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1.1 General Code Types

The most important coding schemes that can be decoded using an iterative (turbo)

algorithm can be classified as parallel concatenated codes, serial concatenated codes

and low-density parity check (LDPC) codes as indicated in Figure 1.1.

In parallel concatenated codes, the data sequence is encoded by the first

constituent encoder. The second constituent encoder encodes an interleaved

version of the data sequence. The data bits are sent only once as systematic bits

of the concatenated code, whereas only the parity bits of the constituent encoders

are transmitted. Usually, recursive systematic convolutional codes are used as

constituent codes. However, other code types, for example block codes, can be used

and more than two constituent codes can be concatenated with different inter-

leavers. Parallel concatenated convolutional codes (PCCC) are usually referred to

as “turbo codes.”

In serial concatenated codes, the second (inner) constituent code encodes the

interleaved code bits of the first (outer) constituent code. Convolutional codes are
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themost common constituent codes for serial concatenated coding schemes. However,

this scheme can be generalized if we consider other components in the transmission

chain as an inner encoder, for example the mapper of a QAMmodulation scheme, the

ISI/MIMO channel, a rate-1 precoder and the like.

Low-density parity check codes are block codes, where the codeword is generated

by multiplying the data sequence d¼ [d1, d2, . . ., dN]
Twith a generator matrixG. The

code is defined by a sparse parity check matrix H, which satisfies HG¼ 0. These
LDPC codes are often represented by their Tanner graph as indicated on the right-hand

side of Figure 1.1. The nodes on the left-hand side are called variable nodes. Each of

them represents a code bit. The nodes on the right-hand side are called check nodes and

represent the parity check equations. A connection between variable node i and check

node j exists in the graph if the element hji in the parity checkmatrixH is 1. Themodulo

2 check sum of all variable nodes that are connected to the same check node is 0.

Low-density parity check codes were invented in 1962 [Gal62]. They have attracted

attention againmore recently in the context of iterative decoding because the so-called

message passing decoding algorithm can be viewed as iterative decoding between

check nodes and variable nodes as constituent decoders. One main reason why LDPC

codes have become so popular is that they allow parallel implementation to a great

extent. While the trellis decoder for a convolutional code needs a backward and

forward recursion through the trellis, all decoding operations in the variable nodes and

the check nodes, respectively, can in principle be done in parallel. This allows a

decoder implementation with high throughput as required in future wireless systems.

A disadvantage of LDPC codes is that, in general, the encoding complexity grows

quadratically with the block size while the encoding complexity of convolutional

codes grows only linearlywith the block size.However,with structuredLDPCcodes as

discussed in Section 1.3.2.3, the encoding complexity can be greatly reduced.

Many block codes can be regarded as special cases of LDPC codes.Wewill explain

repeat accumulate codes as one example later in this section. Further variants are

discussed in Section 1.3.2.3.

The three classes of coding schemes in Figure 1.1 have as a common feature the fact

that they can be decoded by an iterative (turbo) decoding scheme as indicated in

Figure 1.2.
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Figure 1.1 Coding schemes with iterative decoding
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The received data serve as input to the decoder of the first constituent code, which

produces soft a posteriori information – decisions plus reliability information. The

output of decoder 1 is used by the second constituent decoder as a priori information on

top of the received channel information. After both constituent codes have been

decoded once, the output of the second constituent decoder is fed back to decoder 1 and

used as additional a priori information in a further decoding step. Several decoding

iterations can be performed in thisway in order to lower the error rate. It is essential that

only extrinsic information of the other constituent decoder is used in order to avoid

multiple use of the same information.

Extrinsic information on a bit is the information which can be obtained from all the

other bits in the block based on the code constraints. It is the part of the a posteriori

information that is newly generated in the current decoding step. Using soft informa-

tion in the form of log-likelihood ratios

LðdÞ ¼ log
Pðd ¼ 0Þ
Pðd ¼ 1Þ ð1:1Þ

extrinsic information is obtained by bitwise subtraction of the input log-likelihood

ratios from the output log-likelihood ratio.Usually, LDPC codes require a significantly

larger number of iterations than PCCC or SCCC.

In the following we elaborate further on serial concatenated convolutional codes

(SCCC) and compare them to parallel concatenated convolutional codes (PCCC) in

terms of performance and complexity.

Simply put, the bit error rate (BER) performance of iterative decoders is character-

ized by three regions as indicated in Figure 1.3.

With a very low signal-to-noise ratio (SNR), iterative decoding cannot achieve a

reasonable error rate. At a SNR where iterative decoding starts to become effective,

the BER curve decreases with very steep slope. We call this area in the BER plot the

waterfall region. At higher SNR we observe an error floor, which is determined by

codewords with small Hamming distance. The error floor can be reduced by proper

interleaver design. Simply put, parallel concatenated convolutional codes tend to

converge at lower SNR – the waterfall region starts at lower SNR. On the other hand,

serial concatenated convolutional codes tend to show a lower error floor. Conse-

quently, serial concatenated coding schemes are more suited for applications which

require very low BER whereas parallel concatenated codes are more suitable for
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Figure 1.2 Iterative decoding

Coding 3



applications that can handle a certain error rate, for example by means of ARQ or

error concealment.

As an example for serial concatenated convolutional codes, we consider a proposal

for an ESA telemetry standard where very low error probability is required [Bþ 05].

The main reason why we are interested in this scheme is a comparison with parallel

concatenated convolutional codes and LDPC codes given in [Bþ 05]. Here, it is

claimed that the serial concatenated scheme shows competitive performance with

significantly lower complexity.

The encoder is depicted in Figure 1.4. A rate 1/2 convolutional codewith memory 2

is used for both inner and outer code. The outer code is punctured to rate 2/3 such that

the total code rate is R¼ 1/3. Other code rates for the concatenated scheme can be

obtained by puncturing at the output of the inner encoder. However, it turns out that the

puncturing pattern has to take the interleaver mapping into account for good perfor-

mance. The systematic bits of the inner encoder are identical to the codebits of the outer

encoder. Hence, we apply the puncturing pattern to the deinterleaved version of those

systematic bits of the inner encoder in order to avoid puncturing patterns that cause

poor performance of the outer code. In particular, no systematic bits of the outer code

should be punctured. Table 1.1 gives permeability rates for puncturing of systematic

and parity bits of the inner code, where rs is the fraction of systematic bits which is
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Figure 1.4 Serial concatenated convolutional code (SCCC)
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transmitted at the respective code rate, rp is the fraction of parity bits that are

transmitted.

Performance curves are depicted in Figures 1.5 and 1.6 for QPSKmodulation in an

AWGN channel. For the PCCC we use the UMTS turbo code, which has constituent

codes with memory 3. Hence, the decoding complexity per iteration is significantly

higher than for the considered SCCC.

In Figure 1.5, the required SNRper bit for a target block error rate (BLER) of 10�2 is

shown versus the number of iterations. It can be concluded that PCCC needs fewer

iterations in order to achieve the target BLER at a given SNR. For example, the BLER

of PCCC after four iterations is smaller than the BLER of SCCC after eight iterations.

Hence, we can reduce the complexity of PCCCby reducing the number of iterations by

half and still obtain better BLER than with SCCC.

Figure 1.6 compares the BLER performance of serial concatenated convolutional

codes with different memory for the constituent codes. It can be concluded that serial

concatenated codes should be run with relatively simple constituent codes. Increasing

Table 1.1 Permeability rates for SCCC

R Ro Ri rs rp

1/3 2/3 1/2 1 1

1/2 2/3 3/4 21/30 19/30

2/3 2/3 1 21/30 9/30

4/5 2/3 6/5 21/30 4/30
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R = 1/3

R = 3/4

PCCC

SCCC

0

1

2

3

4

5

6

100 101

R
eq

ui
re

d 
av

er
ag

e 
E

b/
N

0

fo
r 

av
er

ag
e 

P
E

R
 =

 1
0-2

 (d
B

)

Number of iterations

Figure 1.5 Block error rate (BLER) for PCCC and SCCC versus number of iterations
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the memory of the constituent codes does not improve the performance, or results in

worse performance.

Figure 1.7 gives a performance comparison between PCCC with constituent codes

of different memory and SCCCwith memory 2 constituent codes. It can be concluded

that PCCC outperforms SCCC by 0.3–0.6 dB at a BLER of 10�2.
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Figure 1.6 Block error rate (BLER) for SCCC with constituent codes with different memory

R = 1/3

R = 1/2

10-4

10-3

10-2

10-1

100

32.521.510.50

A
ve

ra
ge

 B
L

E
R

Average Eb/N0 (dB)

Memory 2 SCCC
Memory 2 PCCC
Memory 3 PCCC

Figure 1.7 Block error rate (BLER) of PCCC and SCCC

6 Error Control Coding for B3G/4G Wireless Systems



For codes with comparable complexity, in other words memory 2 constituent codes

in both PCCC and SCCC, PCCC shows a significantly higher error floor. In order to

lower this error floor, constituent codes with higher memory have to be used, for

example memory 3 as applied in the UMTS turbo code. SCCC with memory 2

constituent codes is about 49% less complex in terms of number of operations than

PCCC with memory 3 constituent codes.

