied statistics that affect the design and analysis of
real-time systems. Nevertheless, those representative disciplines are not the
only ones having a relationship with real-time systems. Because real-time
systems engineering is so multidisciplinary, it stands out as a fascinating study
area with a rich set of design challenges. Although the fundamentals of real-
time systems are well established and have considerable permanence, real-
time systems is a lively developing area due to evolving CPU architectures,
distributed system structures, versatile wireless networks, and novel applica-
tions, for instance.

Programming
Languages

Operating
Systems

Data
Structures

Software
Engineering

Real-Time
Systems

Operations
Research

Queuing
Theory

Systems
Theory

Computer
Architecture

Figure 1.5. A variety of disciplines that affect real-time systems engineering.
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1.2.1 Influencing Disciplines

The design and implementation of real-time systems requires attention to
numerous practical issues. These include:

+ The selection of hardware and system software, and evaluation of the
trade-off needed for a competitive solution, including dealing with
distributed computing systems and the issues of concurrency and
synchronization.

Specification and design of real-time systems, as well as correct and inclu-
sive representation of temporal behavior.

+ Understanding the nuances of the high-level programming language(s)
and the real-time implications resulting from their optimized compilation
into machine-language code.

Optimizing (with application-specific objectives) of system fault tolerance

and reliability through careful design and analysis.

* The design and administration of adequate tests at different levels of
hierarchy, and the selection of appropriate development tools and test
equipment.

+ Taking advantage of open systems technology and interoperability. An

open system is an extensible collection of independently written applica-

tions that cooperate to function as an integrated system. For example,
several versions of the open operating system, Linux, have emerged for
use in various real-time applications (Abbott, 2006). Interoperability can
be measured in terms of compliance with open system standards, such as
the real-time CORBA (common object request broker architecture) stan-

dard (Fay-Wolfe et al., 2000).

Finally, estimating and measuring response times and (if needed) reducing

them. Performing a schedulability analysis, that is, determining and guar-

anteeing deadline satisfaction, a priori.

Obviously, the engineering techniques used for hard real-time systems can be
used in the engineering of all other types of systems as well, with an accom-
panying improvement of performance and robustness. This alone is a signifi-
cant reason to study the engineering of real-time systems.

1.3 BIRTH AND EVOLUTION OF REAL-TIME SYSTEMS

The history of real-time systems, as characterized by important developments
in the United States, is tied inherently to the evolution of the computer.
Modern real-time systems, such as those that control nuclear power plants,
military weapons systems, or medical monitoring equipment, are sophisticated,
yet many still exhibit characteristics of those pioneering systems developed in
the 1940s through the 1960s.
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1.3.1 Diversifying Applications

Embedded real-time systems are so pervasive and ubiquitous that they are
even found in household appliances, sportswear, and toys. A small sampling
of real-time domains and corresponding applications is given in Table 1.4. An
excellent example of an advanced real-time system is the Mars Exploration
Rover of NASA shown in Figure 1.6. It is an autonomous system with extreme
reliability requirements; it receives commands and sends measurement data
over radio-communications links; and performs its scientific missions with the
aid of multiple sensors, processors, and actuators.

In the introductory paragraphs of this chapter, some real-time systems were
mentioned. The following descriptions provide more details for each system,
while others provide additional examples. Clearly, these descriptions are not
rigorous specifications. The process of specifying real-time systems unambigu-
ously but concisely is discussed in Chapter 5.

Consider the inertial measurement system for an aircraft. The software
specification states that the software will receive x, y, and z accelerometer
pulses at a 10 ms rate from special hardware. The software will determine the
acceleration components in each direction, and the corresponding roll, pitch,
and yaw of the aircraft.

The software will also collect other information, such as temperature at a
1-second rate. The task of the application software is to compute the actual
velocity vector based on the current orientation, accelerometer readings, and
various compensation factors (such as for temperature effects) at a 40 ms rate.
The system is to output true acceleration, velocity, and position vectors to a
pilot’s display every 40 ms, but using a different clock.

