
1

Simulations and the Monte
Carlo method

Introduction

In order to introduce the Monte Carlo method, let us consider a problem of
numerical integration. There exist several numerical methods for the approximate
computation of the integral ∫

[0,1]
f (x)dx,

based on formulae of the type
∑n

i=1 wif (xi), where the wi are positive numbers
whose sum equals 1 and the xi are points in the interval [0, 1]. For example, if
wi = 1/n, 1 ≤ i ≤ n, and xi = i/n, this is the trapezoid rule. But there exist other
approximations, such as Simpson’s rule and the Gaussian quadrature formula. A
Monte Carlo method is of the same type: we choose wi = 1/n, and we choose
the xi ‘at random’ (meaning here according to the uniform law on [0, 1], later
denoted by U(0, 1)). As we shall see below, the convergence is guaranteed by the
law of large numbers, and the rate of convergence, of order n−1/2, is given by the
central limit theorem. Clearly, that rate of convergence may seem rather slow, if we
compare it with the rate of other numerical integration methods in dimension 1. But
all these numerical methods collapse if we go to higher dimensions. Indeed, in all
these methods, the precision is a function of the distance between two contiguous
points of the discretization. But if we use n points for the discretization of [0, 1]d ,
the distance between two contiguous points is of order n−1/d , hence if we want a
precision of order 1/n with a ‘first-order’ method of approximation of an integral
over [0, 1]d , the number of points we need is of order nd . On the other hand, the
Monte Carlo method is essentially unaffected by the dimension.

Historically, the method goes back to Count Buffon who described in 1777 a
method for the approximate computation of π , based on the realization of repeated

Markov Processes and Applications: Algorithms, Networks, Genome and Finance E. Pardoux
 2008 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L

2 MONTE CARLO METHOD

experiments. But the true birth of the Monte Carlo method is linked to the appear-
ance of the first computers. The first papers describing methods of this type date
back from the late 1940s and early 1950s. These methods continue to grow more
and more popular. This is in large part due to the simplicity with which one can
program them, as well as the ability of today’s computers to perform a huge number
of random draws in a reasonable length of time.

1.1 Description of the method

If we wish to use a Monte Carlo method, we need first to write the quantity of
interest as the expectation of a random variable. This is often easy, as in the case
of the computation of an integral, but it might be much more involved, as when
we wish to solve a parabolic or elliptic partial differential equation (see Sections
7.9 and 9.3 below).

The next step is to compute a quantity of the form E(X), where X is a random
variable. In order do so, we need to be able to simulate mutually independent ran-
dom variables X1, . . . , Xn, all having the law of X. It then remains to approximate
E(X) by

E(X) ≈ 1

n
(X1 + . . . + Xn).

Let us describe one example of the application of the Monte Carlo method, to
the computation of an integral. We will explain in detail the two steps presented
above: how to write the integral as an expectation, and how to simulate the random
variables. Suppose that we wish to compute an integral of the form

I =
∫

[0,1]d
f (u1, . . . , ud)du1 . . . dud .

We set X = f (U1, . . . , Ud), where the Ui , i = 1, . . . , d, are independent and iden-
tically distributed (i.i.d.) random variables, each one having the law U(0, 1). We
have

E(X) = E (f (U1, . . . , Ud)) =
∫

[0,1]d
f (u1, . . . , ud)du1 . . . dud.

We have just completed the first step – our integral is written as an expectation.
For the simulation, suppose we can produce a sequence (Ui, i ≥ 1) of i.i.d.

random variables whose common law is U(0, 1). We define X1 = f (U1, . . . , Ud),
X2 = f (Ud+1, . . . , U2d), etc. Then the sequence (Xi, i ≥ 1) is an i.i.d. sequence
of random variables, all having the same law as X. We can now implement the
Monte Carlo method.

It is important to note the simplicity with which the corresponding program
can be written. Note also that no specific regularity of f is required. f need only
be integrable.

