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Introduction

1.1 The Case for Cost Optimization

A great majority of structural optimization papers deal with the minimization
of the weight of the structure (Vanderplaats, 1984; Arora, 1989; Adeli and
Kamal, 1993; Adeli, 1994 – to mention a few). While weight of a structure
constitutes a significant part of the cost, minimization of the cost is the final
objective for optimum use of available resources. For concrete structures the
optimization problem has to be formulated as a cost minimization problem
because different materials are involved. In contrast, for steel structures the
optimization problem can be formulated as a weight minimization problem.
Only a small fraction of hundreds of papers published on optimization of
steel structures deals with cost optimization; the great majority deal with
minimization of the weight of the structure. In reality, a minimum weight
design may not be a minimum cost design. Besides material cost there are
many other factors that influence the total construction cost of a structure. Up
to the late 1990s, little research work had been reported on the optimization
of the overall cost of a three-dimensional steel structure subjected to the
constraints of the commonly used design specifications such as AISC ASD
and LRFD specifications (AISC, 1995, 2001).

Ideally, the optimization problem should be formulated in terms of the
life-cycle cost, which includes the costs of materials, fabrication, erection,
maintenance, and disassembling the structure at the end of its life cycle. Some
methodologies for determining life-cycle costs and decision making are dis-
cussed by Wilson et al. (1997). However, prior to the authors’ research, little

Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing H. Adeli and
K. C. Sarma © 2006 John Wiley & Sons, Ltd

CO
PYRIG

HTED
 M

ATERIA
L



2 Introduction

work on cost optimization of steel structures was reported in the literature.
Optimization of total cost as well as the life-cycle cost are very important
from the economic point of view and should be the prime focus of structural
optimization in the new millennium.

In the traditional optimization algorithms, constraints are satisfied within
a tolerance defined by a crisp number. In actual engineering practice con-
straint evaluation involves many sources of imprecision and approximation.
When an optimization algorithm is forced to satisfy the design constraints
exactly it can miss the global optimum solution within the confines of com-
monly acceptable approximations. By taking into account the fuzziness and
imprecision in the constraints (the input of the optimization problem) and
employing the fuzzy set theory of Zadeh (1965, 1978), one can further reduce
the objective function (the output of the optimization problem) and increase
the probability of finding the actual global optimum solution substantially.

For the structural optimization methodology in general, and the cost opti-
mization approach in particular, to be embraced by the structural engineering
community, the focus of future research should be on large structures sub-
jected to the actual constraints of a commonly used design code such as
the AISC ASD (AISC, 1995) or the AISC LRFD (AISC, 2001) code. The
true benefit of optimization is realized for large structures with hundreds of
members.

In cost minimization additional difficulties are encountered. They include
the definition of the cost function and uncertainties and fuzziness involved
in determining the cost parameters. As a result, only a small fraction of the
structural optimization papers published deal with the minimization of the
cost. In this chapter, a chronological review of papers is presented on the cost
optimization of concrete and steel structures published in archival journals.

1.2 Cost Optimization of Concrete Structures

Hundreds of papers have been published on optimization of structures during
the past four decades. However, only a small fraction of them deal with cost
optimization of structures. The great majority of the structural optimization
papers are concerned with minimization of the weight of the structure. For
concrete structures the objective function to be minimized should be the cost
since they are made of more than one material. A review of articles on cost
optimization of concrete structures published in archival journals is presented
in this section, where interesting and important results and conclusions are
summarized. Most of these papers deal with structural elements such as
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beams. Few journal papers are found on cost optimization of rather realistic
three-dimensional structures. As such, there is a need to perform research on
cost optimization of realistic three-dimensional structures, especially large
structures with hundreds of members where optimization can result in sub-
stantial savings. The results of such research efforts will be of great value to
practicing engineers.

Concrete structures include reinforced concrete (RC), prestressed con-
crete, and fiber-reinforced concrete structures. In concrete structures at least
three different cost items should be considered in optimization: costs of
concrete, steel, and the formwork. This review is presented in terms of
different types of concrete structures. Reliability-based cost optimization is
reviewed in the last section.

1.2.1 Concrete Beams and Slabs

Most of the papers published on cost optimization of concrete structures are
about beams or girders. The general cost function for reinforced, fiber, or
prestressed concrete beams can be expressed in the following form:

Cm = Ccb + Csb + Cpb + Cfb + Csbv + Cfib (1.1)

where Cm is the total material cost, Ccb is the cost of concrete in the beam,
Csb is the cost of reinforcing steel, Cpb is cost of prestressing steel, Cfb is
the cost of the formwork, Csbv is the cost of shear steel, and Cfib is the
cost of fiber in concrete. For a pretensioned beam equation (1.1) can be
written as

Cm =wcLb

(
Acb − Asb − A′

sb − Apb

)
cc + wsLb �Asb + A′

sb� cs

+ wpLbApbcp + Lbpfbcf + Csbv + Cfib (1.2)

where Lb is the length of the beam; w, A, c are unit weights, cross-sectional
areas, and unit costs, respectively; subscripts b, c, s, p, and f refer to beam,
concrete, steel, prestressing, and formwork, respectively; the prime indicates
compression steel; and pfb is the cross-sectional perimeter of the form. Equa-
tions (1.1) and (1.2) can be reduced for special cases. For example, in the
case of an RC beam with no prestressing and fiber, the quantities Apb and
Cfib are set to zero in equation (1.2).

Goble and Lapay (1971) minimize the cost of post-tensioned prestressed
concrete T-section beams based on the ACI code (ACI, 1963) by using the
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gradient projection method (Arora, 1989). The cost function includes the first
four terms in equation (1.1). They state that the optimum design seems to
be unaffected by the changes in the cost coefficients. However, subsequent
researchers to be discussed later rebut this conclusion.

Kirsch (1972) presents the minimum cost design of continuous two-span
prestressed concrete beams subjected to constraints on the stresses, pre-
stressing force, and the vertical coordinates of the tendon by linearizing the
nonlinear optimization problem approximately and solving the reduced linear
problem by the linear programming (LP) method. His cost function includes
only the first and third terms in equation (1.1). Kirsch (1973) extends this
work to prestressed concrete slabs.

Friel (1974) finds closed-form solutions for the optimum ratio of steel to
concrete for minimum cost simply supported rectangular RC beams using the
ultimate moment constraints of the ACI code (ACI, 1971). The cost function
is similar to equation (1.1), but neglecting the costs of prestressing steel
�Cpb� and fiber �Cfib� and adding an additional term for increasing the cost
due to the increase in the building height. The author concludes that the costs
of the formwork and the increase in the height do not influence the optimum
cost significantly.

Brown (1975) presents an iterative method for minimum cost selection
of the thickness of simply supported uniformly loaded one-way slabs using
only the flexural constraints of the ACI code (ACI, 1971). The cost function
includes only the first two terms in equation (1.1). The author reports cost
savings of up to 17 %.

Naaman (1976) compares minimum cost designs with minimum weight
designs for simply supported prestressed rectangular beams and one-way
slabs based on the ACI code (ACI, 1971). The cost function includes the
first, third, and fourth terms in equation (1.1) and is optimized by a direct
search technique (Siddall, 1972). He concludes that the minimum weight
and minimum cost solutions give approximately similar results only when
the ratio of cost of concrete per cubic yard to the cost of prestressing steel
per pound is more than 60. Otherwise, the minimum cost approach yields
a more economical solution, and for ratios much smaller than 60 the cost
optimization approach yields substantially more economical solutions. He
also points out that for most projects in the US the aforementioned ratio is
less than 60.

Chou (1977) uses the Lagrange multiplier method for the minimum cost
design of a singly reinforced T-beam using the ACI code (ACI, 1971). The
author defines only two design variables: effective depth and area of steel
reinforcement. The cost function includes the first two terms in equation (1.1).
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In the formulation it is assumed that the neutral axis is located inside the
flange of the T-section. The author reports a cost reduction up to 14 % of
the cost of the beams with a maximum steel ratio.

Gunaratnam and Sivakumaran (1978) present the minimum cost design of
RC slabs satisfying the limit state requirements of the British code (CP110,
1972) for members having uniform, triangular, or parabolic moment distribu-
tion using a combination of the Lagrange multiplier and graphical methods.
Their cost function includes only the first two terms in equation (1.1). They
present curves for optimum design parameters as a function of the thickness
of the slab. They point out the significant influence of the serviceability limit
state of deflection on the optimum design parameters.

Kirsch (1983) presents a simplified three-level iterative procedure for cost
optimization of multi-span continuous RC beams with rectangular cross-
sections using a cost function consisting of only the first two terms in
equation (1.1). In the first level the amount of the reinforcement is found
in each critical section for given concrete dimensions and design moments.
In the second level the concrete dimensions of each element are found. In
the third level design moments are optimized. The author does not, however,
consider the constraints of a concrete design code used in practice.

