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Introduction: Data and Its
Properties, Analytical Methods
and Jargon

Points covered in this chapter

� Types of data
� Sources of data
� The nature of data
� Scales of measurement
� Data distribution
� Population and sample properties
� Outliers
� Terminology

PREAMBLE

This book is not a textbook although it does aim to teach the reader
how to do things and explain how or why they work. It can be thought
of as a handbook of data analysis; a sort of workshop manual for the
mathematical and statistical procedures which scientists may use in order
to extract information from their experimental data. It is written for
scientists who want to analyse their data ‘properly’ but who don’t have
the time or inclination to complete a degree course in statistics in order
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2 INTRODUCTION

to do this. I have tried to keep the mathematical and statistical theory
to a minimum, sufficient to explain the basis of the methods but not too
much to obscure the point of applying the procedures in the first case.

I am a chemist by training and a ‘drug designer’ by profession so it is
inevitable that many examples will be chemical and also from the field
of molecular design. One term that may often appear is QSAR. This
stands for Quantitative Structure Activity Relationships, a term which
covers methods by which the biological activity of chemicals is related to
their chemical structure. I have tried to include applications from other
branches of science but I hope that the structure of the book and the way
that the methods are described will allow scientists from all disciplines
to see how these sometimes obscure-seeming methods can be applied to
their own problems.

For those readers who work within my own profession I trust that
the more ‘generic’ approach to the explanation and description of the
techniques will still allow an understanding of how they may be applied
to their own problems. There are, of course, some particular topics which
only apply to molecular design and these have been included in Chap-
ter 10 so for these readers I recommend the unusual approach of reading
this book by starting at the end. The text also includes examples from the
drug design field, in some cases very specific examples such as chemical
library design, so I expect that this will be a useful handbook for the
molecular designer.

1.1 INTRODUCTION

Most applications of data analysis involve attempts to fit a model, usually
quantitative,1 to a set of experimental measurements or observations.
The reasons for fitting such models are varied. For example, the model
may be purely empirical and be required in order to make predictions for
new experiments. On the other hand, the model may be based on some
theory or law, and an evaluation of the fit of the data to the model may
be used to give insight into the processes underlying the observations
made. In some cases the ability to fit a model to a set of data successfully
may provide the inspiration to formulate some new hypothesis. The type
of model which may be fitted to any set of data depends not only on the
nature of the data (see Section 1.4) but also on the intended use of the
model. In many applications a model is meant to be used predictively,

1 According to the type of data involved, the model may be qualitative.
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but the predictions need not necessarily be quantitative. Chapters 4 and
5 give examples of techniques which may be used to make qualitative
predictions, as do the classification methods described in Chapter 7.

In some circumstances it may appear that data analysis is not fitting
a model at all! The simple procedure of plotting the values of two vari-
ables against one another might not seem to be modelling, unless it is
already known that the variables are related by some law (for example
absorbance and concentration, related by Beer’s law). The production
of a bivariate plot may be thought of as fitting a model which is simply
dictated by the variables. This may be an alien concept but it is a useful
way of visualizing what is happening when multivariate techniques are
used for the display of data (see Chapter 4). The resulting plots may be
thought of as models which have been fitted by the data and as a result
they give some insight into the information that the model, and hence
the data, contains.

1.2 TYPES OF DATA

At this point it is necessary to introduce some jargon which will help
to distinguish the two main types of data which are involved in data
analysis. The observed or experimentally measured data which will be
modelled is known as a dependent variable or variables if there are more
than one. It is expected that this type of data will be determined by
some features, properties or factors of the system under observation or
experiment, and it will thus be dependent on (related by) some more or
less complex function of these factors. It is often the aim of data anal-
ysis to predict values of one or more dependent variables from values
of one or more independent variables. The independent variables are
observed properties of the system under study which, although they may
be dependent on other properties, are not dependent on the observed
or experimental data of interest. I have tried to phrase this in the most
general way to cover the largest number of applications but perhaps
a few examples may serve to illustrate the point. Dependent variables
are usually determined by experimental measurement or observation on
some (hopefully) relevant test system. This may be a biological system
such as a purified enzyme, cell culture, piece of tissue, or whole animal;
alternatively it may be a panel of tasters, a measurement of viscosity,
the brightness of a star, the size of a nanoparticle, the quantification
of colour and so on. Independent variables may be determined exper-
imentally, may be observed themselves, may be calculated or may be
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ID Response Ind 1 Ind 2 Ind 3 Ind 4 Ind 5
Case 1 14 1.6 136 0.03 -12.6 19542
Case 2 24 2 197 0.07 -8.2 15005
Case 3 -6 9.05 211 0.1 -1 10098
Case 4 19 6 55 0.005 -0.99 17126
Case 5 88.2 3.66 126 0.8 0 19183
Case 6 43 12 83 0.79 -1.3 12087
……. ……. ……. ……. ……. ……. …….
……. ……. ……. ……. ……. ……. …….
Case n 11 7.05 156 0.05 -6.5 16345

Figure 1.1 Example of a dataset laid out as a table.

controlled by the investigator. Examples of independent variables are
temperature, atmospheric pressure, time, molecular volume, concentra-
tion, distance, etc.