One often needs to compute a more general type of integral, namely

I =
∫

Rd

g(x)f (x)dx =
∫

Rd

g(x1, . . . , xd)f (x1, . . . , xd)dx1 . . . dxd,

MONTE CARLO METHOD 3

with f (x) non-negative and
∫

f (x)dx = 1. Then I equals E(g(X)) if X is an
R

d -valued random variable whose law is f (x)dx. The problem now is to simulate
random vectors having that probability law. Some answers, related to commonly
used probability laws, will be given in Section 1.3 below.

But let us first answer the two questions:

• When and why does this algorithm converge?

• Can we get a precise idea of the accuracy of this algorithm?

1.2 Convergence theorems

The answers to the two above questions are given by the two most fundamental
theorems in the calculus of probability, namely the law of large numbers, which
permits us to establish the convergence of the method, and the central limit theorem,
which gives a precise indication of its rate of convergence.

Theorem 2.1 Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables, all having
the law of X. If E(|X|) < +∞, then, for P almost all ω (this means that there exists
N ⊂ �, with P(N) = 0 and such that whenever ω /∈ N),

E(X) = lim
n→+∞

1

n
(X1 + . . . + Xn)(ω).

The evaluation of the method relies upon estimating the error

εn = E(X) − 1

n
(X1 + . . . + Xn).

The central limit theorem gives the asymptotic behaviour of the quantity εn, which
has a random nature. It says that the law of εn tends to look like a centred Gaussian
law.

Theorem 2.2 Let (Xn, n ≥ 1) be a sequence of i.i.d. random variables, all having
the law of X. Assume that E(X2) < +∞. Let σ 2 denote the variance of X:

σ 2 = E(X2) − E(X)2 = E
(
(X − E(X))2) .

Then √
n

σ
εn converges in law towards Z 	 N(0, 1).

In other words, for all a < b,

lim
n→+∞ P

(
σ√
n
a ≤ εn ≤ σ√

n
b

)
=

∫ b

a

e−x2/2 dx√
2π

.

In practice, if n is not too small (which will always be the case in the situation
of a Monte Carlo computation), the above probability can be replaced by its limit,
hence we may act as if εn were a centred Gaussian random variable with variance
σ 2/n.

4 MONTE CARLO METHOD

Remark 2.3 sfasfd1. This result is extremely powerful, since it gives us a rate of con-
vergence which can be easily estimated with the help of the simulations
which have already been realized. The fact that we have a reliable esti-
mate of the error, without any further computation, is a real strength of the
method.

2. However, the central limit theorem never provides a bound for the error,
since the support of a Gaussian random variable is R. One way to describe
the error in the Monte Carlo method is either by providing the standard
deviation of εn, which is equal to σ/

√
n, or else by providing a 95% confi-

dence interval for the result. This means that there is a 0.95 chance that the
quantity of interest is in the given interval (and hence there is a 0.05 chance
that it is outside that interval). Clearly 0.95 can be replaced buy any value
close to 1.

Note the important role played by the variance of X in the estimation of the
error. Since we can choose the law of X, with the restriction that E(X) be the
quantity which we are interested in, we may wish to replace X by another random
variable with the same expectation and a smaller variance. Such a procedure is
called a variance reduction method (see Section 1.4 below).

We should also note that the rate at which the error goes to 0 is not very
fast. However, there are several situations where this slowly converging method
is the only available one (e.g. integral or parabolic partial differential equations in
dimension higher than 4). It is also remarkable that the rate of convergence does
not depend upon the smoothness of the function f .

We will now describe the use of the central limit theorem for analysing the rate
of convergence of the Monte Carlo method, in two examples. This will allow us
to present a limitation of the use of the Monte Carlo method.

A good case Suppose we wish to compute p = P(Y ≤ λ), where Y is a random
variable with an arbitrary law. Define X = 1{Y≤λ}. Then E(X) = p, and σ 2 =
var(X) = p(1 − p). Consequently, after n independent draws X1, . . . , Xn of X,
we have

pn = X1 + . . . + Xn

n
≈ p + σ√

n
Z.

Since p(1 − p) ≤ 1/4, if we want the standard deviation σ/
√

n of the error to
be of the order of 0.01, we should choose n of the order of 2500. If we choose
n = 2500, the 0.95 confidence interval for p is then, according to the central limit
theorem, [pn − 1.96 × 0.01, pn + 1.96 × 0.01]. If the true unknown value p is of
the order of 0.50, this leads to an acceptable error.