Cohn and MacRae (1984a) consider the minimum cost design of sim-
ply supported RC and partially or fully pre-tensioned and post-tensioned
concrete beams of fixed cross-sectional geometry subjected to serviceability
and ultimate limit state constraints including constraints on flexural strength,
deflection, ductility, fatigue, cracking, and minimum reinforcement, based on
the ACI code (ACI, 1977) or the Canadian building code (CSA, 1977) using
the feasible conjugate-direction method (Kirsch, 1993). The beam can be
of any cross-sectional shape subjected to distributed and concentrated loads.
Their cost function is similar to equation (1.1) with the exception of the term
for the cost of fibers. For the examples considered they conclude that for
post-tensioned members partial prestressing appears to be more economical
than complete prestressing for a prestressing-to-reinforcing steel cost ratio
greater than 4. For pretensioned beams, on the other hand, complete pre-
stressing seems to be the best solution. For partially prestressed concrete
they also conclude that for a prestressing-to-reinforcing steel cost ratio in the
range of 0.5 to 6, the optimal solutions vary little. Cohn and MacRae (1984b)
perform parametric studies on 240 simply supported, reinforced, partially, or
completely pre- and post-tensioned prestressed concrete beams with different
dimensions, depth-to-span ratios, and live load intensities. They conclude
that, in general, RC beams are the most cost-effective at high depth-to-span
ratios and low live load intensities. On the other hand, completely prestressed
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beams are the most cost-effective at low depth-to-span ratios and high live
load intensities. For intermediate values, partial prestressing is the most
cost-effective option.

Saouma and Murad (1984) present the minimum cost design of simply sup-
ported, uniformly loaded, partially prestressed, I-shaped beams with unequal
flanges subjected to the constraints of the 1977 ACI code (ACI, 1977). The
optimization problem is formulated in terms of nine design variables: six geo-
metrical variables plus areas of tensile, compressive, and prestressing steel.
The constrained optimization problem is transformed to an unconstrained
optimization problem using the interior penalty function method (Kirsch,
1993) and is solved by the quasi-Newton method (Vanderplaats, 1984) of the
IMSL library (IMSL, 1980). They found the optimum solutions for several
beams with spans ranging from 6 m to 42 m, assuming both cracked and
uncracked sections, and reported cost reductions in the range of 5 % to 52 %.
They also conclude that allowing cracking to occur does not reduce the cost
by any significant measure.

Using integer programming, Jones (1985) formulates the minimum cost
design of precast, prestressed concrete simply supported box girders used in
a multi-beam highway bridge and subjected to the AASHTO (1977) loading
assuming that the cross-sectional geometry and the gridwork of strands are
given and fixed. The design variables are the concrete strength, and the
number, location, and draping of strands (moving the strands up at the end
of the beam). The constraints used are release and service load stresses,
ultimate moment capacity, cracking moment capacity, and release camber.
The cost function includes only the first and third terms in equation (1.1).

Abendroth and Salmon (1986) present a parametric study on the sensitivity
of the optimum cost of partially or fully end-restrained RC T-section beams in
terms of various parameters such as allowable deflections, material strength,
support conditions, and unit material costs. The constrained minimization
problem is converted to an unconstrained one using an internal penalty
function and solved by the quasi-Newton–Raphson method (Kirsch, 1993).
The design constraints are given in the ACI code (ACI, 1983). The cost
function includes the first, second, fourth, and fifth terms in equation (1.1).
In addition, they add a penalty cost parameter in order to take into account
the various factors associated with increased floor thickness. They assume
the unit cost of stirrups (shear reinforcement) to be one and a half times
the cost of longitudinal reinforcement. They found that the optimum cost is
less with metallic forms than wooden forms even when the latter is used
as many as four times. They state that shear reinforcement does not have
a significant role in reducing the total cost and therefore may be neglected
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in the optimization formulation. They report a 5 % savings in the total cost
by increasing the strength of concrete from 17.2 MPa (2.5 ksi) to 48.2 MPa
(7.0 ksi) and 15 % savings by increasing the yield strength of steel from
275.6 MPa (40 ksi) to 516.8 MPa (75 ksi). They compare an elastic design
with a partial limit state design and state that the latter does not produce
significantly more economical beams.

Park and Harik (1987) present the minimum cost design of horizontally
curved two-way RC slabs with rigid boundaries based on the British code
(CP110, 1980) using the sequential LP method. The cost function includes the
first two terms in equation (1.1). They consider the constraints on deflections,
minimum effective depths, and design moments as the three dominant factors
in the optimization process.

MacRae and Cohn (1987) present the optimization of prestressed concrete
flat slabs based on the Canadian code for concrete structures (CSA, 1977)
and the recommendation of an ACI-ASCE Committee (ACI-ASCE, 1974)
using the conjugate-direction method. Notwithstanding the importance of
shear in the design of flat slabs, they only consider the flexural reinforcement
in the optimization formulation. They pose the problem as one of finding the
reinforcing and prestressing steel in the flat slab of a given story for given
concrete dimensions. Their cost function contains only the first three terms
in equation (1.1). They conducted a parametric study by varying the depth-
to-span ratio, live load, cable layout, and limit state and allowable tensile
stresses. They conclude that using cables in clusters (groups of cable) and
using high-strength steel reduce the total cost.

Prakash et al. (1988) present minimum cost designs of singly and doubly
reinforced rectangular and T-shape RC beams, using Lagrangian and Simplex
methods per limit state conditions of the prevailing Indian code. The cost
function includes the first two terms in equation (1.1). They state that a
two-way slab is more economical than a T beam floor for spans up to 6 m
in a residential type building, whereas for heavier loads or longer spans the
reverse is true.

Paul et al. (1990) present the minimum cost design of a modular floor
system with precast prestressed voided and solid slabs simply supported on
steel beams, using the general geometric programming method (Beightler
and Phillips, 1976). The design is given in the British codes (BS449, 1969;
CP110, 1976). The cost function includes the cost of fabrication of the
slabs including the cost of concrete, prestressing steel, and forms, cost of
steel beams, and the cost of erection. They conclude that for optimum cost
designs the prestressing force required for a solid slab is less than that for a
voided slab.
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Kanagasundaram and Karihaloo (1990) describe the minimum cost design
of simply supported and continuous rectangular, L- and T-section RC beams
according to the Australian code (AS3600, 1988) using two different meth-
ods: sequential LP and sequential convex programming (Arora, 1989). The
constraints used are stability, strength, serviceability, durability, and fire
resistance. Their cost function includes the first, second, and fourth terms in
equation (1.1). For the examples considered they state that the costs of con-
crete and the reinforcing steel are about the same but the cost of formwork is
more than twice the cost of concrete and steel combined, thus concluding the
significant contribution of the formwork cost to the total cost. A sensitivity
analysis of the cost optimization with respect to the cost of formwork is
performed and found that the minimum cost design is not affected by the
variations in the relative cost of formwork.

Kanagasundaram and Karihaloo (1991a) consider the strength of concrete
(f ′

c) as a design variable in addition to cross-sectional dimensions and the
steel ratio for the cost optimization of simply supported and multi-span beams
with rectangular and T-sections. The cost of concrete is related to the concrete
strength through nonlinear regression analysis and using a cubic function.
They conclude that higher strength concrete (up to 60 MPa) resulting in
shallower sections yields more economical beams. Kanagasundaram and
Karihaloo (1991b) present the minimum cost design of RC multi-span beams
subjected to earth pressure, liquid pressure, wind, or earthquake loads in
addition to dead and live loads. The design constraints and cost function are
the same as before. The conclusions are also similar.

Ezeldin (1991) presents the minimum cost design of rectangular, reinforced
fiber concrete beams with four variables: width and depth of the beam,
steel fiber content and area of bending reinforcing bars. The cost function
can be obtained from equation (1.2) by setting the prestressing steel �Apb�,
compression steel �A′

sb�, and shear reinforcement �Csbv� to zero. A direct
search method is used for optimization. As an extension of this work, Ezeldin
and Hsu (1992) formulate the minimum cost design of rectangular, reinforced
fiber concrete beams with two additional variables, cross-sectional area and
spacing of stirrups, and thus the cost function includes the cost of shear
reinforcement. They conclude that the variations of the costs of concrete and
form appear to have a more significant influence on the minimum cost than
those of steel reinforcement and fibers.

Chakrabarty (1992a) presents the minimum cost design of RC rectangular
beams using the geometric programming (Kirsch, 1993) and Newton–Rapson
methods. The cost function includes the first, second, and fourth terms in
equation (1.1). In the context of the Indian condition where the labor is cheap,
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the author found that at optimum solution the cost of concrete and steel are
about the same but the cost of formwork is about one-fourth of the cost of
concrete or steel. The reverse was reported earlier by Kanagasundaram and
Karihaloo (1990) for countries like Australia or the USA where the labor
cost is high. The author observes that in most cases the optimum design
yields ductile beams, which is desirable for withstanding dynamic forces like
earthquakes. In an extension of this work Chakrabarty (1992b) concludes
that the minimum cost design of a rectangular singly reinforced beam is
increased by 36 % when the width-to-depth ratio is increased from 0.25 to
0.67. The author observes that optimized sections are often deeper sections
to satisfy displacement constraints and hence become more ductile with less
steel reinforcement. Erbatur et al. (1992) discuss the minimum cost design
of prestressed concrete beams with rectangular and flanged sections. They
solve the non-linear optimization problem approximately by using the LP
approach.

Cohn and Lounis (1993) present the minimum cost design of partially
and fully prestressed concrete continuous beams and one-way slabs. The
optimization is based on the limit state design and projected Lagrangian
algorithm. They simultaneously satisfy both collapse and serviceability limit
state criteria based on the ACI code (ACI, 1989). The material nonlinearity is
idealized by an elastoplastic constitutive relationship. A constant prestressing
force and prestressing losses are assumed. Their cost function includes the
first three terms in equation (1.1). They report that the total cost decreases
with the increase in the allowable tensile stress �ft�.

Lounis and Cohn (1993b) present a multi-objective optimization formu-
lation for minimizing the cost and maximizing the initial camber of post-
tensioned floor slabs with serviceability and ultimate limit state constraints
of the ACI code (ACI, 1989). The cost objective function is chosen as the
primary objective and the camber objective function is transformed into
a constraint with specified lower and upper bounds. The resulting single
optimization problem is then solved by the projected Lagrangian method.
The cost function for the slab includes only the first and third terms in
equation (1.1).

