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Fundamentals

“Give me six hours to chop down a tree and I will spend the first four sharpening the axe.”

– US President Abraham Lincoln

From the earliest days of recorded history, humans have dreamed of soaring into the sky. It
is believed that the first kite was invented in China in circa 1000 bc. This was followed by
the invention of the first rockets in China in circa 200 bc. Thirteen centuries later and about
8000 km away in Italy, Renaissance artist Leonardo da Vinci drew several designs for
flying machines, inspired by his anatomical study of birds. In 1783, two French men named
Jean-François de Rozier and Marquis D’Arlandes made the first free aerial flight in a
Montgolfier hot-air balloon. However, it wasn’t until 1903 that the era of manned, powered
flight was begun by two American brothers from Dayton, Ohio. Their Wright Flyer was

Ridiculous! If 
we were meant
to fly we would
be born with

wings.

I heard that those
brothers from Ohio

made a flying
machine!

Ha Ha

Ha

‘‘Bird’s Eye View’’ The Wright brothers proved that great things can be

accomplished if you have a willingness to work hard, search for the important

facts, and dare to have an optimistic hope about the future.
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Figure 1.1 Forces acting on an aircraft

the starting point for the design of manned aircraft which today have drawn together the
far expanses of this planet. However, what is often overlooked is that they also developed
the first operational aircraft engine to power it.

The word propulsion means driving forward. Therefore a propulsion system is a
machine that produces thrust to drive an object forward. On air and space vehicles, a
thrusting force is produced by applying Newton’s 3rd Law of Action and Reaction. The
action is accomplished by accelerating a working gas, normally by adding heat due to
chemical combustion. The reaction to this acceleration (V̇ ) produces a net thrust force
(FN ) that propels an air vehicle forward (Figure 1.1).∑

F =
∑

mV̇ (1.1)∑
F = T hrust − Drag = mV̇ (1.2)

V̇ = FN − D

m
(1.3)

Thrust (FN ) is the driving force that propels an aircraft, helicopter, missile, or rocket
forward. An aerospace propulsion system (engine or motor) is simply a device that con-
verts power into thrust to propel an aerospace vehicle. Table 1.1 shows the most prevalent
types of aerospace propulsion systems used today. Each of these engine types is covered
in this book.

1.1 Fundamental Equations

Most aerospace propulsion systems operate in a cyclic manner to produce a net work
output from a supply of heat. Engines convert heat energy from available sources (such
as combustion of chemical fuels) into mechanical work, according to the laws of fluid
mechanics and thermodynamics. Therefore, the performance of propulsion systems is
governed by the conservation of mass, momentum, and energy. This section presents a
review of these fundamental equations and terms.
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Table 1.1 Types of aerospace propulsion systems

Types Applications Characteristics

Rocket motors • Space launchers
• Missiles

• Can operate outside
Earth’s atmosphere

• Capable of very high
thrusts

• Can operate at high
supersonic speeds

• Heavy, non-air-breather
(must carry oxidizer
propellant)

• Most are expendable
(one-time use)

Piston
aerodynamic
engines

• General aviation
aircraft

• Relatively low cost
• Relatively simple

maintenance
• Only capable of low

thrusts
• Limited to low subsonic

speeds
• Limited to low altitudes

Turbojet engines • Outdated
military fighters

• Long-range
missiles (e.g.,
cruise and
anti-ship
missiles)

• Capable of high thrusts
• Capable of supersonic

speeds (normally an
afterburner must be
used)

• Less fuel efficiency than
turbofan engines.

Turbofan engines • Commercial
aircraft

• Business jets
• Most modern

military combat
aircraft

• Widely used today
• Capable of medium to

high thrusts
• Capable of supersonic

speeds (normally an
afterburner must be
used)

• Better fuel efficiency
than turbojet engines

Turboprop engines • Short-range
commercial
aircraft

• Cargo transports
• Military troop

and cargo
transports

• Fuel efficient
• Short take-off and

landing distances
• Low to medium altitude

limit
• Subsonic speed

limitation
• Noisy, high vibration

(continued )
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Table 1.1 (Continued )

Turboshaft engines • Helicopters
• Auxiliary power

units (APU)

• Optimized to produce
shaft power

• Short in length
• Generally not suitable

for fixed-wing aircraft

Ramjet engines • Long-range
supersonic
missiles

• Specialized
aircraft

• Mechanically very
simple

• Can operate efficiently
at high supersonic Mach
numbers (2.5–5.0)

• Generally cannot
operate at subsonic
speeds, so requires a
booster rocket

Scramjet engines • Experimental
hypersonic
vehicles

• Many difficult technical
challenges, no
operational models yet

• Can operate at
hypersonic Mach
numbers (5.0–15.0)

• Cannot operate at
subsonic or low
supersonic speeds, so
requires a booster rocket

(Images courtesy of NASA, USAF, and National Museum of the USAF.)

1.1.1 Review of Terms

1.1.1.1 Systems

A system is an identifiable collection of matter that is under investigation. The mass or
expanse outside of a system is called the surroundings. Systems can be moveable or
fixed. Types of systems are listed below:

• Isolated System – A system that is completely uninfluenced by its surroundings. It
has a fixed mass, and no heat or work can cross the boundary (or control volume) of
the system

• Closed System – One in which a fixed mass (control mass) is contained within a
boundary at all times. A piston cylinder with closed intake and exhaust manifolds is an
example of such a system (Figure 1.2). The piston moves and compresses the air, but
the mass of air in the cylinder remains fixed. Energy (e.g., heat and work) can cross
the boundary, but with the manifolds closed, no mass can enter or leave the system.
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Figure 1.3 Open system

• Open Systems (also called flow systems) – A system where matter (mass) and energy
are transferred across the boundary of a control volume (Figure 1.3). A steady flow
open system requires that the mass flows at entry, exit, and any intermediate point
within the boundary are the same. A gas turbine engine operating at steady speed in
fixed ambient conditions is an example of such a system.

1.1.1.2 Working Fluid

Most aerospace propulsion systems operate in a thermodynamic cycle that involves trans-
ferring heat to and from a working fluid. Atmospheric air (or air mixed with combustion
gases) is the predominant working fluid used in air-breathing propulsion systems. Air-
breathing engines (such as gas turbine, ramjet, and scramjet engines) are open systems
that draw in ambient air and use it as an oxidizer to burn fuel. However, the properties of
atmospheric air change with altitude. Because of this, these engines can operate only over
a certain range of altitudes and velocities (Mach numbers) which correspond to differing
atmospheric pressures, temperatures, and densities. This range is known as the engine’s
flight envelope. Figure 1.4 shows approximate flight envelopes of aircraft with various
types of propulsion systems.
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Figure 1.4 Flight envelopes of aircraft with different engine types

Rockets are non-air-breathing systems, so are not limited by altitude, so they can even
operate in the vacuum of space. The working fluid of a chemical rocket is the combustion
gases produced by combustion of its propellants.

The properties used to define the state of a working fluid are: pressure (P ), temperature
(T ), volume (–V ), enthalpy (H ), density (ρ), internal energy (U ), and entropy (S). Since
atmospheric air properties vary with altitude, weather, location, time, and other factors;
the Standard Atmospheric Tables are typically used by engine designers as a standard
reference [1]. Table A.1 in Appendix A gives the properties of the standard atmosphere
in SI units. Values such as temperature, pressure, density, and viscosity are given at
different altitudes. An altitude of 0 km represents the sea-level condition.

1.1.1.3 Work and Power

Work (W ) is generated when a force moves something in the direction it is being applied.
It is a scalar quantity that is simply defined as the force applied to a body times the dis-
placement of that body in that direction. If there is no displacement (or movement), there
is no work. It has the SI (Standard International) units newton-meter (N·m), which is
also called a joule (J). In Imperial units it is written in foot-pound (ft-lbf), Btu (British
thermal units), or calories (cal). The generally accepted sign convention for work inter-
action is that work done by a system (gain) is positive and work done on a system (loss)
is negative.
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Sorry, I can’t help you with your school
work because I’m still working on the
computer, as I have been for hours. But Dad! Since

you have not
moved from that

chair, my
science book
says that you
have not done

any work

‘‘Hard Work’’ The definition of mechanical work requires movement to

occur. The girl in this cartoon makes a great point, but she obviously did not

see her dad typing on the keyboard, moving his mouse or putting paper in

the printer.

Power (Ẇ ) is the rate of doing work. It is normally expressed in joules per second
(J/s) or Watts (W ). In Imperial units it can be expressed as horsepower (hp), Btu per hour
(Btu/hr) or in calories per second (cal/s).

1.1.1.4 Energy

Energy is a scalar physical quantity that describes the capacity of a system to produce
work. It is expressed in SI units as joules (J). It can exist in many different forms which
are often named after a related force. Some examples are kinetic, potential, thermal,
mechanical, electrical, chemical, magnetic, and nuclear. The total energy (E) of a system
is the sum of all the forms of energy applicable to that system. The various forms of energy
can be categorized into two groups: macroscopic and microscopic. The macroscopic forms
of energy are those that a system has as a whole with respect to an outside frame of
reference. This would include the overall system’s kinetic and gravitational potential
energies. The microscopic forms of energy are those that are related to the molecular
structure and activity of a system, independent of an outside frame of reference.

The sum of all microscopic energy is called the internal energy (U ). This includes the
sum of the kinetic and potential energy of the molecules. Molecular kinetic energy consists
of atoms or electrons that may be vibrating, translating, rotating, or spinning (depending
on the phase of the matter). The portion of the internal energy related to the kinetic
energy is called the sensible energy. The level of activity (velocity and momentum) of
the molecules increases with temperature. As temperature increases, the sensible energy
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increases causing the system to have a higher internal energy. Internal energy is also asso-
ciated with the binding forces between molecules. A sufficient amount of energy can break
molecular bonds causing a phase change (such as a liquid into a gas). The internal energy
related to this phase change is called the latent energy. (A phase change process can occur
without changing the chemical composition of the system.) The combination of the sensi-
ble and latent internal energy of a system is commonly referred to as its thermal energy.

The energy associated with the atomic bonds in a system is called the chemical energy.
During a combustion process some chemical bonds are formed while others are destroyed,
changing the internal energy of the matter. Nuclear energy involves changes to the strong
bonds within the nucleus of an atom. (An atom remains the same during a chemical
reaction, but changes in a nuclear reaction.) Mechanical energy is a form of energy
that is converted into work by a mechanical device, such as a turbine. In a gas turbine
propulsion system, a propeller or compressor transfers mechanical work into a working
fluid by raising its pressure.

1.1.1.5 Heat

Energy can be transferred from one system to another as either work or heat. Heat (Q)
is defined as the energy transferred between molecules of one system to those of another
due to a temperature difference. Like work, heat is expressed in SI units as joules (J).
By convention, a positive value of heat indicates a heat gain to a system and a negative
value indicates a heat loss.

Heat is transferred as it crosses the boundaries of one system into another. Once the
heat transfers into a system it becomes part of the internal energy of that system. Heat
transfer (Q̇) occurs by three mechanisms: conduction, convection, and radiation. Conduc-
tive heat transfer occurs when an energetic substance (high thermal energy) is in contact
with a less energetic substance. Conduction can take place in solids, liquids, or gases. In
solids it occurs due to the combinations of vibrations of the molecules in their lattice and
the energy transport of free electrons. In liquids and gases, conduction takes place due to
collisions and diffusion of the molecules randomly in motion. Convective heat transfer
occurs due to the combined effects of molecular motion (conduction) and the bulk motion
of fluids (liquids or gases). An understanding of heat convected between a bounding sur-
face and a moving fluid, when both are at different temperatures, is particularly important
in the analysis of propulsion systems (e.g., cooling). Radiation heat transfer is the energy
emitted by matter in the form of electromagnetic waves (or photons). Unlike conduction
or convection, radiation does not require the presence of an intervening medium, so it
can occur across the vacuum of space.