However, if the true value of p is very small, the above value of n may be
insufficient, if we want the error to be smaller than the quantity to be estimated.
We need a number of simulations of the order of 1/p.

MONTE CARLO METHOD 5

A tough case Imagine that we wish to compute E (exp(βZ)), where Z is an
N(0, 1) random variable. Clearly

E = E
(
eβZ

) = eβ2/2.

If we apply a Monte Carlo method to this case, we let X = eβZ . The variance of
X is σ 2 = e2β2 − eβ2

. After n simulations X1, . . . , Xn according to the law of X,
we have

En = X1 + . . . + Xn

n
≈ E + σ√

n
Z.

The standard deviation of the relative error is

σ

E
√

n
=

√
eβ2 − 1

n
.

If we want that quantity to be smaller than a given ε > 0, then we should choose
n ≈ ε−2(eβ2 − 1). If ε = 1 and β = 5, this means n = 7 × 1010, which is far too
high. After 105 simulations, the 0.95 confidence interval might be [−467 647, 2 176
181], which is a disaster. The only positive point is that we are aware of the fact that
our estimate is terrible, at least if we have a good estimate of the variance of the Xn.

This example shows a practical limitation of the Monte Carlo method, when
we use random variables with large variances. This leads us to formulate the fol-
lowing rule: in any Monte Carlo computation, one must exploit the simulations, in
order to estimate the variance of the random variable whose expectation we wish
to compute.

Note that reducing the variance of the random variable to be simulated is often
a crucial step in making a Monte Carlo computation efficient. We shall discuss this
issue in Section 1.4.

1.3 Simulation of random variables
Simulation of U(0, 1) Any programming language today possesses a pseudo-
random number generator. Such a program produces as output a perfectly determin-
istic (and also periodic) sequence, but whose statistical properties resemble those of
a sequence of independent realizations of the law U(0, 1). The problem of inventing
a good ‘random number generator’ is to create a recurrence formula which, in a rea-
sonable time, produces a sequence of numbers which looks as much as possible like
a sequence of realizations of independent U(0, 1) random variables, with a period
which should be as large as possible. The study of those generators is part of the
theory of dynamical systems. Most classical algorithms generating pseudo-random
numbers are presented in [23] and [32], among others. More recently, Matsumoto
and Nishimura [26] proposed a generator with period 219 937 − 1!

6 MONTE CARLO METHOD

Note that all random number generators try in fact to deliver draws from a
uniform law on {1/M, 2/M, . . . , (M − 1)/M, 1}, with M very, very large.

It remains to simulate laws other than the uniform law.

Simulation of a Bernoulli random variable Let 0 < p < 1. If U is a U(0, 1)

random variable, X = 1{U≤p} is a Bernoulli random variable with parameter p.

Simulation of a binomial random variable If U1, . . . , Un are independent
U(0, 1) random variables, then

X = 1{U1≤p} + . . . + 1{Un≤p}
is a B(n, p) random variable (binomial with parameters n and p).

Simulation of a geometric random variable X = inf{k ≥ 1; Uk ≤ p} is a geo-
metric random variable with parameter p. A more efficient simulation procedure,
based on the next lemma, is proposed in Exercise 5.1.

Inversion of the distribution function Recall the following classical result:

Lemma 3.1 Let X be a random variable, and F its distribution function (i.e.
F(x) = P(X ≤ x)). Define, for 0 ≤ t ≤ 1,

F−1(t) = inf{x; F(x) > t}.
Then if U has the law U[0, 1], F−1(U) has the same law as X.

Proof This is immediate:

P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x).

Indeed, {t; F−1(t) ≤ x} ⊂ {t; t ≤ F(x)}, and the difference between those two
sets is at most a one point set.

�

This method can be used whenever we have an explicit expression for the
inverse of F . This is particularly the case for the exponential probability law.

Simulation of an exponential random variable Recall that a random variable
X has the exponential law with parameter λ whenever, for all t ∈ R+,

P(X > t) = exp(−λt).