1.2 Designing Codes Based on Graphs

Thedesignof codesbasedongraphs canbeunderstoodasamultivariablemulticonstraint

optimization problem. The constraints of this problem are the performance require-

ments, flexibility (block lengths, rates, and so forth) and encoding/decoding complexity.

The latter also includes the complexity of hardware realizations of the encoder and

decoder, aswell as latency issues. Figure 1.8 shows the constraints andvariables involved

in the design of codes defined on graphs. Some of the typical variables that can be

optimized to meet the specified constraints are represented as circles in Figure 1.8.

One of the first decisions that should be taken when designing codes defined on

graphs is whether the graphs should have a pseudorandom or an algebraic or a

combinatorial underlying structure. These different structures have their advantages

and downsides. For instance, pseudorandomstructures provide the code designerwith a
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lot of freedom. The codes originating from these structures can have practically any rate

and block length. However, these codes have proven to be difficult to implement

because of their complete lack of regularity. On the other hand, algebraic and

combinatorial designs, which we will call structured designs from now on, cannot

exist for all rates and block lengths. This happens because the algebraic or combinato-

rial designs are based on group and number theory and therefore they are inherently of a

quantized nature, mainly based on prime numbers. Another characteristic of structured

designs is that it is normally possible to obtain good codes for small to medium block

lengths. Otherwise, pseudorandom designs have better performance for long block

lengths. From an implementation point of view, structured designs have a lot of

advantages. For instance, the regular connections in their graphs facilitate tremendously

the hardware implementation of the decoders for these codes. The algebraic or

combinatorial structure can also be exploited to simplify the encoding algorithm.

The following sections give an overview of existing codes for both pseudorandom

and structured designs.

1.3 Pseudorandom Designs

The history of pseudorandom designs coincides with the history of codes on graphs.

Already in his seminal work [Gal63], which introduced the LDPC codes, Gallager

considered pseudorandom designs. Throughout the years other researchers have also

considered some important pseudorandom designs. This is mainly because such codes

are very flexible, as mentioned earlier; and also because they enable the use of some

powerful techniques to study their asymptotic behavior.

In this section, some of these designs will be discussed for turbo codes and LDPC

codes.

1.3.1 Pseudorandom Designs for Turbo Codes

Whenwemention the different designs of turbo codes,we are currently referring to their

interleavers. The performance of a turbo code depends on how effectively the data

sequences that produce low-weight codewords at the output of one encoder arematched

with permutations of the same data sequence that yield higher encoded weights at the

outputs of the others.Random interleavers do avery good job of combining lowweights

with high weights for the vast majority of possible information sequences. In this

section, the most widely known interleavers of this class will be presented.

1.3.1.1 S-Random Interleavers

S-random interleavers were introduced by Divsalar and Pollara in [DP95]. The design

of an S-random interleaver guarantees that, if two input bits to an interleaver P are

within distance S1, they cannot be mapped to positions less than S2 apart at the

8 Error Control Coding for B3G/4G Wireless Systems



interleaver output, and usually S1¼ S2¼ S is chosen. So, considering two indices i, j

such that

0 < i�jj < Sj ð1:2Þ

the design imposes that

PðiÞ�PðjÞj > S:j ð1:3Þ

Whendesigning these interleavers, it was observed that S <
ffiffiffiffiffiffiffiffiffi
N=2

p
usually produces

a solution in reasonable time, where N is the length of the interleaver to be designed.

Simulation results for the S-random interleavers and comparisons with other

interleavers are shown later in Figure 1.14.

1.3.1.2 Pseudorandom Designs for LDPC Codes

It is well known that the message passing algorithm used to decode LDPC codes

converges to the optimum a posteriori probability (APP) solution if the Tanner graph

representing the parity-check matrix of the code has a tree structure. In light of this,

Gallager, in his 1963 work, considered some pseudorandom designs that avoid short

cycle lengths. Appendix C of his thesis [Gal63] presents the algorithms for generation

of codes that avoid a certain minimum cycle length, called the girth of the graph.

In this section, we present the state-of-the-art in pseudorandom LDPC code

generation with large girths.

1.3.1.3 Progressive Edge-Growth Tanner Graphs

The main idea behind this generation method, which was presented in [HEA01], is to

establish progressively the edges or connections between variable and check nodes in

an edge-by-edgemanner so that the resulting graph shows the desired girth properties.

In summary, the progressive edge-growth (PEG) algorithmworks as follows. Given

the number of variable nodes n, the number of check nodes m, and the symbol–

node degree sequence of the graph [RSU01], an edge-selection procedure is started

such that the placement of a new edge on the graph has as small an impact on the girth

as possible. After a best-effort edge has been determined, the graph with this new edge

is updated and the procedure continues with the placement of a next edge. As we see,

the PEG algorithm is a general, non-algebraic method for constructing graphs with

large girths. Below, some necessary definitions and notations are shown, and based on

that a more precise description of this algorithm is presented.

Definitions and Notations

H is the code’s parity-checkmatrix with dimensionm� n, hi,j is the element in the i-th

row and j-th column of H.

Coding 9



ATanner graph is denoted as (V, E) with V being the set of nodes, i.e., V ¼ Vc [ Vv,

where V¼ {c0, c1, . . ., cm�1} is the set of check nodes and V¼ {v0, v1, . . ., vn�1} is the

set of variable nodes. E is the set of edges such that E¼V�V with edge (ci, vj)2
Eðci; viÞ 2 E if hi,j 6¼ 0.

ATanner graph is called (dv, dc)-regular if every variable node participates indv check

nodes and every check node involves dc symbol nodes; otherwise it is called irregular.

The sequence of variable nodes degrees is denoted byDv ¼ fdv0 ; dv1 ; � � �; dvn�1
g, in

which dvj is the degree of variable node vj. On the other hand, the sequence of parity-

check nodes degrees is given by Dc ¼ fdc0 ; dc1 ; � � �; dcm�1
g, where dci is the degree of

check node ci.

The set of edges E can be partitioned in terms of Vv as E ¼ Ev0 [ Ev1 [ � � � [ Evn�1
,

with Evj containing all edges incident on variable node vj.

The k-th edge incident on variable node vj is denoted by Ek
vj
.

For a given variable node vj, we define its neighbor within depth l, Nl
vj
, as the set

consisting of all check nodes reached by a tree spreading from variable node vj
within depth l, as shown in Figure 1.9. Its complementary set, �N

l
vj
, is defined as

Nl
vj
[ �N

l
vj
¼ Vs.

Depth 0

Depth 1

Depth l

vj

Figure 1.9 Neighbor Nl
vj
within depth l of variable node vj
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A description of the PEG algorithm can be found in Figure 1.10. It is worth

mentioning at this point that it is possible to obtain codes with linear time encoding

complexity using this algorithm. In this case, the edges associated with them variable

nodes of the codeword should be placed to form a so-called zigzag pattern [HEA01].

After these edges are placed, the conventional PEG algorithm can be used to place the

remaining edges. The code obtained this way can be encoded using the back-

substitution procedure.

In Figure 1.11, the performance of the codes obtained from the PEG algorithm is

shown, especially regular PEG Tanner-graph codes are compared to Mackay’s

codes [MacBib] and random graph codes. The PEG codes are constructed such

that their girth is 8. MacKay’s codes and the random codes have girth equal to 6. The

local girth distributions are shown in the legend of Figure 1.11. We can observe that

the random codes perform much worse than the PEG codes and MacKay’s codes.

On the other hand, the PEG codes and MacKay’s codes have similar performance,

with the PEG code being slightly better for high SNRs.

Figure 1.12 shows the performances of irregular PEG codes compared with

MacKay’s codes and random codes with the same degree distribution. As we can

Figure 1.10 Progressive edge-growth algorithm
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observe, the irregular PEG codes show the best performance. The irregular random

codes show error floors very early. The local girth distributions are given in the legend

of Figure 1.12.

In Figure 1.13 we show the performance of PEG codes exhibiting the zigzag

pattern against the turbo codes. The PEG codes have degree distribution given by

Figure 1.11 Bit and block error rates of PEG Tanner-graph codes, MacKay’s codes and random graph

codes [Hu02]. All codes are regular with distributions dv¼ 3 and dc¼ 6 with rate 1/2. (a) n¼ 504,

m¼ 252; local girth distributions: PEG: 8; MacKay: 6 (63%), 8 (37%); random: 6 (79%), 8 (21%).

(b) n¼ 1008,m¼ 504; local girth distributions: PEG: 8 (17%), 10 (83%);MacKay: 6 (39.5%), 8 (60.3%);

random: 6 (55.6%), 8 (44.2%)

Figure 1.12 Bit and block error rates of PEG Tanner-graph codes, MacKay’s codes and random graph

codes [Hu02]. The PEG and random codes are irregular with rate 1/2.MacKay’s codes are regular with rate

1/2. The degree distribution for the irregular PEG and random codes is given by LðxÞ ¼ 0:47532x2 þ
0:279537x3 þ 0:0348672x4 þ 0:108891x5 þ 0:101385x15. (a) n¼ 504, m¼ 252. (b) n¼ 1008,m¼ 504
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LðxÞ ¼ 0:477081x2þ 0:280572x3þ 0:0349963x4 þ 0:0963301x5

þ 0:0090884x7þ 0:00137443x14þ 0:100558x15

The turbo codes are the same standardized for the CDMA2000 system. They

consist of two systematic, recursive, eight-state convolutional encoders concatena-

ted in parallel, with an interleaver. The transfer function for the turbo encoders is

given by

GðDÞ ¼ 1 n0ðDÞ=dðDÞ n1ðDÞ=dðDÞ½ �

where

dðDÞ ¼ 1þD2 þD3; n0ðDÞ ¼ 1þDþD3

and n1ðDÞ ¼ 1þDþD2 þD3.

