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INTRODUCTION OF PROBABILITY
CONCEPTS IN PHYSICS—THE PATH
TO STATISTICAL MECHANICS

N. Sukumar

It was an Italian gambler who gave us the first scientific study of probability
theory. But Girolamo Cardano, also known as Hieronymus Cardanus or Jerome
Cardan (1501–1576), was no ordinary gambler. He was also an accomplished
mathematician, a reputed physician, and author. Born in Pavia, Italy, Cardan was
the illegitimate son of Fazio Cardano, a Milan lawyer and mathematician, and
Chiara Micheria. In addition to his law practice, Fazio lectured on geometry at
the University of Pavia and at the Piatti Foundation and was consulted by the
likes of Leonardo da Vinci on matters of geometry. Fazio taught his son math-
ematics and Girolamo started out as his father’s legal assistant, but then went
on to study medicine at Pavia University, earning his doctorate in medicine in
1525. But on account of his confrontational personality, he had a difficult time
finding work after completing his studies. In 1525, he applied to the College
of Physicians in Milan, but was not admitted owing to his illegitimate birth.
Upon his father’s death, Cardan squandered his bequest and turned to gambling,
using his understanding of probability to make a living off card games, dice, and
chess. Cardan’s book on games of chance, Liber de ludo aleae (On Casting the
Die, written in the 1560s, but not published until 1663), contains the first ever
exploration of the laws of probability, as well as a section on effective cheat-
ing methods! In this book, he considered the fundamental scientific principles
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2 INTRODUCTION OF PROBABILITY CONCEPTS IN PHYSICS

governing the likelihood of achieving double sixes in the rolling of dice and how
to divide the stakes if a game of dice is incomplete.

First of all, note that each die has six faces, each of which is equally likely
(assuming that the dice are unloaded). As the six different outcomes of a single
die toss are mutually exclusive (only one face can be up at any time), their
probabilities have to add up to 1 (a certainty). In other words, the probabilities of
mutually exclusive events are additive. Thus, P (A = 6) = 1/6 is the probability
of die A coming up a six; likewise P (B = 6) = 1/6 is the probability of die B
coming up a six. Then, according to Cardan, the probability of achieving double
sixes is the simple product:

P(A = 6; B = 6) = P(A = 6) × P(B = 6) = 1/36.

The fundamental assumption here is that the act of rolling (or not rolling) die
A does not affect the outcome of the roll of die B. In other words, the two dice
are independent of each other, and their probabilities are found to compound in a
multiplicative manner. Of course, the same conclusion holds for the probability
of two fives or two ones or indeed that of die A coming up a one and die B
coming up a five. So we can generalize this law to read

P(A; B) = P(A) × P(B), (1.1)

provided A and B are independent events. Notice, however, that the probability
of obtaining a five and a one when rolling two dice is 1/18, since there are two
equally likely ways of achieving this result: A = 1; B = 5 and A = 5; B = 1.
Thus

P(A = 1; B = 5) + P(A = 5; B = 1) = 1

6
× 1

6
+ 1

6
× 1

6
= 1

18
.

Likewise, the probability of obtaining a head and a tail in a two-coin toss is
1/2 × 1/2 + 1/2 × 1/2 = 1/2, while that of two heads is 1/2 × 1/2 (and the same
for two tails) because the two-coin tosses, whether performed simultaneously or
sequentially, are independent of each other.

Eventually, Cardan developed a great reputation as a physician, successfully
treating popes and archbishops, and was highly sought after by many wealthy
patients. He was appointed Professor of Medicine at Pavia University, and was
the first to provide a (clinical) description of typhus fever and (what we now
know as) imaginary numbers. Cardan’s book Arts Magna (The Great Art or The
Rules of Algebra) is one of the classics in algebra. Cardan did, however, pass
on his gambling addiction to his younger son Aldo; he was also unlucky in his
eldest son Giambatista. Giambatista poisoned his wife, whom he suspected of
infidelity, and was then executed in 1560. Publishing the horoscope of Jesus
and writing a book in praise of Nero (tormentor of Christian martyrs) earned
Girolamo Cardan a conviction for heresy in 1570 and a jail term. Forced to give
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up his professorship, he lived the remainder of his days in Rome off a pension
from the Pope.