Hence, if F is the distribution function of X, F(t) = 1 − e−λt , and

F−1(x) = − log(1 − x)

λ
.

If U 	 U[0, 1], the same is true with 1 − U , and

− log U

λ
	 E(λ).

MONTE CARLO METHOD 7

Simulation of Gaussian random variables (Box–Müller algorithm) A classical
method for the simulation of Gaussian random variables is based on the remark
that, if U and V are two independent U(0, 1) random variables,√

−2 log(U) cos(2πV) and
√

−2 log(U) sin(2πV)

are independent N(0, 1) random variables. One can check this result as follows. If
X and Y are independent N(0, 1) random variables, f : R

2 → R+,

Ef (X, Y) = 1

2π

∫
R

∫
R

exp

(
−x2 + y2

2

)
f (x, y)dxdy

= 1

2π

∫ 2π

0

∫ ∞

0
r exp

(
− r2

2

)
f (r cos θ, r sin θ)drdθ

=
∫ 1

0

∫ 1

0
f

(√
−2 log u cos(2πv),

√
−2 log u sin(2πv)

)
dudv

= Ef
(√

−2 log U cos(2πV),
√

−2 log U sin(2πV)
)

.

For the simulation of a Gaussian random variable with mean µ and variance
σ 2, it suffices to define X = µ + σY , where Y 	 N(0, 1).

Simulation of a Poisson random variable A Poisson random variable with
parameter λ is an N-valued random variable such that

P(X = n) = e−λ λn

n!
, for n ≥ 0.

We shall see in Chapter 6 that whenever {Ti; i ≥ 1} is a sequence of i.i.d. ran-
dom variables, all being exponential with parameter λ, then the law of Nt =∑

n≥1 n1{T1+...+Tn≤t<T1+...+Tn+1} is Poisson with parameter λt . Hence N 1 has the
law which we want to simulate. On the other hand, any exponential random vari-
able T i can be written in the form −log(U i)/λ, where the (U i)i≥1 are mutually
independent U(0, 1) random variables. Hence N 1 can be written

N1 =
∑
n≥1

n1{U1U2···Un+1<e−λ≤U1U2···Un}.

This gives an algorithm for the simulation of Poisson random variables.

The rejection method Suppose we wish to simulate a random variable with den-
sity f (e.g. with respect to Lebesgue measure on R

d), and suppose that there is an
easily simulable density g, such that, for all x ∈ R

d ,

f (x) ≤ k g(x), g(x) > 0 ⇔ f (x) > 0,

where k is a real constant. Define

α(x) = f (x)

k g(x)

on the set {g(x) > 0}.

8 MONTE CARLO METHOD

Proposition 3.2 Let (Xn, Un)n≥1 be a sequence of independent random vectors
where, for each n ≥ 1, Xn and Un are independent, Xn has the density g and Un 	
U(0, 1). Let N = inf{k ≥ 1; Uk ≤ α(Xk)} and X = XN . The random variable X

has the density f .

Remark 3.3 sfasfd1. The probability of acceptance at the first step is

p1 = P(U1 ≤ α(X1))

=
∫

P(U1 ≤ α(x))PX1(dx)

=
∫

α(x)g(x)dx

= 1

k
,

since U1 and X1 are independent.

If we wish to reduce the number of rejections while simulating X, we need
to maximize the acceptance probability p1, hence to minimize k. Given that
f and g are probability densities and that f ≤ kg, necessarily k ≥ 1. Note
that the number of rejections is limited if f (x)/kg(x) is close to 1, that is,
if the function g is similar to f .

2. The above algorithm is still valid if X has a density f with respect to an
arbitrary positive measure µ, which is bounded from above by kg, where g

is the density with respect to µ of an easily simulable random variable Y .
In other words,

P(X ∈ A) =
∫

A

f (x)µ(dx) ≤
∫

A

kg(x)µ(dx) = kP(Y ∈ A).

If the law of X is supported by a discrete set E, we can choose for µ the
counting measure of the points of E. The rejection method can be used for
laws on a discrete set. In this case, f (x) = P(X = x).