The turbo codes are decoded using the BCJR algorithm with 12 iterations. The

LDPC codes are decoded using 80 iterations of the message passing algorithm so that

the decoding complexity for both code types is almost the same.Aswe can observe, the

PEG codes are serious competitors for the turbo codes. For instance, they have similar

performance for low SNRs and do not show the error floor behavior presented by the

turbo codes in higher SNRs. Moreover, they have a low-complexity linear time

encoding algorithm based on back-substitution.

Figure 1.13 Bit and block error rates of linear time encodable PEG codes and turbo codes [Hu02]. All

codes have an approximate rate of 1/2. (a) Block length 1024. (b) Block length 2048
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1.3.2 Structured Designs

The main motivation for studying codes with structured designs is that simplified

encoding/decoding algorithms can be derived and also some important characteristics

(for example, distances or bounds) can be determined easily.

In this section, we provide an overview of some important constructions.

1.3.2.1 Structured Designs for Turbo Codes

The parallel processing of the iterative decoding of turbo codes is of interest for high-

speed communication systems. Interleaving of extrinsic information is one important

aspect to be addressed in a parallel decoder because of thememory access contention

problem [TBM04]. The first approach to solve the memory access contention

problem is by simply constraining the interleavers to be contention-free [Nim04].

However, if the interleaver is required to be unconstrained, then the memory

contention problem can still be solved as shown in [TBM04], but at a cost of

additional complexity.

In this section, we present a class of algebraic structured interleavers that are

contention-free. The advantage of these interleavers is that they result in low-

complexity parallel decoders induced from the algebraic structure, with good perfor-

mance when compared against some good interleavers.

1.3.2.2 Maximum Contention-Free Permutation Polynomial Interleavers

This class of structured interleavers was introduced by Sun and Takeshita in [ST05].

The main elements of this construction are the permutation polynomials over integer

rings. We start this section by defining these polynomials.

Definition

Given an integerN> 2, a polynomial f(x)¼ f1(x) þ f2(x) (modN), where f1 and f2 are

non-negative integers, is said to be a quadratic permutation polynomial (QPP) over the

ring of integers ZN when f(x) permutes {0, 1, 2, . . ., N� 1}.

The conditions that f1 and f2must fulfill for the existence of f(x), aswell as the search

procedure for f1 and f2, are presented in [ST05]. In [Tak05] it was proved that every

quadratic permutation polynomial generates a maximum contention-free interleaver

(MCF). (If an interleaver is contention-free for all window sizes W dividing the

interleaver size N, it is called a maximum contention-free interleaver.)

Table 1.2 shows examples of MCF interleavers obtained from permutation poly-

nomials over integer rings. The polynomials g(x) are the inverses of f(x) and are

obtained using the methods presented in [RT05].

Figure 1.14 shows the performance of turbo codes with MCF quadratic permutation

polynomial (QPP) interleavers compared to turbo codes with S-random and 3GPP

standardized interleavers. As can be observed, the codes with MCF-QPP interleavers

14 Error Control Coding for B3G/4G Wireless Systems



have the same performance as the other codes in the low SNR regime. In higher SNRs,

we can observe that codes resulting from the MCF-QPP interleavers show better error

floor behavior than the other codes. This fact is most evident for the block length 4096.

At this point, we should make some observations about the implementation

complexity of the codes with MCF-QPP interleavers. Firstly, because these inter-

leavers are inherently contention-free, full parallel decoders can be implemented with

no need for additional units to serialize the memory access due to access conflicts.

Moreover, there is no need for look-up tables to perform the interleaving. The algebraic

structure imposed by the permutation polynomial makes the online calculation of the

interleaving addresses possible. These online calculations are performed with mini-

mum effort: only three multiplications and one addition are necessary.

1.3.2.3 Structured Designs for LDPC Codes

1.3.2.3.1 Quasi-Cyclic LDPC Block Codes
The research on quasi-cyclic (QC) LDPC codes was motivated by the results obtained

by Tanner for the [15, 64, 20] code in [Tan00]. After this paper, other studies [Fos04]

Table 1.2 Examples of MCF interleavers from permutation polynomials

over integer rings

N f ðxÞ gðxÞ
256 159xþ 64x2ðmodNÞ 95xþ 64x2ðmodNÞ
1024 31xþ 64x2ðmodNÞ 991xþ 64x2ðmodNÞ
4096 2113xþ 128x2ðmodNÞ 4033xþ 1920x2ðmodNÞ
15120 11xþ 210x2ðmodNÞ 14891xþ 210x2ðmodNÞ
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Figure 1.14 Frame error rate (FER) curves comparing the performances of turbo codes with S-random,

3GPP and MCF quadratic polynomial interleavers [Tak05]. All codes have a nominal rate of 1/3 and are

evaluated for the block lengths 256, 1024 and 4096
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[Tan04] extended these results to obtain codes for several block lengths and rates. We

start this section by defining the construction procedure for QC LDPC block codes.

For a prime m, the integers {0, 1, . . ., m� 1} form a field under addition and

multiplication modulo m – the Galois field GF(m). The nonzero elements of GF(m)

form a cyclic multiplicative group. Let a and b be two nonzero elements with

multiplicative orders oðaÞ ¼ k and oðbÞ ¼ j, respectively. Then we form the j� k

matrix P of elements from GF(m), which has as its (s, t)-th element Ps;t ¼ bsat as

follows:

P ¼

1 a a2 � � � ak�1

b ab a2b � � � ak�1b

� � � � � � � � � � � � � � �
b j�1 ab j�1 a2b j�1 � � � ak�1b j�1

2
666664

3
777775: ð1:4Þ

In thematrix above, 0 � s � j�1 and 0 � t � k�1. The LDPC code is constructed by

specifying its parity-checkmatrixH as the j� k array of circulant submatrices given by

H ¼

I1 Ia Ia2 � � � Iak�1

Ib Iab Ia2b � � � Iak�1b

� � � � � � � � � � � � � � �
Ib j�1 Iab j�1 Ia2b j�1 � � � Iak�1b j�1

2
666664

3
777775; ð1:5Þ

where Ix is an m�m identity matrix with rows cyclically shifted to the left by x

positions. The circulant submatrix in position (s, t) withinH is obtained by cyclically

shifting the rows of the identity matrix to the left byPs,t positions. The resulting binary

parity-check matrix is of size jm� km, which means the associated code has a rate

R � 1�ðj=kÞ. Actually, we have this inequality because some parity equations of H
may happen to be linearly dependent. By construction, we also note that every column

ofH contains j ones and every row contains k ones, and soH represents a (j, k) regular

LDPC code.

The construction above can also be generalized to generate irregular codes. In this

case certain circulant submatrices of the original parity-checkmatrix are substituted by

all-zero matrices of the same dimension. This procedure is shown in [Tan04]. We can

also improve the distances of these QC codes if, instead of considering circulants

formed by single shifted identity matrices, we also consider the sum of shifted identity

matrices. These considerations were presented in [SV04].

Figure 1.15 shows the performance of several QC LDPC block codes with

the format of (1.5) compared to random LDPC codes with the same block lengths.

The rate of all codes is approximately 0.4 and they were decoded using a
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maximum of 50 iterations of the message passing algorithm. As we can note, the

codes have similar performance for small to medium block lengths. However, for

bigger block lengths the random codes perform better and the QC LDPC codes

start showing some error floor.

1.3.2.3.2 Encoders for QC LDPC Block Codes
Using Tanner’s transform theory [Tan88], it is possible to show that every parity-check

matrix formed by circulant submatrices results in a generator matrix formed also by

circulant submatrices. As we know, generators with these properties can be imple-

mented using shift registers.

As an example, we show in Figure 1.16 the matrices defining a QC LDPC block

code. In this case, the parity-check matrix is full-rank. This implies that Tanner’s

transform theory will be simplified to the case that the generator matrix is obtained by

partitioning the parity-check matrix asH¼ [QS] (S is square) and by findingW, such

thatWS¼ I, where I is the identity matrix. The generator matrix will then be given by

G¼ [I (WQ)T] [ADT05]. Aswe can observe in Figure 1.16, the generatormatrix is not

low density, but because of the cyclic structure it can be encoded easily using shift

registers. The scheme for such encoders is shown in Figure 1.17.