The foundations of probability theory were thereafter further developed
by Blaise Pascal (1623–1662) in correspondence with Pierre de Fermat
(1601–1665). Following Cardan, they studied the dice problem and solved the
problem of points, considered by Cardan and others, for a two player game,
as also the “gambler’s ruin”: the problem of finding the probability that when
two men are gambling together, one will ruin the other. Blaise Pascal was the
third child and only son of Étienne Pascal, a French lawyer, judge, and amateur
mathematician. Blaise’s mother died when he was three years old. Étienne had
unorthodox educational views and decided to homeschool his son, directing that
his education should be confined at first to the study of languages, and should
not include any mathematics. This aroused the boy’s curiosity and, at the age of
12, Blaise started to work on geometry on his own, giving up his playtime to
this new study. He soon discovered for himself many properties of figures, and,
in particular, the proposition that the sum of the angles of a triangle is equal to
two right angles. When Étienne realized his son’s dedication to mathematics, he
relented and gave him a copy of Euclid’s elements.

In 1639, Étienne was appointed tax collector for Upper Normandy and the
family went to live in Rouen. To help his father with his work collecting taxes,
Blaise invented a mechanical calculating machine, the Pascaline, which could
do the work of six accountants, but the Pascaline never became a commercial
success. Blaise Pascal also repeated Torricelli’s experiments on atmospheric pres-
sure (New Experiments Concerning Vacuums , October 1647), and showed that a
vacuum could and did exist above the mercury in a barometer, contradicting Aris-
totle’s and Descartes’ contentions that nature abhors vacuum. In August 1648, he
observed that the pressure of the atmosphere decreases with height, confirming
his theory of the cause of barometric variations by obtaining simultaneous read-
ings at different altitudes on a nearby hill, and thereby deduced the existence of a
vacuum above the atmosphere. Pascal also worked on conic sections and derived
important theorems in projective geometry. These studies culminated in his Trea-
tise on the Equilibrium of Liquids (1653) and The Generation of Conic Sections
(1654 and reworked on 1653–1658). Following his father’s death in 1651 and
a road accident in 1654 where he himself had a narrow escape, Blaise turned
increasingly to religion and mysticism. Pascal’s philosophical treatise Pensées
contains his statistical cost-benefit argument (known as Pascal’s wager) for the
rationality of belief in God:

If God does not exist, one will lose nothing by believing in him, while if he does
exist, one will lose everything by not believing.

In his later years, he completely renounced his interest in science and math-
ematics, devoting the rest of his life to God and charitable acts. Pascal died of
a brain hemorrhage at the age of 39, after a malignant growth in his stomach
spread to the brain.
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In the following century, several physicists and mathematicians drew upon
the ideas of Pascal and Fermat, in advancing the science of probability and
statistics. Christiaan Huygens (1629–1694), mathematician and physicist, wrote
a book on probability, Van Rekeningh in Spelen van Geluck (The Value of all
Chances in Games of Fortune), outlining the calculation of the expectation in
a game of chance. Jakob Bernoulli (1654–1705), professor of mathematics at
the University of Basel, originated the term permutation and introduced the
terms a priori and a posteriori to distinguish two ways of deriving probabil-
ities. Daniel Bernoulli (1700–1782), mathematician, physicist, and a nephew of
Jakob Bernoulli, working in St. Petersburg and at the University of Basel, wrote
nine papers on probability, statistics, and demography, but is best remembered
for his Exposition of a New Theory on the Measurement of Risk (1737). Thomas
Bayes (1702–1761), clergyman and mathematician, wrote only one paper on
probability, but one of great significance: An Essay towards Solving a Problem
in the Doctrine of Chances published posthumously in 1763. Bayes’ theorem is
a simple mathematical formula for calculating conditional probabilities. In its
simplest form, Bayes’ theorem relates the conditional probability (also called the
likelihood ) of event A given B to its converse, the conditional probability of B
given A:

P(A|B) = P(B|A)P (A)

P (B)
, (1.2)

where P (A) and P (B) are the prior or marginal probabilities of A (“prior” in
the sense that it does not take into account any information about B) and B,
respectively; P (A|B) is the conditional probability of A, given B (also called
the posterior probability because it is derived from or depends on the specified
value of B); and P (B|A) is the conditional probability of B given A. To derive
the theorem, we note that from the product rule, we have

P(A|B) P (B) = P(A; B) = P(B|A) P (A). (1.3)

Dividing by P (B), we obtain Bayes’ theorem (Eq. 1.2), provided that neither
P (B) nor P (A) is zero.