The thermal efficiency (ηth) of a heat engine is the ratio of its work output to the total
heat added into the system. If the total work is equal to the change of heat in the system,
then this is expressed as Equation 1.4.

Thermal efficiency:

ηth = W

Qin
= Qin − Qout

Qin
= 1 − Qout

Qin
(1.4)
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1.1.1.6 Cycles

A system undergoes a process when its state changes from one equilibrium condition to
another. If a system undergoes a number of processes so that it’s final state is the same
as its initial state (in all respects), then the system has undergone a cycle.

Figure 1.5 shows a pressure–volume plot (P − –V diagram) of an expansion process,
involving non-repetitive translational motion of a piston cylinder. This is an example of a
non-cyclic process from a high pressure/low volume state to a low pressure/high volume state.

Figure 1.6 shows an ideal gas turbine cycle. The numbered labels refer to different pro-
cesses in the cycle. The last process (4 → 1) is not actually physically possible inside a gas
turbine engine. The exhaust gases diffuse outside in the ambient air surroundings. However,
since this is an open system, the engine operates in a cycle because ambient air continuously
flows into the engine through its intake (which effectively restarts the cycle at point 1).

1.1.1.7 Isentropic Processes

Ideal processes are reversible. This means that the original state of the system can be
restored, leaving no residual change in either the system or its surroundings. Reversible

(Not a cycle.) Work done in a process.

P

P A F
1

2

Piston

V

Figure 1.5 Non-cyclic process

Heat addition

Expand through 
turbines

(Not possible)
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2
P
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V

Figure 1.6 Cyclic process
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Figure 1.7 Irreversible process

processes do not actually occur in nature. Consider the example illustrated in Figure 1.7.
(1) A gas is held under pressure by a weightless piston that is pinned in place. (2) When
the pin is released, the pressurized gas pushes the piston upwards until a restraint stops it.
Since the piston is weightless, there is no work done by the gas on the piston to move it.
(3) In order to reverse this system to its original state a force (or work) must be applied to
push the piston down and compress the gas. (4) Heat must also be transferred to the gas
in order to restore its original internal energy. The addition of heat and work to restore
the system will change the surroundings. Since this process is not reversible, it is called
an irreversible process.

As the example shows, reversible processes do not occur in real systems because of the
presence of friction and finite temperature and pressure differences create irreversible con-
ditions. Reversible systems are simply idealizations of an actual system. A work-producing
device (e.g., turbine) will deliver the maximum amount of work if a reversible process
is used. Similarly a work-consuming device (e.g., compressor) will consume a minimum
amount of work when reversible processes are used. Therefore, reversible processes can
be considered as theoretical limits for corresponding real, irreversible processes. The more
an actual process approximates a reversible process, the more efficient the design. There-
fore reversible processes are often used to represent an ideal model of a system that can
be compared with the actual irreversible system.

A process in which no heat transfer occurs is called an adiabatic process. Normally
an adiabatic process can occur in only one of two ways: either the system is so well
insulated that only a small (negligible) amount of heat can pass between the system and
its surroundings, or both the system and its surroundings are at the same temperature. An
adiabatic, reversible process is called isentropic.
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The Second Law of Thermodynamics states that it is impossible to construct a system
that will operate in a cycle, extract heat from a reservoir and do an equivalent amount of
work on the surroundings. Thus the Second Law implies that if a system is to undergo
a cycle and produce work, it must operate between two heat reservoirs of different tem-
peratures. Therefore, an airplane driven by an engine extracting heat from the ambient
air cannot exist, because it would have to reject heat to a lower temperature than its
surroundings in order to produce work. The fact that no system can truly be irreversible
(and therefore isentropic) is shown by the Clausius inequality, which states:∮

δQ

T
≤ 0 (1.5)

If no irreversibilities occur within the system then the cycle can be reversed. This is called
an internally reversible system, which is defined as:∮ (

δQ

T

)
rev

= 0 (1.6)

In 1867, German physicist Rudolf Clausius defined the thermodynamic property, shown
in Equation 1.5, as entropy (S) (Equation 1.6.) Entropy is expressed in SI units as J/K
(or J/◦C). In Imperial units it can have units such as cal/◦R (or cal/◦F). Entropy per unit
mass or specific entropy is represented by the symbol s.

dS =
(

δQ

T

)
rev

(1.7)

The Clausius inequality shows that entropy change (�S) of an isolated system during an
irreversible process is always a positive quantity. In other words, some entropy is always
generated in an isolated, irreversible process. Entropy is constant in an isolated, reversible
process. Therefore, an isentropic process can be defined as an adiabatic process in which
the entropy remains constant. This is known as the increase of entropy principle and is
summarized as:

�S > 0 Irreversible processes (1.8)

�S = 0 Reversible (isentropic) processes (1.9)

�S < 0 Impossible (1.10)

Entropy is a useful property in analyzing propulsion systems, but unlike other proper-
ties (such as temperature, pressure, or velocity) which have directly observable physical
effects, entropy is a difficult concept for many people. It can be indirectly observed by
measuring the losses incurred in other properties as a system undergoes a process. Entropy
can be thought of as a measure of disorder, chaos, or randomness. Since no real, iso-
lated system can undergo an isentropic process, the entropy or disorder of the universe is
always increasing.

Many systems used in engines such as compressors, turbines, nozzles and diffusers can
be ideally approximated by considering them to operate as an adiabatic process. Since
the performance of these systems is optimized when irreversibilities (such as friction)
are minimized, an isentropic (or ideal) model is often used to compare with the actual
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irreversible process. This comparison is done by defining isentropic efficiencies that
compare the actual performance to the idealized performance.

Clean up this
mess! Your room

is total chaos!

But Mom
entropy always
increases! So

this is
irreversible.

‘‘Irreversible Mess’’ The Second Law of Thermodynamics says that pro-

cesses will naturally become more disordered. By intentionally adding heat

or work to a system we can bring more order to a particular attribute of

the system. However, even though one attribute of the system may become

more ordered, there will always be a net entropy gain (or increase of disorder)

due to other irreversibilities (such as friction or heat loss).

1.1.2 Equation of State for a Perfect Gas

The properties of gases (especially air) are very important in analyzing propulsion systems.
An equation that relates the pressure, temperature, and density of a gas (or any substance)
is called an equation of state. In 1662, Englishman Robert Boyle discovered that the
pressure of a gas is inversely proportional to its volume, at constant temperature. Boyle’s
Law is shown in Equation 1.11.

P ∝ 1

–V
(1.11)

In 1787, Frenchman Jacques Charles discovered that the volume of a gas is directly
proportional to its temperature, at constant pressure. In 1802, Joseph Louis Gay-Lussac
published this finding (citing Charles’s unpublished work). This is now known as Charles’s
Law, shown in Equation 1.12.

T ∝ –V (1.12)

Combining the results of Boyle’s and Charles’s Laws, an equation for a perfect (or ideal)
gas is defined in Equations 1.13, 1.14, and 1.15.
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Equation of state for a perfect gas:
(Ideal Gas Law)

P –v = RT

P = ρRT

P –V = mRT

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P ≡ Pressure of gas (N/m2)

–v ≡ –V

m
≡ Specific volume of gas (m3/kg)

T ≡ Temperature of gas (K)

ρ ≡ 1

–v
≡ Density of gas (kg/m3)

–V ≡ Volume of gas (m3)

m ≡ Mass of gas (kg)

(1.13)

(1.14)

(1.15)

The constant of proportionality (R) is called the gas constant and is different for every
gas. It can be determined from a universal gas constant (R◦) shown in Equation 1.16.
The ideal gas equation of state is particularly useful for analysis of propulsion systems,
because air is closely approximated to a perfect gas. For pure air, R is approximately
equal to 287 J/(kg·K).

R = Ro

Mw

{
Ro ≡ Universal gas constant [= 8.3145 kJ/(kmole·K)]

Mw ≡ Molecular weight of gas (kg/kmole)
(1.16)

1.1.3 Law of the Conservation of Mass

The Law of the Conservation of Mass (also known as the continuity equation) applied
to a fluid crossing the boundary of a fixed control volume is shown schematically in
Figure 1.8.

The conservation of mass integral equation is shown in Equation 1.17.

∂

∂t

∫∫∫
control
volume

ρ d–V +
∫∫

control
surface

ρ �V dA = 0 (1.17)

Total change 
of fluid mass
in the control
volume per

unit time

Mass of flow
entering the

control volume
per unit time

Mass of flow
leaving the

control volume
per unit time

Figure 1.8 Law of the conservation of mass
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If there is a steady flow through the control volume then the time rate of change of mass
in the control volume is zero or:

∂

∂t

∫∫∫
control
volume

ρ d–V = 0 (1.18)

So the steady flow continuity equation becomes:∫∫
control
surface

ρ �V dA = 0 (1.19)

If the velocity ( �V ) does not vary in either magnitude or direction across a cross-sectional
area (A) that is normal to the flow direction, then:

ṁ = ρVA = constant (1.20)

Example 1.1

Liquid oxygen (LOX) and liquid hydrogen (LH2) are steadily injected into a rocket
thrust chamber at 8 kg/s and 1 kg/s respectively and ignited as shown in Figure 1.9.
The combustion products are expelled from the rocket through a nozzle with a diam-
eter of 25 cm.

Thrust chamber

Control volume
Y

Nozzle

Exit 
Ae, VeX

O2

H2

Figure 1.9

If the density of the combustion gases is 0.175 kg/m3. Determine the exit velocity of
the combustion gases.

Solution

The control volume of the rocket thrust chamber and nozzle is shown by the dotted
line in Figure 1.9. Since the propellants are flowing at a steady rate, the conservation
of mass equations are reduced to:

control
volume

control
surface

0, steady flow
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ρcomb
prod

AeVe︸ ︷︷ ︸
ṁexit

= ṁO2 + ṁH2︸ ︷︷ ︸
ṁin

Ve = ṁO2 + ṁH2

Aeρcomb
prod

= ṁO2 + ṁH2

πd2

4

(
ρcomb

prod

)

=
8

kg

s
+ 1

kg

s
π

4
(0.25 m)2

(
0.175

kg

m3

) = 1047.7
m

s

1.1.4 Law of the Conservation of Linear Momentum

The conservation of linear momentum equation applied to a fixed control volume is shown
schematically in Figure 1.10. The conservation of linear momentum integral equation is
shown in Equation 1.21:

∑
F = ∂

∂t

∫∫∫
control
volume

ρ �V d –V +
∫∫

control
surface

�V
(
ρ �V dA

)
(1.21)

In this equation, �F is the summation of all the external forces acting on the control
volume, which may include gravity, pressure forces, or viscous forces. If steady flow con-
ditions exist, then the time rate of change of momentum in the control volume is zero or:

∂

∂t

∫∫∫
control
volume

ρ �V d–V = 0 (1.22)

So the steady flow momentum equation becomes:∑
F =

∫∫
control
surface

�V
(
ρ �V dA

)
(1.23)

Summation of
all external

forces acting
on the

control volume

Time rate of
change of linear

momentum
in the

control volume

Net flow rate
of linear

momentum 
out of the 

control volume

Figure 1.10 Conservation of linear momentum
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Example 1.2

A rocket motor burning on a test stand steadily exhausts 20 kg/s of combustion gases at
an exit velocity of 750 m/s, as shown in Figure 1.11. The static pressure of the exhaust
gases exiting the nozzle is 120 kPa. Assume an ambient air pressure of 101.3 kPa.
Determine the force (or thrust) the rocket produces.