One other piece of jargon concerns the way that the elements of a
data set are ‘labelled’. The data set shown in Figure 1.1 is laid out as
a table in the ‘natural’ way that most scientists would use; each row
corresponds to a sample or experimental observation and each column
corresponds to some measurement or observation (or calculation) for
that row.

The rows are called ‘cases’ and they may correspond to a sample or an
observation, say, at a time point, a compound that has been tested for
its pharmacological activity, a food that has been treated in some way,
a particular blend of materials and so on. The first column is a label,
or case identifier, and subsequent columns are variables which may also
be called descriptors or properties or features. In the example shown
in the figure there is one case label, one dependent variable and five
independent variables for n cases which may also be thought of as an n
by 6 matrix (ignoring the case label column). This may be more generally
written as an n by p matrix where p is the number of variables. There is
nothing unsual in laying out a data set as a table. I expect most scientists
did this for their first experiment, but the concept of thinking of a data
set as a mathematical construct, a matrix, may not come so easily. Many
of the techniques used for data analysis depend on matrix manipulations
and although it isn’t necessary to know the details of operations such as
matrix multiplication in order to use them, thinking of a data set as a
matrix does help to explain them.

Important features of data such as scales of measurement and distri-
bution are described in later sections of this chapter but first we should
consider the sources and nature of the data.
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Figure 1.2 Typical and not so typical dose–response curves for a set of five different
compounds.

1.3 SOURCES OF DATA

1.3.1 Dependent Data

Important considerations for dependent data are that their measurement
should be well defined experimentally, and that they should be consistent
amongst the cases (objects, samples, observations) in a set. This may
seem obvious, and of course it is good scientific practice to ensure that
an experiment is well controlled, but it is not always obvious that data is
consistent, particularly when analysed by someone who did not generate
it. Consider the set of curves shown in Figure 1.2 where biological effect
is plotted against concentration.

Compounds 1–3 can be seen to be ‘well behaved’ in that their
dose–response curves are of very similar shape and are just shifted along
the concentration axis depending on their potency. Curves of this sig-
moidal shape are quite typical; common practice is to take 50 % as the
measure of effect and read off the concentration to achieve this from
the dose axis. The advantage of this is that the curve is linear in this
region; thus if the ED50 (the dose to give 50 % effect) has been bracketed
by experimental measurements, it simply requires linear interpolation
to obtain the ED50. A further advantage of this procedure is that the
effect is changing most rapidly with concentration in the 50 % part of
the curve. Since small changes in concentration produce large changes in
effect it is possible to get the most precise measure of the concentration
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required to cause a standard effect. The curve for compound 4 illus-
trates a common problem in that it does not run parallel to the others;
this compound produces small effects (<50 %) at very low doses but
needs comparatively high concentrations to achieve effects in excess of
50 %. Compound 5 demonstrates yet another deviation from the norm
in that it does not achieve 50 % effect. There may be a variety of rea-
sons for these deviations from the usual behaviour, such as changes in
mechanism, solubility problems, and so on, but the effect is to produce
inconsistent results which may be difficult or impossible to analyse.

The situation shown here where full dose–response data is available is
very good from the point of view of the analyst, since it is relatively easy
to detect abnormal behaviour and the data will have good precision.
However, it is often time-consuming, expensive, or both, to collect such
a full set of data. There is also the question of what is required from
the test in terms of the eventual application. There is little point, for
example, in making precise measurements in the millimolar range when
the target activity must be of the order of micromolar or nanomolar.
Thus, it should be borne in mind that the data available for analysis may
not always be as good as it appears at first sight. Any time spent in a
preliminary examination of the data and discussion with those involved
in the measurement will usually be amply repaid.

1.3.2 Independent Data

Independent variables also should be well defined experimentally, or
in terms of an observation or calculation protocol, and should also be
consistent amongst the cases in a set. It is important to know the precision
of the independent variables since they may be used to make predictions
of a dependent variable. Obviously the precision, or lack of it, of the
independent variables will control the precision of the predictions. Some
data analysis techniques assume that all the error is in the dependent
variable, which is rarely ever the case.

There are many different types of independent variables. Some may be
controlled by an investigator as part of the experimental procedure. The
length of time that something is heated, for example, and the temperature
that it is heated to may be independent variables. Others may be obtained
by observation or measurement but might not be under the control of the
investigator. Consider the case of the prediction of tropical storms where
measurements may be made over a period of time of ocean temperature,
air pressure, relative humidity, wind speed and so on. Any or all of these
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parameters may be used as independent variables in attempts to model
the development or duration of a tropical storm.