To see the wide-ranging applications of this theorem, let us consider a couple
of examples (given by David Dufty). If a patient exhibits fever and chills, a doctor
might suspect tuberculosis, but would like to know the conditional probability
P (TB|fever & chills) that the patient has tuberculosis given the present symptoms.
Some half of all TB sufferers exhibit these symptoms at any point in time. Thus,
P (fever & chills|TB) = 0.5. While tuberculosis is now rare in the United States
and affects some 0.01% of the population, P (TB) = 0.0001; fever is a common
symptom, generated by hundreds of diseases, and affecting 3% of Americans
every year, and hence P (fever & chills) = 0.03. Thus the conditional probability
of TB given the symptoms of fever and chills is

P(TB|fever & chills) = 0.5 × 0.0001/0.03 = 0.001667
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or about 1.6 in a thousand. Another common situation is when a patient has a
blood test done for lupus. If the test result is positive, it can be a concern, but the
test is known to give a false positive result in 2% of cases: P (test⊕|no lupus) =
0.02. In patients with lupus, 99% of the time the test result is positive, that is,
P (test⊕|lupus) = 0.99. A doctor would like to know the conditional probability
P (lupus|test⊕) that the patient has lupus, given the positive test result. Lupus
occurs in 0.5% of the US population, so that P (lupus) = 0.005. The probability
of a positive result in general is

P(test⊕) = P(test⊕; lupus) + P(test⊕; no lupus)

= P(test⊕; lupus) × P(lupus) + P(test⊕; no lupus) × P(no lupus)

= 0.99 × 0.005 + 0.02 × 0.995

= 0.02485,

where we have used the sum rule for mutually exclusive events in the first step,
and Equation 1.3 in the next step. The probability of lupus, given the positive
test result, is then P (lupus|test⊕) = 0.99 × 0.005/0.02485 = 0.199. So, in spite
of the 99% accuracy of the test, there is only a 20% chance that a patient testing
positive actually has lupus. This seemingly nonintuitive result is due to the fact
that lupus is a very rare disease, while the test gives a large number of false
positives, so that there are more false positives in any random population than
actual cases of the disease.

The next actor in our story is Pierre-Simon de Laplace (1749–1827), a math-
ematician and a physicist, who worked on probability and calculus over a period
of more than 50 years. His father, Pierre Laplace, was in the cider trade and
expected his son to make a career in the church. However, at Caen University,
Pierre-Simon discovered his love and talent for mathematics and, at the age of
19, went to Paris without taking his degree, but with a letter of introduction to
d’Alembert, from his teacher at Caen. With d’Alembert’s help, Pierre-Simon was
appointed professor of mathematics at École Militaire, from where he started pro-
ducing a series of papers on differential equations and integral calculus, the first
of which was read to the Académie des Sciences in Paris in 1770. His first paper
to appear in print was on integral calculus in Nova Acta Eruditorum , Leipzig, in
1771. He also read papers on mathematical astronomy to the Académie, including
the work on the inclination of planetary orbits and a study of the perturbation of
planetary orbits by their moons. Within 3 years Pierre-Simon had read 13 papers
to the Académie, and, in 1773, he was elected as an adjoint in the Académie des
Sciences. His’ 1774 Mémoire sur la Probabilité des Causes par les Évènemens
gave a Bayesian analysis of errors of measurement. Laplace has many other
notable contributions to his credit, such as the central limit theorem, the prob-
ability generating function, and the characteristic function. He also applied his
probability theory to compare the mortality rates at several hospitals in France.

Working with the chemist Antoine Lavoisier in 1780, Laplace embarked on
a new field of study, applying quantitative methods to a comparison of living
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and inanimate systems. Using an ice calorimeter that they devised, Lavoisier and
Laplace showed respiration to be a form of combustion. In 1784, Laplace was
appointed examiner at the Royal Artillery Corps, where he examined and passed
the young Napoleon Bonaparte. As a member of a committee of the Académie des
Sciences to standardize weights and measures in 1790, he advocated a decimal
base, which led to the creation of the metric system. He married in May 1788; he
and his wife went on to have two children. While Pierre-Simon was not modest
about his abilities and achievements, he was at least cautious, perhaps even
politically opportunistic, but certainly a survivor. Thus, he managed to avoid the
fate of his colleague Lavoisier, who was guillotined during the French Revolution
in 1794. He was a founding member of the Bureau des Longitudes and went on
to lead the Bureau and the Paris Observatory. In this position, Laplace published
his Exposition du Systeme du Monde as a series of five books, the last of which
propounded his nebular hypothesis for the formation of the solar system in 1796,
according to which the solar system originated from the contraction and cooling
of a large, oblate, rotating cloud of gas.