Control volume

Thrust chamber

Fn

Rx

Y

Nozzle

Ambient 
P0 = 101.3 kPa

Exhaust 
Ae = 0.02 m2 

Ve = 750 m/s 
Pe = 120 kPaX

Figure 1.11

Solution

The external reaction force (Rx) which holds the rocket in place on the test stand is
equal in magnitude but opposite in direction to the thrust force produced by the rocket.

FN = −Rx

The control volume encompassing the rocket and test stand is shown by the dotted
line in Figure 1.11. Since the exhaust gas is flowing at a steady rate, the conservation
of momentum equations reduce to:

control
volume

control
surface

0, steady flow

FN = ṁV + Ae (Pe − P0)

=

(
20

kg

s

)(
750

m

s

)
1, 000

N

kN

+ (0.02 m2) (120 kPa − 101.3 kPa)

= 15.4 kN
This example shows how the thrust equation for a rocket is derived from the Law of
the Conservation of Momentum.
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1.1.5 Law of the Conservation of Energy

The Law of the Conservation of Energy is also known as the First Law of Thermody-
namics. For a system consisting of a fixed mass of particles, the Law of the Conservation
of Energy of the system is shown schematically in Figure 1.12.

Total rate of
energy transfer
into a control

volume by heat
and work transfer

Time rate of
change of 

energy in the
control volume

Total flow rate
of energy out
of the control

surface by
mass flow

Figure 1.12 Conservation of energy

The total heat (Q) and work (W ) are defined in the energy equation as forms of energy
crossing the control volume boundary of a system. Total work can include mechanical
work, electrical work, or magnetic work. The total energy (E) includes all energy forms
of the system at a given state. The forms of energy include internal energy (U ), which
is the random motion of molecules in the system; the potential energy (EPE); kinetic
energy (EKE), due to the position and motion of the entire system; and storable forms of
energy such as chemical energy or electrical (capacitance) energy. Each of these energy
forms must be applied to a control volume encompassing the system to derive an energy
integral equation. The total energy per unit mass is symbolized by e and the total internal
energy per unit mass (or specific internal energy) is symbolized by u. If the system
has only internal, potential, and kinetic energies, the integral equation is expressed as
Equation 1.24.

d

dt
(Q − W) = ∂

∂t

∫∫∫
control
volume

eρ d–V +
∫∫

control
surface

(
u +

�V 2

2
+ gz

)(
ρ �V dA

)
(1.24)

If the system consists of mass flows that cross the control volume boundaries, the total
work (W ) can be written in two parts. The first part is the flow work. This is the work
required to overcome the external pressure forces and drive the mass across the boundaries.
The second part lumps together all other work crossing the boundaries such as mechanical
(or shaft) work, viscous shear work, electrical work, and so on. The equation for the flow
work is shown in Equation 1.25.

Wflow = P�–V = P

ρ
�m (1.25)

Therefore the flow work done per unit mass is:

wflow = P

ρ
(1.26)

Under these conditions, the energy equation is normally written by combining the specific
internal energy (u) and the flow work per unit mass (wflow) into a single property, called
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the specific enthalpy (h) defined in Equation 1.27.

h = u + P

ρ
(1.27)

The energy equation in this form is shown in Equation 1.28.

d

dt

(
Q − W ′) = ∂

∂t

∫∫∫
control
volume

eρd –V +
∫∫

control
surface

(
h +

�V 2

2
+ gz

)(
ρ �V dA

)
(1.28)

In this equation W ′ is the total work excluding the flow work (wflow).
Another important parameter used in relation to the energy equation is the specific heat.

The specific heat of a solid or liquid is defined as the amount of heat required to raise a unit
mass through a 1◦C temperature rise. When the volume is held constant, this known as the
constant volume specific heat (Cv). Since the specific internal energy (u) is a function
of only the temperature of a perfect gas, this can be expressed as shown in Equation 1.29.

Cv =
[

∂u

∂T

]
–V

(1.29)

When the pressure is held constant, this is known as the constant pressure specific heat
(Cp). However, from the definition of enthalpy (h) in Equation 1.27, it can be seen that
for a perfect gas (such as air):

dh = du + d

(
P

ρ

)
(1.30)

Since this is a perfect gas, Equation 1.14 can be substituted into Equation 1.30 to give:

dh = du + RdT (1.31)

Therefore the enthalpy of a perfect gas is also only a function of temperature, so the
constant pressure specific heat can be expressed as Equation 1.32.

Cp =
[

∂h

∂T

]
P

(1.32)

Rearranging Equation 1.31 gives:

R = dh

dT
− du

dT
= Cp − Cv (1.33)
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Also the ratio of specific heats (γ ) is defined as:

γ = Cp

Cv

(1.34)

Therefore:
Cv

R
= Cv

Cp − Cv

= 1
Cp

Cv
− 1

= 1

γ − 1
(1.35)

and likewise:
Cp

R
= γ

γ − 1
(1.36)

Table A.2 in Appendix A lists properties of gases at a reference temperature of
25◦C (298 K).

A calorically perfect gas is a perfect gas with constant specific heats. If a calori-
cally perfect gas is involved in a thermodynamic process between two equilibrium states,
then the specific internal energy or enthalpy difference can be determined by integrating
Equations 1.29 and 1.32.

�u = u2 − u1 =
2∫

1

Cv dT = Cv (T2 − T1) (1.37)

�h = h2 − h1 =
2∫

1

Cp dT = Cp (T2 − T1) (1.38)

Another useful thermodynamic equation for a pure substance is:

T ds = dh − dP

ρ
(1.39)

Therefore the entropy change of a perfect gas is:

s2 − s1 =
2∫

1

Cp

dT

T
− R ln

(
P2

P1

)
(1.40)

For an isentropic process �s = 0, therefore:

2∫
1

Cp

dT

T
= R ln

(
P2

P1

)
(1.41)

Cp

R
ln

(
T2

T1

)
= ln

(
P2

P1

)
(1.42)
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Example 1.3

Air enters an adiabatic compressor of a turbojet engine at 70 kg/s and at a tempera-
ture (T1) of 30◦C, as shown in Figure 1.13. It flows steadily through the compressor
with no change in velocity and exits at a temperature (T2) of 350◦C. Assume that
the constant pressure specific heat (Cp) of air is 1.005 kJ/(kg·K). Determine the min-
imum power that must be generated by a turbine in order to drive the compressor at
these conditions.

Compressor Turbine Y

X1 2

Figure 1.13

Solution

The control volume around the compressor section is shown by the dotted line in
Figure 1.13. The energy equation for steady flow is:

control
volume

control
surface

0, adiabatic0, steady flow No height change

No velocity change

Therefore the power required by the compressor to pressurize the air (and thereby
also increase its temperature) is equal to the minimum power required by the turbine
to drive it.

T1 = 30◦C + 273 = 303 K

T2 = 350◦C + 273 = 623 K

Ẇturbine = −Ẇcompressor = ṁair (h2 − h1) = ṁair Cp (T2 − T1)

=
(

70
kg

s

)(
1.005

kJ

kg·K
)

(623 K − 303 K)

= 22 512
kJ

s
or kW
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1.2 Isentropic Equations

1.2.1 Isentropic Relationship between Temperature and Pressure

Isentropic equations are often used in the analysis of perfect gas turbine engines and rocket
motors. For a simple, stationary compressible system the state postulate specifies that the
state of a system is completely specified by two independent, intensive (independent of
mass) properties, such as pressure (P ) and temperature (T ). (For a complete description
of the state postulate, see [2].) This means that the properties of a unit mass of a gas
(a single-phase system) can be determined from knowledge of just two independent,
intensive properties. However, if the gas is in motion, three intensive properties are
required, such as velocity (V ), pressure (P ), and temperature (T ). The tables in Appendix
B list how several property ratios vary ideally (isentropically) with Mach number. These
ratios are determined from isentropic equations, derived by first applying the conservation
of energy equation to a closed stationary system (fixed mass) containing a compressible
working fluid (such as air). An internally reversible process involving this closed system
is expressed in Equation 1.43.

dQ − dW = dU (1.43)

Since:
dQ = T dS (1.44)

dW = Pd –V (1.45)

dU = Cv dT (1.46)

Substituting Equations 1.44, 1.45, and 1.46 into Equation 1.43 and recognizing that for
an isentropic process T ds = 0, gives the following expression:

T ds = Cv dT + Pd –v = 0 (1.47)

Therefore:

dT = −Pd –v

Cv

(1.48)

Rearranging Equation 1.13 (for a perfect gas):

T = P –v

R
(1.49)

Differentiating Equation 1.49 with respect to temperature gives:

dT = 1

R
(Pd –v + –v dP) (1.50)

Substituting Equation 1.50 into Equation 1.48 gives:

−Pd –v

Cv

= 1

R
(Pd –v + –v dP) (1.51)

Cv

R
(Pd –v + –v dP) + Pd –v = 0 (1.52)
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Since Equation 1.35 states:

Cv

R
= 1

γ − 1

Therefore:
1

γ − 1
(P d –v + –v dP) + Pd –v = 0 (1.53)

Pd –v + –v dP + (γ − 1)P d –v = 0 (1.54)

Pd –v + –v dP + γPd –v − Pd –v = 0 (1.55)

dP

P
+ γ

d–v

–v
= 0 (1.56)

ln(P ) + γ ln(–v) = 0 (1.57)

These equations can be simplified by using the following logarithmic identities:

log(xn) = n log(x) (1.58)

log(xy) = log(x) + log(y) (1.59)

By applying these identities, Equation 1.57 can be rewritten as:

ln(P ) + ln
(
–vγ
) = ln

(
P –vγ

) = 0 (1.60)

Therefore:
P –vγ = constant = C (1.61)

Since by the Ideal Gas Law (Equation 1.13):

–v = RT

P
(1.62)

P –vγ = P

(
RT

P

)γ

= T γ Rγ

P (γ−1)
= constant = C (1.63)

T
γ

1 Rγ

P
(γ−1)

1

= T
γ

2 Rγ

P
(γ−1)

2

(1.64)

T1

T2
=
[
P1

P2

] (γ−1)

γ

(1.65)

The isentropic relationship between temperature and pressure in a gas turbine engine
is commonly illustrated by a T–S diagram of the engine cycle (Figure 1.14). The T–S
diagram is generally preferred to the P– –V diagram for illustrating propulsion analysis of
gas turbine, ramjet, or scramjet engines. The ideal (or isentropic) processes representing
the compressor and turbine are shown by the vertical arrows and labeled with a prime
symbol (′). The actual (or non-isentropic) processes are represented by dashed arrows.
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Figure 1.14 T –S Diagram for a gas turbine engine

1.2.2 Isentropic Relationships with Specific Volume

It is also useful to develop isentropic expressions that relate the specific volume (–v) to
pressure (P ) and temperature (T ). Starting with the definition of enthalpy (h), shown in
Equation 1.30:

dh = du + d

(
P

ρ

)
= du + d(P –v) (1.66)

dh = du + P d–v + –v dP (1.67)

Rearranging Equation 1.48:

Cv dT = −P d –v (1.68)

Substituting Equation 1.67 into Equation 1.68 gives:

0 = (dh − P d–v − –v dP) + P d–v (1.69)

0 = dh − –v dP (1.70)

dh = –v dP (1.71)

Since also (Equation 1.32):

dh = Cp dT (1.72)

then:

–v dP = Cp dT (1.73)
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Dividing Equation 1.68 by Equation 1.73 results in the following equation:

−Pd –v

–v dP
= Cv

Cp

(1.74)

dP

P
= −Cp

Cv

d–v

–v
= −γ

d–v

–v
(1.75)

Integrating this equation between points 1 and 2 gives:

P2∫
P1

dP

P
= −γ

–v2∫
–v1

d–v

–v
(1.76)

ln

(
P2

P1

)
= −γ ln

(
–v2

–v1

)
(1.77)

ln

(
P2

P1

)
= ln

(
–v2

–v1

)−γ

(1.78)

P2

P1
=
(

–v2

–v1

)−γ

=
(

–v1

–v2

)+γ

(1.79)

Recall from Equation 1.13 for a perfect gas:

P = RT

–v

This can be substituted in to give a relationship with temperature.