TABLE 1.4. Typical Real-Time Domains
and Diverse Applications

Domain Applications
Aerospace Flight control
Navigation
Pilot interface
Civilian Automotive systems

Elevator control

Traffic light control
Industrial Automated inspection

Robotic assembly line

Welding control
Medical Intensive care monitors

Magnetic resonance imaging

Remote surgery
Multimedia Console games

Home theaters

Simulators
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Figure 1.6. Mars Exploration Rover; a solar-powered, autonomous real-time system
with radio-communications links and a variety of sensors and actuators. Photo courtesy
of NASA.

These tasks execute at four different rates in the inertial measurement
system, and need to communicate and synchronize. The accelerometer read-
ings must be time-relative or correlated; that is, it is not allowed to mix an x
accelerometer pulse of discrete time instant k with y and z pulses of instant
k + 1. These are critical design issues for this system.

Next, consider a monitoring system for a nuclear power plant that will be
handling three events signaled by interrupts. The first event is triggered by any
of several signals at various security points, which will indicate a security
breach. The system must respond to this signal within one second. The second
and most important event indicates that the reactor core has reached an over-
temperature. This signal must be dealt with within 1 millisecond (1 ms). Finally,
an operator’s display is to be updated at approximately 30 times per second.
The nuclear-power-plant system requires a reliable mechanism to ensure that
the “meltdown imminent” indicator can interrupt any other processing with
minimal latency.

As another example, recall the airline reservation system mentioned earlier.
Management has decided that to prevent long lines and customer dissatisfac-
tion, turnaround time for any transaction must be less than 15 seconds, and no
overbooking will be permitted. At any time, several travel agents may try to
access the reservations database and perhaps book the same flight simultane-
ously. Here, effective record-locking and secure communications mechanisms
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are needed to protect against the alteration of the database containing the
reservation information by more than one clerk at a time.

Now, consider a real-time system that controls all phases of the bottling of
jars of pasta sauce as they travel along a conveyor belt. The empty jars are
first microwaved to disinfect them. A mechanism fills each jar with a precise
serving of specific sauce as it passes beneath. Another station caps the filled
bottles. In addition, there is an operator’s display that provides an animated
rendering of the production line activities. There are numerous events trig-
gered by exceptional conditions, such as the conveyor belt jamming and a
bottle overflowing or breaking. If the conveyor belt travels too fast, the bottle
will move past its designated station prematurely. Therefore, there is a wide
range of events, both synchronous and asynchronous, to be dealt with.

As a final example, consider a system used to control a set of traffic lights
at a four-way traffic intersection (north-, south-, east-, and west-bound traffic).
This system controls the lights for vehicle and pedestrian traffic at a four-way
intersection in a busy city like Philadelphia. Input may be taken from cameras,
emergency-vehicle transponders, push buttons, sensors under the ground, and
so on. The traffic lights need to operate in a synchronized fashion, and yet
react to asynchronous events—such as a pedestrian pressing a button at a
crosswalk. Failure to operate in a proper fashion can result in automobile
accidents and even fatalities.

The challenge presented by each of these systems is to determine the appro-
priate design approach with respect to the multidisciplinary issues discussed
in Section 1.2.

1.3.2 Advancements behind Modern Real-Time Systems

Much of the theory of real-time systems is derived from the surrounding dis-
ciplines shown in Figure 1.5. In particular, certain aspects of operations
research (i.e.,scheduling), which emerged in the late 1940s, and queuing theory
in the early 1950s, have influenced most of the more theoretical results.

Martin published one of the first and certainly the most influential early
book on real-time systems (Martin, 1967). Martin’s book was soon followed
by several others (e.g., Stimler, 1969), and the influence of operations research
and queuing theory can be seen in these works. It is also educational to study
these texts in the context of the great limitations of the hardware of the time.