Proof of Proposition 3.2 Note that the inequality Uk ≤ α(Xk) will be satisfied
after a finite number of steps. Indeed,

P(∀k ≥ 1, X �= Xk) = lim
n→∞ P(∩k≤n{X �= Xk})

= lim
n→∞ P(∩k≤n{Uk > α(Xk)})

= lim
n→∞ P(U1 > α(X1))

n

= lim
n→∞(1 − p1)

n = 0,

MONTE CARLO METHOD 9

since the random variables (Xk, Uk) are i.i.d. Consequently,

P[X ∈ A] =
∑
n≥1

P[N = n, X ∈ A]

=
∑
n≥1

P[∩k≤n−1{Uk > α(Xk)} ∩ {Un ≤ α(Xn)} ∩ {Xn ∈ A}]

=
∑
n≥1

(1 − p1)
n−1

P[{U1 ≤ α(X1)} ∩ {X1 ∈ A}]

= 1

p1
P[{U1 ≤ α(X1)} ∩ {X1 ∈ A}]

= P[X1 ∈ A|U1 ≤ α(X1)].

The law of X is then the law of X1, conditioned upon the acceptation set
{U1 ≤ α(X1)}. From the independence of X1 and U1,

P[X ∈ A] = 1

p1

∫
A

P(U1 ≤ α(x))PX1(dx)

= k

∫
A

α(x)g(x)dx

=
∫

A

f (x)dx.

�

For the simulation of other laws, or other simulation methods of the above
laws, one can consult, among others, [7], [8], [13] and [35].

1.4 Variance reduction techniques

We have seen that the rate of convergence of the Monte Carlo method is of order
σ/

√
n. Clearly, the convergence is accelerated if the variance is reduced. We now

present several variance reduction methods.

Importance sampling Suppose that we try to compute E(g(X)), where the law
of X is f (x)dx (on R, for the sake of argument). We have

E(g(X)) =
∫

R

g(x)f (x)dx.

But if f̃ is the density of a probability such that f̃ > 0, then one can rewrite
E(g(X)) as

E(g(X)) =
∫

R

g(x)f (x)

f̃ (x)
f̃ (x)dx.

10 MONTE CARLO METHOD

This means that E(g(X)) = E
(
g(Y)f (Y)/f̃ (Y)

)
, where Y has the law f̃ (x)dx.

Hence, there is another method for computing E(g(X)), using n simulations
Y1, . . . , Yn of Y , and approximating E(g(X)) by

1

n

(
g(Y1)f (Y1)

f̃ (Y1)
+ . . . + g(Yn)f (Yn)

f̃ (Yn)

)
.

If we let Z = g(Y)f (Y)/f̃ (Y), then this alternative method improves the conver-
gence provided var(Z) < var(g(X)). It is easy to compute the variance of Z:

var(Z) = E(Z2) − E(Z)2 =
∫

R

g2(x)f 2(x)

f̃ (x)
dx − E(g(X))2.

If g(x) ≥ 0, it is easy to see that choosing f̃ (x) = g(x)f (x)/Eg(X) makes
var(Z) = 0. Of course, this relies on the fact that we can compute E(g(X)) exactly.

This justifies the following heuristic: choose f̃ (x) as close as possible to
|g(x)f (x)|, then normalize (divide by

∫
f̃ (x)dx) so as to obtain a density of an eas-

ily simulable probability law. Of course, these constraints are largely contradictory.
Let us give one simple example. Suppose that we seek to compute∫ 1

0
cos (πx/2) dx.

Let us replace the function cos by a polynomial of degree 2. Since the integrand
is even and equals 0 at x = 1 and 1 at x = 0, it is natural to choose f̃ (x) of the
form λ(1 − x2). If we normalize, we get f̃ (x) = 3(1 − x2)/2. If we compute the
variances, we can verify that the method has reduced the variance by a factor of 100.

Control variate This method involves writing E(f (X)) in the form

E(f (X)) = E(f (X) − h(X)) + E(h(X)),

where E(h(X)) can be explicitly computed, and var(f (X) − h(X)) is significantly
smaller than var(f (X)). We then use a Monte Carlo method for the computation
of E(f (X) − h(X)) and a direct computation for E(h(X)).