1.3.2.3.3 LDPC Convolutional Codes
One of the major challenges in the implementation of decoders for LDPC codes is the

interconnection between the processing elements (variable and check nodes). As

Performance of (3.5) LDPCs
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(50 BP iterations)

Threshold limit of (3,5) LDPC codes
A – Algebraic construction, R – Random construction

Figure 1.15 Performances of quasi-cyclic LDPC codes compared against randomLDPC codes [Tak04]
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shown in [BH02], several problems arise from a full parallel implementation of these

decoders – for example, die size, power consumption, congestion and limitations of the

clock frequency. For this reason, full parallel implementations for LDPC codes with

large block length becomes prohibitive.

An elegant way to circumvent the interconnection problem is by adding some

algebraic structure to the parity-check matrixH in such a way that the interconnection

problem can be minimized. In this context, Jim�enez-Felstr€om and Zigangirov [JZ99]

have proposed a new class of codes, the LDPC convolutional codes.

Figure 1.16 Matrices defining a QC LDPC block code. (a) Parity-check matrix. (b) Generator matrix

[ADT05]

Info Bits 1

m

km

(k - j)m

(k - j)m

Systematic Bits Parity Bits 

(k-j) m-Length Shift-Registers, realoaded every m Info Bits

Figure 1.17 Encoder scheme for QC LDPC block codes based on circulant submatrices
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An (ms, J,K)-regular LDPC convolutional code is a set of sequences v satisfying the

equation vHT ¼ 0, where

HT ¼

HT
0 ð0Þ � � �

. .
.

HT
ms
ðmsÞ

HT
0 ðtÞ

. .
.

. .
.

� � � HT
ms
ðtþmsÞ

. .
.

2
6666664

3
7777775
: ð1:6Þ

Here,H is the semi-infinite syndrome former matrix. For a rate R¼ b/c (b< c) LDPC

convolutional code, the elements HT
i ðtÞ, i ¼ 0; 1; . . . ;ms, are binary c� ðc�bÞ

submatrices defined as

HT
i ðiÞ ¼

h
ð1;1Þ
i ðtÞ � � � h

ð1;c�bÞ
i ðtÞ

..

. ..
.

h
ðc�1;1Þ
i ðtÞ � � � h

ðc;c�bÞ
i ðtÞ

2
66664

3
77775: ð1:7Þ

The value ms is called the syndrome former memory and the associated constraint

length is defined as ns ¼ ðmsþ 1Þ � c.
From its definition,we can conclude that theTanner graphof anLDPCconvolutional

codehasan infinitenumberofnodes.However, thedistancebetween twovariablenodes

thatareconnectedbythesamechecknodeis limitedbythesyndromeformermemoryms

of the code. As a consequence, the decoding of two variable nodes that are at least

(ms þ 1) timeunitsapart fromeachothercanbeperformedindependently,sincetheydo

not participate in the sameparity-check equation.This allows continuousdecoding that

operates on a finite window sliding along the received sequence. Furthermore, the I

iterations can be realized in parallel by I identical processors that work on different

sections of the Tanner graph. Alternatively, since the processors implemented in the

decoder hardware are identical, a single “hopping” processor that runs on different

sections of the decoder memory successively can also be employed.

The pipeline decoding architecturementioned abovewas also proposed in [JZ99]. The

pipeline decoder outputs a continuous stream of decoded data once an initial decoding

delay has elapsed. The operation of this decoder on the Tanner graph for a simple time-

invariant rate R¼ 1/3 LDPC convolutional code with ms¼ 3 is shown in Figure 1.18.

The VLSI implementation of LDPC convolutional decoders is based on replicating

identical units called processors. As illustrated in Figure 1.19, the complete decoder

can be constructed by concatenating a number of these processors together. It is now

obvious from Figures 1.18 and 1.19 that the routing complexity in the case of LDPC
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Figure 1.18 Tanner graph of an R¼ 1/3 LDPC convolutional code and an illustration of pipeline

decoding
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Figure 1.19 Low-density parity-check convolutional decoder by concatenation of identical

processors

20 Error Control Coding for B3G/4G Wireless Systems



convolutional codes was reduced to the interconnection within each processor, which

is an order of magnitude less than for a block code.

Another advantage of LDPC convolutional codes is their encoding complexity. As

shown in [RU01], the encoding complexity of LDPCblock codes after some operations

in their parity-check matrices is upper-bounded by OðNþ g2Þ, where N is the block

length and g is a small factor that depends on the structure of the parity-checkmatrix. In

the case of LDPC convolutional codes, the encoding complexity is proportional to the

density of ones in the columns of H and because of their intrinsic convolutional

structure, the encoding can be realized by shift-register operations [JZ99].

Figure 1.20 [Jim06] shows the performance ofLDPCconvolutional codes compared

to random LDPC block codes. The LDPC convolutional codes were generated

using the unwrapping procedure presented in [JZ99]. The curves are plotted for

different block lengths and the rate loss due to the termination of the LDPC

convolutional codes is already expressed in their results as SNR loss. As we can

observe, the LDPC convolutional codes perform very well. Moreover, from the

implementation complexity point of view, the LDPCconvolutional codes show several

Figure 1.20 Performance of LDPC convolutional codes compared against random LDPC block codes.

All codes have rate approximately 1/2 [Jim06]. (a) BER curves. (b) Number of iterations as a function of

the SNR
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advantages. For instance, it is fair to compare thememory of a convolutional codewith

the block length of a block code. In this case, we can see in Figure 1.20 that the

convolutional code with memoryms¼ 513 has similar performance as the block code

with length 8192. Here, the implementation complexity of the last code is almost 16

times larger than the convolutional code. In Figure 1.20, we also show the number of

required iterations for a certain SNR value.

1.3.2.3.4 LDPC Convolutional Codes and QC LDPC Block Codes
It was shown in [Tan04] that there is a direct relationship between QC LDPC block

codes and LDPC convolutional codes. Actually, LDPC convolutional codes can be

obtained from QC LDPC block codes by replicating their graphs to infinity. This

operation is equivalent to unwrapping the graph of the QC code, so that a QC code can

be seen as a tail-biting convolutional code.

Figure1.21depictswhat is said in theparagraphabove.Aswecanobserve, thegraphof

the convolutional codes is infinite but verywell structured and it also preserve thems þ 1

maximum distance between nodes property. We should also mention that the codes

obtained from theQCcodes are time-invariant. On the other hand, the codes constructed

with the unwrapping procedure [JZ99] can be time-invariant or time-variant.

1.3.3 Code Optimization

Code design and optimization before the invention of turbo coding in 1993 concen-

trated on code properties, such as minimum distance or free distance. Decoding was

performed using maximum likelihood decoders, so the choice of a code uniquely

determined the decoder and the performance of the coding system only depended on

the choice of the code. With iterative decoding, the performance of the coding system

depends on the specific code description given to the decoder, and so the focus has

shifted to decoder design rather than code design.

Constructing a good short- to medium-length code that will decode well under

iterative decoding is an art, with many heuristic rules and constraints to fulfill, some to

do with decoder performance, some with easy encoder implementation, and so forth.

Replication to 

Unwrapping

H = H(D) =I1 I2 I4
I6 I5 I3

D D2 D4

D6 D5 D3

Figure 1.21 Relation between QC LDPC block codes and LDPC convolutional codes
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To speak of “code optimization” in this context is to make an overstatement, and the

final stages of practical code design are usually performed by tweaking and analyzing

the simulated error performance curve in its three stages of “error floor,” “waterfall,”

and “error ceiling.” The following sections will elaborate on the design of practical

short- to medium-length codes.

In the asymptotical regimewhen the code length goes to infinity, the performance of

the coding system can be predicted very accurately using techniques such as density

evolution or EXIT charts. Based on these techniques, it is possible to run numerical

algorithms to optimize the code design. For very long codes (length above 104), the

resulting code designs and performance predictions are close approximations of the

measured performance. Although the predictions and designs become less accurate

when the code length becomes smaller, the parameters calculated for the asymptotical

regime are commonly used as one of several guidelines for the design of short- and

medium-length codes as well.

In the asymptotical regime of infinite code length, the error performance of a coding

system becomes binary: above a certain threshold in terms of SNRor channel capacity,

the probability of error tends to zero, and below the threshold it tends to one. Therefore,

analysis techniques concentrate on predicting and optimizing the threshold.

The most accurate method for predicting the threshold of an LDPC code is density

evolution [RU03]. This method involves tracking the probability density function of

the messages exchanged in the decoder graph throughout the iterations. This can be

done analytically for some channels and decoders, or approximated numerically using

sampled densities if no analytical expressions can be found for the density mapping at

the graph components. The analysis is done for isolated components in the graph,

assuming their input messages to be independent, and deductions are made for the

convergence of the global algorithm. This independence assumption is verified

asymptotically when the code length goes to infinity and interleavers are random,

which is why density evolution is only accurate in the asymptotical regime.

When analytical expressions can be found for the density mappings as a function of

the code parameters, it is possible to optimize the code parameters to maximize the

threshold. This is the case for LDPC codes, where there exist designs that match the

channel capacity to the rate as closely as desired. The threshold for LDPC codes is a

functionof thedegreepolynomials,whichspecifythedensityofonespercolumnandper

row in the parity-check matrix used by the iterative decoder. A popular web-based

source of binary LDPC designs is available at R€udiger Urbanke’s website (http://

lthcwww.epfl.ch/research/ldpcopt/), where capacity-approaching degree polynomials

for thebinary-inputAWGNchannelandfor thebinaryerasurechannelcanbegenerated.