In the field of molecular design2 the independent variables are most
often physicochemical properties or molecular descriptors which char-
acterize the molecules under study. There are a number of ways in which
chemical structures can be characterized. Particular chemical features
such as aromatic rings, carboxyl groups, chlorine atoms, double bonds
and suchlike can be listed or counted. If they are listed, answering the
question ‘does the structure contain this feature?’, then they will be bi-
nary descriptors taking the value of 1 for present and 0 for absent. If they
are counts then the parameter will be a real valued number between 0
and some maximum value for the compounds in the set. Measured prop-
erties such as melting point, solubility, partition coefficient and so on are
an obvious source of chemical descriptors. Other parameters, many of
them, may be calculated from a knowledge of the 2-dimensional (2D) or
3-dimensional (3D) structure of the compounds [1, 2]. Actually, there
are some descriptors, such as molecular weight, which don’t even require
a 2D structure.

1.4 THE NATURE OF DATA

One of the most frequently overlooked aspects of data analysis is consid-
eration of the data that is going to be analysed. How accurate is it? How
complete is it? How representative is it? These are some of the questions
that should be asked about any set of data, preferably before starting
to try and understand it, along with the general question ‘what do the
numbers, or symbols, or categories mean?’

So far, in this book the terms descriptor, parameter, and property
have been used interchangeably. This can perhaps be justified in that it
helps to avoid repetition, but they do actually mean different things and
so it would be best to define them here. Descriptor refers to any means by
which a sample (case, object) is described or characterized: for molecules
the term aromatic, for example, is a descriptor, as are the quantities
molecular weight and boiling point. Physicochemical property refers to
a feature of a molecule which is determined by its physical or chemical
properties, or a combination of both. Parameter is a term which is used

2 Molecular design means the design of a biologically active substance such as a pharmaceutical
or pesticide, or of a ‘performance’ chemical such as a fragrance, flavour, and so on or a
formulation such as paint, adhesive, etc.
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to refer to some numerical measure of a descriptor or physicochemical
property. The two descriptors molecular weight and boiling point
are also both parameters; the term aromatic is a descriptor but not a
parameter, whereas the question ‘How many aromatic rings?’ gives rise
to a parameter. All parameters are thus descriptors but not vice versa.

The next few sections discuss some of the more important aspects of
the nature and properties of data. It is often the data itself that dictates
which particular analytical method may be used to examine it and how
successful the outcome of that examination will be.

1.4.1 Types of Data and Scales of Measurement

In the examples of descriptors and parameters given here it may have
been noticed that there are differences in the ‘nature’ of the values used
to express them. This is because variables, both dependent and indepen-
dent, can be classified as qualitative or quantitative. Qualitative variables
contain data that can be placed into distinct classes; ‘dead’ or ‘alive’, for
example, ‘hot’ or ‘cold’, ‘aromatic’ or ‘non-aromatic’ are examples of
binary or dichotomous qualitative variables. Quantitative variables con-
tain data that is numerical and can be ranked or ordered. Examples of
quantitative variables are length, temperature, age, weight, etc. Quantita-
tive variables can be further divided into discrete or continuous. Discrete
variables are usually counts such as ‘how many objects in a group’, ‘num-
ber of hydroxyl groups’, ‘number of components in a mixture’, and so
on. Continuous variables, such as height, time, volume, etc. can assume
any value within a given range.

In addition to the classification of variables as qualitative/quantitative
and the further division into discrete/continuous, variables can also be
classified according to how they are categorized, counted or measured.
This is because of differences in the scales of measurement used for
variables. It is necessary to consider four different scales of measurement:
nominal, ordinal, interval, and ratio. It is important to be aware of the
properties of these scales since the nature of the scales determines which
analytical methods should be used to treat the data.

Nominal

This is the weakest level of measurement, i.e. has the lowest information
content, and applies to the situation where a number or other symbol
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is used to assign membership to a class. The terms male and female,
young and old, aromatic and non-aromatic are all descriptors based on
nominal scales. These are dichotomous descriptors, in that the objects
(people or compounds) belong to one class or another, but this is not the
only type of nominal descriptor. Colour, subdivided into as many classes
as desired, is a nominal descriptor as is the question ‘which of the four
halogens does the compound contain?’

Ordinal

Like the nominal scale, the ordinal scale of measurement places objects
in different classes but here the classes bear some relation to one another,
expressed by the term greater than (>). Thus, from the previous example,
old > middle-aged > young. Two examples in the context of molecu-
lar design are toxic > slightly toxic > nontoxic, and fully saturated >

partially saturated > unsaturated. The latter descriptor might also be
represented by the number of double bonds present in the structures
although this is not chemically equivalent since triple bonds are ignored.
It is important to be aware of the situations in which a parameter might
appear to be measured on an interval or ratio scale (see below), but
because of the distribution of compounds in the set under study, these
effectively become nominal or ordinal descriptors (see next section).