During Napoleon’s reign, Laplace was a member, then chancellor of the
Senate, receiving the Legion of Honor in 1805 and becoming Count of the Empire
the following year. In Mécanique Céleste (4th edition, 1805), he propounded an
approach to physics that influenced thinking for generations, wherein he “sought
to establish that the phenomena of nature can be reduced in the last analysis to
actions at a distance between molecule and molecule, and that the considera-
tion of these actions must serve as the basis of the mathematical theory of these
phenomena .” Laplace’s Théorie Analytique des Probabilités (1812) is a classic
of probability and statistics, containing Laplace’s definition of probability; the
Bayes rule; methods for determining probabilities of compound events; a discus-
sion of the method of least squares; and applications of probability to mortality,
life expectancy, and legal affairs. Later editions contained supplements apply-
ing probability theory to measurement errors; to the determination of the masses
of Jupiter, Saturn, and Uranus; and to problems in surveying and geodesy. On
restoration of the Bourbon monarchy, which he supported by casting his vote
against Napoleon, Pierre-Simon became Marquis de Laplace in 1817. He died
on March 5, 1827.

Another important figure in probability theory was Carl Friedrich Gauss
(1777–1855). Starting elementary school at the age of seven, he amazed his
teachers by summing the integers from 1 to 100 instantly (the sum equals
5050, being the sum of 50 pairs of numbers, each pair summing to 101).
At the Brunswick Collegium Carolinum, Gauss independently discovered the
binomial theorem, as well as the law of quadratic reciprocity and the prime
number theorem. Gauss’ first book Disquisitiones Arithmeticae published in
1801 was devoted to algebra and number theory. His second book, Theoria
Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium (1809),
was a two-volume treatise on the motion of celestial bodies. Gauss also used
the method of least squares approximation (published in Theoria Combinationis
Observationum Erroribus Minimis Obnoxiae, 1823, supplement 1828) to
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successfully predict the orbit of Ceres in 1801. In 1807, he was appointed
director of the Göttingen observatory. As the story goes, Gauss’ assistants were
unable to exactly reproduce the results of their astronomical measurements.
Gauss got angry and stormed into the lab, claiming he would show them
how to do the measurements properly. But, Gauss was not able to repeat
his measurements exactly either! On plotting a histogram of the results of a
particular measurement, Gauss discovered the famous bell-shaped curve that
now bears his name, the Gaussian function:

G(x) = A e−x2/2σ 2
, (1.4)

where σ is the spread, standard deviation, or variance and A is a normalization
constant. A = (2π)−1/2/σ if the function is normalized such that

∫ ∞
−∞ G(x) = 1.

The error function of x is twice the integral of a normalized Gaussian function
between 0 and x :

erf(x) = 2√
π

x∫
0

e−t2
dt . (1.5)

It is of a sigmoid shape and has wide applications in probability and statistics.
In the field of statistics, Gauss is best known for his theory of errors, but this
represents only one of Gauss’ many remarkable contributions to science. He pub-
lished over 70 papers between 1820 and 1830 and in 1822, won the Copenhagen
University Prize for Theoria Attractioniscorporum Sphaeroidicorum Elliptico-
rum Momogeneorum Methodus Nova Tractata , dealing with geodesic problems
and potential theory. In Allgemeine Theorie des Erdmagnetismus (1839), Gauss
showed that there can only be two poles in the globe and went on to specify
a location for the magnetic South pole, establish a worldwide net of magnetic
observation points, and publish a geomagnetic atlas. In electromagnetic theory,
Gauss discovered the relationship between the charge density and the electric
field. In the absence of time-dependent magnetic fields, Gauss’s law relates the
divergence of the electric field E to the charge density ρ(r):