Khaleel and Itani (1993) present the minimum cost design of simply sup-
ported partially prestressed concrete unsymmetrical I-shaped girders per ACI
code (ACI, 1983). The objective function is similar to equation (1.1) but
with the exception of the last term. The sequential quadratic programming
method is used to solve the nonlinear optimization problem assuming both
cracked and uncracked sections. They conclude that an increase in the con-
crete strength does not reduce the optimum cost significantly, and higher
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strength in prestressing steel reduces the optimum cost to a certain extent.
They state that some amount of reinforcing steel facilitates the development
of cracking in the concrete, which reduces the cost of materials and improves
ductility.

Al-Salloum and Siddiqi (1994) present the minimum cost design of singly
reinforced rectangular concrete beams per ACI code (ACI, 1989). The cost
function includes only the first, second, and fourth terms in equation (1.1).
They obtained a closed-form solution for the steel areas and depth in terms of
the cost and strength parameters by taking the derivatives of the augmented
Lagrangian function with respect to the area of steel reinforcement, depth
of beam, and four Lagrange multipliers for constraints on flexural strength,
lower and upper bounds on ductility, and the side constraint.

Adamu et al. (1994) outline a continuum-type optimality criteria approach
(Rozvany et al. 1994) for the minimum cost design of singly reinforced RC
beams with rectangular cross sections based on the European code (CEB/FIB,
1990). The cost function includes only the first, second, and fourth terms
in equation (1.1). The necessary cost minimality criteria are obtained by
applying the calculus of variation to an augmented Lagrangian function.
They applied the method to a propped cantilever beam (fixed support at one
end and simple support at the other end) with variable depth and width. As
an extension of this work, Adamu and Karihaloo (1994a) used the discretized
continuum-type optimality criteria (DCOC) method for the minimum cost
design of RC beams with varying cross-sections using the depth or the
depth and steel reinforcement ratio as design variables. They applied the
method to two example problems: a propped cantilever beam and a three-span
continuous beam. Adamu and Karihaloo (1994b) discuss the minimum cost
design of rectangular RC beams with uniform cross-sections and variable
steel ratio in each span. Adamu and Karihaloo (1995a) consider the minimum
cost design of nonprismatic RC simply supported T-beams and propped
cantilever rectangular beams with segmentation. In each segment of the
beam, the cross-section is either constant or varies linearly or quadratically.

Han et al. (1995) discuss the minimum cost design of partially prestressed
concrete rectangular, and T-shape beams based on the Australian code
(AS3600, 1988) using the DCOC method. The cost function includes the
first four terms in equation (1.1). They conclude that for a simply supported
beam, a T-shape is more economical than a rectangular section. Han et al.
(1996) use the DCOC method to minimize the cost of continuous, par-
tially prestressed and singly reinforced T-beams with constant cross-sections
within each span. A three-span and a four-span continuous beam example is
presented.
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1.2.2 Concrete Columns

Few papers have been published on the cost optimization of concrete
columns. The general cost function for a concrete column can be written in
a similar way to equation (1.1) for concrete beams:

Cm = Ccc + Csc + Cpc + Cfc + Ctc (1.3)

where Ccc, Csc, Cpc, Cfc, and Ctc are the costs of concrete, reinforcing steel,
prestressing steel, formwork and lateral ties in columns, respectively. For
pre-tensioned columns, equation (1.3) can be written as

Cm =wcHc

(
Acc − Asc − Apc

)
cc + wsHcAsccs + wpHcApccp

+ Hcpfccf + Vtccs (1.4)

where Hc is the height of the column, Acc is the cross-sectional area of
the column, Asc is the cross-sectional area of the steel reinforcement, Apc

is the cross-sectional area of the prestressing steel, pfc is the cross-sectional
perimeter of the form, and Vtc is the volume of the lateral ties.

Kanagasundaram and Karihaloo (1990, 1991a) present the minimum cost
design of rectangular RC columns subjected to an axial compressive force
and single or biaxial bending based on the Australian code (AS3600, 1988)
using sequential LP and sequential convex programming methods. Both
short and long columns are considered, taking into account their slender-
ness ratio. The cost function is similar to equation (1.3) but without the
prestressing cost. Both objective function and constraints are approximated
by Taylor’s series expansions. In a subsequent paper, Kanagasundaram
and Karihaloo (1991b) include the concrete strength as a design variable
in addition to cross-sectional dimensions and the area of the longitudinal
reinforcement.

Zielinski et al. (1995) present the cost optimization of RC short tied rect-
angular columns based on the Canadian code (CSA, 1984) using the internal
penalty function method. The cost function includes the first, second, and
fourth terms in equation (1.3). Kocer and Arora (1996) present the mini-
mum cost design of prestressed concrete transmission poles based on the
PCI (1983) and the ACI (1977) codes using (a) a combination of branch
and bound, enumeration, and sequential quadratic programming methods
and (b) a genetic algorithm (Goldberg, 1989; Adeli and Hung, 1995). Their
cost function includes the first, third, and fourth terms in equation (1.3).
Their results indicate a genetic algorithm to be more efficient than the other
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approach used. They report savings in the neighborhood of 25 % compared
with conventional designs.

1.2.3 Concrete Frame Structures

The overall or total cost of a concrete structure �CT� can be expressed in the
following form:

CT = Cm + Cf + Ct + Cs + Ccd + Ce (1.5)

where Cf , Ct , Cs, Ccd, and Ce are the costs of fabrication (or placement),
transportation, substructure (or foundation), cladding, and erection, respec-
tively. Only a few papers have been published on the cost optimization of
reinforced concrete frame structures. All of them deal with two-dimensional
frames with two exceptions.

Andam and Knapton (1980) discuss the minimum cost design of portal
precast RC frames but without presenting much detail. Krishnamoorthy and
Mosi (1981) present the cost optimization of two-dimensional frames with
rectangular cross-sections using the sequential unconstrained minimization
technique (SUMT) (Fiacco and McCormick, 1968) and Davidon-Fletcher-
Powell method (Arora, 1989). They considered nonlinear constitutive rela-
tionships but no actual design code. Their cost function includes only the
material costs of concrete, steel reinforcement, and formwork. They present
examples of single-, double-, and triple-bay and two-, four-, and six-story
frames.

Huanchun and Zheng (1985) present a two-level minimum cost design
approach for two-dimensional RC frames according to the Chinese building
code. In the first level they try to find the most flexible structure satisfying the
global constraints, such as the lateral drift using the sequential LP method.
In the second level the cost of the frame is minimized by considering the
local constraints for each member of the structure and using a discrete search
method for cross-sectional widths and depths. Their cost function includes
the material costs for beams and columns only. Choi and Kwak (1990)
minimize the costs of rectangular beams and columns of RC frames by
using a direct search method to select appropriate design sections from some
predetermined discrete sections based on the ACI (1977) and Korean codes.
Their cost function includes the material costs of concrete, steel, and the
formwork.

Spires and Arora (1990) discuss the optimal design of tall tubular RC
framed structures with double symmetry in the plan based on the ACI code
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(ACI, 1983) using a sequential quadratic programming procedure. However,
they reduce the doubly symmetric structure into the equivalent plane frame
using the approximate finite element approach proposed by Khan (1974). As
such, they optimize the cost of regular symmetric two-dimensional frames.
Their cost function includes the material costs of concrete, steel, and frame-
work for beams and columns. They also consider the frequency constraint
in order to limit wind and earthquake forces. They present examples of five-
and forty-story two-dimensional frames.

Dinno and Mekha (1993) discuss the minimum cost design of one-and
two-story RC frames based on the ACI code (ACI, 1983) using an inelastic
trilinear moment–rotation relationship for beams and columns, and SUMT.
They consider the material costs of concrete, reinforcement, and formwork.
They conclude that optimal designs using inelastic analysis results in some-
what more economical designs.

Moharrami and Grierson (1993) present the minimum cost design of RC
building frames subjected to vertical and lateral loading based on the ACI
code (ACI, 1989) using the optimality criteria approach. The columns have
rectangular cross-sections and the beams can be rectangular, L, or T shapes.
The design variables are the width, depth, and longitudinal steel reinforce-
ment of the beams and columns. Their cost function includes the material
costs of the concrete, reinforcement, and the formwork. Their largest exam-
ple is a five-story single-bay RC frame. They conclude that the optimality
criteria approach converges slowly when stiffness constraints are included
in the formulation.

Adamu and Karihaloo (1995b) used the discretized continuum-type opti-
mality criteria (DCOC) method for the minimum cost design of two-
dimensional multi-bay and multi-story RC frames based on Australian
(AS3600, 1988) and European (CEB/FIB, 1990) limit state design codes.
The cost function includes the material costs of concrete, reinforcing steel,
and the formwork. The design variables are cross-sectional dimensions and
steel ratios. For economical reasons they assume uniform beam and column
dimensions in every story but vary the steel ratios in each member. This
also reduces the cost of the formwork because the formwork can be re-used
more frequently. They present the optimum cost design of a seven-story RC
frame with setbacks. In a companion paper, Adamu and Karihaloo (1995c)
take into account the biaxial bending of the corner columns approximately,
but still considering plane frames.

Fadaee and Grierson (1996) present the minimum cost design of three-
dimensional RC frames with members subjected to biaxial moments and
shear forces using the optimality criteria approach based on the ACI code
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(ACI, 1995). Beams and columns are assumed to have rectangular sections.
The cost function includes the material costs of concrete, steel, and the
formwork. The focus of this work is formulation of the appropriate constraints
for combinations of the axial load, biaxial bending moment, and biaxial
shear. Their example is only a one-bay and one-story space frame. They
conclude that the biaxial shear is an important consideration for the design
of columns and its inclusion increases the cost of the optimum structure
significantly.