Interval

An interval scale has the characteristics of a nominal scale, but in addition
the distances between any two numbers on the scale are of known size.
The zero point and the units of measurement of an interval scale are
arbitrary: a good example of an interval scale parameter is boiling point.
This could be measured on either the Fahrenheit or Celsius temperature
scales but the information content of the boiling point values is the same.

Ratio

A ratio scale is an interval scale which has a true zero point as its origin.
Mass is an example of a parameter measured on a ratio scale, as are
parameters which describe dimensions such as length, volume, etc. An
additional property of the ratio scale, hinted at in the name, is that it



10 INTRODUCTION

contains a true ratio between values. A measurement of 200 for one
sample and 100 for another, for example, means a ratio of 2:1 between
these two samples.

What is the significance of these different scales of measurement? As
will be discussed later, many of the well-known statistical methods are
parametric, that is, they rely on assumptions concerning the distribution
of the data. The computation of parametric tests involves arithmetic ma-
nipulation such as addition, multiplication, and division, and this should
only be carried out on data measured on interval or ratio scales. When
these procedures are used on data measured on other scales they intro-
duce distortions into the data and thus cast doubt on any conclusions
which may be drawn from the tests. Nonparametric or ‘distribution-free’
methods, on the other hand, concentrate on an order or ranking of data
and thus can be used with ordinal data. Some of the nonparametric tech-
niques are also designed to operate with classified (nominal) data. Since
interval and ratio scales of measurement have all the properties of ordi-
nal scales it is possible to use nonparametric methods for data measured
on these scales. Thus, the distribution-free techniques are the ‘safest’ to
use since they can be applied to most types of data. If, however, the
data does conform to the distributional assumptions of the parametric
techniques, these methods may well extract more information from the
data.

1.4.2 Data Distribution

Statistics is often concerned with the treatment of a small3 number of
samples which have been drawn from a much larger population. Each
of these samples may be described by one or more variables which have
been measured or calculated for that sample. For each variable there
exists a population of samples. It is the properties of these populations
of variables that allows the assignment of probabilities, for example, the
likelihood that the value of a variable will fall into a particular range, and
the assessment of significance (i.e. is one number significantly different
from another). Probability theory and statistics are, in fact, separate
subjects; each may be said to be the inverse of the other, but for the
purposes of this discussion they may be regarded as doing the same job.

3 The term ‘small’ here may represent hundreds or even thousands of samples. This is a small
number compared to a population which is often taken to be infinite.
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Figure 1.3 Frequency distribution for the variable x over the range −10 to +10.

How are the properties of the population used? Perhaps one of the
most familiar concepts in statistics is the frequency distribution. A plot
of a frequency distribution is shown in Figure 1.3, where the ordinate
(y-axis) represents the number of occurrences of a particular value of a
variable given by the scales of the abscissa (x-axis).

If the data is discrete, usually but not necessarily measured on nominal
or ordinal scales, then the variable values can only correspond to the
points marked on the scale on the abscissa. If the data is continuous, a
problem arises in the creation of a frequency distribution, since every
value in the data set may be different and the resultant plot would be a
very uninteresting straight line at y = 1. This may be overcome by taking
ranges of the variable and counting the number of occurrences of values
within each range. For the example shown in Figure 1.4 (where there are
a total of 50 values in all), the ranges are 0–1, 1–2, 2–3, and so on up to
9–10.

It can be seen that these points fall on a roughly bell-shaped curve
with the largest number of occurrences of the variable occurring around
the peak of the curve, corresponding to the mean of the set. The mean
of the sample is given the symbol X and is obtained by summing all the
sample values together and dividing by the number of samples as shown
in Equation (1.1).

X = x1 + x2 + x3 + . . . . . . xn

n
=

∑
x

n
(1.1)
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Figure 1.4 Frequency histogram for the continuous variable x over the range 0
to +10.

The mean, since it is derived from a sample, is known as a statistic. The
corresponding value for a population, the population mean, is given the
symbol μ and this is known as a parameter, another use for the term. A
convention in statistics is that Greek letters are used to denote parameters
(measures or characteristics of the population) and Roman letters are
used for statistics. The mean is known as a ‘measure of central tendency’
(others are the mode, median and midrange) which means that it gives
some idea of the centre of the distribution of the values of the variable.
In addition to knowing the centre of the distribution it is important
to know how the data values are spread through the distribution. Are
they clustered around the mean or do they spread evenly throughout the
distribution? Measures of distribution are often known as ‘measures of
dispersion’ and the most often used are variance and standard deviation.
Variance is the average of the squares of the distance of each data value
from the mean as shown in Equation (1.2):

s2 =
∑

(X − X)2

n − 1
(1.2)