∇ · E = ρ(r), (1.6)

which now forms one of Maxwell’s equations.
The stage is now set for the formal entry of probability concepts into physics,

and the credit for this goes to the Scottish physicist James Clerk Maxwell and the
Austrian physicist Ludwig Boltzmann. James Clerk Maxwell (1831–1879) was
born in Edinburgh on June 13, 1831, to John Clerk Maxwell, an advocate, and
his wife Frances. Maxwell’s father, a man of comfortable means, had been born
John Clerk, and added the surname Maxwell to his own after he inherited a coun-
try estate in Middlebie, Kirkcudbrightshire, from the Maxwell family. The family
moved when James was young to “Glenlair,” a house his parents had built on the
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1500-acre Middlebie estate. Growing up in the Scottish countryside in Glenlair,
James displayed an unquenchable curiosity from an early age. By the age of
three, everything that moved, shone, or made a noise drew the question: “what’s
the go o’ that?” He was fascinated by geometry at an early age, rediscovering
the regular polyhedron before any formal instruction. However, his talent went
largely unnoticed until he won the school’s mathematical medal at the age of
13, and first prizes for English and poetry. He then attended Edinburgh Academy
and, at the age of 14, wrote a paper On the Description of Oval Curves, and Those
Having a Plurality of Foci describing the mechanical means of drawing mathe-
matical curves with a piece of twine and generalizing the definition of an ellipse,
which was read to the Royal Society of Edinburgh on April 6, 1846. Thereafter,
in 1850, James went to Cambridge, where (according to Peter Guthrie Tait) he
displayed a wealth of knowledge, but in a state of disorganization unsuited to
mastering the cramming methods required to succeed in the Tripos. Nevertheless,
he obtained the position of Second Wrangler, graduating with a degree in math-
ematics from Trinity College in 1854, and was awarded a fellowship by Trinity
to continue his work. It was during this time that he extended Michael Faraday’s
theories of electricity and magnetism. His paper On Faraday’s Lines of Force,
read to the Cambridge Philosophical Society in 1855 and 1856, reformulated the
behavior of and relation between electric and magnetic fields as a set of four
partial differential equations (now known as Maxwell’s equations , published in
a fully developed form in Maxwell’s Electricity and Magnetism 1873).

In 1856, Maxwell was appointed professor of natural philosophy at Marischal
College in Aberdeen, Scotland, where he became engaged to Katherine Mary
Dewar. They were married in 1859. At 25, Maxwell was a decade and a half
younger than any other professors at Marischal, and lectured 15 hours a week,
including a weekly pro bono lecture to the local working men’s college. During
this time, he worked on the perception of color and on the kinetic theory of gases.
In 1860, Maxwell was appointed to the chair of natural philosophy at King’s
College in London. This was probably the most productive time of his career.
He was awarded the Royal Society’s Rumford Medal in 1860 for his work on
color, and elected to the Society in 1861. Maxwell is credited with the discovery
that color photographs could be formed using red, green, and blue filters. In
1861, he presented the world’s first color photograph during a lecture at the
Royal Institution. It was also here that he came into regular contact with Michael
Faraday, some 40 years his senior, whose theories of electricity and magnetism
would be refined and perfected by Maxwell. Around 1862, Maxwell calculated
that the speed of propagation of an electromagnetic field is approximately the
speed of light and concluded, “We can scarcely avoid the conclusion that light
consists in the transverse undulations of the same medium which is the cause
of electric and magnetic phenomena .” Maxwell then showed that the equations
predict the existence of waves of oscillating electric and magnetic fields that
travel through an empty space at a speed of 310,740,000 m/s. In his 1864 paper A
Dynamical Theory of the Electromagnetic Field , Maxwell wrote, “The agreement
of the results seems to show that light and magnetism are affections of the same
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substance, and that light is an electromagnetic disturbance propagated through
the field according to electromagnetic laws .”

In 1865, Maxwell left London and returned to his Scottish estate in Glen-
lair. There he continued his work on the kinetic theory of gases and, using a
statistical treatment, showed in 1866 that temperature and heat involved only
molecular movement. Maxwell’s statistical picture explained heat transport in
terms of molecules at higher temperature having a high probability of moving
toward those at lower temperature. In his 1867 paper, he also derived (indepen-
dently of Boltzmann) what is known today as the Maxwell–Boltzmann velocity
distribution:

fv

(
vx, vy, vz

) =
( m

2kT

)3/2
exp

[
−m

(
vx

2 + vy
2 + vz

2
)

2kT

]
, (1.7)

where fv(vx, vy, vz) dvx dvy dvz is the probability of finding a particle with veloc-
ity in the infinitesimal element [dvx , dvy , dvz] about velocity v = [vx, vy, vz],
k is a constant now known as the Boltzmann constant (1.38062 × 10−23 J/K),
and T is the temperature. This distribution is the product of three independent
Gaussian distributions of the variables vx, vy , and vz, with variance kT /m .