Balling and Yao (1997) present a comparative study of optimization of
three-dimensional RC frames with rectangular columns, and rectangular,
T-, or L-shape beams according to the ACI code (ACI, 1989) using one-,
two-, and four-story frames subjected to vertical and lateral loads, and
employing the sequential quadratic programming or a gradient-based method.
For steel reinforcement they consider two different definitions for design
variables. In the first definition, the area of steel in each member is the only
design variable used for steel in that member. In the second definition, they
consider the number, diameter, and longitudinal distribution of the reinforc-
ing bars, and perform a two-level optimization. They include the costs of
materials, fabrication, and placement in the cost function by assuming that
(a) the material and fabrication costs of the steel reinforcement are propor-
tional to the weight and (b) the placement cost is proportional to the number
of bars, stirrups, and ties. They conclude that the optimum costs based on
the two definitions are very close to each other and thus there is no need to
include the second more computationally costly definition in the optimization
formulation. Based on this conclusion, the authors then discuss a simplified
approach for cost optimization of space RC frames.

1.2.4 Bridge Structures

As one of the first papers on cost optimization of structures, Torres et al.
(1966) present the minimum cost design of prestressed concrete highway
bridges subjected to AASHTO loading by using a piecewise LP method.
The independent design variables are the number and depth of girders,
prestressing force, and tendon eccentricity. They further define dependent
design variables as the spacing of girders, tendon cross-sectional area,
initial prestress, and the slab thickness and reinforcement. They claim
their cost function includes the costs of transportation, erection, and bear-
ings in addition to the material costs of concrete and steel, but do not
give any detail. They present results for bridges with spans ranging from
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20 ft to 110 ft (6.1 m to 33.5 m) and with widths of 25 ft (7.6 m) and
50 ft (15.2 m).

Yu et al. (1986) present the minimum cost design of a prestressed concrete
box bridge girder used in a balanced cantilever bridge (consisting of two
end cantilever and overhang spans and one middle simple span) based on
the British code (CP110, 1976) and using general geometric programming
(Beightler and Phillips, 1976). The cost function includes the material costs
of concrete, prestressing steel, and the metal formwork. They also include
the labor cost of the metal formwork, roughly as 1.5 times the cost of the
material for the formwork. The design variables are the prestressing forces,
the eccentricities, and the girder depths for all spans. Barr et al. (1989) also
use the general geometric programming method to minimize the cost of a
continuous three-span bridge RC slab with an overall span length of 16.6 m
subjected to the constraints of AASHTO (1983) and Ohio Department of
Transportation bridge design regulations (ODOT, 1982). The cost function
includes the material costs of concrete and steel.

Lounis and Cohn (1993a) present the minimum cost design of short and
medium span highway bridges consisting of RC slabs on precast, post-
tensioned, prestressed concrete I-girders satisfying the serviceability and
ultimate limit state constraints of the Ontario Highway Bridge Design Code
(OHBDC, 1983). They use a three-level optimization approach. In the first
level they deal with the optimization of the bridge components including
dimensions of the girder cross-sections, slab thickness, amounts of rein-
forcing and prestressing steel, and tendon eccentricities by the projected
Lagrangian method (Haftka and Gurdal, 1992). In the second level, they
consider the optimization of the longitudinal layout such as the number of
spans, restraint type and span length ratios, and transverse layout such as
the number of girders and slab overhang length. In the third level, they
consider various structural systems such as solid or voided slabs on precast
I- or box girders. They use a sieve-search technique (Kirsch, 1993) for the
second and third levels of optimization. Their cost function includes the
material costs of concrete, reinforcement, and connections at piers. They
also include the costs of fabrication, transportation, and erection of gird-
ers assuming a constant value per length of the girder. They conclude by
optimizing a complete set of bridge system results in a more economical
structure than optimizing the individual components of the bridge. Based
on their optimization studies they recommend simply supported girders for
prestressed concrete bridges of up to 27 m (89 ft) long, two-span continuous
girders for span lengths of 28 m (92 ft) to 44 m (144 ft), three-span continu-
ous girders for span lengths of 55 m (180 ft) to 100 m (328 ft), and two- or
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three-span continuous girders for an intermediate range of 44 m (144 ft) to
55 m (180 ft).

Cohn and Lounis (1994) apply the above three-level cost optimization
approach to multi-objective optimization of partially and fully prestressed
concrete highway bridges with span lengths of 10 m to 15 m and widths of
8 m to 16 m. Their objective functions include the minimum superstructure
cost, minimum weight of prestressing steel, minimum volume of concrete,
maximum girder spacing, minimum superstructure depth, maximum span-
to-depth ratio, maximum feasible span length, and minimum superstruc-
ture camber. For a four-lane 20 m length single-span bridge, they conclude
that the voided slab and the precast I-girder systems are more econom-
ical than the solid slab and one- and two-cell box girders. Lounis and
Cohn (1995a) also conclude that voided slab decks are more economical
than box girders for short spans (less that 20 m) and wide decks (greater
than 12 m), and single-cell box girders are more economical for medium
spans (more than 20 m) and narrow decks (less than 12 m). The single-cell
box girder, however, results in the deepest superstructure, which may be a
drawback when there is restriction on the depth of the deck. Multi-criteria
cost optimization of bridge structures is further discussed by Lounis and
Cohn (1995b, 1996). They suggest that the criteria of minimax and mini-
mum Euclidean distance can be used by designers for selection of the best
solution.

Fereig (1996) presents the minimum cost preliminary design of single-
span bridge structures consisting of cast-in-place RC deck and girders based
on the AASHTO code (AASHTO, 1992). The author linearizes the problem
by approximating the nonlinear constraints by straight lines and solves the
resulting linear problem by the Simplex method. The author concludes that
‘it is always more economical to space the girder at the maximum practical
spacing’.

1.2.5 Water Tanks

Saxena et al. (1987) present the minimum cost design of RC water tanks based
on the Indian and ACI (1969) codes using the heuristic flexible tolerance
method (Himmelblau, 1972). The cost function includes the material costs
of concrete, steel, and the formwork. They conclude that a larger percentage
in cost savings can be achieved for water tanks with larger capacities.

Using a direct search method and the SUMT, Tan et al. (1993) present the
minimum cost design of RC cylindrical water tanks based on the British code
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for water tanks. The cost function includes the material costs of concrete and
steel only. The tank wall thickness is idealized with piecewise linear slopes
with the maximum thickness at the base.

1.2.6 Folded Plates and Shear Walls

Lakshmy and Bhavikatti (1995) present the minimum cost design of simply
supported trough-type folded plate roofs based on the Indian code using a
combination of sequential LP and the SUMT. The cost function includes the
material costs of concrete and steel only.

Hajek and Frangopol (1991) describe a computer program for the min-
imum cost design of concrete shear wall systems based on the ACI code
(ACI, 1983) using the folded plate theory and the method of feasible direc-
tions (Vanderplaats, 1984). The cost function includes the costs of concrete
and the formwork (including transport and labor) but excluding the cost of
reinforcement.

1.2.7 Concrete Pipes

Thakkar and Sridhar Rao (1974) discuss cost optimization of composite-
type prestressed concrete pipes based on the Indian code. They approximate
the constraints by linear functions and solve the resulting problem by the
LP method. The cost function includes the material costs of concrete and
steel only. Heinloo and Kaliszky (1981) present a closed-form approximate
solution for the minimum material cost design of thick-walled plastically
rigid RC pipes subjected to internal pressure.

1.2.8 Concrete Tensile Members

Naaman (1982) presents the minimum cost design of prestressed concrete
tensile members based on the ACI code (ACI, 1977). He approximates the
nonlinear optimization problem to a linear one and solves it by the LP
method. The cost function includes the material costs of concrete and the
prestressing steel. Optimization of a 30.48 m (100 ft) long tie member of an
arch structure subjected to an axial tensile force of 444.8 kN (100 kip) is
presented.
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1.2.9 Cost Optimization Using the Reliability Theory

All the aforementioned references use a deterministic approach to cost opti-
mization. A few researchers have used the reliability theory to include the
uncertainties in the computation of the design loads and resistances. In
deterministic optimization a structure is optimized only for a given predeter-
mined set of loadings. In reliability-based design the loads and the structural
strengths are considered as random variables, and safety is related to some
probability of exceeding the structural capacity by the applied loading. In
reliability-based optimization an attempt is made to consider different failure
modes under different loading scenarios simultaneously. The reliability-based
optimization arguably can incorporate the interactions among various failure
modes. However, the major bottleneck in the reliability-based optimization
is the computation of the probability of failure, which often cannot be done
consistently due to insufficient statistical data.

The reliability factor in the cost optimization is considered either directly
or indirectly. In the direct approach, the reliability factor is included directly
in the objective function. Moses (1977) presents the total cost �CT� as the
summation of the initial cost �CI�, which is a function of design variables,
and the expected failure cost �CF� multiplied by a probability of failure �PF�,
which is also considered a function of design variables:

CT = CI + PFCF (1.6)

subjected to the design constraints:

hi�x� = 0� i = 1� 2� � � � �Nch (1.7)

gi�x� ≥ 0� i = 1� 2� � � � �Ncg (1.8)

where Nch and Ncg are the total number of equality and inequality constraints,
respectively. The second term in equation (1.6) represents the risk of the
loading on the structure exceeding its capacity. The expected failure cost
includes the cost associated with the failure of the structure, such as replace-
ment cost, damage to properties, casualties, business interruption, litigation
costs, etc.