In 1973, Liu and Layland published their seminal work on rate-monotonic
theory (Liu and Layland, 1973). Over the last nearly 40 years, significant refine-
ment of this theory has made it a practical theory for use in designing real-time
systems.

The 1980s and 1990s saw a proliferation of theoretical work on improving
predictability and reliability of real-time systems, and on solving problems
related to multitasking systems. Today, a rather small group of experts contin-
ues to study pure issues of scheduling and performance analysis, while a larger
group of generalist systems engineers tackles broader issues relating to the
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implementation of practical systems. An important paper by Stankovic et al.
(Stankovic et al., 1995) described some of the difficulties in conducting research
on real-time systems—even with significant restriction of the system, most
problems relating to scheduling are too difficult to solve by analytic
techniques.

Instead of any single “groundbreaking” technology, the new millennium
saw a number of important advancements in hardware, viable open-source
software for real-time systems, powerful commercial design and implementa-
tion tools, and expanded programming language support. These advancements
have in some ways simplified the construction and analysis of real-time systems
but on the other hand introduced new problems because of the complexities
of systems interactions and the masking of many of the underlying subtleties
of time constraints.

The origin of the term real-time computing is unclear. It was probably first
used either with project Whirlwind, a flight simulator developed by IBM for
the U.S. Navy in 1947, or with SAGE, the Semiautomatic Ground Environment
air defense system developed for the U.S. Air Force in the late 1950s. Both of
these projects qualify as real-time systems even by today’s definitions. In addi-
tion to its real-time contributions, the Whirlwind project included the first use
of ferrite core memory (“fast”) and a form of high-level language compiler
that predated Fortran.

Other early real-time systems were used for airline reservations, such as
SABRE (developed for American Airlines in 1959), as well as for process
control, but the advent of the national space program provided even greater
opportunities for the development of more advanced real-time systems for
spacecraft control and telemetry. It was not until the 1960s that rapid develop-
ment of such systems took place, and then only as significant nonmilitary
interest in real-time systems become coupled with the availability of equip-
ment adapted to real-time processing.

Low-performance processors and particularly slow and small memories
handicapped many of the earliest systems. In the early 1950s, the asynchronous
interrupt was introduced and later incorporated as a standard feature in the
Univac Scientific 1103A. The middle 1950s saw a distinct increase in the speed
and complexity of large-scale computers designed for scientific computation,
without an increase in physical size. These developments made it possible to
apply real-time computation in the field of control systems. Such hardware
improvements were particularly noticeable in IBM’s development of SAGE.

In the 1960s and 1970s, advances in integration levels and processing speeds
enhanced the spectrum of real-time problems that could be solved. In 1965
alone, it was estimated that more than 350 real-time process control systems
existed (Martin, 1967).

The 1980s and 1990s have seen, for instance, distributed systems and non-
von Neumann architectures utilized in real-time applications.

Finally, the late 1990s and early 2000s have set new trends in real-time
embedded systems in consumer products and Web-enabled devices. The avail-
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ability of compact processors with limited memory and functionality has reju-
venated some of the challenges faced by early real-time systems designers.
Fortunately, around 60 years of experience is now available to draw upon.

Early real-time systems were written directly in microcode or assembly
language, and later in higher-level languages. As previously noted, Whirlwind
used an early form of high-level language called an algebraic compiler to
simplify coding. Later systems employed Fortran, CMS-2, and JOVIAL, the
preferred languages in the U.S. Army, Navy, and Air Force, respectively.

In the 1970s, the Department of Defense (DoD) mandated the develop-
ment of a single language that all military services could use, and that provided
high-level language constructs for real-time programming. After a careful
selection and refinement process, the Ada language appeared as a standard in
1983. Shortfalls in the language were identified, and a new, improved version
of the language, Ada 95, appeared in 1995.