Let us start with a simple example. Suppose we wish to compute
∫ 1

0 exdx.
Since near x = 0, ex ≈ 1 + x, we can write∫ 1

0
exdx =

∫ 1

0
(ex − 1 − x)dx + 3

2
.

It is easy to see that the variance is significantly reduced.
In applications to finance (see Chapter 9), one needs to evaluate quantities of

the type

C = E

((
eσZ − K

)
+
)

, (1.1)

MONTE CARLO METHOD 11

where Z is standard normal random variable and x+ = max(0, x). Such a quantity
is the price of a call option. Of course, in this precise case, there is an explicit
formula for the above quantity, namely the celebrated Black–Scholes formula,

E

((
eσZ − K

)
+
)

= eσ 2/2F

(
σ − log(K)

σ

)
− KF

(
− log(K)

σ

)
, (1.2)

where

F(x) = 1√
2π

∫ x

−∞
e−u2/2du.

However there are variants of this problem which can be solved only by the
Monte Carlo method (see Chapter 9). Suppose that we wish to compute the
above quantity by the Monte Carlo method, that is, we approximate that quantity
by

C 	 n−1
[(

eσZ1 − K
)
+ + . . . + (

eσZn − K
)
+
]
.

Suppose now that we wish to evaluate the price of a put option,

P = E

((
K − eσZ

)
+
)

, (1.3)

hence
P 	 n−1

[(
K − eσZ1

)
+ + . . . + (

K − eσZn
)
+
]
.

At least whenever K2 << exp(σ 2/2),

var
[(

K − eσZ
)
+
]

< var
[(

eσZ − K
)
+
]
.

The put–call parity relationship (which follows from C and P , and the relation
x = x+ − x−) says that

C − P = e−σ 2/2 − K,

hence we should instead compute P by a Monte Carlo procedure, and use the
put–call parity relationship in order to get C, rather than computing C directly by
Monte Carlo (see Exercise 5.9 below).

Antithetic variables Suppose we wish to compute

I =
∫ 1

0
f (x)dx.

Since x → 1 − x leaves the measure dx invariant on [0, 1],

I = 1

2

∫ 1

0
(f (x) + f (1 − x))dx.

12 MONTE CARLO METHOD

We can then compute I as follows. We simulate n i.i.d. U(0, 1) random variables
U1, . . . , Un, and we approximate I by

I2n = 1

n

(
1

2
(f (U1) + f (1 − U1)) + . . . + 1

2
(f (Un) + f (1 − Un))

)

= 1

2n
(f (U1) + f (1 − U1) + . . . + f (Un) + f (1 − Un)) .

If we compare this method with a direct Monte Carlo method after n simula-
tions, we note that the approximation is improved provided

Ef (U)f (1 − U) < Ef 2(U),

which holds true provided the random variables f (U) and f (1 − U) are linearly
independent.

The method can be generalized to higher dimensions, and to other transforma-
tions which leave the law of the random variable to be simulated invariant.

For example, if we try to compute the price of a put option (1.3), we can use the
fact that the law of Z is identical to that of −Z and reduce the variance by a factor of
at least 2. Indeed, if f (x) = [K − eσx]+, σ > 0, f is monotone decreasing, hence

var

(
f (Z) + f (−Z)

2

)
= 1

2
var(f (Z)) + 1

2
cov(f (Z), f (−Z))

≤ 1

2
var(f (Z)),

since

cov(f (Z), f (−Z)) ≤ E ([f (Z) − f (0)][f (−Z) − f (0)])

≤ 0.

Stratification method This method is well known in the context of survey sample
design. Suppose we seek to compute

I = E(g(X)) =
∫

g(x)f (x)dx,

where X has the law f (x)dx. We start by decomposing I into

I =
m∑

i=1

Ii =
m∑

i=1

E(1{X∈Di}g(X)),

where Di is a partition of the integration set. We then use ni simulations for
the computation of Ii . Define σ 2

i = var(1{X∈Di }g(X)). Then the variance of the
approximation is

m∑
i=1

σ 2
i

ni

.