In the indirect method the objective function is only the initial cost.
The reliability term is considered indirectly in the form of a constraint or
constraints in addition to the design constraints, equations (1.7) and (1.8),
such as

PF ≤ PF allowable (1.9)
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Thus, in this approach a deterministic optimization procedure can be con-
verted into a reliability-based optimization procedure by adding one or more
additional probability constraints.

Moses (1977) uses both direct and indirect approaches for the minimum
cost design of RC beams and highway girders subjected to fatigue loading
using SUMT and a direct search procedure. The probability of failure is
calculated from a safety index, which is in turn computed from the mean
values and the standard deviations of the random strength and load parameters
(Frangopol and Moses, 1994). The expected failure costs are chosen in
advance somewhat arbitrarily.

Surahman and Rojiani (1983) present a reliability-based optimization of
four- and ten-story RC building frames by including the reliability term
in the cost function. By varying the probabilities of failures between the
range 0.000 001 to 0.01 and assuming different values for the expected
failure cost, they arrive at an optimum probability of failure. SriVidya and
Ranganathan (1995) discuss the reliability-based cost optimization of single-
story single-bay RC frames based on different live and wind load conditions
and the Indian code. They perform an elastoplastic analysis and include
both component- and system-level probabilities of failure in the form of
constraints. They simply assume values for probabilities of failure. Lin and
Frangopol (1996) present the reliability-based minimum cost design of simply
supported RC T-girders for highway bridges based on AASHTO provisions
(AASHTO, 1992). Their initial cost is only the material costs of concrete
and steel. The optimization approach is the method of feasible directions.
They point out that only about 4 % of the structural optimization papers are
about concrete and composite structures.

Koskisto and Ellingwood (1997) present the minimum life-cycle cost opti-
mization of prefabricated concrete structures using the reliability theory.
They define the total life-cycle cost as

CL = CD + CP + CC + CQ + CM + PFCF (1.10)

where CD is the planning and design cost, CP is the production cost, CC is
the construction cost, CQ is the quality assurance and quality control costs,
and CM is the preventive and corrective maintenance costs. For an example
problem of a hollow core slab, they assume the design cost as 2.5 % of the
production cost, where the production cost is the sum of materials and the
labor costs. They ignore the CQ value and assume that the labor cost is 43 %
of the material costs �Cm� and the construction cost �CC� is 0.01 times the
span length and thickness of the slab. They use the projected Lagrangian
method to solve the optimization problem.
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1.2.10 Concluding Comments

The great majority of papers on cost optimization of concrete structures
includes the material costs of concrete, steel, and formwork. Some researchers
ignore the cost of the formwork. However, this cost is significant in indus-
trialized countries and should not be ignored. Other costs such as the cost of
labor, fabrication, placement, and transportation are often ignored. Additional
research needs to be done on life-cycle cost optimization of structures where
the life-cycle cost of the structure over its lifetime is minimized instead of
its initial cost of construction only.

The researchers of reliability-based optimization make a valid argument
about the inclusion of uncertainties in loads and resistances in the opti-
mization process. However, at present (and in the foreseeable future) the
probabilities of failure and the expected failure costs cannot be calculated
with any measure of certainty due to insufficient statistical data; they have
to be chosen somewhat arbitrarily or in some magical way!

1.3 Cost Optimization of Steel Structures

In this section, a chronological review of papers is presented on the cost
optimization of steel structures published in archival journals. This review
is divided into three subsections: deterministic, reliability-based, and fuzzy
logic-based cost optimization of steel structures. In deterministic cost opti-
mization of steel structures, where the great majority of the papers are
published, optimization is performed for a predetermined set of loadings
based on code-specified constraints. In reliability-based cost optimization,
loads and resistances are considered to be random and the optimization is
performed for a given safety factor or probability of exceeding the structural
capacity. In a fuzzy logic-based optimization an attempt is made to take into
account the imprecisions in determining the cost parameters and constraints
using the theory of fuzzy sets (Zadeh, 1965).

1.3.1 Deterministic Cost Optimization

For steel structures a general total cost function �CT� can be defined in the
following form:

CT = Cm + Cf + Ct + Ce (1.11)
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where Cm is the material cost of structural members (beams, columns, and
bracings), Cf is the fabrication cost (including the material costs of con-
nection elements, bolts, and electrode, and the labor cost), Ct is the cost
of transporting the fabricated pieces to the construction field, and Ce is the
erection cost (including the material costs of connection elements, bolts, and
electrode, and the labor cost).

When only the material cost of structural members is included (the first
term in equation (1.11)) the cost function can be presented as proportional
to the volume or weight of the structure:

Cm = cm�sV = cmW (1.12)

where �s is the unit weight of steel, cm is the cost per unit weight of steel,
V is the volume of the structure, and W is the total weight of the structure.
In this case the cost optimization problem is simply transformed to the
weight optimization problem. This simplification also assumes that various
hot-rolled shapes commonly used for beams, columns, and bracings have the
same unit price, which may not be the case.

Some authors use equation (1.12) as their objective function and refer to
the resulting problem as the ‘cost’ optimization problem. In this work, those
papers are considered as a weight optimization problem and consequently
excluded from this review. The review in this section is classified based on
the type of steel structures.

1.3.1.1 Beams and Plate Girders

For beams and plate girders a general cost function can be defined in the
following form:

CT = Cmb + Cfb + Ctb + Ceb (1.13)

where Cmb, Cfb, Ctb, and Ceb are the material, fabrication, transportation, and
erection costs of the beams or plate girders, respectively. The great majority
of published articles include only the first two terms in equation (1.13)
in the cost optimization formulation and use the following reduced cost
function:

CT = Cmb + Cfb (1.14)

An early attempt on cost optimization of steel girders is presented by
Razani and Goble (1966). They optimize doubly symmetric I-shaped welded
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plate girders with a constant web depth based on design requirements similar
to AASHO (1961) using the dynamic programming method (Adeli and Ge,
1989; Adeli, 1994). Their cost function includes both the material cost of
the girder, including stiffeners and splices, and the fabrication cost. They
balance the material cost with the fabrication cost to minimize the total cost
by smoothening the variations in the flange thickness along the span and
minimizing the use of flange splices, resulting in less welding. They present
two example problems: a simple-span girder with overhangs on both ends
subjected to a uniformly distributed load and a three-span continuous girder
under moving AASHO (1961) loads.

Goble and DeSantis (1966) present the minimum cost design of composite,
continuous welded plate girders used in highway bridges with unequal flanges
and variable-thickness flange and web plates but with constant depth. The
basis of design is AASHO (1961). The design variables are the flange
thicknesses and widths, the web thicknesses and depth, and the distances
between the web plate splices and the bottom and top flange splices. They
find the minimum cost web height and flange width for a given arrangement
of splice points. They mention various costs for fabrication and welding
including the cost of pre-heating steel, the cost of preparing and aligning
edges of the plates before welding, the cost of welding rods, and the cost
of weld metal depositing (labor cost). The material cost for a steel plate
is considered to be made of three components: a basic cost per pound,
an extra cost per inch of thickness, and an extra cost per inch of width,
assuming a higher cost for thicker and wider plates. However, the authors
present no actual cost function. The optimization technique used is dynamic
programming. They present an example of a two-span continuous plate girder
with a span length of 60.96 m (200 ft) under moving AASHO (1961) loads.
Moses and Goble (1970) point out that using similar cross-sections for many
members can reduce the fabrication cost of a framed steel structure. In
other words, the minimum cost structure is often somewhat heavier than the
minimum weight structure. They describe the use of dynamic programming
for minimum cost selection of member sizes without actually presenting any
structure made of those members.

Annamalai et al. (1972) present the minimum cost design of simply
supported welded plate girders subjected to concentrated and uniformly dis-
tributed loads based on the AISC specifications (AISC, 1969). They use
commercially available plates and a discrete optimization method called
‘backtrack programming’ (Golomb and Baumert, 1965). They provide a table
of material and labor costs for different components of the plate girder but
present no cost function. For welding and splices they do not present separate
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material and labor costs; instead they combine both material and labor costs
into one cost item. As examples, they present the cost optimization of a
36.6 m (120 ft) simply supported plate girder with and without flange splices.

Anderson and Chong (1986) present the minimum cost design of homo-
geneous and hybrid stiffened steel plate girders according to the AISC code
(AISC, 1978). They consider two factors that raise the cost of a stiffened
hybrid girder over the cost of an unstiffened homogeneous girder: (1) the
additional labor cost for cutting and welding stiffeners, and (2) the cost
of higher strength steel for the flange plates. They present analytical func-
tions for the optimum depth of the web plate by making a number of
assumptions such as neglecting the tension field effect and the shear–tension
interaction.

Lorenz (1988) discusses the minimum cost design of composite beams
based on the AISC Load and Resistance Factor Design (LRFD) code (AISC,
1986). He suggests that the true advantage of the LRFD code can be realized
in a minimum cost design. The author is concerned with the trade-off between
steel weight and the number of studs needed, without considering the cost
of concrete, and presents an equivalent ‘cost-rated beam weight’ to take
into account the costs of beam and studs for conditions limited to uniformly
distributed loading, ASTM A36 steel, concrete strength of 20.7 MPa (3 ksi),
and a particular size of studs.