Maxwell’s work on thermodynamics also led him to devise the Gedanken-
experiment (thought experiment) that came to be known as Maxwell’s demon .
In 1871, Maxwell accepted an offer from Cambridge to be the first Cavendish
Professor of Physics. He designed the Cavendish Laboratory, which was for-
mally opened on June 16, 1874. His four famous equations of electrodynamics
first appeared in their modern form of partial differential equations in his 1873
textbook A Treatise on Electricity and Magnetism:

∇ · E = ρ(r) Gauss’s law, (1.8)

∇ · B = 0 Gauss’s law for magnetism, (1.9)

∇ × E = −∂B/∂t Faraday’s law of induction, (1.10)

∇ × B = J + ∂E/∂t Ampère’s law with Maxwell’s correction, (1.11)

where E is the electric field, B the magnetic field, J the current density, and
we have suppressed the universal constants, the permittivity, and permeability
of free space. Maxwell delivered his last lecture at Cambridge in May 1879 and
passed away on November 5, 1879, in Glenlair.

The story goes that Einstein was once asked whom he would most like to meet
if he could go back in time and meet any physicist of the past. Without hesitation,
Einstein gave the name of Newton and then Boltzmann. Ludwig Eduard Boltz-
mann was born on February 20, 1844, in Vienna, the son of a tax official. Ludwig
attended high school in Linz and subsequently studied physics at the University
of Vienna, receiving his doctorate in 1866 for a thesis on the kinetic theory of
gases, under the supervision of Josef Stefan. Boltzmann’s greatest contribution to
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science is, of course, the invention of statistical mechanics, relating the behavior
and motions of atoms and molecules with the mechanical and thermodynamic
properties of bulk matter. We owe to the American physicist Josiah Willard Gibbs
the first use of the term statistical mechanics . In his 1866 paper, entitled Über die
Mechanische Bedeutung des Zweiten Hauptsatzes der Warmetheorie, Boltzmann
set out to seek a mechanical analog of the second law of thermodynamics, noting
that while the first law of thermodynamics corresponded exactly with the prin-
ciple of conservation of energy, no such correspondence existed for the second
law. Already in this 1866 paper, Boltzmann used a ρ log ρ formula, interpreting
ρ as density in phase space. To obtain a mechanical formulation of the second
law, he started out by providing a mechanical interpretation of temperature by
means of the concept of thermal equilibrium, showing that at equilibrium both
temperature and the average kinetic energy exchanged are zero.

To establish this result, Boltzmann considered a subsystem consisting of two
molecules and studied their behavior assuming that they are in equilibrium with
the rest of the gas. The condition of equilibrium requires that this subsystem
and the rest of the molecules exchange kinetic energy and change their state in
such a way that the average value of the kinetic energy exchanged in a finite
time interval is zero, so that the time average of the kinetic energy is stable.
However, one cannot apply the laws of elastic collision to this subsystem, as it
is in equilibrium with, and exchanging energy and momentum with, the rest of
the gas. To overcome this obstacle, Boltzmann proposed a remarkable argument:
he argued that, at equilibrium, the evolution of the two-particle subsystem is
such that, sooner or later, it would pass through two states having the same total
energy and momentum. But, this is just the same outcome as if these states had
resulted from an elastic collision. Herein, we can find the germ of the ergodic
hypothesis. Boltzmann regarded the irregularity of the system evolution as a sort
of spreading out or diffusion of the system trajectory among the possible states
and thus reasoned that if such states are able to occur, they will occur. It is only
the existence of such states that is of importance and no assumption was made
regarding the time interval required for the system to return to a state with the
same energy and momentum. In particular, Boltzmann made no assumption of
periodicity for the trajectory. Only the fact of closure of the trajectory matters to
the argument, not when such closure occurs.