P2

P1
=

RT2

–v2
RT1

–v1

=
(

–v1

–v2

)γ

(1.80)

T2

T1

(
–v1

–v2

)
=
(

–v1

–v2

)γ

(1.81)

T2

T1
=
(

–v1

–v2

)−1 ( –v1

–v2

)γ

(1.82)

T2

T1
=
(

–v1

–v2

)γ−1

(1.83)
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P n = ∞

n = 0
n = 1 (isothermal) 
          T = constant

n = g (isentropic)

Figure 1.15 Polytropic expression definition

1.3 Polytropic Processes

In the previous section, relations were derived using isentropic processes. These ideal
relationships are often used to compare actual processes by use of isentropic efficiencies
(Figure 1.14). Isentropic efficiencies will be defined and described in greater detail in
subsequent chapters of this book. These efficiencies will be used as a measure of the
irreversibility of turbomachinery processes. However, there are other propulsion processes
that approach the isentropic law. Polytropic processes follow laws that form the relation:

P –vn = constant = C (1.84)

Where n lies between 0 and γ . Equation 1.84 is used to create P– –V diagram plots for
three different profiles shown in Figure 1.15.

The different curves shown in this plot (created by changing the value of n) illustrate
alternative methods of defining efficiencies, called polytropic efficiencies. Figure 1.15
shows that the isothermal (or constant temperature) process can be considered as a special
case of the polytropic process when n = 1. Isentropic processes can be considered a
special polytropic case, when n = γ . For simplicity, this book deals only with isentropic
efficiencies. These are defined as the ratio of the ideal (isentropic) work to the actual work
for given pressure ratios. Other references make more use of polytropic efficiencies [3].
Polytropic efficiencies are defined as the ratio of the ideal work to the actual work for a
differential pressure change.

1.4 Total (or Stagnation) Properties

When a fluid in motion is isentropically brought to rest a temperature and pressure rise
occurs. The properties of a fluid at this stagnation point are called stagnation proper-
ties (Figure 1.16). In the absence of hydrostatic pressures (i.e., the elevation effects of
fluid weight on pressure), stagnation properties are equivalent to total properties. Total
properties (e.g., Pt , Tt , ht ) are useful as a reference state for compressible flow in propul-
sion systems.
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Stagnation point (flow velocity = 0)
(Tt, Pt)

T, P

Figure 1.16 Definition of total (or stagnation) properties

A definition for the total temperature can be derived by applying the energy equation
to a unit mass flow in a duct where:

• there is no change in potential energy
• flow is adiabatic (Q = 0)
• no work is done (W = 0).

Applying the Law of the Conservation of Energy gives:

u1 + P1 –v1 + V 2
1

2
= u2 + P2 –v2 + V 2

2

2
(1.85)

CvT1 + RT1 + V 2
1

2
= CvT2 + RT2 + V 2

2

2
(1.86)

Substituting Equation 1.33 into this equation gives:

(Cp − R)T1 + RT1 + V 2
1

2
= (Cp − R)T2 + RT2 + V 2

2

2
(1.87)

T1 + V 2
1

2Cp

= T2 + V 2
2

2Cp

(1.88)

The sum of the terms on the two sides of this equation are identical. Therefore these
summations can be defined as a new term, as shown in Equations 1.89 and 1.90.

Tt1 = Tt2 (1.89)

The term Tt in Equation 1.89 is the total (or stagnation) temperature (Figure 1.16). There-
fore the total temperature is defined as:

Total (or stagnation) temperature:

Total temperature = Static temperature + Dynamic temperature

Tt = T + V 2

2Cp

(1.90)
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In this equation, the dynamic temperature is the temperature equivalent of the kinetic
energy (V 2/2Cp) of the flow. The total to static pressure ratio (Pt/P ) can be related to
the total to static temperature ratio (Tt/T ) by inspection of Equation 1.65:

Pt

P
=
(

Tt

T

) γ

γ−1
(1.91)

The total enthalpy per unit mass (ht ) for a perfect gas with constant specific heats is
therefore defined as:

ht − h = Cp (Tt − T ) (1.92)

Substituting Equation 1.90 into Equation 1.92:

ht = h + V 2

2
(1.93)

It is often inconvenient to use the velocity of the gas in aerospace propulsion analysis.
The Mach number (M) is a non-dimensional parameter that is often used in place of the
velocity to describe the state of a flowing gas. The Mach number is defined as the ratio
of the velocity (V ) over the velocity of sound (a).

Mach number:

M = V

a
(1.94)

The velocity of sound (a) for a perfect gas is derived by encompassing a sound expan-
sion wave within a control volume and applying the Law of the Conservation of Mass
and the Law of the Conservation of Momentum to it. Combining these two equations
results in an equation for the velocity of sound (for a weak compression wave), shown
in Equation 1.95 (the derivation is given in [4]).

a2 =
(

∂P

∂ρ

)∣∣∣∣
s

= dP

dρ
(1.95)

The velocity of sound for a perfect gas is simplified from this expression by applying
Equation 1.79, which states:

P2

P1
=
(

–v1

–v2

)γ

=
(

ρ2

ρ1

)γ

(1.96)

or:

P1

ρ
γ

1

= P2

ρ
γ

2

= P

ργ
= constant = C (1.97)
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Solving this equation for P and substituting this back into Equation 1.95 yields:

a2 = dP

dρ
= C

d(ργ )

dρ
= γCργ

ρ
(1.98)

Substituting the value of P (found in Equation 1.97) into Equation 1.98 results in:

a2 = γP

ρ
(1.99)

Simplifying this equation and substituting for (P
/
ρ ) by using the equation of state for

a perfect gas (Equation 1.14), results in:

Velocity of sound (perfect gas):

a =
√

γP

ρ
=
√

γRT (1.100)

The total to static ratios of temperature and pressure can be written in terms of Mach
number. Combining Equations 1.99 and 1.100 together gives:

V 2 = M2a2 = M2 (γRT ) (1.101)

Substituting this equation into Equation 1.91 yields:

Tt

T
= 1 + M2γR

2Cp

(1.102)

Recall from Equations 1.33 and 1.34:

R = Cp − Cv and γ = Cp

Cv

Combining these equations together gives:

R

Cv

= Cp

Cv

− 1 = γ − 1 (1.103)

R = Cv (γ − 1) (1.104)

Substituting Equation 1.104 into Equation 1.102 gives:

Tt

T
= 1 + M2γCv (γ − 1)

2Cvγ
(1.105)

Canceling out terms in this equation gives an equation relating total to static temperature
ratio and Mach number.

Tt

T
= 1 + M2 (γ − 1)

2
(1.106)
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Substituting Equation 1.91 into Equation 1.106 gives an equation that relates the total to
static pressure ratio and the Mach number.

Pt

P
=
[

1 + M2 (γ − 1)

2

] γ

γ−1
(1.107)

Like Mach number (M), there are several other non-dimensional parameters that are useful
in engine analysis. One commonly used parameter is called the X -function. It is derived
by applying the Law of the Conservation of Mass to describe a steadily, flowing gas in
a parallel duct (Equation 1.108).

ṁ = ρAV (1.108)

Rearranging the equation of state for a perfect gas (Equation 1.14):

ρ = m

–V
= P

RT
(1.109)

Rearranging Equation 1.101:

V = M
√

γRT (1.110)

Substituting Equation 1.109 and 1.110 into Equation 1.108 gives:

ṁ = PAM
√

γ√
RT

(1.111)

Rearranging Equation 1.106 gives:

T = Tt(
1 + γ + 1

2
M2
) (1.112)

Rearranging Equation 1.107 gives:

P = Pt(
1 + γ + 1

2
M2
) γ

γ−1

(1.113)

Substituting Equations 1.112 and 1.113 into Equation 1.111 gives:

ṁ = PtAM
√

γ√
RTt

[
1 + (γ − 1) M2

2

]−(γ+1)

2(γ−1)

(1.114)

A portion of Equation 1.114 is defined as the non-dimensional mass flow rate or simply
as the X -function (X) (shown in Equation 1.115). The X-function is a useful term to aid
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analysis of fluid flows because it is a unique function of Mach number in a calorically
perfect gas.

X-function (non-dimensional mass flow rate):

X = M
√

γ

[
1 + γ − 1

2
M2
]−(γ+1)

2(γ−1)

(1.115)

Substituting the definition of the X-function (Equation 1.115) into Equation 1.114 gives:

ṁ = PtAX√
RTt

(1.116)

Therefore the X-function can also be expressed by rearranging Equation 1.116,
which gives:

X-function (non-dimensional mass flow rate):

X = ṁ
√

RTt

APt

(1.117)

The X-function is often used in the analysis of propulsion systems. Likewise a Y -function
and Z -function can also be used. These are defined as:

X = YZ (1.118)

The Y - and Z-functions are shown in Equations 1.119 and 1.120.

Y-function (non-dimensional specific internal thrust reciprocal):

Y =
M

√
γ

√
1 +

(
γ − 1

2

)
M2

1 + γM2
(1.119)

Z-function (non-dimensional internal thrust):

Z =
(
1 + γM2

)
[

1 + γ − 1

2
M2
] γ

γ−1

(1.120)
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1.5 Isentropic Principles in Engine Components

1.5.1 Ducts

Steady, isentropic flow through a frictionless duct is one of the simplest fluid dynamics
systems to define and analyze. No work can be extracted from a duct. If the flow is
isentropic (and therefore adiabatic) there is no heat transfer (in or out), and the energy
equation becomes:

Q̇ − Ẇ = 0 (1.121)

Since there is no heat transfer, the total temperature is constant (�Tt = 0). For steady
flow (�ṁ = 0) in a frictionless duct the total pressure is also constant (�Pt = 0). If a
frictional duct is considered (non-isentropic), there is a loss in total pressure because of the
change in entropy (�s) caused by frictional losses. This can be seen in Equation 1.122.