Density evolution can be simplified by tracking a reduced set of parameters of the

message densities instead of tracking the densities. EXtrinsic Information Transfer

(EXIT) charts [AKB04] plot the mutual information between the messages and their

corresponding code digits. An example EXIT chart for a regular LDPC code is given in

Figure 1.22.
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The upper curve maps the mutual information at the input of a variable node to the

output of a variable node, and depends on the channel capacity. The lower curve maps

(with inverted coordinates) the mutual information at the input of a check node in the

graph to the output of the check node. The “trajectory” of the decoder is plotted as a

succession of arrowswhere themapping of each curve is applied in turn. If one changes

the capacity of the channel, the starting point of the upper curve on the y-axis will vary,

and the curve will be shifted up or down accordingly. As long as the curves do not

intersect with each other, the decoder will reach the top right point in the graph, which

corresponds to a level of mutual information equal to 1 – the messages become fully

correlated with the code digits and the error probability tends to zero. The threshold is

the value of the channel capacity for which the two curves intersect exactly once. Like

density evolution, EXIT charts rely on the independence assumption and can make an

accurate prediction only for very long codes. Unlike density evolution, they also rely

on an assumption for the probability density of the incomingmessages at each decoder

component. This makes them less accurate than density evolution, and there is usually

a loss of up to 0.05 dB for codes designed with EXIT charts as compared to codes

designed with density evolution.

The advantage of EXIT charts is that they are easier to apply to a variety of scenarios,

like serial or parallel (turbo) concatenation of convolutional codes, or iterative detection

plusMIMOmultiuser detection [BK03][BKA04] [LSL06]. They provide a visualization

of the iterative process, and thereby allow an understanding of effects that are difficult to

pinpoint with density evolution, such as decoder-induced error floors or the effect of

scheduling on the convergence of doubly iterative processes, to name just a few.
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Figure 1.22 EXIT chart of regular LDPC codes
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1.4 Repeat Accumulate Codes

It was mentioned before that encoding complexity is a problem with general LDPC

codes. This disadvantage can be avoided with structured LDPC codes. Here, we

describe repeat accumulate (RA) codes as one possibility to obtain an encoding

complexity that grows only linearly with the block size. Repeat accumulate codes can

be viewed as LDPC codes or as a serial concatenated coding scheme.

Repeat accumulate codes are characterized by a parity check matrix which can be

written in the form H ¼ H1H2½ �, where H2 is a banded matrix of the form

H2 ¼

1 0 � � � � � � 0

1 1 0

0 1 1 0 0

..

. . .
. . .

.
0

0 � � � 0 1 1

2
6666666664

3
7777777775
:

The corresponding generator matrix can be written as

G ¼ I;HT
1H

�T
2

� �
:

Since

H�T
2 ¼

1 1 1 1 � � � 1

0 1 1 1 � � � 1

0 0 1 1 � � � 1

..

. . .
. . .

. ..
.

0 0 � � � 0 1 1

0 0 � � � 0 0 1

2
6666666666664

3
7777777777775

describes an accumulator, the encoder essentially can be represented as shown in

Figure 1.23.

1

TH

D

data bits

code

bits

accumulator

Figure 1.23 Repeat accumulate encoder
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Another representation is given in Figure 1.24. Here, the repeat accumulate code is

represented as an LDPC code plus accumulator. The connections between variable

nodes and check nodes according to HT
1 can be interpreted as an interleaver.

However, the interleaver is not algebraic and has to be designed carefully using

methods such as, for example, the progressive edge growth (PEG) algorithm. This is a

disadvantage because the interleaver pattern has to be stored for each supported block

size, which results in high memory requirements. Given this representation, it is

straightforward to obtain the encoder block diagram as depicted in Figure 1.25. AnRA

code can be viewed as the serial concatenation of a repetition code and a modulo 2

adder plus accumulator.

The structure of RA codes not only allows encoding with a complexity that grows

linearly with the block size but also offers several decoding options. The whole RA

code can be represented by a Tanner graph on which message passing decoding is

performed, as is usually done for LDPC codes (see the left-hand side of Figure 1.26).

On the other hand, we can also exploit the trellis structure of the inner encoder in

Figure 1.25 – we use a trellis decoder for the accumulator part and decode the

remaining part of the code via message passing on a smaller graph (see the right-hand

Π

Figure 1.24 Repeat accumulate code: LDPC code-based representation
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DΠ
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Figure 1.25 Repeat accumulate encoder: repetition code-based representation
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side of Figure 1.26). This can speed up convergence – fewer iterations are necessary

compared to full message passing decoding of the complete code.

In Figure 1.27, we compare the BLER performance of PCCC, SCCC and RA codes

with QPSK modulation in an AWGN channel. The block size is 1000 bits. Different

code rates are obtained by regular puncturing. We used the UMTS turbo code with

memory 3 constituent codes as PCCC and the SCCCwith memory 2 constituent codes

as described above. The RA code was optimized as described in [BK03]. We perform

eight iterations for both PCCC and SCCCwhereas 20 (broken lines) or 30 (solid lines)

iterations, respectively, are performed for the RA code.

dvdc

Repeat-accumulate decoding
Conventional

LDPC decoding

systematic
bits

syst.
bits

Π

Figure 1.26 Decoding options for repeat accumulate codes

10-4

10-3

10-2

10-1

100

76543210

R=1/3 R=3/4

R=1/2 R=8/9

Eb/N0 in dB

FE
R

PCCC (8it)
PCCC (4it)
RA (20it)
SCCC (8it)

Figure 1.27 Block error rate performance of PCCC, SCCC and RA codes
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It can be observed that PCCC outperforms the other codes for all code rates.

However, the error floor of PCCCstarts at a higherBER, at least for some code rates.At

a BLER of 10�2, PCCC outperforms SCCC by 0.4–0.6 dB depending on the code rate.

The degradation of RA codes compared to PCCC is in the range 0.2–0.5 dB.

The decoding complexity in terms of number of operations per iteration per info bit

is summarized in Table 1.3. SCCC shows the lowest complexity due to the use of low-

memory constituent codes. RA codes have only slightly lower decoding complexity

than PCCC.However, it has to be taken into consideration that RA codes requiremany

more iterations for comparable performance, for example 30 iterationswhereas PCCC

needs only 8 iterations. Consequently, RA codes have the highest decoding complexity

of the three schemes.

1.5 Binary versus Nonbinary

Binary LDPC codes can be generalized to nonbinary LDPC codes (NB-LDPC). The

parity-check equations arewritten using symbols in theGalois field of order q, denoted

GF(q), where q¼ 2 is the particular binary case. The parity-check matrix defining the

code has only a few nonzero coordinates, which belong to GF(q), and a single parity

equation involving dc codeword symbols then has the form:

Xdc
i¼1

hji � ci ¼ 0 ð1:8Þ

where {hji} are the nonzero values of the j-th row of H.

In terms of algebraic properties and error-correcting capabilities there is not

much difference between nonbinary and binary codes, and there is a valid question

about whether it is useful to consider NB-LDPC codes. If we leave aside the better

behavior of nonbinary codes for correcting bursts of errors, the principal reason for

using NB-LDPC codes lies in the fact that the practical decoder is suboptimal,

which is the case for the belief propagation (BP) decoder, or its reduced complexity

derivatives. In particular, it is useful to consider nonbinary LDPC codes when the

nonbinary decoder is much closer to optimal maximum likelihood decoding (MLD)

than its binary counterpart.

Table 1.3 Complexity of iterative decoding

PCCC SCCC RA

Additions (weight 1) 198 128.5 120

Comparisons (weight 1) 60 35 140

Multiplications (weight 10) 2 2.5

Total 278 187 260
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Let us discuss some general issues that assist in understanding NB-LDPC code

advantages. It is well known nowadays that the drawbacks of belief propagation

decoding of binary LDPC codes come from the dependence of the messages in the

Tanner-graph representation of the code. The dependence comes from very specific

topological structures in the Tanner graph of the code, for example cycles, stopping or

trapping sets. The poor behavior of the BP decoder on these topological structures is

enhanced if the log-likelihood ratio (LLR) messages that initialize the decoder are

already correlated by the channel.

In the following two examples, the use of NB-LDPC codes helps to bypass

correlation effects of the messages.

Short/Moderate Length Codes

The Tanner graph of the NB-LDPC code is much sparser than that of a binary code

with the same parameters. This has been pointed out by several authors [DM98]

[MD99][HE04][PFD06b]. As a consequence, the higher girth of NB-LDPC graphs

helps to avoid the short cycles and also mitigates the effect of stopping or trapping

sets, making the BP decoder closer to MLD. Actually, when q� 256, the best

error rate results on binary input channels are obtained with the lowest possible

variable node degree, that is dv¼ 2. These codes have been named cycle codes in

the literature, or ultra-sparse LDPC codes [DM98][MD99]. For example, the girth

of a binary irregular LDPC code with length N¼ 848 bits and rate R¼ 1/2 is

at most gb¼ 6 for the good degree distributions, while the girth of a NB-LDPC

code with the same parameters is gnb¼ 14 when a good graph construction is

used [HE04].