The symbol used for the sample variance is s2 which at first sight might
appear strange. Why use the square sign in a symbol for a quantity like
this? The reason is that the standard deviation (s) of a sample is the
square root of the variance. The standard deviation has the same units
as the units of the original variable whereas the variance has units that
are the square of the original units. Another odd thing might be noticed
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Figure 1.5 Probability distribution for a very large number of values of the variable
x; μ equals the mean of the set and σ the standard deviation.

about Equation (1.2) and that is the use of n − 1 in the denominator.
When calculating the mean the summation (Equation (1.1)) is divided
by the number of data points, n, so why is n − 1 used here? The reason
for this, apparently, is that the variance computed using n usually under-
estimates the population variance and thus the summation is divided by
n − 1 giving a slightly larger value. The corresponding symbols for the
population parameters are σ 2 for the variance and σ for the standard
deviation. A graphical illustration of the meaning of μ and σ is shown
in Figure 1.5, which is a frequency distribution like Figures 1.3 and 1.4
but with more data values so that we obtain a smooth curve.

The figure shows that μ is located in the centre of the distribution, as
expected, and that the values of the variable x along the abscissa have
been replaced by the mean +/− multiples of the standard deviation.
This is because there is a theorem (Chebyshev’s) which specifies the
proportions of the spread of values in terms of the standard deviation,
there is more on this later.

It is at this point that we can see a link between statistics and proba-
bility theory. If the height of the curve is standardized so that the area
underneath it is unity, the graph is called a probability curve. The height
of the curve at some point x can be denoted by f (x) which is called the
probability density function (p.d.f.). This function is such that it satisfies
the condition that the area under the curve is unity

∞∫

−∞
f (x)dx = 1 (1.3)
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This now allows us to find the probability that a value of x will fall in
any given range by finding the integral of the p.d.f. over that range:

probability (x1 < x < x2) =
x2∫

x1

f (x)dx (1.4)

This brief and rather incomplete description of frequency distributions
and their relationship to probability distribution has been for the purpose
of introducing the normal distribution curve. The normal or Gaussian
distribution is the most important of the distributions that are considered
in statistics. The height of a normal distribution curve is given by

f (x) = 1

σ
√

2π
e−(x−μ)2/2σ 2

(1.5)

This rather complicated function was chosen so that the total area under
the curve is equal to 1 for all values of μ and σ . Equation (1.5) has
been given so that the connection between probability and the two pa-
rameters μ and σ of the distribution can be seen. The curve is shown in
Figure 1.5 where the abscissa is marked in units of σ . It can be seen that
the curve is symmetric about μ, the mean, which is a measure of the
location or ‘central tendency’ of the distribution. As mentioned earlier,
there is a theorem that specifies the proportion of the spread of values
in any distribution. In the special case of the normal distribution this
means that approximately 68 % of the data values will fall within 1
standard deviation of the mean and 95 % within 2 standard deviations.
Put another way, about one observation in three will lie more than one
standard deviation (σ ) from the mean and about one observation in 20
will lie more than two standard deviations from the mean. The standard
deviation is a measure of the spread or ‘dispersion’; it is these two prop-
erties, location and spread, of a distribution which allow us to make
estimates of likelihood (or ‘significance’).

Some other features of the normal distribution can be seen by con-
sideration of Figure 1.6. In part (a) of the figure, the distribution is no
longer symmetrical; there are more values of the variable with a higher
value.

This distribution is said to be skewed, it has a positive skewness;
the distribution shown in part (b) is said to be negatively skewed. In
part (c) three distributions are overlaid which have differing degrees
of ‘steepness’ of the curve around the mean. The statistical term used
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Figure 1.6 Illustration of deviations of probability distributions from a normal
distribution.

to describe the steepness, or degree of peakedness, of a distribution is
kurtosis. Various measures may be used to express kurtosis; one known
as the moment ratio gives a value of three for a normal distribution. Thus
it is possible to judge how far a distribution deviates from normality
by calculating values of skewness (= 0 for a normal distribution) and
kurtosis. As will be seen later, these measures of how ‘well behaved’
a variable is may be used as an aid to variable selection. Finally, in
part (d) of Figure 1.6 it can be seen that the distribution appears to have
two means. This is known as a bimodal distribution, which has its own
particular set of properties distinct to those of the normal distribution.

1.4.3 Deviations in Distribution

There are many situations in which a variable that might be expected
to have a normal distribution does not. Take for example the molecu-
lar weight of a set of assorted painkillers. If the compounds in the set
consisted of aspirin and morphine derivatives, then we might see a bi-
modal distribution with two peaks corresponding to values of around
180 (mol.wt. of aspirin) and 285 (mol.wt. of morphine). Skewed and
kurtosed distributions may arise for a variety of reasons, and the effect
they will have on an analysis depends on the assumptions employed
in the analysis and the degree to which the distributions deviate from
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normality, or whatever distribution is assumed. This, of course, is not a
very satisfactory statement to someone who is asking the question, ‘Is my
data good enough (sufficiently well behaved) to apply such and such a
method to it?’ Unfortunately, there is not usually a simple answer to this
sort of question. In general, the further the data deviates from the type of
distribution that is assumed when a model is fitted, the less reliable will
be the conclusions drawn from that model. It is worth pointing out here
that real data is unlikely to conform perfectly to a normal distribution,
or any other ‘standard’ distribution for that matter. Checking the distri-
bution is necessary so that we know what type of method can be used
to treat the data, as described later, and how reliable any estimates will
be which are based on assumptions of distribution. A caution should
be sounded here in that it is easy to become too critical and use a poor
or less than ‘perfect’ distribution as an excuse not to use a particular
technique, or to discount the results of an analysis.