Today, however, only a small number of systems are developed in Ada. Most
embedded systems are written in C or C++. In the last 10 years, there has been
a remarkable increase in the use of object-oriented methodologies, and lan-
guages like C++ and Java in embedded real-time systems. The real-time aspects
of programming languages are discussed later in Chapter 4.

The first commercial operating systems were designed for the early main-
frame computers. IBM developed the first real-time executive, the Basic
Executive, in 1962, which provided diverse real-time scheduling. By 1963, the
Basic Executive II had disk-resident system and user programs.

By the mid-1970s, more affordable minicomputer systems could be found
in many engineering environments. In response, a number of important real-
time operating systems were developed by the minicomputer manufacturers.
Notable among these were the Digital Equipment Corporation (DEC) family
of real-time multitasking executives (RSX) for the PDP-11, and Hewlett-
Packard’s Real-Time Executive (RTE) series of operating systems for its HP
2000 product line.

By the late 1970s and early 1980s, the first real-time operating systems
for microprocessor-based applications appeared. These included RMX-
80, MROS 68K, VRTX, and several others. Over the past 30 years, many
commercial real-time operating systems have appeared, and many have
disappeared.

A selective summary of landmark events in the field of real-time systems
in the United States is given in Table 1.5.

1.4 SUMMARY

The deep-going roots of real-time systems were formed during the historical
years of computers and computing—before the microprocessor era. However,
the first “boom” of real-time systems took place around the beginning of 1980s,
when appropriate microprocessors and real-time operating systems became
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TABLE 1.5. Landmarks in Real-Time Systems History in the United States

Year Landmark Developer Development Innovations
1947 Whirlwind IBM Flight simulator Ferrite core
memory
(“fast”),
high-level
language
1957 SAGE IBM Air defense Designed for
real-time
1958 Scientific Univac General purpose Asynchronous
1103A interrupt
1959 SABRE IBM Airline reservation  “Hub-go-ahead”
policy
1962 Basic IBM General purpose Diverse real-time
Executive scheduling
1963 Basic IBM General purpose Disk-resident
Executive 11 system/user
programs
1970s RSX, RTE DEC, HP Real-time Hosted by
operating minicomputers
systems
1973 Rate- Liu and Fundamental Upper bound on
monotonic Layland theory utilization for
system schedulable
systems
1970s RMX-80, Various Real-time Hosted by
and MROS 68K, operating Mmicroprocessors
1980s VRTX, etc. systems
1983 Ada 83 U.S. DoD Programming For mission-
language critical
embedded
systems
1995 Ada 95 Community  Programming Improved version
language of Ada 83
2000s - - Various advances A continuously

in hardware,
open-source, and
commercial
system software
and tools

growing range
of innovative
applications
that can be
“real-time”

available (to be used in embedded systems) for an enormous number of elec-
trical, systems, as well as mechanical and aerospace engineers. These practicing
engineers did not have much software or even computer education, and, thus,
the initial learning path was laborious in most fields of industry. In those early
times, the majority of real-time operating systems and communications proto-
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cols were proprietary designs—applications people were developing
both system and application software themselves. But the situation started
to improve with the introduction of more effective high-level language
compilers, software debugging tools, communications standards, and, gradu-
ally, also methodologies and associated tools for professional software
engineering.

What is left from those pioneering years approximately 30 years ago? Well,
the foundation of real-time systems is still remarkably the same. The core
issues, such as the different degrees of real-time and deterministic require-
ments, as well as real-time punctuality, are continuing to set major design
challenges. Besides, the basic techniques of multitasking and scheduling, and
the accompanying inter-task communication and synchronization mechanisms,
are used even in modern real-time applications. Hence, real-time systems
knowledge has a long lifetime. Nonetheless, much fruitful development is
taking place in real-time systems engineering worldwide: new specification and
design methods are introduced; innovative processor and system architectures
become available and practical; flexible and low-cost wireless networks gain
popularity; and numerous novel applications appear continuously, for example,
in the field of ubiquitous computing.