High-Order Modulation (M-QAM)

For binary LDPC-coded modulations, the output of the Bayesian maximum a poster-

iori demapper gives correlated probability weights, whichmeans that the initialization

of the BP decoder will experience correlated messages even without any short cycles.

Of course, there are several ways of fighting this effect, by using an interleaver (BICM-

LDPC), or using multilevel coding. However, if the LDPC code is built in a field with

an order equal to or higher than the modulation order, the nonbinary LDPC decoder is

initialized with uncorrelated vector messages, which helps the BP decoder to be closer

to MLD. This way, the code operates in the modulation signal set, like in the trellis-

codedmodulations. The application ofNB-LDPCcodes to high-ordermodulations has

been proved to be very efficient, both with analytical approaches and in

simulations [SF02][DCG04][BB06].

So, if one accepts increasing the decoding complexity of the receiver, it is possible to

expect a significant performance gain in the cases described above. Wewill give some

evidence of the advantages of NB-LDPC codes. Before describing a few interesting

simulation results in detail, wewill discuss briefly themost recent results regarding the

optimization of NB-LDPC codes.
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Because of the very low density of NB-LDPC graphs, there is not much room left to

optimize irregularity profiles, as is done for the binary irregular LDPC codes. Some

authors have generalized the methods based on density evolution used in the

optimization of binary LDPC codes. All convenient optimization methods are based

on aGaussian approximation of the densities, also referred to as EXIT charts for LDPC

codes [LFK03][BT05][BB06]. However, the irregularity profiles obtained only apply

to very long codeword lengths. For short-length codes, better results are obtained with

quasi-cyclic nonbinary LDPC codes [SZLþ 06] or ultra-sparse LDPC codes with

large girths whose coefficients are chosen appropriately [DM98][PFD06a][KGP06]

[PFD06b].

1.6 Performance Results of Nonbinary LDPC Codes

1.6.1 Small Codeword Lengths

Figures 1.28 and 1.29 show two examples of the interest of NB-LDPC codes at small

codeword length on the BI-AWGN channel. In each figure, NB-LDPC codes opti-
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Figure 1.28 Performance comparison of binary versusNB-LDPCcodes. Code parameters areN¼ 3008
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mized using themethod proposed in [PFD06a] are simulated together with an irregular

binary LDPC code with the same parameters (size and rate). The binary code

irregularity is taken from [CRU01] and the parity matrix is build with the

PEG algorithm. One can see that most of the performance gain is obtained by

going from GF(2) to GF(64), and that GF(256) codes are only interesting if one

wants to lower the error floor region. Note that regardless of the decoding complexity,

these results are the best presented in the literature, obtained with iteratively decoded

codes. The gap with the theoretical limit is quite low, especially if we consider

that the sphere-packing bound has not been corrected with the shaping loss in the

drawn curves.

1.6.2 High-Order Modulations

Figures 1.30 and 1.31 are taken from [DCG04]. The curves show the values of (Eb/N0)

at which the BER is equal to 10�5 for various regular ultra-sparse LDPC codes in

GF(256), for which dv¼ 2. Several values of the check node degree have been

considered, dc¼ {4, 6, 8, 12, 16}, to obtain the rates R¼ 1� 2/dc. The codeword
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Figure 1.29 Performance comparison of binary versus NB-LDPC codes. Code parameters are N¼ 564

coded bits and rate R¼ 2/3
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Figure 1.30 Performance of regular GF(256)-LDPC codes for the 16-QAM channel at BER¼ 10�5

Figure 1.31 Performance of regular GF(256)-LDPC codes for the 256-QAM channel at BER¼ 10�5
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lengths are N¼ 2000 equivalent bits to N¼ 40 000 equivalent bits. The SNR loss is

measuredwith respect to the capacity of the AWGNchannelwithQAM inputs.We can

see from these figures that, for large codeword lengths, at rate R¼ 1/2, the SNR loss is

0.5 dB for the (16-QAM)-AWGN channel and 1.2 dB for the (256-QAM)-AWGN

channel, which is comparable to the best coding schemes presented in the literature,

and at rate R¼ 0.833, the SNR loss is 0.3 dB for the (16-QAM)-AWGN channel and

0.7 dB for the (256-QAM)-AWGN channel, which is a very good level of performance

and shows that when high-order modulation is used, NB-LDPC codes are very good

candidates.

This is confirmed for small codeword lengths (N¼ 2000) because the performance

loss from N¼ 40 000 to N¼ 2000 is not very important, as opposed to other coding

schemes that suffer greatly when the codeword length is too small (BICM, multilevel

coding).

1.6.3 Brief Presentation of NB-LDPC Decoders

The performance improvement of NB-LDPC codes is achieved at the expense of

increased decoding complexity. As in all practical coding schemes, an important

feature is the complexity/performance tradeoff: it is very important to try to reduce the

decoding complexity of NB-LDPC codes, especially for high-order fields GF(q) with

q� 64.

The base decoder of NB-LDPC codes is the BP decoder over the factor graph

representation of the code. It differs from the binary BP decoder mainly in that, for

GF(q) LDPC codes, the messages from variable nodes to check nodes and from check

nodes to variable nodes are defined by q probabilityweights, or q� 1 log-density ratios

(LDR). As a result, the complexity of NB-LDPC decoders scales as O(q2) per check

node [WSM04], which prohibits the use of codes built in high-order fields. Computing

the check node in the Fourier domain reduces the complexity toO(q.log(q)) per check

node [DM98][BD03], but adapting the Fourier domain decoder to practical imple-

mentation is tedious due to complicated operators like exponentials or real

multiplications.

In [SC03], the authors present a log-domain BP decoder combined with a FFTat the

check node input. However, combining log-values and FFT requires a lot of exponen-

tial and logarithm computations, which may not be very practical. To overcome this

issue, the authors propose the use of a lookup table (LUT) to perform the required

operations. Although simple, this approach is of limited interest for codes over high-

order fields because the number of LUT accesses grows in q.log2(q) for a single

message. As a result, for high-order fields, unless the LUT has a prohibitively large

size, the performance loss induced by the LUTapproximation is quite large. In [SC03],

the authors present simulation results for LDPC codes over fields up to GF(16), in

which case the LUT approach remains manageable.

Recently, suboptimum decoders based on generalization of the min-sum

decoder have been developed [WSM04][WSM04b][DF05][DF06]. The algorithm
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that proposes the best complexity/performance tradeoff is the one in [DF05], for

which the complexity scales as O(nm.q) with nm� q and a very small performance

degradation compared to the BP decoder. This algorithm is called the extended min-

sum (EMS) decoder. However, the complexity of the EMS decoder is still too large

to compete with current binary hardware implementations of LDPC codes. New

reduced complexity NB-LDPC decoders and parallel hardware models still need to be

investigated.

1.7 Three-Dimensional (3D) Turbo Codes

Turbo codes (TCs) are mainly used today in Automatic ReQuest (ARQ) systems,

which do not usually require very low error rates. Targeted frame error rates (FER)

from 10�2 to 10�5 are typical for this kind of communication system. However, in

future system generations lower FER, down to 10�8, it may be necessary to open the

way to real-time and more demanding applications, such as TV broadcasting or

videoconferencing. The minimumHamming distance dmin of a turbo code may not be

sufficient to offer such an error correction at the required signal-to-noise ratio. For the

current commercial applications of TCs (3G, DVB-RCS, WiMax), commonly based

on eight-state component encoders, there are several ways to increase dmin and thereby

improve the performance at very low error rates. For instance, one might use stronger

component codes, for example 16-state instead of eight-state components [Ber03], at

the price of doubling the decoding complexity. Devising more appropriate internal

permutations [BSDþ 04][CG03] is an appealing alternative to improve dmin, because

it does not incur any complexity penalty. Unfortunately, designing such powerful

permutations is not an easy task and there are limits to the dmin andmultiplicity values,

and thus to the performance improvements that can be achieved. Another way to

improve dmin, which has been widely explored in the literature, is to concatenate

the component encoders in series rather than in parallel [BDMþ 05]. Indeed, thanks to

the message passing (turbo) principle, it has become simple today to imagine

various coding structures, by concatenating simple component codes, provided that

they have a corresponding soft-input/soft-output (SISO) decoder of reasonable

complexity. Basically, there are two kinds of concatenation: serial and parallel. Serial

concatenation yields higher minimum distances compared to parallel concatenation

(turbo codes) but shows a penalty in the convergence threshold, which might be

unacceptable for several applications. Hybrid structures, like those proposed

in [LNG04][GBK04], are also possible, combining the features of the two concatena-

tions. Finally, multiple concatenations using an increased number of component

encoders can be used to eliminate low-weight codewords and so improve the distance

properties of the code.