Farkas (1991) presents closed-form solutions for optimum cost values of
the cross-sectional variables for simply supported welded box girders sub-
jected to a uniformly distributed load and simplified noncode constraints on
bending stress, local flange and web buckling, shear fatigue for longitudinal
fillet welds, and deflection. The cost function is similar to equation (1.14)
where the cost of fabrication �Cfb� is expressed as a function of different
labor times required for (a) preparation, assembly, and tacking, (b) welding,
(c) electrode changing, weld slagging, and chipping, and (d) post-treatment
of welds (toe burr grinding). The author presents empirical equations for
various items using empirical data. In order to come up with the closed-
form solutions, the author makes a number of simplifying assumptions,
e.g. assuming the relation b = 2 h/3 between the flange width �b� and web
depth �h�. The primary conclusion of this work is that the fabrication details
and costs play an important part in the optimum cost design of welded
steel structures. Further, for an example box girder with a span of 10 m
subjected to a distributed load of 60 kN/m, the author reports that the mini-
mum cost design is about 11 % more economical than the minimum weight
design.
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Bhatti (1996) presents the minimum cost design of simply supported par-
tially or fully composite I-shaped steel beams with concrete slabs subjected
to a uniformly distributed load, and strength, deflection, and vibration con-
straints of the AISC LRFD specifications (AISC, 1994) using the Lagrange
multiplier approach. The resulting equations are solved by using a symbolic
algebra program such as Mathematica (Wolfram, 1988). The cost function
is similar to equation (1.14). However, the fabrication cost includes the cost
of field-installed studs only. The cost optimization is formulated in terms of
the relative cost of field-fabricating a stud to the cost per pound of the rolled
steel (a ratio varying in the range of 6 to 12). Graphical solutions of several
examples with span lengths of 7.6 m and 12.2 m are presented.

1.3.1.2 Trusses

Lipson and Russell (1971) discuss the minimum cost design of a roof struc-
tural system consisting of welded parallel-chord trusses, purlins, deck, and
wall cladding above the bottom chord based on the Canadian code (CSA,
1965). The top and bottom chord members are T-section, and web members
are double angles. The design variables are member sizes, spacing of trusses,
depth-to-span ratio of trusses, number of panels of trusses, and the spacing
of purlins. Their cost function includes the cost of materials for trusses,
decking, purlins, and the wall cladding, and the cost of fabrication including
the costs of preparation of chord and web members, splicing, welding, and
labor. The labor cost is expressed in terms of the number of members rather
than the weight of the truss. The cost of wall cladding is expressed as a
step function of truss depth and spacing. The costs of decking and purlins
are expressed as step functions of the spacing of trusses and purlins. The
optimization approach is a modified Simplex method for a nonlinearly con-
strained optimization problem dubbed the ‘Complex’ method (Box, 1965).
Lipson and Gwin (1977) discuss the minimum cost design of steel space
trusses subjected to the AISC constraints (AISC, 1970). Their cost function
includes the first two terms in equation (1.11). The fabrication cost includes
the cost of galvanization. The optimization approach is the same ‘Complex’
method. They present a 25-member space truss example made of steel angles.

Thomas and Brown (1977) discuss the cost optimization of a truss roof
system consisting of a number of identical one-way two-dimensional trusses,
open-web joists, and standard 22 gage decking materials subjected to the
AISC specification (AISC, 1970). Their cost function includes the first,
second, and fourth terms in equation (1.11) for the aforementioned compo-
nents. The material and erection costs of the roof decking are assumed to
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be proportional to the roof area. The fabrication and erection costs of both
the open-web joists and primary trusses are assumed to be proportional to
their weights. The optimization method is the sequential unconstrained mini-
mization technique (SUMT) (Arora, 1989) and the Davidon–Fletcher–Powell
method (Fletcher and Powell, 1963). The largest example truss presented has
37 members and covers a span of 32.6 m (1283.5 in).

Imai (1983) presents a mini-max dual approach for minimum weight and
cost optimization of trusses made of steel and aluminum members subjected
to explicit displacement and stress constraints. The theoretical idea is to
combine the lightweight but more expensive aluminum with heavier but
less expensive steel in an economical way. The cost function is the sum of
the scaled material costs and weights of the components of a structure. The
author acknowledges the difficulty in dealing with the discontinuous nature
of the material properties and approximates the problem using the first-order
Taylor series expansion for a displacement response. A 72-bar space truss
example is presented.

1.3.1.3 Plane Frames

Ridha and Wright (1967) discuss the minimum cost design of two-
dimensional steel frames using the mechanism method of the simple plastic
analysis and the plastic design requirements of the AISC (1963) code assum-
ing adequate bracing against buckling in the weak axis direction. The cost
function includes the first two terms in equation (1.11) but only the cost of
welded connections is included in the fabrication cost. The authors assume
that the connection cost is a linear function of the shear force and the
bending moment resisted by the connection. Further, the connection cost
includes another component as a function of the size of the connected mem-
bers intended to represent the costs of detail drawing, making templates,
shear angles, and reaming. They report that compared with the minimum
weight design the minimum material and connection cost design results in
a heavier frame but a lower total cost, indicating the relative importance of
the connection cost. A two-bay and two-story frame and a single-bay and
three-story frame are presented as examples. They report savings in the range
of 7 % to 26 % for the minimum cost design versus the minimum weight
design.

Anderson and Islam (1979) attempt to present approximate closed-form
solutions for the minimum cost design of multi-story rectangular rigid frames
with limiting values on the lateral deflections. They oversimplify the problem
by a number of assumptions, including neglecting the effect of vertical loads
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on lateral displacements and assuming inflection points at the midpoints of
beams and columns. As such the frame becomes statically determinate and
only one tier is considered for optimization.

Crawford and Jenkins (1980) present the minimum cost design of seven
different types of steel single-span gable frame roof structures based on
the British code (BSI, 1977) using a combination of the Complex method
mentioned earlier and the pattern search of Hooke and Jeeves (1961). The
single-span gable structures consist of two steel columns and a roof made
of hot-rolled steel sections with or without haunches, plate girders, War-
ren truss, or trussed beam. Only the roof structure is optimized, excluding
the columns, purlins, and sheeting. The authors studied the relative cost
advantages of the various roof structures for a span range of 10 m to 50 m
in the construction environment of the United Kingdom and provide rela-
tive cost curves and recommendations for practicing engineers. They also
present curves for optimum length-to-span ratios and the number of panels
versus the span length fitting through data. This paper demonstrates how
cost optimization algorithms can directly help practicing engineers.

Majid et al. (1980) present the minimum cost topological design of rigid
frames subjected primarily to lateral deflection constraints. The nonlinear
optimization problem is approximated linearly by the Taylor series expansion
and solved by the Simplex method. The cost function is the summation of
the material cost and a constant value representing roughly the construction
cost. They present examples of two-, three-, and five-story and multi-bay
frames. Topological optimization is carried by simply removing some of the
columns. Nakamura and Takenaka (1983) also discuss an analytical method
for the minimum cost design of rectangular multi-story multi-span frames
without considering any actual code constraints. Their cost function includes
the first two terms in equation (1.11), but the fabrication cost includes the cost
of connections only. Such highly limited analytical solutions have academic
values only.

Douty (1980) describes the minimum cost design of three different types
of bolted and welded connections used in steel frames based on the AISC
specifications (AISC, 1970): shear angle-framed connection, and flange and
end plate moment-resisting connections. The cost function is presented in
terms of the connection variables, such as the diameter of the bolts, flange
plate width and thickness, shear plate length and thickness, and the leg size of
the fillet weld for connecting the shear plate to the column flange and for the
flange plate moment connection. A weighting penalty is included in the size
of the welds and bolt diameter, assuming that the cost is increased for larger
size bolts and welds. The nonlinear programming problem is approximately



1.3 Cost Optimization of Steel Structures 27

linearized using the Taylor series expansion and then solved by a linear
programming approach. Cheng and Juang (1989) present the minimum cost
design of multi-story rigid frames subjected to static wind and earthquake
forces according to the Uniform Building Code (UBC, 1984). They include
the P� effect in the formulation and solve the problem using the optimality
criteria approach (Adeli, 1994). They present empirical functions for costs
of members, painting, and welded connections. Their examples include a
two-bay, fifteen-story rigid frame.

Thurston and Sun (1993) present the multi-criteria optimization of two-
dimensional steel frames without using any actual design code constraints.
They attempt to minimize both cost and lateral drift using a combination of
the Pareto optimization approach (Koski, 1994) and the multi-attribute utility
theory. The cost function is presented as a function of the length of the steel
members and volume of the concrete used in a rectangular floor deck. An
example of a one-bay, three-story frame is presented.

Xu and Grierson (1993) present the minimum cost design of steel frames
with semi-rigid connections based on the AISC code (AISC, 1978) using
the augmented Lagrangian method. The cost function includes the material
cost of the members (proportional to their weights) and the cost of each con-
nection, assumed to be proportional to its rotational stiffness. Examples of
one-bay and two-story, and three-bay and ten-story steel frames are given.
Based on the limited examples and the aforementioned assumption about
the cost of connections, they report that for low-rise frames with insignifi-
cant lateral displacements, semi-rigid connections ‘may sometimes’ result in
a lighter design compared with the more common rigid connection design.
However, the total cost of the semi-rigid frame may be more than that of
the corresponding rigid frame because the authors did not include the actual
fabrication cost of semi-rigid connections (including the labor cost). When
lateral loads dominate the design, such as in the case of tall frames, the
authors state that the fully rigid design will probably yield a lighter design
because it provides a greater lateral stiffness. Examples of optimal cost designs
of semi-rigid, low-rise industrial frames are also given in Xu et al. (1995).