Another problem which is frequently encountered in the distribution
of data is the presence of outliers. Consider the data shown in Table 1.1
where calculated values of electrophilic superdelocalizability (ESDL10)
are given for a set of analogues of antimycin A1, compounds which kill
human parasitic worms, Dipetalonema vitae.

The mean and standard deviation of this variable give no clues as to
how well it is distributed and the skewness and kurtosis values of −3.15

Table 1.1 Physicochemical properties and antifilarial activity of antimycin analo-
gues (reproduced from ref. [3] with permission from American Chemical Society).

Compound Calculated Melting
number ESDL10 log P point ◦◦C Activity

1 −0.3896 7.239 81 −0.845
2 −0.4706 5.960 183 −0.380
3 −0.4688 6.994 207 1.398
4 −0.4129 7.372 143 0.319
5 −0.3762 5.730 165 −0.875
6 −0.3280 6.994 192 0.824
7 −0.3649 6.755 256 1.839
8 −0.5404 6.695 199 1.020
9 −0.4499 7.372 151 0.420

10 −0.3473 5.670 195 0.000
11 −0.7942 4.888 212 0.097
12 −0.4057 6.205 246 1.130
13 −0.4094 6.113 208 0.920
14 −1.4855 6.180 159 0.770
15 −0.3427 5.681 178 0.301
16 −0.4597 6.838 222 1.357
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Figure 1.7 Frequency distribution for the variable ESDL10 given in Table 1.1.

and 10.65 respectively might not suggest that it deviates too seriously
from normal. A frequency distribution for this variable, however, re-
veals the presence of a single extreme value (compound 14) as shown in
Figure 1.7.

This data was analysed by multiple linear regression (discussed fur-
ther in Chapter 6), which is a method based on properties of the normal
distribution. The presence of this outlier had quite profound effects on
the analysis, which could have been avoided if the data distribution had
been checked at the outset (particularly by the present author). Outliers
can be very informative and should not simply be discarded as so fre-
quently happens. If an outlier is found in one of the descriptor variables
(physicochemical data), then it may show that a mistake has been made
in the measurement or calculation of that variable for that compound.
In the case of properties derived from computational chemistry calcula-
tions it may indicate that some basic assumption has been violated or
that the particular method employed was not appropriate for that com-
pound. An example of this can be found in semi-empirical molecular
orbital methods which are only parameterized for a limited set of the
elements. Outliers are not always due to mistakes, however. Consider
the calculation of electrostatic potential around a molecule. It is easy
to identify regions of high and low values, and these are often used to
provide criteria for alignment or as a pictorial explanation of biological
properties. The value of an electrostatic potential minimum or maxi-
mum, or the value of the potential at a given point, has been used as
a parameter to describe sets of molecules. This is fine as long as each
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molecule in the set has a maximum and/or minimum at approximately
the same place. Problems arise if a small number of the structures do
not have the corresponding values in which case they will form outliers.
The effect of this is to cause the variable, apparently measured on an
interval scale, to become a nominal descriptor. Take, for example, the
case where 80 % of the members of the set have an electrostatic poten-
tial minimum of around −50 kcal/mole at a particular position. For the
remaining members of the set, the electrostatic potential at this position
is zero. This variable has now become an ‘indicator’ variable which has
two distinct values (zero for 20 % of the molecules and −50 for the
remainder) that identify two different subsets of the data. The problem
may be overcome if the magnitude of a minimum or maximum is taken,
irrespective of position, although problems may occur with molecules
that have multiple minima or maxima. There is also the more difficult
philosophical question of what do such values ‘mean’.

When outliers occur in the biological or dependent data, they may
also indicate mistakes: perhaps the wrong compound was tested, or it
did not dissolve, a result was misrecorded, or the test did not work out as
expected. However, in dependent data sets, outliers may be even more
informative. They may indicate a change in biological mechanism, or
perhaps they demonstrate that some important structural feature has
been altered or a critical value of a physicochemical property exceeded.
Once again, it is best not to simply discard such outliers, they may be
very informative.