In the following, we address the latter alternative to improve the minimum distance

of turbo codes and introduce a three-dimensional turbo code (3D-TC) [BGO07]. The
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encoder structure is depicted in Figure 1.32. The 3D-TC is inspired by the proposals

in [LNG04][GBK04] and calls for both parallel and serial concatenation in an original

approach: the 3D-TC is simply derived from the classical TC by adding a partial rate-1

third dimension. A rate-1 post-encoder is concatenated at the output of the standard

turbo code encoder, encoding only a fraction l of the parity bits stemming from each

encoder. The 3D-TC is a very versatile code and provides very low error rates for a

wide range of block lengths and coding rates. As will be shown later, it significantly

improves performance in the so-called error floor region with respect to the eight-state

classical turbo codes, at the expense of a very small increase in complexity (less than

10%). It also compares favorably to more complex codes, such as 16-state turbo codes

and the LDPC code of the DVB-S2 standard.

1.7.1 The Encoding Structure

A block diagram of the 3D-TC is depicted in Figure 1.32. The information data

sequenceu of length k bits is encoded by a rate-1/3 turbo code consisting of the parallel
concatenation of two recursive convolutional codes. We denote by Cu the upper

encoder and Cl the lower encoder. The corresponding parity sequences are denoted yu
and yl, respectively.
A fraction l (0� l� 1) of the parity bits y¼ {yu, yl} stemming from each

component encoder are post-encoded by a rate-1, third encoder. We shall refer to l
as the permeability rate. The bits to be post-encoded are chosen in a nonsingular basis.

For instance, if l¼ 1/4 the permeability pattern is {1000} for both the upper and the

lower encoders, i.e., every fourth bit in yu and yl is post-encoded. The input sequence of
the post-encoder is made of alternate yu and yl (surviving) parity bits. The number of

parity bits that are fed to the post-encoder is given by

P ¼ 2lk: ð1:9Þ

The fraction 1� l of parity bits, which is not encoded, is sent directly to the channel or
punctured to achieve the desired code rate. The output of the post-encoder is denoted as

w, while ypu and y
p
l are the punctured versions of yu and yl, respectively. Finally, u,w, y

p
u

and y
p
l are multiplexed to form the coded sequence y of length n bits.

Figure 1.32 The three-dimensional turbo code
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Clearly, the overall code rate is given by

R ¼ 1

1þ 2lþ 2ð1�lÞr ð1:10Þ

where r (0� r� 1) is the fraction of surviving bits in yu and yl after puncturing. Note
that, given l, and without puncturing information bits, the highest achievable code

rate is

R ¼ 1

1þ 2l
: ð1:11Þ

For the examples given in this section, we will consider very simple regular or quasi-

regular puncturingpatterns. For example, if rate-1/2 is sought andl¼ 1/4, then, according

to (1.10), r¼ 1/3 and the puncturing pattern {100} will be applied to yu and yl
The material added to a standard turbo encoder, which will be referred to as the

patch because it is placed just behind a pre-existing turbo encoder, is composed of:

. a parallel-to-serial (P/S)multiplexer, which takes alternately the parity bits yu and yl,
to be encoded, and groups them into a single block of P bits;

. a permutation denotedP0, which permutes the parity bits before feeding them to the

post-encoder;
. a rate-1 post-encoder, working on a fraction l of the parity bits of each component

encoder.

This structure combines the features of parallel and serially concatenated codes. In

principle, l can be tuned according to system requirements. Increasing l turns the

code into more serial, while the case l¼ 0 corresponds to the standard parallel

turbo code.

The post-encoding principle described above can be applied to any turbo code in a

straightforwardmanner. However, in the sequel, the coding and decoding strategy will

be developed on the basis of the double-binary turbo code used in the DVB-RCS

standard.

Turbo Code with Double-Binary Components

In another version of the 3D-TC, the same post-encoding principle is applied to the

double-binary turbo encoder of the DVB-RCS standard [ETSI00]. The information

sequence u of length k is now grouped into pairs of bits and encoded by a turbo code

built from the parallel concatenation of two eight-state recursive systematic convolu-

tional (RSC) codes, with generator polynomials 15 (recursivity), 13 (redundancy), and

7 (second input). Note that now the internal permutation P deals with messages of

N¼ k/2 symbols. An intra-symbol permutation is also adopted to improve the

minimum distance of the turbo code [DB05]. The code rate is 1/2. The post-encoding
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principle is the same as previously, but the number of post-encoded bits is now

P ¼ 2lN ¼ lk ð1:12Þ

while the rate of the 3D-TC is

R ¼ 1

1þ lþð1�lÞr ; ð1:13Þ

and the highest achievable code rate (for a given l and no puncturing of the information

bits) is

Rmax ¼ 1

1þ l
: ð1:14Þ

Note that higher code rates might be achieved by puncturing systematic bits. On

the other hand, the lowest code rate is given by the rate of the double-binary TC, i.e.,

R� 1/2. If lower rates are sought, higher-rate component double-binary encodersmust

be considered. For instance, for overall rate 1/4 the component encoders need to

generate two extra parity bits. Figure 1.33 shows the block diagram of the best eight-

state encoder, which provides three outputs.

1.7.2 Code Optimization

Given the parent turbo code (the DVB-RCS turbo code here) and the interleaving laws

for P and P0, the performance of the 3D-TC depends on the post-encoder and the

permeability rate l, which must be properly optimized.

The choice of the permeability rate

The choice of l is a matter of tradeoff between the convergence loss and the required

dmin. Convergence designates the zone of the error rate versus signal-to-noise ratio

C

Y 1

input

output

Y2

Y3

Figure 1.33 The component double-binary encoder with three outputs
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Eb/N0 curvewhere the error rate begins to decrease noticeably. Choosing a large value

of l penalizes the decoder from the convergence point of view. This results from the

decoder associated with the post-encoder, which does not benefit from any redundant

information at the first iteration and therefore multiplies the errors during the first

processing. Let us assume for instance that the post-encoder is the well-known

accumulate code (convolutional code with memory 1), depicted in Figure 1.34(a).

The associated decoder (the pre-decoder), without any extra information, doubles the

errors at its input. From (1.10), the fraction y of the codeword bits that are post-encoded
bits is

y ¼ P

n
¼ lR: ð1:15Þ

The fraction yq of the data processed by the component decoder of each code

Cq (q¼ u, l) that is processed by the pre-decoder is

yq ¼ lR
1þR

: ð1:16Þ

Then, if p is the probability of error at the channel output, the average probability of

error p0 at each decoder intrinsic input is

p0 ¼ 2yqpþð1�yqÞp ¼ ð1þ yqÞp: ð1:17Þ

From (1.16) we have:

p0 ¼ 1þð1þ lÞR
1þR

� �
p: ð1:18Þ

In other words, the probability of error at each decoder intrinsic input is raised by a

factor

1þð1þ lÞR
1þR

inducing a loss in convergence.

input

output

input

output

(a) (c)

input

output

(b)

Figure 1.34 Possible candidates, with memory 1 or 2, to become the rate-1 post-encoder
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The strategy for choosing the value of l arises directly from (1.18):

1. From a given acceptable convergence loss and from the curve p(Eb/N0) (for

instance, erfc(x) for a Gaussian channel), infer the value of p0
p
¼ 1þð1þ lÞR

1þR
.

2. For a given coding rate, deduce the value of l.
3. If the resulting MHD is not sufficient, increase p0 and go to 1.

The Choice of the Post-encoder

The post-encoder has to meet the following requirements:

1. Its decoder must be simple, adding little complexity to the classical turbo decoder,

while being able to handle soft-in and soft-out information.

2. In order to prevent the decoder suffering from any side-effects, because very low

error rates are sought, the post-code has to be a homogeneous block code.

3. At the first iteration (without any redundant input information), the pre-decoder

associated with the rate-1 post-encoder must not exhibit too much error

amplification.

Possible candidates, low-memoryRSCcodes,which satisfy condition 1, are given in

Figure 1.34. Condition 2 is compatible with the use of circular RSC (CRSC)

codes having memory 2. Circular convolutional codes (also called tail-biting

codes) are such that any state of the encoder register is allowed as the initial state

and the encoding always starts and ends in the same state. Thismakes the convolutional

code a perfect block code and prevents it from any side-effects. Moreover, no rate

loss is induced by terminating the code. Circular CCs have already been adopted in

the DVB-RCS turbo code. Note that the code with memory 1 (the accumulate

code, Figure 1.34(a)) cannot be made circular using standard circular termination,

and has to be discarded. Code (b) in Figure 1.34 can easily be made circular,

provided that the number of bits to be encoded is not a multiple of 3. On the other

hand, at the first step of the iterative process, its decoder will (roughly) triple the

number of errors of its input. Finally, code (c) has a corresponding decoder which only

doubles the number of errors at the first step, but it cannot be made circular directly.

However, a simple trick will allow us to use this code as a CRSC code, as explained

below.

Circular (Tail-Biting) Encoding

Let si and di be the state of the encoder register and the encoder data input,

respectively, at discrete time i. The encoder state at time i þ 1 is given by the

following equation:

siþ 1 ¼ Gsi þ di ð1:19Þ
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whereG is the generator matrix of the linear feedback register (LFR). For instance,

considering the LFR in Figure 1.35, we have:

si ¼
s1;i

s2;i

" #
; di ¼

di

0

" #
; G ¼

1 1

1 0

" #
ð1:20Þ

Moregenerally, for amemory n register, vectors si anddi have n components andG is

of size n� n. After the encoding of data sequence {di}, of lengthP, the final state sPcan
be expressed as a function of the initial state s0 and {di}:

sP ¼ GPs0 þ
XP
j¼1

GP�jdj�1: ð1:21Þ

If it is possible to find a circulation state, denoted sc, such that sc¼ s0¼ sP, this is
given by:

sc ¼ ½IþGP��1
XP
j¼1

GP�jdj�1 ð1:22Þ

where I is the n� n identity matrix.