MONTE CARLO METHOD 13

If we minimize this quantity with the constraint that
∑m

i=1 ni = n is fixed, we get

ni = nσi/
∑m

i=1 σi . The minimum equals n−1
(∑m

i=1 σi

)2
. We can show that it is

smaller that the variance obtained with n simulations of a standard Monte Carlo
procedure. Of course, one can rarely compute the σi , which limits the use of this
technique (but we can estimates the σi via a Monte Carlo procedure!). To learn
more about this procedure, see [10].

Mean value Suppose we wish to compute

E(g(X, Y)) =
∫

g(x, y)f (x, y)dxdy,

where f (x, y)dxdy is the law of the pair (X, Y).
If we let

h(x) = 1

m(x)

∫
g(x, y)f (x, y)dy,

with m(x) = ∫
f (x, y)dy, it is easy to check that

E(g(X, Y)) = E(h(X)).

Indeed, the law of X is m(x)dx, hence

E(h(X)) =
∫

m(x)h(x)dx =
∫

dx

∫
g(x, y)f (x, y)dy = E(g(X, Y)).

On the other hand, interpreting h(X) as a conditional expectation, we can show that

var(h(X)) ≤ var(g(X, Y)).

Consequently, if we can compute the function h explicitly, it is preferable to use
a Monte Carlo procedure for h(X).

Remark 4.1 We wrote in the introduction to this chapter that the Monte Carlo
method is particularly well suited to the computation of multiple integrals. We shall
see a typical example of such a situation, for a mathematical finance problem, in
Exercise 7.5. of Chapter 9.

1.5 Exercises

Exercise 5.1 Let X be a geometric random variable with parameter p, that is,
P (X = k) = p (1 − p)k−1 , k ≥ 1.

1. Describe a method for simulating X based on a sequence of Bernoulli trials.

2. Give another method for simulating this law based on the formula
P(X > k) = (1 − p)k , k ≥ 0, and compare the two methods.

14 MONTE CARLO METHOD

Exercise 5.2 sfasfd1. Describe a standard method for simulating the Gaussian
N(0, 1) law.

2. Propose a rejection algorithm for the simulation of a Gaussian random vari-
able, based upon the simulation of doubly exponential random variables with
density (λ/2) exp (−λ|x|).

3. Let X and Y be two independent random variables, both exponential with
parameter 1.

(a) Give the conditional law of X, given that {Y > (1 − X)2/2}.
(b) Let Z be a random variable having the above conditional law, and S an

independent random variable taking the values ±1 with probability 1/2.
Give the law of SZ.

(c) Deduce another method for simulating the Gaussian N(0, 1) law.

Exercise 5.3 A process {X(t); t ≥ 0} with continuous trajectories is said to be a
Brownian motion if it possesses the two following properties:

(i) For any n ≥ 1, 0 = t0 < t1 < t2 < . . . < tn, the random variables X(tk) −
X(tk−1)(1 ≤ k ≤ n) are mutually independent (we say that X(t) has indepen-
dent increments).

(ii) X(0) = 0 and the law of X(t + h) − X(t) is the Gaussian law N(0, h), for
all t ≥ 0, h > 0.

1. Propose a method for simulating {X(kh); k ≥ 1}, for a given h > 0.

2. Give the conditional law of X(t), given that X(t − a) = x and X(t + a) =
y. Deduce a method for simulating {X(kh/2); k ≥ 1} which avoids the need
to redo the simulations of part 1.

Exercise 5.4 Let (X1, X2) be a Gaussian random vector, with correlation coeffi-
cient ρ and such that, for i = 1, 2, the random variable Xi has the law N(µi, σ 2

i).

1. Show that if (Y1, Y2) is a pair of N(0, 1) independent random variables, then
the pair Z1 = µ1 + σ1Y1, Z2 = µ2 + σ2(ρY1 +

√
1 − ρ2Y2) has the same

law as (X1, X2). Deduce a method for simulating this random vector.

2. Generalize to the case of an arbitrary dimension.

Exercise 5.5 Let X denote a random variable with the distribution function F .
Assume that F is one-to-one, and denote its inverse by F−1.