Next, Boltzmann derived the kinetic energy exchanged by the two molecules
in passing from one state to the other, and then generalized the results to other
states, assuming the equiprobability of the direction of motion (again based on
the irregularity and complexity of molecular motion) and averaging the results
for the elastic collision over all collision angles. He thus obtained a condition for
the average kinetic energy to reach equilibrium, which was analogous to that for
thermal equilibrium. Concluding from this that temperature is a function of the
average kinetic energy, Boltzmann then proceeded to derive a mechanical analog
of the second law of thermodynamics in the form of a least action principle.
He showed that, if a mechanical system obeys the principle of least action, the
kinetic energy (in analogy to heat dQ) supplied to a periodic system is given by
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2d(τE)/τ , where E = (1/τ)
∫ τ

0 E dt is the average kinetic energy. Hence, if no
energy is supplied (corresponding to the adiabatic condition dQ = 0), the ratio
E/v is an invariant. The concept of probability enters into this formulation in
a most fundamental way. We can distinguish at least two interpretations of the
concept of probability in Boltzmann’s writings. He used the term probability in
the sense of relative frequency or sojourn time of a trajectory in order to interpret
thermodynamic parameters as average mechanical quantities. Elsewhere, he had
defined probability of a trajectory with certain constraints as the ratio between
the number of trajectories satisfying those constraints and the number of all
possible trajectories. The equivalence between these two probability measures
leads directly to ergodic hypothesis.

On completing his Privatdozenten (lectureship) in 1867, Boltzmann was
appointed professor of mathematical physics at the University of Graz. The next
year he set out to create a general theory of the equilibrium state. Boltzmann
argued on probabilistic grounds that the average energy of motion of a molecule
in an ideal gas is the same in each direction (an assumption also made by
Maxwell) and thus derived the Maxwell–Boltzmann velocity distribution
(Eq. 1.7). Since for an ideal gas, all energy is in the form of kinetic energy,
E = 1

2mv2, the Boltzmann distribution for the fractional number of molecules
Ni/N occupying a set of states i and possessing energy Ei is thus proportional
to the probability density function (Eq. 1.7):

Ni

N
= gi exp(−Ei/kBT )∑

j gj exp(−Ej/kBT )
, (1.12)

where gi is the degeneracy (the number of states having energy Ei), Ni the
number of molecules at equilibrium temperature T in a state i with energy Ei and
degeneracy gi , and N = ∑

i Ni the total number of molecules. The denominator
in Equation 1.12 is the canonical partition function:

Z(T ) =
∑

i

gi e−Ei/kBT . (1.13)

He applied the distribution to increasingly complex cases, treating external
forces, potential energy, and motion in three dimensions. In his 1868 paper, he
elaborated on his concept of diffuse motion of the trajectory among possible
states, generalizing his earlier results to the whole available phase space
consistent with the conservation of total energy. In 1879, Maxwell pointed out
that this generalization rested on the assumption that the system, if left to itself,
will sooner or later pass through every phase consistent with the conservation
of energy—namely, the ergodic hypothesis. In his 1868 paper, Boltzmann also
pioneered the use of combinatorial arguments, showed the invariance of the
phase volume during the motion, and interpreted the phase space density as
the probability attributed to a region traversed by a trajectory. Here, we see the
precursor to Max Born’s statistical interpretation of the quantum wave function.
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Boltzmann was also the first one to recognize the importance of Maxwell’s
electromagnetic theory. He spent several months in Heidelberg with Robert Bun-
sen and Leo Konigsberg in 1869 and then in Berlin with Gustav Kirchoff and
Herman von Helmholtz in 1871, working on problems of electrodynamics. During
this time, he continued developing and refining his ideas on statistical mechanics.
Boltzmann’s nonequilibrium theory was first presented in 1872 and used many
ideas from his equilibrium theory of 1866–1871. His famous 95-page article,
Weitere Studien über das Wärmegleichgewicht unter Gasmolecülen (Further Stud-
ies on the Thermal Equilibrium of Gas Molecules), published in October 1872,
contains what he called his minimum theorem , now known as the H-theorem ,
the first explicit probabilistic expression for the entropy of an ideal gas. Boltz-
mann’s probability equation relates the entropy S of an ideal gas to the number
of ways W (Wahrscheinlichkeit) in which the constituent atoms or molecules
can be arranged, that is, the number of microstates corresponding to a given
macrostate:

S = k log W. (1.14)

Here, log refers to natural logarithms. The H-theorem is an equation based on
Newtonian mechanics that quantifies the heat content of an ideal gas by a numer-
ical quantity H (short for heat). Defined in terms of the velocity distributions
of the atoms and molecules of the gas, H assumes its minimum value when the
velocities of the particle are distributed according to the Maxwell–Boltzmann (or
Gaussian) distribution. Any gas system not at its minimal value of H will tend
toward the minimum value through molecular collisions that move the system
toward the Maxwell–Boltzmann distribution of velocities.