Simoes (1996) presents the minimum cost design of semi-rigid steel frames
subjected to stress and displacement constraints but without using an actual
design code. The nonlinear programming problem is approximated by the
Taylor series expansion and solved by the segmented linear programming
approach. The cost of the members is assumed to be proportional to the
weight. The cost of connections is taken as a quadratic function of the con-
nection fixity factor in the range of 0 (for simple pinned connections) to
1 (for moment-resisting connections) and empirical ad hoc values are used
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for the coefficients of the cost function. The pinned and moment connec-
tions are assumed to add 20 % and 60 %, respectively, to the cost of each
member, and the additional cost of semi-rigid connections is assumed to
fall within this range. The largest example presented is a two-bay, three-
story semi-rigid frame. For the small low-rise frames presented and for the
assumed cost functions the authors assert that both the weight and cost of a
semi-rigid frame are less than those of the corresponding moment-resisting
frame.

1.3.1.4 Industrial Buildings

Bradley et al. (1974) discuss the minimum cost design of one-story industrial
framed structures using the simple plastic theory and geometric programming
technique (Beightler and Phillips, 1976; Abuyounes and Adeli, 1986) without
using any actual design code. Their focus is computation of the cost terms.
Lee and Knapton (1974) also describe their investigation of the minimum
cost design of industrial building structures made of steel portal frames
based on the British code (BSI, 1969) using the simple plastic theory but
without presenting an explicit cost function. The design variables are the
number of bays, frame spacing, eaves height, roof pitch, purlin spacing, and
building length and width. The simplified optimization problem is solved
approximately by a revised Simplex method.

Russell and Choudhary (1980) present the minimum cost design of one-
story industrial buildings made of roof trusses in the transverse direction,
braced frames in the longitudinal direction, and the footings under the
columns based on the Canadian code (CSA, 1975). The problem is first
decomposed into three optimization subproblems. Then, three interface vari-
ables are defined as the number of panels in the transverse trusses, the
number of bays in the longitudinal direction, and the depth-to-span ratio of
trusses, and the overall cost optimization problem is solved by using the
aforementioned Complex method (Box, 1965). The cost function includes
the costs of materials, labor, equipment, overheads, and profit. Profit and
overheads are included as a fraction of the other three direct costs. The costs
of labor and equipment are presented as functions of man-hours needed in
various operations. Empirical equations are presented for times required for
various operations as functions of design parameters such as the number
of braced frames, the number of panels in the transverse trusses, and the
truss weight, based on the curve fitting of the previous data in the Canadian
construction environment. The authors present optimization of an industrial
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building covering a rectangular 30�5 m × 159 m�100 ft × 520 ft� area and the
clear height to the underside of the trusses of 7.6 m (25 ft).

Jendo and Paczkowski (1993) describe the single- and multi-objective
minimum cost design of one-story industrial buildings made of roof space
double-layer trusses consisting of tubular sections subjected to explicit con-
straints on displacements, stresses, and buckling, using the metric and utility
function methods (Jendo, 1990). Similar to Russell and Choudhary (1980),
the problem is decomposed into several subproblems for optimization of
roof covering (purlins and corrugated sheet), space trusses, columns, and
walls (corrugated sheets). They attempt to synthesize the various optimiza-
tion subproblems by two global or interface variables: the height of the
trusses and the ‘mesh density’, defined as the ratio of the span length
to the distance between the truss nodes. The multi-criteria are the min-
imization of the weight of the truss structure and the wall and column
elements, the maximum vertical displacement, and the labor cost expressed
empirically.

1.3.1.5 Guyed Towers

Bell and Brown (1976) discuss a heuristic approach for the minimum cost
design of cable-supported steel guyed towers with a height in the range 30 m
to 150 m used for supporting heavy microwave antennas subjected to wind
loading and the AISC specifications (AISC, 1970) by assuming independence
of design variables in various subspaces of the design. Optimum cable areas
and tower mast sections are found independently using the Powell search
method (Powell, 1964) and the branch and bound algorithm. They consider
only the material costs and for simplicity transform the minimum cost design
problem to a quasi-minimum weight design problem by assuming a fixed
ratio for the relative costs of the cable and tower steel. The design variables
are cable cross-sectional area, initial cable tension, mast cross-sectional area,
and anchor and tie locations. The cross-section of the mast is either square
with four angles or triangular with three angles. They do not seem to include
the weight of the cross bracings in the formulation. However, the nonlinear
behavior of the cables is included in the formulation.

1.3.1.6 Steel Transmission Poles

Kocer and Arora (1997) formulate the cost optimization of self-supporting
steel transmission poles made of two overlapping tapering dodecagonal tubes
with constant thickness. In addition to the dead load of the pole, the National
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Electric Safety Code’s light loading, ASCE ice and wind loading, and broken
conductor loading are considered. The constraints in the design are given
in the ASCE guidelines (ASCE, 1990). The design variables are the outside
diameter at the top of the pole, tapering of the pole, and thicknesses of the
two overlapping pieces. The cost function is similar to equation (1.14) with
the fabrication cost formulated as the welding cost with three different cost
items. They are the costs of total labor and overheads, total electrode used,
and the power and equipments needed for welding. They calculate the total
labor and overhead costs for welding from the length of the weld, hourly
labor and overhead charge, welding done by one worker per hour, and a
so-called operating factor. The power and equipment cost is assumed to be
20 % of the total electrode costs. The authors include the secondary moment
effects due to lateral displacements in the formulation and solve the problem
using three different approaches: (a) genetic algorithm (Adeli and Cheng,
1993, 1994a; Adeli and Hung, 1995), (b) simulated annealing (Aarts and
Korst, 1989), and (c) the enumeration method. By including the additional
labor costs, the optimum values of the diameter at the top of the upper tube
and the thicknesses of both tubes are increased, and the optimum value of
the tapering slope is decreased. They report that the genetic algorithm is
the best of the three methods used in terms of computational efficiency and
finding the global optimum solution.

1.3.1.7 Cellular Plates

Farkas and Jarmai (1994) present the minimum cost design of laterally loaded
welded cellular steel plates using three different approaches: the backtracking
method, the hill-climbing method, and feasible sequential quadratic program-
ming (Farkas and Jarmai, 1997). The cellular plate is created by sandwiching
and welding a grid of cold-formed channels or I-beams between two parallel
plates. The design constraints are defined explicitly for bending stresses and
local buckling of rib webs due to bending and shear without using any actual
design code. The cost function includes the material and fabrication costs.
The latter is calculated by multiplying the total time required for fabrication
by a fabrication cost factor. The total time required for welding is the sum
of the times required for (a) preparation, assembly, and tacking, (b) welding,
and (c) electrode changing, weld deslagging, and chipping. Empirical equa-
tions based on local fabrication conditions are used for various conditions.
They conclude that the hill-climbing approach is quick but sensitive to initial
solutions and the feasible sequential quadratic programming is ‘robust’ even
when the starting point is infeasible.
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1.3.1.8 Bridge Structures

Memari et al. (1991) present the minimum cost design of a continuous, mul-
tispan concrete reinforced concrete–steel girder highway bridge subjected to
the AASHTO code (AASHTO, 1983) using the method of feasible directions.
The cost function is expressed as the material costs of the superstructure
including the costs of the steel girders, longitudinal and transverse stiffeners,
studs, and the reinforced concrete slabs. Their unit costs of materials are
intended to include other costs such as fabrication, transportation, and erec-
tion indirectly. An example of a three-span and two-lane bridge structure is
presented. They conclude that the dimensions of the flange and web plates
have the greatest impact on the minimum cost solution.

1.3.2 Cost Optimization Using the Reliability Theory

Papers published on the reliability-based cost optimization of structures all
take an academic, theoretical, and idealistic approach to the problem. The
examples presented in these publications are usually small, academic two-
dimensional structures. None of them uses an actual widely used design code
such as the AISC specifications (AISC, 1995). Use of the probabilistic con-
cepts in structural design was presented by Benjamin (1968). One of the first
papers published on the reliability-based structural cost optimization is Mau
and Sexsmith (1972). They minimize the expected cost of simple statically
determinate two-dimensional steel trusses as defined by equation (1.6). They
make a number of simplifying assumptions such as limiting each member to
only one type of failure and ignoring partial failure and serviceability crite-
rion. The initial cost of the structure, the first term in equation (1.6), is taken
as the material cost only, which is expressed as a function of the weight of
the structure. The cost of failure is assumed known and taken as proportional
to the initial material cost of the structure. They point out that the criterion
of minimum expected cost is equivalent to minimization of weight with an
allowable probability of failure.

Ravindra and Lind (1973) describe the use of the probability theory in
design code optimization with an attempt to balance the safety and cost.
They apply the concept by finding a set of optimal load factors for single-
story single-bay steel frames subjected to dead, snow, and wind loads
using the hill climbing approach (Rosenbrock, 1960). Moses (1977) intro-
duces the general concepts of the reliability theory into structural optimiza-
tion in the context of the two approaches presented in Section 1.2.9. Rao
(1980) presents the minimum cost design of a cable-stayed cantilevered
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steel box beam with a probabilistic objective function and constraints
using the indirect approach. The external loadings and the ultimate stresses
are considered as random variables. The author transforms the stochastic
formulation to an equivalent deterministic nonlinear programming prob-
lem by assuming that the random variables follow a normal distribution
with small standard deviations, expanding the objective function about the
mean values of the random variables by Taylor’s series expansion, and
approximating the series by the first two terms. The equivalent determin-
istic nonlinear programming problem is solved by SUMT (Arora, 1989)
with an interior penalty function. A probability of failure of 0.0001 is
assumed.