We can fairly conclude that real-time systems engineering is a sound and
timely topic for junior-senior level, graduate, and continuing education; and it
offers growing employment potential in various industries. In the coming
chapters, we will cover a broad range of vital themes for practicing engineers
(see Fig. 1.7). While the emphasis is on software issues, the fundamentals of
real-time hardware are carefully outlined as well. Our aim is to provide a
comprehensive text to be used also in industrial settings for new real-time
system designers, who need to get “up to speed” quickly. That aim is high-
lighted in this fourth edition of Real-Time Systems Design and Analysis, with
the descriptive subtitle Tools for the Practitioner.

2. Hardware for 3. Real-Time 4. Programming 5. Requirements
Real-Time Systems| | Operating Systems Languages for Engineering
Real-Time Systems Methodologies

1. Fundamentals of Real-Time Systems

Real-Time Systems > + Design and Analysis
6. Software Design 7. Performance 8. Additional 9. Future Visions
Approaches Analysis Techniques| | Considerations for on Real-Time
the Practitioner Systems

Figure 1.7. Composition of this unique text from nine complementary chapters.
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1.5 EXERCISES

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

Consider a payroll processing system for an elevator company. Describe
three different scenarios in which the system can be justified as hard,
firm, or soft real-time.

Discuss whether the following are hard, firm, or soft real-time systems:

(a) The Library of Congress print-manuscript database system.

(b) A police database that provides information on stolen automobiles.
(¢) An automatic teller machine in a shopping mall.

(d) A coin-operated video game in some amusement park.

(e) A university grade-processing system.

(f) A computer-controlled routing switch used at a telephone company
branch exchange.

Consider a real-time weapons control system aboard a fighter aircraft.
Discuss which of the following events would be considered synchronous
and which would be considered asynchronous to the real-time comput-
ing system.

(a) A 5-ms, externally generated clock interrupt.

(b) An illegal-instruction-code (trap) interrupt.

(¢) A built-in-test memory failure.

(d) A discrete signal generated by the pilot pushing a button to fire a
missile.

(e) A discrete signal indicating “low on fuel.”

Describe a system that is completely nonreal-time, that is, there are no
bounds whatsoever for any response time. Do such systems exist in
reality?

For the following systems concepts, fill in the cells of Table 1.2 with
descriptors for possible events. Estimate event periods for the periodic
events.

(a) Elevator group dispatcher: this subsystem makes optimal hall-call
allocation for a bank of high-speed elevators that service a 40-story
building in a lively city like Louisville.

(b) Automotive control: this on-board crash avoidance system uses data
from a variety of sensors and makes decisions and affects behavior
to avoid collision, or protect the occupants in the event of an immi-
nent collision. The system might need to take control of the auto-
mobile from the driver temporarily.

For the real-time systems in Exercise 1.2, what are reasonable response
times for all those events?
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1.7. For the example systems introduced (inertial measurement, nuclear-
power-plant monitoring, airline reservation, pasta bottling, and traffic-
light control) enumerate some possible events and note whether they
are periodic, aperiodic, or sporadic. Discuss reasonable response times
for the events.

1.8. In the response-time example of Section 1.1, the time from observing a
passenger between the closing door blades and starting to reopen the
elevator door varies between 305 and 515 ms. How could you further
justify if these particular times are appropriate for this situation?

1.9. A control system is measuring its feedback quantity at the rate of 100 ps.
Based on the measurement, a control command is computed by a heu-
ristic algorithm that uses complex decision making. The new command
becomes available 27-54 us (rather evenly distributed) after each sam-
pling moment. This considerable jitter introduces harmful distortion to
the controller output. How could you avoid (reduce) such a jitter? What
(if any) are the drawbacks of your solution?

1.10. Reconsider the CPU utilization factor example of Section 1.1. How short
could the execution period of Task 1, e;, be made to maintain the CPU
utilization zone no worse than “questionable” (Table 1.3)?
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