After a stint as professor of mathematics at the University of Vienna from 1873
to 1876, Boltzmann returned to Graz to take the chair of experimental physics. In
1884, Boltzmann initiated a theoretical study of radiation in a cavity (black body
radiation) and used the principles of thermodynamics to derive Stefan’s law:

E ∝ T 4, (1.15)

according to which the total energy density E radiated by a black body is pro-
portional to the fourth power of its temperature T . Study of this radiation led
Wilhelm Wien and Max Planck to their famous scaling law, whereby the energy
density in the cavity is given by ν times a function of ν/T , ν being the fre-
quency of radiation and T the temperature of the cavity. Planck’s main interest
in these studies was the question of the origin of irreversibility in thermodynam-
ics. Following Boltzmann’s procedure, he was able to show that, for radiation in
the cavity, the entropy S is a function of E /ν. Thus, for a reversible adiabatic
process (dS = 0), E /ν is an invariant.

In 1890, Boltzmann was appointed to the chair of theoretical physics at the
University of Munich in Bavaria, Germany, and succeeded Stefan as professor
of theoretical physics in his native Vienna after the latter’s death in 1893. In
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1900, at the invitation of Wilhelm Ostwald, Boltzmann moved to the Univer-
sity of Leipzig. Although the two were on good personal terms, Ostwald was
one of Boltzmann’s foremost scientific critics and the latter struggled to gain
acceptance for his ideas among his peers. Ostwald argued, for instance, that the
actual irreversibility of natural phenomena proved the existence of processes that
cannot be described by mechanical equations. Unlike Boltzmann, most chemists
at that time did not ascribe a real existence to molecules as mechanical entities;
the molecular formula was treated as no more than a combinatorial formula. The
Vienna Circle was strongly influenced at that time by the positivist–empiricist
philosophy of the Austrian physicist and philosopher Ernst Mach (1838–1916),
who occupied the chair for the philosophy of the inductive sciences at the Uni-
versity of Vienna. As an experimental physicist, Mach also held that scientific
theories were only provisional and had no lasting place in physics. He advanced
the concept that all knowledge is derived from sensation; his philosophy was
thus characterized by an antimetaphysical attitude that recognized only sensa-
tions as real. According to this view, phenomena investigated by science can be
understood only in terms of experiences or the “sensations” experienced in the
observation of the phenomena; thus, no statement in science is admissible unless
it is empirically verifiable. This led him to reject concepts such as absolute time
and space as metaphysical. Mach’s views thus stood in stark opposition to the
atomism of Boltzmann. Mach’s reluctance to acknowledge the reality of atoms
and molecules as external, mind-independent objects was criticized by Boltzmann
and later by Planck as being incompatible with physics. Mach’s main contribu-
tion to physics involved his description and photographs of spark shock-waves
and ballistic shock-waves. He was the first to systematically study supersonic
motion, and describe how passing the sound barrier caused the compression of
air in front of bullets and shells; the speed of sound bears his name today. After
Mach’s retirement following a cardiac arrest, Boltzmann returned to his former
position as professor of theoretical physics in Vienna in 1902, where he remained
for the rest of his life.

On April 30, 1897, Joseph John Thomson announced the discovery of “the
carriers of negative electricity”—the electron—to the Royal Institution in Eng-
land. He was to be awarded the Nobel Prize in 1906 for his determination of its
charge to mass ratio. Meanwhile, in November 1900, Max Planck came to the
realization that the Wien law is not exact. In an attempt to define an entropy of
radiation conforming with Stefan’s empirical result (Eq. 15), Planck was led to
postulate the quantum of action:

E/ν = nh. (1.16)

This result was first publicly communicated to a small audience of the German
Physical Society on December 14, 1900. In his 1901 paper On the Law of Distri-
bution of Energy in the Normal Spectrum , Planck used Boltzmann’s H-function
to explain that the entropy S of a system is proportional to the logarithm of its
probability W , to within an arbitrary additive constant. He later called this the



14 INTRODUCTION OF PROBABILITY CONCEPTS IN PHYSICS

general definition of entropy . The great Boltzmann, however, took little notice
of these revolutionary developments in theoretical and experimental physics that
would soon confirm his theories. Growing increasingly isolated and despondent,
Boltzmann hanged himself on September 5, 1906, while on vacation in Duino,
near Trieste. On Boltzmann’s tombstone is inscribed his formula S = k log W .
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