�s = �S

m
= −R ln

(
Pt2

Pt1

)
(1.122)

Since the change in entropy (�s) cannot fall in value (Equation 1.8), then there must
be a loss in total pressure (Pt2 < Pt1) in a frictional duct. But in this simple case, flow
through the duct is non-frictional and isentropic (�s = 0). Therefore:

AX = ṁ
√

RTt

Pt

= constant = C (1.123)

The only forces acting on the gas in this duct are pressure forces (the duct exerts no axial
force). So applying Newton’s Second Law gives:

A (P1 − P2) = ṁ (V2 − V1) (1.124)

or
ṁV1 + AP1 = ṁV2 + AP2 (1.125)

Therefore at any plane in the duct:

ṁV + AP = constant (1.126)

This constant, known as the internal stream thrust (Fint ), is expressed as:

Fint = ṁV + AP (1.127)

Rearranging the equation for mass flow derived from the Law of the Conservation of
Mass (Equation 1.20) gives:

ṁ = PAV

RT
(1.128)

Substituting Equation 1.128 into Equation 1.127 results in:

Fint = PAV 2

RT
+ AP = PA

(
V 2

RT
+ 1

)
(1.129)
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Substituting the Mach number definition (Equation 1.94) for velocity into Equ-
ation 1.128 gives:

Fint = PA
(
γM2 + 1

)
(1.130)

Finally substituting Equation 1.107 into this equation gives:

Fint = PtA
(
γM2 + 1

)
(

1 + M2
(γ − 1)

2

) γ

γ−1

(1.131)

Substituting the Z−function into this equation gives:

Steady frictionless flow in a parallel duct:

Fint = PtAZ (1.132)

This equation reveals the reason that the Z−function is known as the non-dimensional
internal thrust, since:

Z = Fint

PtA
(1.133)

The Law of the Conservation of Mass or continuity equation (Equation 1.19) for one-
dimensional steady flow through a varying area duct can be written as:

(ρ + dρ) (A + dA) (V + dV ) − ρAV = 0 (1.134)

dρ

ρ
+ dA

A
+ dV

V
= 0 (1.135)

Applying the steady flow, linear momentum equation (Equation 1.23) for this same control
volume gives the equation:

pA +
(

P + dP

2

)
dA − (P + dP ) (A + dA) = (ρAV ) dV (1.136)

dP + ρV dV = 0 (1.137)

Multiplying Equation 1.135 by (ρV 2) and rearranging gives:

ρV dV = −dρV 2 − ρV 2 dA

A
(1.138)

Substituting Equation 1.138 into Equation 1.137 results in:

dP + ρV 2
[
−dρ

ρ
− dA

A

]
= 0 (1.139)
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This equation is simplified by solving the general definition of the velocity of sound
(Equation 1.95) for dρ and then substituted into Equation 1.137, resulting in:

dP + ρV 2
(

− dP

ρa2
− dA

A

)
= 0 (1.140)

Further simplification of Equation 1.140 gives a relationship for isentropic flow in a
varying duct or channel.

dP
(
1 − M2) = ρV 2 dA

A
(1.141)

Equation 1.141 is significant because it shows the effect that Mach number has on flow
inside a varying area duct or channel (Figure 1.17). For subsonic flow (M < 1), it can be

Subsonic flow

Supersonic flow

M < 1

P V P V

P V P V

M < 1

M > 1 M > 1

M < 1 M = 1 M > 1

Figure 1.17 Flow through a varying area duct (John, J. E. A., Gas Dynamics, 2nd Edition, © 1984.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ [4].)



34 Aerospace Propulsion Systems

seen from this equation that a decrease in area (dA) (called a converging duct), results in
a decrease in pressure (dP ) and an increase in velocity (dV ). Conversely an increase in
area (diverging duct) increases the pressure and decreases the velocity.

For supersonic flow (M > 1), the opposite trends occur. These results show that sub-
sonic flow cannot be accelerated to supersonic flow in a converging duct or nozzle. A con-
vergent–divergent (condi) duct or nozzle must be used to achieve this (see Section 1.5.4).

1.5.2 Turbomachinery

Turbomachinery (such as compressors or turbines) are designed to transfer work (not
heat). Compressors are used to increase the pressure of a flow while turbines are used to
extract work (or energy) from the flow. In a gas turbine engine, energy extracted from
turbines is used to power the compressors. The power required to drive the compressor
is determined by the energy equation (derived in Example 1.3):

Ẇc = ṁCp (Tt2 − Tt1) (1.142)

Ideally, the temperature ratio in compressors and turbines is the minimum associated with
the pressure changes in the devices. So ideal turbomachinery can be considered isentropic
and Equation 1.65 can be applied (but for total pressure and temperature ratios), as shown
in Equation 1.143.

Tt1

Tt2
=
[
Pt2

Pt1

] γ−1
γ

(1.143)

Actual turbomachinery has irreversibilities due to friction on all of the wetted surfaces.
However, it is difficult to account for these irreversibilities. Instead ideal (isentropic) prop-
erties can be used as a basis for the engine’s performance analysis. Isentropic efficiencies
(η) are then used to determine actual properties from the ideal. (This will be discussed in
much greater detail in subsequent chapters.)

1.5.3 Combustion Chambers (Combustors)

Combustion chambers (or thrust chambers in rockets) generate heat by greatly increasing
the temperature of the flow. For gas turbine engines and rockets, this is generally done by
burning fuel or propellant. Combustion chambers are designed to be steady flow devices,
so they are essentially ducts with the capacity for heat addition. No work can be extracted.
The heat produced by the combustor is therefore:

Q̇ = ṁCp (Tt2 − Tt1) (1.144)

1.5.4 Nozzles

Two types of nozzles are primarily used in aerospace propulsion systems (shown in
Figure 1.18). A convergent nozzle is shaped to have a continuously decreasing cross-
sectional area in the flow direction. A convergent–divergent (or condi) nozzle is a
convergent nozzle followed by a divergent nozzle (continuous increase in cross-sectional
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Figure 1.18 Types of nozzles

area in the flow direction). The condi nozzle was originally invented by a Swedish engineer
named Karl Gustaf de Laval for use in steam turbines and is therefore also known as the
de Laval nozzle.

(The symbol ‘∗’ is generally used as a label to indicate the location of the throat,
which is the point between the convergent and divergent portions of a condi nozzle. A
condi nozzle is optimally designed so that M∗ = 1.0 at the throat.)

1.5.4.1 Convergent Nozzles

Isentropic flow through a convergent nozzle can be best understood by examining a nozzle
with a constant chamber pressure (Pc) and applying decreasing back pressures (points
A → D) on it (Figure 1.19). If the nozzle is exhausting gases into the atmosphere, this
back pressure is equal to the ambient pressure (P0). Therefore a continuous decrease in
the ambient back pressure is equivalent to climbing in altitude (Table A.1, Appendix A).

Point A illustrates a limiting case where the back pressure equals the chamber pressure
(P0 = Pc), so there is no mass flow through the nozzle. As the ambient back pressure is
lowered to point B and beyond (P0 < Pc), the static pressure through the nozzle decreases
and the mass flow through the nozzle increases. The Mach number at the nozzle exit plane
also increases. Under these conditions, the static pressure of the flow exiting the nozzle
is equal to the ambient back pressure (Pe = P0). This is called fully expanded flow,
and is an optimal condition for propulsive convergent nozzles, because it maximizes the
momentum thrust component and therefore the net thrust.

This trend continues until point C is reached, where the fluid exiting the nozzle is
equal to the velocity of sound (Me = 1.0). As illustrated in Figure 1.17, flow through a
convergent nozzle cannot be accelerated from subsonic velocities to supersonic veloci-
ties, therefore as the back pressure continues to decrease past point C (to point D and
beyond) no additional mass can flow through the nozzle. (For a physical description of
this phenomenon, see [4].) This is called choked flow. For choked flow, the exit static
pressure is not equal to the back pressure (Pe �= P0). Under these conditions the sonic
gases will dissipate through a shock system. If the pressure differences are large enough,
these shocks will form outside the nozzle.
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Figure 1.19 Choked flow in a convergent nozzle

Choked (or underexpanded) flow occurs when the pressure ratio (Pte /P0 ) is greater than
or equal to a critical value (PRcrit). This places a maximum limit on the gas mass flow
passing through the nozzle. As previously stated, optimum (or maximum) thrust occurs
when the exhaust gases fully expand to the ambient pressure (Pe = P0). Full expansion
maximizes the momentum thrust, which maximizes the net thrust (FN ). Choked flow
results in a loss of momentum thrust, but creates a smaller pressure thrust component
since (Pe > P0). This lost momentum thrust may only be recovered by adding a divergent
surface (e.g., a condi nozzle).

Slow down giving him
more pies Sam!

He can’t eat any faster!
He is choking!

But I
want him
to win!

‘‘Choking!’’ Choked flow means that the mass flow rate has reached

a maximum value.
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For isentropic flow, Equation 1.107 can be used to derive a critical pressure ratio (PRcrit)
that is necessary to just choke the nozzle, so it is the maximum pressure ratio (Pt /P ) that
can be achieved in the nozzle. This will occur when Me = 1.0 (for a convergent nozzle)
and is defined in Equation 1.145.

Critical pressure ratio:

PRcrit = Pt

P
=
(

1 + γ − 1

2

) γ

γ−1
(1.145)

The critical pressure ratio is a function of γ only (e.g., for γ = 1.333 then PRcrit = 1.852
and if γ = 1.4 then PRcrit = 1.893). Equation 1.145 provides a test to see if a convergent
nozzle is choked or not. If the ideal pressure ratio (achieved by full expansion of the
flow through the nozzle) exceeds the critical pressure ratio than this ideal ratio cannot be
achieved because flow through the nozzle is choked.

Nozzle choke test:

Choked if:
Pte

P0
≥ PRcrit (1.146)

If the nozzle is choked, then the exhaust pressure ratio (Pte /Pe ) is equal to the maximum
or critical pressure ratio (PRcrit). Therefore the static pressure of the exhaust gases is:

Pe = Pte

(
Pe

Pte

)
= Pte

PRcrit
(1.147)

If the nozzle is not choked, flow is subsonic throughout the nozzle (Me < 1). Flow through
the nozzle can adjust to changes in ambient back pressure (altitude). Ambient pressure
changes will propagate upstream from the nozzle exhaust plane at the speed of sound.
So for all unchoked flows in a convergent nozzle, the exit pressure will be equal to the
ambient back pressure (Pe = P0). The modes of operation of a convergent nozzle are
summarized in Table 1.2.

Also from Equation 1.106, the critical temperature ratio can be found for choked
flow as:

TRcrit = γ + 1

2
(1.148)

The critical temperature ratio is a function of γ only (e.g., for γ = 1.333 then TRcrit =
1.167 and if γ = 1.4 then TRcrit = 1.2). The exit static temperature for a choked nozzle
can be determined from the critical temperature ratio:

Te = Tt

TRcrit
(1.149)
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Table 1.2 Modes of operation – convergent nozzle

Underexpanded Just choked Fully expanded
(choked) (not choked)

Pte/P0 >PRcrit PRcrit <PRcrit

Pte/Pe PRcrit PRcrit <PRcrit

Me 1 1 <1
Pe >P0 P0 P0

Ae(Pe − P0) >0 0 0

1.5.4.2 Convergent-Divergent (Condi) Nozzles

As was done for convergent nozzles in Figure 1.19, isentropic flow through a condi nozzle
can be understood by examining a nozzle with a constant chamber pressure (Pc) and apply-
ing decreasing ambient back pressures (P0) (points A → D) on it as shown in Figure 1.20.
Again Point A illustrates a limiting case where the ambient back pressure equals the cham-
ber pressure (P0 = Pc), so there is no mass flow through the nozzle. Similar to Figure 1.19,
as the ambient back pressure is lowered to point B and beyond (P0 < Pc), the static
pressure through the nozzle decreases and the mass flow through the nozzle increases.