Frangopol (1985) gives two reasons why the reliability-based structural
optimization has not been popular as compared with the deterministic struc-
tural optimization. First, the lack of a universally acceptable method for
incorporating the uncertainties in the structural optimization formulation
results in nonuniform reliability levels in similar structural design situa-
tions. Second, the diverging opinions on many basic issues include the
very definition of reliability-based optimization. The author then advocates a
multi-criteria optimization approach with collapse and unserviceability as the
failure criteria. The method is applied to a single-story rigid steel frame with
random strengths and random vertical and horizontal concentrated loads,
assuming 0.000 01 and 0.01 for probabilities of collapse and unserviceability,
respectively.

Soltani and Corotis (1988) present single- and multi-objective formulations
with initial and failure costs as objectives functions. Design variables are the
mean plastic moment capacities of structural members using the simple plas-
tic theory for steel structures. They define the cost of failure as the replace-
ment cost and the cost of compensation for possible damage caused by failure
and note that the evaluation of this cost is extremely difficult, especially if
human lives are endangered. The multi-objective optimization problem is
solved by the so-called ‘constraint method’, where one of the objectives is
treated as a constraint with lower and upper bound limits (Cohon, 1978). The
approach is applied to a one-story single-bay steel rigid frame with initial
cost treated as an additional constraint.

Kim and Wen (1990) present the reliability-based cost optimization of
structures under multiple stochastic (time-varying) loads. The combined
effects of the loads, treated as random processes, are included using the
load coincidence method (Pearce and Wen, 1984). The optimization prob-
lem is solved using SUMT (Arora, 1989) with an interior penalty function.
Examples of one-story, single-bay and two-story, two-bay steel frames are
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presented. Enevoldsen and Sorensen (1994) present the reliability-based cost
optimization of structures with component and system reliability constraints,
and apply the concepts to a very simple example, a simply supported tubular
steel column. Chang et al. (1994) discuss reliability-based cost optimization
of steel structures subjected to seismic loading of the Uniform Building
Code (UBC, 1988) and Newmark’s nondeterministic seismic response spec-
tra (Paz, 1991) and apply it to a ten-story, single-bay steel frame assuming
rigid floors. The optimization problem is solved by SUMT (Arora, 1989).
They conclude that nonstructural costs as well as future failure costs can
affect structural cost only at high failure probability levels. Tao et al. (1995)
use the Markov decision process and structural reliability theory to model
the minimum expected lifetime cost of a structure and apply the concepts to
a composite five-girder highway bridge.

1.3.3 Fuzzy Optimization

Fuzzy optimization is based on the theory of fuzzy sets developed by Zadeh
(1965). Brown and Yao (1983) introduce the application of the fuzzy set
theory in structural engineering and state:

It has been argued that probability theory and statistics are useful in civil engi-
neering but their use is limited in the sense that most civil engineering decisions
are made with a shortage of numerical evidence and depend on informed opinions.
The fuzzy set theory is intended to deal with the informed opinion, but in no way
disperses with countable evidence.

Reliability-based optimization is based on the long-established theory of
probability while fuzzy optimization is based on the more recent theory of
possibility (Zadeh, 1978) based on the theory of fuzzy sets (Zadeh, 1965).
Probability is based on the premise that events or variables are random in
nature with a statistical basis, but possibility is based on a fuzzy domain with
mostly nonstatistical variables. In the fuzzy optimization, numerical values
of the membership functions are used, as opposed to the probabilities in
the reliability-based optimization. In structural design, two major sources of
fuzziness, imprecision, or uncertainties can be identified, one in the eval-
uation of the structural behavior and resistance, the other in determining
the loadings acting on the structure. In the cost optimization of structures,
a third source of fuzziness and imprecision comes into play. That is in the
formulation and evaluation of the cost function.
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A fuzzy set Y for any set Z is characterized by a membership function
	Y �z� which grades each point in Z with a value in the interval [0,1]. This
membership function is the grade of membership of z in Y . The nearer the
value of 	Y �z� to unity the higher is the grade of membership of z in Y .
Thus, a fuzzy set Y is defined as

Y = 
z�	Y �z���z ∈ Z (1.15)

The fuzzy set theory can be used to model judgments on ambiguous, impre-
cise, or fuzzy situations. The membership functions of a fuzzy set are used to
develop a fuzzy transition from total acceptance to total rejection of certain
decision processes.

A number of papers have been published on fuzzy optimization of struc-
tures (Wang and Wang, 1985a, 1985b; Rao 1987a, 1987b; Yeh and Hsu,
1990; Rao et al., 1992a, 1992b, 1992c; Yu and Xu, 1994; Shih and Lai, 1994).
Most of these papers, however, are on weight optimization. Only a few deal
with the cost optimization of structures presenting academic examples. In
these papers, the cost function for the fuzzy cost optimization of structures
is expressed as the summation of the initial cost �CI� and the expected cost
of maintenance and failure �CE�:

CT = CI + CE (1.16)

This equation is somewhat similar to equation (1.6) for reliability-based
optimization.

Wang and Wang (1985a) present a simplified fuzzy optimization proce-
dure, dubbed the �-level cut method, by considering the fuzziness in the
constraints and using the nonfuzzy cost function defined by equation (1.16).
The membership functions for the constraints are restricted to preselected
lower limit values of �. As such, the amount of fuzziness in the constraints is
limited to preselected ranges. The advantage of this approach is that the prob-
lem is readily transformed to ordinary nonfuzzy optimization with expanded
lower and upper bound limits, which are functions of �. The disadvantage
of this approach is that the � values are selected somewhat arbitrarily. The
authors apply the concepts to two small academic examples, a one-bay,
two-story shear frame and a three-bar truss. Wang and Wang (1985b) dis-
cuss a two-step approach for fuzzy optimum design of aseismic structures
considering both construction cost and earthquake-caused loss expectation
during the service life of the structure. They introduce the concept of a
fuzzy response spectrum and apply the approach to a simple one-bay, two-
story shear frame. Yeh and Hsu (1990) also discuss a similar procedure
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for the cost optimization of structures with fuzzy allowable strength and
fuzzy loads using the simple plastic theory and theory of possibility (Zadeh,
1978). They assume exponential functions for the fuzzy allowable strength
and fuzzy loads, and apply the concepts to a simple three-bar truss and a
one-story, one-bay frame.

1.3.4 Concluding Comments

Only a small fraction of structural steel optimization articles attempt to
include any cost other than the weight of the structure. Most of the cost
optimization papers are applied to small or academic examples. With the
exception of a few that present moderate-size problems, all are really small-
scale optimization problems.

A number of articles have been published on the reliability-based cost opti-
mization of steel structures. Practically all present simple academic examples.
Nearly three decades ago Moses (1977) acknowledged the weak database
for determining statistical parameters needed in a meaningful reliability-
based cost optimization. The same problem of an inadequate database exists
even today and will exist in the foreseeable future. Another problem is the
existence of a large number of possible failure modes, especially for large
structures, which makes the evaluation of system reliability in a consistent
practical way an impossible task. While the reliability theories can make
a real contribution in advancing the development of more realistic design
codes, their use in practical cost optimization of realistic structures appears
limited at the present time.

So far only a few articles have been published on the cost optimization of
steel structures using the fuzzy set theory, which deal with small academic
examples. The authors of these papers appear to have been influenced by
the reliability-based optimization in formulating the problem. The approach
is primarily the �-level cut method, which includes the fuzziness in the
constraints only. However, there are significant sources of fuzziness in the
cost function as well, and the fuzzy set approach provides an effective way
of modeling them.

It is interesting to note that there was a relatively good amount of research
activity in the cost optimization of structures in the 1960s and 1970s. This
activity dwindled in the 1980s and picked up again in the 1990s to some
extent. The cost optimization problem is somewhat ill-defined in a mathe-
matical sense, and in general its solution is less amenable to established algo-
rithmic procedures and is computationally more intensive. With widespread
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availability of increasingly powerful personal computers and workstations
and the development of recent computational paradigms such as the theory
of fuzzy sets, structural optimization researchers need to pay closer attention
to the cost optimization problem.

Research on cost optimization can encourage the use of the optimization
approach in the structural steel design practice for at least two reasons.
First, it provides a more realistic way of modeling structural steel design.
Second, the consensus of the existing literature is that cost optimization can
result in additional savings in the order of 7 % to 26 % compared to the
weight optimization problem. These savings can be very significant for large
structures.

For the structural optimization methodology in general, and the cost opti-
mization approach in particular, to be embraced by the structural engineering
community, the focus of research should be on large structures subjected to
the actual constraints of a commonly used design code such as the AISC
ASD (AISC, 1995) or the AISC LRFD (AISC, 2001) codes. The true benefit
of optimization is realized for large structures with hundreds of members.

An optimization algorithm that works for a small problem, or a large problem
but with simplified constraints, may not work for a large structure subjected to
the actual highly nonlinear, implicit, and discontinuous constraints of an actual
design code such as the AISC LRFD code (AISC, 2001). This significant issue
is hardly discussed in the structural optimization literature. It should be known
that nonlinear optimization algorithms are highly sensitive to the nature of the
constraints and the size of the problem. An algorithm that works for explicit
simplified constraints can produce unstable results for complicated implicit
and discontinuous constraints. Recently, however, new promising algorithms
have been created for solution of large-scale and complicated optimization
problems that produce stable results consistently, such as the recently patented
neural dynamics model of Adeli and Park (Adeli and Park, 1996; Park and
Adeli, 1997a, 1997b; Adeli and Park, 1998) and the evolutionary computing
and genetic algorithm that will be presented in subsequent chapters.