Is there anything that can be done to improve a poorly distributed
variable? The answer is yes, but it is a qualified yes since the use of too
many ‘tricks’ to improve distribution may introduce other distortions
which will obscure useful patterns in the data. The first step in improv-
ing distribution is to identify outliers and then, if possible, identify the
cause(s) of such outliers. If an outlier cannot be ‘fixed’ it may need to be
removed from the data set. The second step involves the consideration of
the rest of the values in the set. If a variable has a high value of kurtosis
or skewness, is there some good reason for this? Does the variable re-
ally measure what we think it does? Are the calculations/measurements
sound for all of the members of the set, particularly at the extremes of
the range for skewed distributions or around the mean where kurtosis is
a problem. Finally, would a transformation help? Taking the logarithm
of a variable will often make it behave more like a normally distributed
variable, but this is not a justification for always taking logs!

A final point on the matter of data distribution concerns the non-
parametric methods. Although these techniques are not based on
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distributional assumptions, they may still suffer from the effects of
‘strange’ distributions in the data. The presence of outliers or the effec-
tive conversion of interval to ordinal data, as in the electrostatic potential
example, may lead to misleading results.

1.5 ANALYTICAL METHODS

This whole book is concerned with analytical methods, as the following
chapters will show, so the purpose of this section is to introduce and ex-
plain some of the terms which are used to describe the techniques. These
terms, like most jargon, also often serve to obscure the methodology to
the casual or novice user so it is hoped that this section will help to unveil
the techniques.

First, we should consider some of the expressions which are used to
describe the methods in general. Biometrics is a term which has been used
since the early 20th century to describe the development of mathematical
and statistical methods to data analysis problems in the biological sci-
ences. Chemometrics is used to describe ‘any mathematical or statistical
procedure which is used to analyse chemical data’ [4]. Thus, the simple
act of plotting a calibration curve is chemometrics, as is the process of fit-
ting a line to that plot by the method of least squares, as is the analysis by
principal components of the spectrum of a solution containing several
species. Any chemist who carries out quantitative experiments is also
a chemometrician! Univariate statistics is (perhaps unsurprisingly) the
term given to describe the statistical analysis of a single variable. This is
the type of statistics which is normally taught on an introductory course;
it involves the analysis of variance of a single variable to give quantities
such as the mean and standard deviation, and some measures of the dis-
tribution of the data. Multivariate statistics describes the application of
statistical methods to more than one variable at a time, and is perhaps
more useful than univariate methods since most problems in real life are
multivariate. We might more correctly use the term multivariate analy-
sis since not all multivariate methods are statistical. Chemometrics and
multivariate analysis refer to more or less the same things, chemometrics
being the broader term since it includes univariate techniques.4

Pattern recognition is the name given to any method which helps to
reveal the patterns within a data set. A definition of pattern recognition
is that it ‘seeks similarities and regularities present in the data’. Some

4 But, of course, it is restricted to chemical problems.
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Table 1.2 Anaesthetic activity and hydrophobicity of a series of alcohols
(reproduced from ref. [5] with permission from American Society for Pharmacology
and Experimental Therapeutics (ASPET)).

Alcohol �π Anaesthetic activity
(
log 1/C

)

C2H5OH 1.0 0.481
n–C3H7OH 1.5 0.959
n–C4H9OH 2.0 1.523
n–C5H11OH 2.5 2.152
n–C7H15OH 3.5 3.420
n–C8H17OH 4.0 3.886
n–C9H19OH 4.5 4.602
n–C10H21OH 5.0 5.00
n–C11H23OH 5.5 5.301
n–C12H25OH 6.0 5.124

of the display techniques described in Chapter 4 are quite obvious ex-
amples of pattern recognition since they result in a visual display of the
patterns in data. However, consider the data shown in Table 1.2 where
the anaesthetic activity of a series of alcohols is given as the logarithm
of the reciprocal of the concentration needed to induce a particular level
of anaesthesia.

The other column in this table (�π) is a measure of the hydrophobic-
ity of each of the alcohols. Hydrophobicity, which means literally ‘water
hating’, reflects the tendency of molecules to partition into membranes
in a biological system (see Chapter 10 for more detail) and is a physic-
ochemical descriptor of the alcohols. Inspection of the table reveals a
fairly obvious relationship between log 1/C and �π but this is most
easily seen by a plot as shown in Figure 1.8.

Figure 1.8 Plot of biological response (log 1/C) against �π (from Table 1.2).
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This relationship can be expressed in a very concise form as shown in
Equation (1.6):

log 1/
C = 1.039

∑
π − 0.442 (1.6)

This is an example of a simple linear regression equation. Regression
equations and the statistics which may be used to describe their ‘goodness
of fit’, to a linear or other model, are explained in detail in Chapter 6.
For the purposes of demonstrating this relationship it is sufficient to say
that the values of the logarithm of a reciprocal concentration (log 1/C)
in Equation (1.6) are obtained by multiplication of the �π values by a
coefficient (1.039) and the addition of a constant term (−0.442). The
equation is shown in graphical form (Figure 1.8); the slope of the fitted
line is equal to the regression coefficient (1.039) and the intercept of the
line with the zero point of the x-axis is equal to the constant (−0.442).
Thus, the pattern obvious in the data table may be shown by the simple
bivariate plot and expressed numerically in Equation (1.6). These are
examples of pattern recognition although regression models would not
normally be classed as pattern recognition methods.