In this range of ambient back pressures, the flow is fully expanded so the static pressure
of the flow exiting the nozzle is equal to the ambient back pressure (Pe = P0). Flow in
both the convergent and divergent portions of the nozzle is subsonic. This trend contin-
ues until the ambient back pressure at point C is reached. At this point, the fluid at the
throat flows at the velocity of sound (M∗ = 1.0). Since the flow through the convergent
portion of the nozzle cannot be accelerated from subsonic velocities to supersonic veloc-
ities (Figure 1.17); the condi nozzle becomes choked at all pressure ratios below point C
(point D).

Decreasing

Choked
flow

e
BA

1.0

C

D

Pc P0

P0

P0

Pc

m
•

m
•

Figure 1.20 Choked flow in a condi nozzle
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When M∗ = 1.0 at the throat, there are two possible isentropic solutions for a given area
ratio (A

/
A∗ ). The flow can either decelerate to a subsonic exit Mach number (Me < 1) or

accelerate to a supersonic exit Mach number (Me > 1). Point D (and lower) represents the
ambient back pressure condition where the flow accelerates to a supersonic Mach number
in the diverging section of the nozzle. Therefore for ambient back pressures lower than
the point D, the pressure will decrease in both the convergent and divergent sections
of the condi nozzle resulting in supersonic exhaust flow. This is the objective of condi
nozzle designs, because a supersonic exhaust gas velocity greatly increases the thrust of a
propulsion system. For back pressures in between points C and D, an isentropic solution
is not possible because shock waves are formed and this is an irreversible process. In this
case, shock equations would have to be used to determine the flow properties.

As just stated, condi nozzles are designed to be choked at the throat (M∗ = 1.0) so
exhaust gases can be accelerated to a supersonic exit velocity in the diverging section.
The same choke test derived for convergent nozzles (Equation 1.146) can also be applied
to the throat section of condi nozzles (assuming that the diverging section does become
a subsonic diffuser). Optimal thrust occurs when the nozzle is sized so that the exhaust
gases are fully (or perfectly) expanded (Pe = P0). Imperfect nozzle expansion is caused
by not having an ideal nozzle expansion ratio (ε) for a particular operating altitude.
The flow is underexpanded if Pe > P0 and overexpanded if Pe < P0. Underexpansion is
caused by a less than optimal nozzle expansion ratio, resulting in a loss in momentum
thrust. Overexpansion is caused by having a greater than optimal nozzle expansion ratio,
which may result in flow separation, which forms shocks inside the nozzle. Nozzle per-
formance losses due to overexpanded flow are generally much larger than losses due to
underexpanded flow [5].

Full expansion of an exhaust jet in a fixed-geometry condi nozzle can only be achieved
when it is operating at its design pressure ratio. Consequently, fixed-geometry condi
nozzles are typically only used in missiles that spend the majority of their flight at a
predictable constant supersonic cruising velocity. Most other aerospace propulsion systems
equipped with condi nozzles are designed with variable geometry (VG). This allows the
area ratio to be variably optimized over a range of flight conditions, improving the condi
nozzle’s effectiveness at generating thrust. A variable area nozzle is critically important
at aircraft speeds below the design speed, where severe losses can occur in the divergent
section (of the condi nozzle) due to overexpansion. Additionally most supersonic aircraft
require an afterburner to achieve supersonic velocities. Afterburning engines are designed
so that the operating conditions upstream are unchanged, which necessitates the use of a
variable geometry nozzle.

Variable geometry nozzles have physical limitations that stop them from being able
to fully expand the exhaust gases at all the possible flight conditions required of an
aircraft. When perfect expansion is not achieved the exhaust flow will adjust outside the
nozzle by forming expansion or compression waves. Figure 1.21 shows how this occurs
at different conditions.

In an overexpanded condition, since the flow inside the nozzle is less than the ambient
pressure (Pe< P0), oblique shocks (compression waves) form at the nozzle exit to raise
the pressure to the ambient value. The flow at the exit plane is assumed to be uniform and
parallel, so by symmetry there should be no flow across the centerline. In other words,
there is no velocity component normal to the centerline. The pressure of the exhaust
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Underexpanded supersonic jet (Pe > P0)

Overexpanded supersonic jet (Pe < P0)

Full expansion (ideal) (Pe = P0)

P = P0
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P < P0 P < P0

P > P0
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P = P0 P = P0

P = P0 P = P0 P = P0

Jet boundary

Jet boundary

Figure 1.21 Exhaust flow out a condi nozzle (John, J. E. A., Gas Dynamics, 2nd Edition, © 1984.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River NJ [4].)

gases is raised to the ambient pressure as the flow goes through the first set of shocks.
However, the flow in this region is turned away from the centerline. Since there can
be no normal velocity component at the centerline, the flow must turn back toward the
horizontal. Therefore the intersection of the shock waves at the centerline reflects another
set of shock waves. As the flow passes through this second set of shock waves the pressure
of the exhaust gases rises above the ambient pressure, which causes a set of expansion
waves to reflect from the ambient air. The expansion waves cause the pressure of the
flow to once again be equal to the ambient pressure, but the flow is turned away from the
centerline. The intersection of the expansion waves at the centerline requires another set
of expansion waves to turn the flow back towards the horizontal. These expansion waves
then reflect from the ambient air as shock waves. This cycle continues to repeat itself until
the exhaust gases completely mix and dissipate into the ambient air at the jet boundaries.

In an underexpanded condition the flow behaves oppositely to the overexpanded case.
Since the underexpanded flow inside the nozzle was unable to decrease to the ambient
pressure (Pe > P0), expansion fans form at the nozzle exit plane to reduce the pressure
to the ambient value. The flow at the exit plane is assumed to be uniform and parallel,
so by symmetry there should be no flow across the centerline. In other words, there is no
velocity component normal to the centerline. The pressure of the exhaust gases is reduced
to the ambient pressure as the flow goes through the first expansion wave. However, the
flow in this region is turned away from the centerline. Since there can be no normal
velocity component at the centerline, the flow must turn back toward the horizontal there.
Therefore the intersection of the expansion waves at the centerline reflects another set
of expansion waves. As the flow passes through this second set of expansion waves the
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Figure 1.22 SR-71B with shock diamonds in the exhaust (Courtesy of NASA.)

pressure of the exhaust gases is reduced below the ambient pressure, which causes the
expansion waves to reflect from the ambient air as a set of oblique shocks (or compression
waves). The shocks cause the pressure of the flow to once again be equal to the ambient
pressure, but the flow is turned away from the centerline. The intersection of the shocks
requires another set of oblique shocks to turn the flow back towards the horizontal. These
shocks then reflect from the ambient air as expansion waves. This cycle also continues
to repeat itself until the exhaust gases dissipate into the ambient air [4].

In both overexpanded and underexpanded conditions, the flow pattern behind the nozzle
appears as a series of diamonds. This is often visible, as shown in Figure 1.22.

1.6 Shock Waves

A body traveling at a subsonic speed (M < 1) through a compressible fluid (such as
air) creates a disturbance that is propagated throughout the fluid by a wave traveling at
the local velocity of sound (relative to the body). This creates gradual changes in the
fluid properties (such as density, pressure, and temperature) along smooth, continuous
streamlines as it approaches the body. However, if the body is traveling at a supersonic
speed (M > 1) then the fluid is unable to gradually change ahead of the body. Therefore
the supersonic body induces a sudden change in fluid properties due to a shock wave.

Ahhh! 
I didn’t see that 
bump in time

I better slow down.
The sign says there
is a bump ahead.

‘‘Shocking Encounter’’ The first panel shows a situation similar to super-

sonic flow over a body. Like the driver, the flow has no time to prepare for it.

The second case is like subsonic flow over a body. Like the driver, the flow

ahead of the body gradually changes to prepare for it.
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Figure 1.23 Types of shock waves

Consideration of shock waves is important in the design of intakes, nozzles, and ducts
of aerospace propulsion systems capable of supersonic velocities. There are two types of
shock waves (shown in Figure 1.23). The simplest type of shock, the normal shock (or
plane shock), occurs normal to the flow direction. Therefore changes to the flow properties
across a normal shock occur only in the flow direction. An oblique shock occurs at an
inclined angle to the flow direction. The net change in fluid properties across a shock wave
can be determined by encompassing the shock within a control volume. Since there are
no temperature gradients inside the control volume the shock process is adiabatic. There-
fore, there is no change in the total temperature (Tt ) across the shock (Equation 1.150).
However, there is a change in Mach number (velocity), static temperature (T ), total and
static pressure (Pt and P ), and entropy (S) across the shock. So although flow through a
shock wave is adiabatic, it is not isentropic because it is irreversible.

Tt1 = Tt2 ∼ Across a shock (1.150)

1.6.1 Normal Shocks

Suppose a normal shock occurs in a one-dimensional, steady flow. The shock is assumed
to be thin, so that there is a negligible change in area across the shock. Applying the
conservation of mass and linear momentum across the normal shock yields the following
equations, respectively:

ρ1V1 = ρ2V2 (1.151)

P1 + ρ1V
2
1 = P2 + ρ2V

2
2 (1.152)

If the fluid medium is air (or some other gas that can be approximated as a perfect or
ideal gas), then Equations 1.13, 1.94, and 1.100 can substituted into Equations 1.151 and
1.152 to transform them into the following equations:

P1

RT1
M1

√
γRT1 = P2

RT2
M2

√
γRT2 (1.153)

P1
(
γM2

1 + 1
) = P2

(
γM2

2 + 1
)

(1.154)
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There is no change in total temperature across a shock (Equation 1.150). Therefore
Equation 1.106 can be substituted into Equation 1.150 to obtain:

T1

(
1 + γ − 1

2

)
M2

1 = T2

(
1 + γ − 1

2

)
M2

2 (1.155)

Rearranging Equation 1.155 gives:

P1

P2
= M2

M1

√
T1

T2
(1.156)

Substituting Equation 1.154 and 1.155 into Equation 1.156 gives:

1 + γM2
2

1 + γM2
1

= M2

M1

√
1 + γ − 1

2
M2

2√
1 + γ − 1

2
M2

1

(1.157)

Rearranging this equation:

M1

1 + γM2
1

√
1 + γ − 1

2
M2

1 = M2

1 + γM2
2

√
1 + γ − 1

2
M2

2 (1.158)

Squaring both sides of Equation 1.158 gives:

M2
1

(
1 + γ − 1

2
M2

1

)
(
1 + γM2

1

)2 =
M2

2

(
1 + γ − 1

2
M2

2

)
(
1 + γM2

2

)2 (1.159)

Rearranging Equation 1.159 into a quadratic equation gives:

M4
2

⎛
⎜⎜⎝γ − 1

2
−

γ 2M2
1

(
1 + γ − 1

2
M2

1

)
(
1 + γM2

1

)2
⎞
⎟⎟⎠

+M2
2

⎛
⎜⎜⎝1 −

2γM2
1

(
1 + γ − 1

2
M2

1

)
(
1 + γM2

1

)2
⎞
⎟⎟⎠−

M2
1

(
1 + γ − 1

2
M2

1

)
(
1 + γM2

1

)2 = 0 (1.160)

Solving this quadratic equation for M2 gives:

M2 =

√√√√√√√
M2

1 + 2

γ − 1
2γ

γ − 1
M2

1 − 1
(1.161)
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Equation 1.161 shows that for supersonic flow (M1>1) then M2<1. This shows that
across a normal shock the flow abruptly transitions from supersonic flow to subsonic
flow. [Note: This equation also shows that if flow is subsonic (M1<1) and a shock occurs
then M2>1. However, this second case is impossible because it violates the Second Law
of Thermodynamics by requiring an entropy decrease. Therefore for a shock to occur, the
approaching flow (M1) must be supersonic.]