Note that sc exists if I þ GP is invertible. This condition is never satisfied for some

matricesG, whatever the value ofP. This is the case for the encoders in Figure 1.34(a, c),

which have G ¼ ½1� andG ¼ 0 1

1 0

� �
, respectively. For other matrices, I þ GP is invert-

ible if P is not a multiple of the period L of the LFR, defined byGL¼ I. For instance, the
LFR in Figure 1.34(b) has L¼ 3. Therefore, I þ GP is not invertible forP¼ 3t, with t an

integer. In such cases, the encoder cannot directly be made circular.

Before the encoding of {di}, the knowledge of s
c requires a preliminary step. The

encoder is first set up in the zero state and then fed by the data sequence. The final state

is denoted s
p
0. From (1.21), we have

s0P ¼
XP
j¼1

GP�jdj�1 ð1:23Þ

input

output

Figure 1.35 Linear feedback register with memory 2 and recursivity polynomial 7 (in octal)
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and, from (1.17), sc can be related to s
p
0 by

sc ¼ ½IþGP��1s0P: ð1:24Þ

Finally, the encoder being initialized in the circulation state, the encoding process can

really start to provide the redundant sequence.

State Mapping Encoding

State mapping encoding may be introduced for cases where standard circular (tail-

biting) encoding is not possible (i.e., I þ GP is not invertible). The core of this

encoding is a mapping that maps the final state sP to the state s
0
P ¼ AsP using a state-

mapping matrix A. Mapping the final state given by (1.21) yields the equation

s0P ¼ AGPs0 þA
XP
j¼1

GP�jdj�1: ð1:25Þ

A mapping state sm with sm ¼ s0 ¼ s0P always exists, and is given by

sm ¼ B
XP
j¼1

GP�jdj�1 ¼ Bs0P ð1:26Þ

with

B ¼ IþAGP
� ��1

A: ð1:27Þ

In other words, if the encoding starts in the state sm, the encodingwill end in the state se

with sm¼Ase. The encoding procedure can be summarized in the following steps:

1. Set up the encoder in the zero state. Feed it with {di} and take the final state s0P.
2. Calculate sm through (1.26) and (1.27).

3. Encode {di} starting from sm. If needed, map the final state se using A, in order to
verify that the result is sm (i.e., sm¼Ase).

The encoder of Figure 1.34(c), with generator polynomial 5, can be encoded using:

A ¼
1 1

0 1

" #
if P is odd

A ¼
1 1

1 0

" #
if P is even

: ð1:28Þ
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The decoding process has to take into account the mapping described above. This is

done by an exchange of metrics after having processed the last address i¼P� 1,

during the forward recursion, and after having processed the first address i¼ 0, during

the backward recursion, when the MAP algorithm, or a simplified version, is

employed. Table 1.4 provides the values of s0P obtained through the mapping of sP.
The table also provides the values of sm for each s0P using (1.26) and (1.27). We can

observe that only 2 (ifP is odd) or 3 (ifP is even)metrics need to be swapped during the

decoding process, at the extremity of the block, which represents a very small

additional complexity for the four-state decoder.

1.7.3 Decoding the 3D Turbo Code

The decoding of the 3D-TCcalls for the classical turbo principle. The decoder is shown

in Figure 1.36. The decoder consists of three SISO decoders: two eight-state SISO

Table 1.4 Corresponding values of sP and s0P and of s0P and sm

P odd P even P odd P even

sP s0P sP s0P s0P sm s0P sm

0 0 0 0 0 0 0 0

1 3 1 2 1 1 1 3

2 2 2 3 2 3 2 1

3 1 3 1 3 2 3 2

y1

8-state

SISO

DEC1

Π

Π

Π−1

y2

8-state

SISO

DEC2

a, b

4-state

SISO

PRE-DEC

w
Π '-1 S/P

2

P/SΠ '

extrinsic
information
about A, B

extrinsic
information
about Y1 and Y2

Figure 1.36 Linear block diagram of the 3D turbo decoder
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decoders matched to the upper and lower encoder of the double-binary turbo code,

denoted DECu and DECl, respectively, and a four-state SISO decoder (the pre-

decoder) to decode the post-encoder. As usual TCs, DECu and DECl exchange

extrinsic information on the systematic symbols of the received codeword. They

must also provide the four-state SISO pre-decoder with extrinsic information on the

post-encoded parity bits. In turn, the pre-decoder feeds DECu and DECl with extrinsic

information on these parity bits.

Because DECu and DECl are quaternary eight-state decoders processing N¼ k/2

pairs of bits and the pre-decoder is a binary four-state decoder processing P¼ lk data,
the relative computational complexity added by the latter is very small. For instance,

with l¼ 1/4 (the largest value considered in this chapter), the additional complexity is

roughly 6%. However, some extra functions must be added to the classical turbo

decoder, the main one being the calculation of the extrinsic information on parity bits

to be fed to the pre-decoder. Overall, the additional complexity, compared to the

classical turbo decoder, is less than 10% for l¼ 1/4.

1.7.4 Simulation Results

In Figures 1.37 and 1.38, we report frame error rate results for two typical block sizes,

188 and 57 bytes, respectively, and coding rates 1/4, 1/2 and 4/5. In all these

simulations l¼ 1/4 and a maximum of eight iterations is assumed. Note that, since

l¼ 1/4, no puncturing of information bits is assumed, themaximumachievable coding

rate is Rmax¼ 4/5 (see 1.14). All simulations assume a permutation P of the ARP

type [BSDþ 04] and a regular permutation for P0 [BGO07].

Figure 1.37 Frame error rate performance of the 3D-TCwith l¼ 1/4 for k¼ 188 bytes and several rates
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The 3D-TC code shows excellent performance for both short and medium block

sizes. In particular, for information block size 188 bytes only 0.8 dB loss is observed

with respect to Gallager’s random coding bound at FER	10�7 for all code rates. For

comparison purpose, the performance of the originalDVB-RCSTC is also reported for

rates 1/2 and 4/5. For rate 1/2 the 3D-TC shows a small convergence losswith respect to

the DVB-RCS TC, which is explained by the reasoning in Section 1.7.2. On the other

hand, the error floor is significantly lowered. The largest gain is obtained for 188 bytes

andR¼ 1/2 (about 1.4 dB at FER¼ 10�7). For rate 4/5, the convergence loss is reduced

while a significant improvement for low error rates is also observed.

We also report in Figures 1.37 and 1.38 the performance of the 16-state double-

binary TC described in [DB05] for rates 1/2 and 4/5. The performance of the proposed

3D-TC is comparable to that of the more complex 16-state TC. For a block length of

188 bytes, the 3D-TC loses 0.1 dB in convergence with respect to the 16-state double-

binary turbo code. However, the 3D-TC outperforms the 16-state TC in the error floor.

Similar behavior is observed in [BGO07] for a block length of 57 bytes.

The 3D-TC also shows very good performance for large block lengths. In Figure 1.39

the bit error rate performance of the 3D-TC is compared with that of the DVB-S2

standard LDPC code [ETSI05] for coding rates 1/2 and 8/9 and a coded block length of

8000 bytes. The performance of the LDPC code was obtained from an FPGA, and is it

very close to simulated performance. Fifty decoding iterations are assumed. Here,

l¼ 1/8 and 12 iterations are assumed for the 3D-TC. Similar performances were

observed for the two codes.

Finally, Figure 1.40 compares the performance with respect to the eight-state TC

adopted in the 3GPP2 standard. An information block length of 12 288 bits and eight

iterations is assumed for the two codes. Very similar performance is observed in the

Figure 1.38 Frame error rate performance of the 3D-TCwith l¼ 1/4 for k¼ 57 bytes and several rates
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waterfall region. However, the 3D-TC significantly improves the 3GPP2 code in the

error floor region. No flattening is observed at FER¼ 10�5.

1.8 Conclusions

In this section, a modified turbo code combining the features of parallel and serial

concatenation in order to obtain increased Hamming minimum distances with

respect to classical turbo codes has been discussed. The simulation results corroborate

Figure 1.39 Block error rate performance of the 3D-TCwith l¼ 1/8 for n¼ 8000 bytes and comparison

with the DVB-S2 LDPC code

Figure 1.40 Block error rate and FER performance of the 3D-TC with l¼ 1/8 for k¼ 12 288 bits, R¼
1/2 and comparison with the 3GPP2 turbo code
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the interest of this approach. Frame error rates down to 10�7 are obtained near

the theoretical limits without the use of any outer block code, such as BCH or

Reed–Solomon codes. This characteristic makes the 3D turbo code very versatile from

the standpoint of block size and coding rate. Furthermore, the component decoding

algorithm (max-log-MAP) is simple and does not require knowledge of the channel

noise variance. Finally, the internal permutations of the 3D-TC are based on very

simple models enabling large degrees of parallelism, if needed.
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