Pattern recognition and chemometrics are more or less synonymous.
Some of the pattern recognition techniques are derived from research
into artificial intelligence. We can ‘borrow’ some useful jargon from this
field which is related to the concept of ‘training’ an algorithm or de-
vice to carry out a particular task. Suppose that we have a set of data
which describes a collection of compounds which can be classified as
active or inactive in some biological test. The descriptor data, or inde-
pendent variables, may be whole molecule parameters such as melting
point, or may be substituent constants, or may be calculated quantities
such as molecular orbital energies. One simple way in which this data
may be analysed is to compare the values of the variables for the ac-
tive compounds with those of the inactives (see discriminant analysis in
Chapter 7). This may enable one to establish a rule or rules which will
distinguish the two classes. For example, all the actives may have melt-
ing points above 250 ◦C and/or may have highest occupied molecular
orbital (HOMO) energy values below −10.5. The production of these
rules, by inspection of the data or by use of an algorithm, is called super-
vised learning since knowledge of class membership was used to generate
them. The dependent variable, in this case membership of the active or
inactive class, is used in the learning or training process. Unsupervised
learning, on the other hand, does not make use of a dependent variable.
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An example of unsupervised learning for this data set might be to plot
the values of two of the descriptor variables against one another. Class
membership for the compounds could then be marked on the plot and a
pattern may be seen to emerge from the data. If we chose melting point
and HOMO as the two variables to plot, we may see a grouping of the
active compounds where HOMO < −10.5 and melting point >250 ◦C.

The distinction between supervised and unsupervised learning may
seem unimportant but there is a significant philosophical difference be-
tween the two. When we seek a rule to classify data, there is a possibility
that any apparent rule may happen by chance. It may, for example, be
a coincidence that all the active compounds have high melting points;
in such a case the rule will not be predictive. This may be misleading,
embarrassing, expensive, or all three! Chance effects may also occur with
unsupervised learning but are much less likely since unsupervised learn-
ing does not seek to generate rules. Chance effects are discussed in more
detail in Chapters 6 and 7. The concept of learning may also be used to
define some data sets. A set of compounds which have already been tested
in some biological system, or which are about to be tested, is known as
a learning or training set. In the case of a supervised learning method
this data will be used to train the technique but this term applies equally
well to the unsupervised case. Judicious choice of the training set will
have profound effects on the success of the application of any analytical
method, supervised or unsupervised, since the information contained in
this set dictates the information that can be extracted (see Chapter 2). A
set of untested or yet to be synthesized compounds is called a test set,
the objective of data analysis usually being to make predictions for the
test set (also sometimes called a prediction set). A further type of data
set, known as an evaluation set, may also be used. This consists of a set
of compounds for which test results are available but which is not used
in the construction of the model. Examination of the prediction results
for an evaluation set can give some insight into the validity and accuracy
of the model.

Finally we should define the terms parametric and nonparametric. A
measure of the distribution of a variable (see Section 1.4.2) is a measure
of one of the parameters of that variable. If we had measurements for all
possible values of a variable (an infinite number of measurements), then
we would be able to compute a value for the population distribution.
Statistics is concerned with a much smaller set of measurements which
forms a sample of that population and for which we can calculate a sam-
ple distribution. A well-known example of this is the Gaussian or normal
distribution. One of the assumptions made in statistics is that a sample
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distribution, which we can measure, will behave like a population distri-
bution which we cannot. Although population distributions cannot be
measured, some of their properties can be predicted by theory. Many sta-
tistical methods are based on the properties of population distributions,
particularly the normal distribution. These are called parametric tech-
niques since they make use of the distribution parameter. Before using a
parametric method, the distribution of the variables involved should be
calculated. This is very often ignored, although fortunately many of the
techniques based on assumptions about the normal distribution are quite
robust to departures from normality. There are also techniques which
do not rely on the properties of a distribution, and these are known as
nonparametric or ‘distribution free’ methods.

1.6 SUMMARY

In this chapter the following points were covered:

1. dependent and independent variables and how data tables are laid
out;

2. where data comes from and some of its properties;
3. descriptors, parameters and properties;
4. nominal, ordinal, interval and ratio scales;
5. frequency distributions, the normal distribution, definition and ex-

planation of mean, variance and standard deviation. skewness and
kurtosis;

6. the difference between sample and population properties;
7. factors causing deviations in distribution;
8. terminology – univariate and multivariate statistics, chemometrics

and biometrics, pattern recognition, supervised and unsupervised
learning. Training, test and evaluation sets, parametric and non-
parametric or ‘distribution free’ techniques.
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