From Equation 1.106, the following equation can be derived:

T2

T1
=

⎛
⎜⎝1 + γ − 1

2
M2

1

1 + γ − 1

2
M2

2

⎞
⎟⎠ (1.162)

Substituting Equation 1.161 into this equation results in:

T2

T1
=

(
1 + γ − 1

2
M2

1

)(
2γ

γ − 1
M2

1 − 1

)

M2
1

(
2γ

γ − 1
+ γ − 1

2

) (1.163)

Values of other property ratios across a normal shock, such as: P2 /P1 , Pt2 /Pt1 , and
ρ2
/
ρ1 shown in Equations 1.164, 1.165, and 1.166 are found in a similar manner. For

derivations of these equations, see [4].

P2

P1
= 2γM2

1 − γ + 1

γ + 1
(1.164)

Pt2

Pt1
=

⎡
⎢⎣

γ + 1

2
M2

1

1 + γ − 1

2
M2

1

⎤
⎥⎦

γ

γ−1
⎡
⎢⎢⎣ 1

2γ

γ + 1
M2

1 − γ − 1

γ + 1

⎤
⎥⎥⎦

1
γ−1

(1.165)

ρ2

ρ1
= (γ + 1) M2

1

(γ − 1) M2
1 + 2

(1.166)

These property ratios are tabulated in Tables C.1 and C.2 (Normal Shock Tables) in
Appendix C [6].

Example 1.4

A normal shock forms on the intake of an aircraft flying at Mach 1.6 at 10 km
(Figure 1.24). Assume γ = 1.4. Determine the Mach number (M2), total pressure
(Pt2), static pressure (P2), total temperature (Tt2), and static temperature (T2) of air
after the shock.
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M1 = 1.6

Figure 1.24 Pitot intake

Solution

According to the Standard Atmospheric Table, Appendix A, Table A.1 for
10 km altitude:

P1 = 26.5 kPa and T1 = 223.3 K

According to Table C.1, Appendix C (γ = 1.4) for M1 = 1.6:

M2 = 0.6684; Pt2

Pt1
= 0.8952; P2

P1
= 2.820; and

T2

T1
= 1.388

Assuming isentropic flow outside the intake:

Pt1 = P1

[
1 + M2

1 (γ − 1)

2

] γ

γ−1

= (26.5×103 Pa)

[
1 + 1.62(1.4 − 1)

2

] 1.4
1.4−1

= 112.6 kPa

Tt1 = T1

[
1 + M2

1 (γ − 1)

2

]

= (223.3 K)

[
1 + 1.62(1.4 − 1)

2

]
= 337.6 K

Therefore:

Pt2 = Pt1
Pt2

Pt1
= (112.6 kPa)(0.8952) = 100.8 kPa

P2 = P1
P2

P1
= (26.5 kPa)(2.82) = 74.7 kPa

T2 = T1
T2

T1
= (223.3 K)(1.388) = 309.9 K

Finally, since there is no change in total temperature across a shock:

Tt2 = Tt1 = 337.6 K
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1.6.2 Oblique Shocks

The methodology of analyzing flow properties across oblique shocks is very similar to
that shown in section 1.6.1 for studying normal shocks. Even though an oblique shock is
inclined at an angle to the flow direction it still creates an abrupt change in fluid properties
and is adiabatic. Therefore like a normal shock, there is no change in the total temperature
(Tt ) across an oblique shock. Also similar to a normal shock, the equations of mass, linear
momentum, and energy can be used to derive equations relating fluid properties across
the shock. The difference is that an additional variable must be introduced to account for
the oblique shock’s inclination to the flow direction. The two-dimensional, steady flow
continuity equation (Equation 1.20) across an oblique shock yields the following relation:

ρ1A1V1n = ρ2A2V2n (1.167)

In Equation 1.167, V1n and V2n are the normal velocity components as shown in
Figure 1.25. Since V1n and V2n are the normal components, this is essentially the same
relation that was derived for a normal shock (Equation 1.151).

The two-dimensional, steady flow equations for linear momentum (Equation 1.23) can
be separately written in component form (since momentum is a vector). This means that
momentum can be written for both the tangential and normal directions with respect to the
shock wave. Since there is no change in pressure in the tangential direction, the tangential
momentum equation is:

V1t (ρ1A1V1n) = V2t (ρ2A2V2n) (1.168)

Equation 1.167 shows that the mass flow in the normal direction does not change across
the shock, therefore applying this to Equation 1.168 allows terms to be cancelled and the
following relation is obtained:

V1t = V2t (1.169)

This equation shows that across an oblique shock, there is no change in the tangential
velocity. The normal momentum equation is:

ρ1A1V
2
1n + P1A1 = ρ2A2V

2
2n + P2A2 (1.170)

1
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T1 V1t V1n
V2t

V2n
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Figure 1.25 Velocity components across an oblique shock
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Since the shock is very thin A1 = A2 and therefore:

P1 − P2 = ρ2V
2

2n − ρ1V
2
1n (1.171)

The two-dimensional, steady flow energy equation for adiabatic steady flow
(Equation 1.28) is:(

h1 + V 2
1

2

)
−
(

h2 + V 2
2

2

)
=
(

h1 + V 2
1t + V 2

1n

2

)
−
(

h2 + V 2
2t + V 2

2n

2

)
= 0 (1.172)

Since V1t = V2t (Equation 1.169), this simplifies to:

h1 − h2 = V 2
2n − V 2

1n

2
(1.173)

Since Equations 1.172 and 1.173 do not contain tangential velocity components, these
equations are essentially the same as the equations derived for a normal shock. This
means that the components normal to an oblique shock act just like a normal shock,
while the components tangential to an oblique shock do not change. Therefore, the fluid
property ratios across an oblique shock can be determined by calculating the components
normal to the oblique shock and using the normal shock tables found in Tables C.1 or
C.2 (Appendix C).

However, oblique shock tables (Figures C.1 and C.2, Appendix C) have also been made
for the usual case, when the wave angle (δ) is unknown [6]. In order to use these tables,
it is more convenient to write the components of Mach number as:

M1n = M1 sin θ (1.174)

M1t = M1 cos θ (1.175)

M2n = M2 sin(θ − δ) (1.176)

M2t = M2 cos(θ − δ) (1.177)

Figures C.1 and C.2 (Appendix C) both show that there are two possible solutions or
none at all. The three oblique shock types associated with these conditions are known as:
strong shocks, weak shocks, or detached shocks.

A strong shock has a large value of θ and a large pressure ratio across the shock. It
generally occurs when the downstream pressure (or back pressure) of a supersonic flow
is extremely high. A strong shock can be expected to occur on the spike of supersonic
inlet if no flow is allowed to pass through the inlet. (However, this system is unstable
and will normally degenerate into the weaker solution.) A strong shock will always slow
the supersonic flow velocity to a subsonic speed. The limiting case of a strong shock is
a normal shock.

A weak shock is one that has a relatively small value of θ , a smaller pressure ratio
across the shock, and a small back pressure. A weak solution occurs more frequently
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Detached shock

M > 1

M < 1M > 1

M > 1

Figure 1.26 Detached oblique shock

on aerospace system designs than a strong shock. Normally, weak shocks will occur on
wings, open inlets, and planar surfaces. A weak shock will always slow the flow velocity
to a lower but still supersonic speed. The limiting case of a weak shock is isentropic
flow (δ = 0).

A third possibility is that there is no solution at all. This can occur if there is a great
enough wedge angle (δ). In this case the shock detaches from the body and may occur
in front of it. An example of a detached bow shock is shown in Figure 1.26.

Example 1.5

Compare the loss in total pressure ratio incurred by a two-dimensional, two-shock
spike diffuser and a three-shock diffuser operating at Mach 2.0, as shown in
Figure 1.27. Assume that each oblique shock turns the flow through an angle (δ)
of 10◦.

Two-shock inlet

1 2 3 1 2 3 4

Three-shock inlet

M1 = 2 M1 = 2

Figure 1.27
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Solution

(a) Two-shock inlet calculations:
From oblique flow charts (Figures C.1a and b, Appendix C) for M1 = 2.0,
γ = 1.4, and δ = 10◦, the weak shock solution is:

θ = 39.4◦

M2 = 1.64
Therefore:

M1n = M1 sin θ

= (2.0) sin(39.4◦) = 1.27

The normal shock tables (Table C.1, Appendix C) can now be used for
M1n = 1.27: (

Pt2

Pt1

)
= 0.9842

For the normal shock M2 = 1.64, then again from the normal shock tables:(
Pt3

Pt2

)
= 0.8799

So the total pressure recovery across the one-shock inlet is:(
Pt3

Pt1

)
2 shock

inlet

= Pt3

Pt2

Pt2

Pt1
= (0.8779)(0.9842) = 0.864

(b) Three-shock inlet calculations:
This is done similarly to the one-shock inlet. From the oblique shock tables
(Figures C.1a and b, Appendix C) again for M1 = 2.0, γ = 1.4, and δ = 10◦:

θ = 39.4◦

M2 = 1.64
Therefore, once again:

M1n = M1 sin θ = 1.27

Again using the normal shock tables for M1n = 1.27:(
Pt2

Pt1

)
= 0.9842

For the second oblique shock for M2 = 1.64, γ = 1.4, and δ = 10◦ (Figures C.1a
and b, Appendix C), θ = 49.4◦ and M3 = 1.28.

M2n = 1.64 sin(49.5◦) = 1.25
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Again using the normal shock tables for M2n = 1.25:(
Pt3

Pt2

)
= 0.9871

For the normal shock, using the normal shock tables for M3 = 1.28:(
Pt4

Pt3

)
= 0.9827

Therefore: (
Pt4

Pt1

)
3 shock

inlet

= Pt4

Pt3

Pt3

Pt2

Pt2

Pt1

= (0.9827)(0.9871)(0.9842) = 0.9547

Thus there is about a 10 % improvement in total pressure ratio gained by using
the three-shock inlet over a two-shock inlet at M1 = 2.0. If we were to repeat this
calculation for M1 = 4.0, there would be a 62 % improvement. Thus the improvement
increases with higher speeds.

Example 1.5 illustrates a supersonic intake design feature for gas turbine engines and
ramjets. At supersonic speeds, a shock wave or series of shock waves will form at the
intake slowing the airflow to a subsonic speed inside the engine. As already shown,
normal shocks decrease the airflow from supersonic to subsonic speeds, while weak
oblique shocks only decrease the velocity to lower supersonic speeds. Therefore for these
inlet designs, a normal shock will generally occur after an oblique shock (or a series of
oblique shocks), so that flow entering the engine will be subsonic. However, there is a
loss of pressure across each shock. To increase the performance of the engine this pressure
loss must be minimized. A much larger pressure loss occurs across normal shocks than
across oblique shocks. As the supersonic speed of the flow increases, the pressure loss
across a normal shock increases exponentially, creating a stronger normal shock. This
pressure loss can be reduced by slowing the flow velocity ahead of the normal shock with
a weak oblique shock (or a series of weak oblique shocks). Weak oblique shocks can be
induced ahead of the normal shock by appropriately designing the inlet geometry.