1. Give a method for simulating X conditionally upon X > m, based on a
rejection method. Discuss the efficiency of the method. What happens when
m is large?

MONTE CARLO METHOD 15

2. For a U(0, 1) random variable U , define

Z = F−1 (F (m) + (1 − F(m))U) .

Compute the distribution function of Z and deduce a method of simulating
X, conditionally upon X > m. Compare with the above rejection method.

3. Generalize the previous method to the case where one seeks to simulate X

conditionally upon a < X < b.

4. Suppose we now try to simulate a Gaussian N(µ, σ 2) random variable X,
conditionally upon X > m. Show that we can restrict ourselves to the case
of a standard normal random variable, provided we modify the value of m.

5. Propose, for the problem of part 4, a rejection method based upon a trans-
lated exponential law with the density θe−θ(x−m)1{x > m}. How should one
choose the parameter θ?

Exercise 5.6 (Importance sampling) Suppose we wish to compute by a Monte
Carlo method the quantity

p� = P(X ∈ [�, � + 1]),

where X is an exponential random variable with parameter 1.

1. Give the standard estimator of p� and compute its variance.

2. Propose an importance sampling method, such that the new simulations all
belong to the interval [�, � + 1]. Compute the variance of this new estimator
and discuss the case of large values of �.

Exercise 5.7 (Variance reduction)

1. Propose an importance sampling method for the computation of

I = E
(
1{X > 0} exp βX

)
,

where X is a Gaussian N(0, 1) random variable and β = 5.

2. Propose a control variate method for the same computation.

3. Improve the method with the help of an antithetic variable method.

Exercise 5.8 The aim of this exercise is to prove that the method of antithetic vari-
ables reduces the variance whenever we have a function which is monotone in each
of its variables.

16 MONTE CARLO METHOD

1. Suppose that f and g are both bounded and increasing from R into R. Show
that for any real-valued random variables X and Y ,

E (f (X)g(X)) + E (f (Y)g(Y)) ≥ E (f (X)g(Y)) + E (f (Y)g(X)) .

Deduce that for any real random variable X,

E (f (X)g(X)) ≥ E (f (X)) E (g(X)) ⇔ cov(f (X), g(X)) ≥ 0.

2. Show that if X1, . . . , Xn are mutually independent real random variables,

E (f (X1, . . . , Xn)g(X1, . . . , Xn)|Xn) = �(Xn),

where � is a function to be expressed as an expectation. Deduce that when-
ever f and g are increasing in each of their arguments,

E (f (X1, . . . , Xn)g(X1, . . . , Xn)) ≥ E (f (X1, . . . , Xn)) E (g(X1, . . . , Xn)) .

3. Let h be a mapping from [0, 1]n into R, which is monotone in each of its
arguments, and let U1, . . . , Un be independent U(0, 1) random variables.
Show that

cov (h(U1, . . . , Un), h(1 − U1, . . . , 1 − Un)) ≤ 0,

and show that the method of antithetic random variables reduces the vari-
ance in this case.

Exercise 5.9 (Programming) Recall the formula (1.1) for the price of a call
option, and (1.3) for the price of a put option. Deduce from the identity x = x+ −
(−x)+ the put–call parity relationship

C − P = EeσZ − K,

where the expectation EeσZ can be computed explicitly and equals exp(σ 2/2).
Deduce from this identity a control variate method, and show that it reduces the
variance.

Since Z and −Z have the same law, one can apply a method of antithetic random
variables to the two Monte Carlo computations of the call and of the put.

Choose for the simulation σ = 1.5 and K = 1. Do the Monte Carlo computa-
tions with sample sizes N = 1000, 10 000 and 100 000. For each computation, give
the estimate deduced from the Monte Carlo simulations, and a 95 % confidence
interval, based on the central limit theorem and an estimate of the variance.

1. Compute the value deduced from the Black–Scholes formula (1.2).

2. Compute C by a Monte Carlo procedure, using first the formula (1.1), and
then the put–call parity relationship and (1.3) for the computation of P by
a Monte Carlo procedure.

3. Repeat the same two computations, using an antithetic variable method.