1.6.3 Conical Shocks

Supersonic flow about a three-dimensional circular cone is more complex than a simple
two-dimensional wedge, because after a conical shock the streamlines curve to satisfy the
conservation of mass. Therefore a conical shock will be inclined at a lesser angle to the flow
direction than a simple two-dimensional oblique shock. This means that a two-dimensional
wedge will create a greater flow disturbance than a three-dimensional cone. This is because
flow cannot pass around the side of a two-dimensional wedge, since it extends to infinity
in the third dimension. Therefore separate flow relations are necessary to analyze a conical
shock (see Example 5.1). These relations are illustrated in Figures C.3, C.4, and C.5 in
Appendix C.
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1.7 Summary

This chapter introduced some fundamental definitions and terminology that are used in the
analysis of aerospace propulsion systems. The equations of mass, linear momentum, and
energy were presented and applied to basic engine components. Equations for isentropic
flow were derived and applied to idealized engine model components. The effect of
Mach number on isentropic flow was also derived. Two different types of nozzles were
introduced: convergent and convergent–divergent (condi) nozzles. A limiting factor on
the utility of nozzles is choked flow. Choked flow means that no additional mass can
flow through the nozzle (maximum mass flow). If a convergent nozzle is choked, the exit
Mach number of the exhaust gases is equal to 1.0 (sonic). If a condi nozzle is choked, the
Mach number of gases at the throat is equal to 1.0. Lastly the formation of shock waves
in compressible, supersonic flow was introduced. A normal shock represents an abrupt
change in fluid properties in the direction of the flow. Although the shock is adiabatic,
internal viscous dissipation and heat transfer effects make this an irreversible process.
Therefore according to the Second Law of Thermodynamics, entropy will rise across a
shock. This means that the flow ahead of a shock must be supersonic. Solutions to flow
properties across a normal shock were derived. Shocks that are inclined at an angle to
the flow direction are called oblique shocks. It was demonstrated that an oblique shock
can be treated as a normal shock in respect to the velocity component perpendicular to
the shock wave. Using this approach, the properties of an oblique shock can be analyzed
using the equations derived for a normal shock.
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Problems

1.1 Define the term propulsion and relate it to Newton’s Third Law of Motion.

1.2 Give a brief definition of a system. Explain the differences between open, closed,
and isolated systems.

1.3 Briefly describe a working fluid. List some properties used to describe a working
fluid.

1.4 Describe how the pressure, temperature, density, and speed of sound of atmospheric
air vary with altitude.

1.5 Describe the difference between a cyclic process and a non-cyclic process.
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1.6 Explain the difference between a reversible process and an irreversible process.

1.7 Briefly describe what characterizes an isentropic process.

1.8 Define work. Explain how it is different from power.

1.9 Define internal energy. Describe sensible, latent, and thermal energy.

1.10 Briefly describe what is meant by the term heat. Describe the three mechanisms
by which heat can be transferred.

1.11 Define the thermal efficiency of a heat engine.

1.12 Define a perfect gas. Describe how different properties of a perfect gas, such as
density, volume, mass, temperature, and pressure, are related to one another.

1.13 Describe the continuity equation. In steady flow systems, describe what the conti-
nuity equation shows about the variation of mass flow through the system.

1.14 Describe the conservation of linear momentum. If steady flow conditions exist,
describe how the momentum changes with time in a constant control volume.

1.15 Describe the process of a convergent and condi nozzle becoming choked.

1.16 Explain why shock waves form when a supersonic, compressible fluid flows over
a body such as a wing.

1.17 Describe the difference between normal shocks and oblique shocks. State which
shock induces the greater loss of pressure.

1.18 Briefly describe what happens to the total temperature of a fluid across a shock.

1.19 A cylinder contains 1 kg of fluid at a pressure of 100 kPa (point 1 on Figure P1.19).
The fluid drives a piston by undergoing a reversible expansion defined by the
equation P –V 2 = 4, until its initial volume (–V1) of 0.2 m3 doubles to a volume of
(–V2) 0.4 m3. The fluid is then cooled reversibly at a constant pressure of 25 kPa until
the piston reaches its initial position (point 3). Heat is then added reversibly with
the piston fixed until the pressure once again reaches 100 kPa (point 1). Calculate
the net work done by the fluid.

0.2

25
3

2

1100

P 
(kPa)

0.4

P 2 = 4

(m3)

Figure P1.19

1.20 A clown uses a 0.25 m3 tank containing helium (He) to fill balloons. She normally
fills the tank so that the pressure of the helium is 200 kPa at 25◦C. However, in
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order to meet the expected demands of excited children at a large party who all
want balloons, she needs to pump an additional 1 kg of helium into the tank. She
is a little worried because she knows that the tank will rupture at a pressure of
500 kPa. Helium can be assumed to be a perfect gas and has a molecular weight
(Mw) of 4.003 kg/kmole. Calculate the new pressure after allowing the gas to return
to an ambient temperature of 25◦C. Will the tank rupture and ruin the party?

1.21 Oxygen (O2) at 10 MPa is stored in a pressurized, spherical tank at a temperature
of 25◦C. The tank has a radius of 25 cm. The maximum allowable pressure of the
tank is rated at being 12 MPa. Assuming that oxygen is a perfect gas, calculate the
mass stored in the tank. To what temperature can the oxygen be allowed to rise
before the pressure limit on the tank is reached?

1.22 Calculate the specific internal energy (u) of 1 kg of air that occupies a volume
of 1 m3 at 87 kPa. If the temperature is then increased to 500 K as the air is
compressed to 200 kPa, calculate the change in internal energy and the new volume
occupied by the air. Assume Cv = 0.718 kJ/(kg·K), Cp = 1.008 kJ/(kg·K), and R =
287 J/(kg·K).

1.23 Jet fuel steadily flows through a 2 cm diameter pipe at 2 m/s. Assuming that the
jet fuel is incompressible, determine the velocity (V2) of the fuel after the pipe
enlarges to a 3 cm diameter (as shown in Figure P1.23).

3 cm V22 cm
2 m/s

Figure P1.23

1.24 A rocket is fired on a static test stand which holds it in place. Exhaust gases are
expelled out of the rocket’s nozzle at a velocity (Vjet ) of 1500 m/s (as shown in
Figure P1.24). The exhaust nozzle has a 50 cm diameter circular cross-section. The
exhaust gas has a density of 0.5 kg/m3. Determine the approximate force (or thrust)
generated by the rocket, assuming the exhaust pressure equals the ambient pressure
(full expansion condition).

50 cm

Vjet = 1500 m/sFN

Figure P1.24

1.25 Air flows through a compressor at a steady mass flow rate of 0.5 kg/s. The air
enters the compressor at a velocity of 15 m/s, pressure of 101.3 kPa, and specific
volume of 0.8 m3/kg. The air exits at a velocity of 10 m/s, pressure of 800 kPa,
and specific volume of 0.15 m3/kg. The internal energy of the air is increased by
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80 kJ/kg. Calculate the power required to drive the compressor, assuming that there
is no heat loss due to a cooling system.

1.26 Air flows through a turbine at a steady mass flow rate of 15 kg/s. The air enters
the turbine at a velocity of 50 m/s and specific enthalpy (h) of 1200 kJ/kg and exits
the turbine at a velocity of 140 m/s and specific enthalpy of 300 kJ/kg. Assuming
that no heat is rejected from the turbine, calculate the total power generated by the
turbine.

1.27 An airplane flies at a velocity of 300 m/s at an altitude of 5 km. Assuming Cp =
1.007 kJ/(kg·K) for air, determine the total temperature of the air relative to the
airplane.

1.28 A large commercial jet aircraft is flying at Mach 0.8 at an altitude of 10 km. Air
entering the intake of the aircraft’s engine is slowed down to a velocity of 100 m/s.
Assume that γ = 1.4 and Cp = 1.007 kJ/(kg·K) for air. If this is an isentropic
process, determine the static temperature and pressure of the air in the intake.

1.29 Exhaust gases exiting the nozzle of a turbojet engine (shown in Figure P1.29) have:
a total temperature of 1000 K, total pressure of 350 kPa, and Mach number of 1.0.
Assume isentropic flow and γ = 1.33 and R = 287 J(kg·K). Calculate the static
pressure, static temperature, and exhaust jet velocity of the gases.

Tt = 1000 K 
Pt = 350 kPa 
M = 1.0

Figure P1.29

1.30 A compressor has a total pressure ratio of 12:1. Air with a steady mass flow rate of
50 kg/s enters the compressor at 500 K. If γ = 1.4, Cp = 1.007 kJ/(kg·K), and the
air flows isentropically, calculate the total power required to drive this compressor.

1.31 Air with a static temperature of 223 K entering a gas turbine engine intake at
V1 = 300 m/s accelerates to a new velocity (V2) and decreases in pressure (P2) at
the exit plane of the intake. The pressure recovery (P2 /P1 ) through the intake is
0.833. Assume that the flow through the intake is isentropic.

(a) Calculate the static temperature (T2) of air exiting the intake.
(b) Find the difference in total temperature (�Tt ) across the intake.
(c) Determine the velocity (V2) of the air exiting the intake.

1.32 A turbojet engine operates at the conditions shown in the T–S diagram (Figure P1.32).
Air entering the compressor is at an ambient static temperature (T1) of 200 K. Assume
isentropic diffusion through the inlet and that γ = 1.4 for the air before it enters the
combustion chamber.

(a) Determine the Mach number (M1) of the air in the inlet.
(b) Determine the total pressure ratio (Pt2 /Pt1 ) across the compressor.
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Figure P1.32

1.33 Exhaust gases entering a convergent nozzle have a total pressure (Pt ) of 200 kPa
and total temperature (Tt ) of 800 K. The gases exit the nozzle into ambient air at
a static pressure (P0) of 101.3 kPa.

(a) Assuming that γ = 1.33 and R = 287 J/(kg·K), determine the critical pressure
ratio (PRcrit) and evaluate whether the nozzle is choked or not.

(b) Calculate the exit static pressure (Pe) and exit velocity (Ve).

1.34 A supersonic aircraft flying in air (γ = 1.4) at Mach 1.8 has an intake type which
induces a single normal shock. Calculate the percentage pressure loss and Mach
number of the flow entering the intake diffuser after the shock.

1.35 Supersonic air (γ = 1.4) at Mach 2.8 flows over a wedge that is inclined at an angle
of 30◦. If the ambient pressure is 101.3 kPa and temperature is 25◦C. Calculate the
Mach number, static pressure, and static temperature after the oblique shock.

1.36 A ramjet intake is designed with two ramps (Figure P1.36) so that two oblique
shocks and one normal shock occur when it travels at its cruising velocity of Mach
2.8. Calculate the total pressure recovery (Pt4/Pt1) and the Mach number (M4)
after this shock system. [Assume γ = 1.4 for air.]
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Figure P1.36

1.37 An attached conical shock wave forms on the nose cone of a rocket traveling at
Mach 8.0 at an altitude of 30 km. The cone’s semi-vertex angle (θ ) is 15◦. Calculate
the Mach number (Mc) and static pressure (Pc) of the airflow on the surface of the
cone after the conical shock.


