
 PART I

Foundations

 � CHAPTER 1: Software Quality

 � CHAPTER 2: Software Testing

c01.indd 1c01.indd 1 4/4/2011 2:24:39 PM4/4/2011 2:24:39 PM

CO
PYRIG

HTED
 M

ATERIA
L

c01.indd 2c01.indd 2 4/4/2011 2:24:42 PM4/4/2011 2:24:42 PM

1
Software Quality

WHAT’S IN THIS CHAPTER?

 � An overview of external and internal quality

 � Discussions of technical debt and constructive quality assurance

 � A look at various software metrics

 � A brief look at tools for measuring and improving software quality

This book deals with software quality in PHP projects. What, exactly, do we mean
by the term “software quality”? One example of a software quality model is FURPS
(Functionality, Usability, Reliability, Performance, Supportability), which was developed by
Hewlett-Packard.1

Although the FURPS quality model applies to all kinds of software, there are even more
quality attributes with respect to Web applications, namely fi ndability, accessibility, and
legal conformity.2 Software quality is a multifaceted topic, as Peter Liggesmeyer states in the
introduction to Software-Qualität: Testen, Analysieren und Verifi zieren von Software, 2.
Auflage.3

1Robert Grady and Deborah Caswell, Software Metrics: Establishing a Company-wide Program
(Prentice Hall, 1987. ISBN 978-0138218447).

2Klaus Franz, Handbuch zum Testen von Web-Applikationen (Springer, 2007. ISBN 978-3-540-
24539-1).

3Peter Liggesmeyer, Software-Qualität: Testen, Analysieren und Verifi zieren von Software, 2. Aufl age
(Spektrum Akademischer Verlag, 2009. ISBN 978-3-8274-2056-5).

c01.indd 3c01.indd 3 4/4/2011 2:24:42 PM4/4/2011 2:24:42 PM

4 x CHAPTER 1 SOFTWARE QUALITY

Every company developing software will attempt to deliver the best possible qual-
ity. But a goal can only be certifi ably reached when it is clearly defi ned, which the
term “best possible quality” is not. Software quality is multifaceted, thus software
quality comprises many characteristics. Not all of these are equally important
for the user and the manufacturer of the software.

A user’s view on quality differs from a developer’s view. We thus differentiate between external and
internal quality, following Nigel Bevan’s explanations of ISO/IEC 9126-1: Software Engineering—
Product quality—Part 1: Quality model 4 in “Quality in use: Meeting user needs for quality.”5 In
this chapter, we take a closer look at these two views.

EXTERNAL QUALITY

Customers, or the end users of an application, put their focus on quality aspects that are tangible for
them. These quality aspects account for the external quality of the application.

 � Functionality means that an application can actually fulfi ll the expected tasks.

 � Usability means that a user can work effi ciently, effectively, and satisfactorily with the appli-
cation. Accessibility is a part of usability.

 � Reactivity means short response times, which is crucial for an application in order to keep
its users happy.

 � Security, especially the security perceived by users, is another important factor for an applica-
tion’s success.

 � Availability and reliability are especially important for Web applications with high user numbers.
The applications must bear high loads and are required to work even in unusual situations.

All aspects of external quality can be verifi ed by testing the application as a whole, using so-called
end-to-end tests. The customer’s requirements, for example, can be written down as acceptance
tests. Acceptance tests not only improve the communication between the customer and the develop-
ers, but also make it possible to verify in an automated way that a software product fulfi lls all its
functional requirements.

To improve an application’s reactivity, we must measure the response time. We must use tools and
techniques to fi nd optimizations that promise the biggest win while keeping cost and effort low. To
plan capacities, developers and administrators must identify potential future bottlenecks when an
application is modifi ed or traffi c increases. All this information is required to assure the quality of
an application with respect to availability and reliability in the long term.

4International Organization for Standardization, ISO/IEC 9126-1: Software Engineering—Product
quality—Part 1: Quality model, 2008-07-29 (Geneva, Switzerland, 2008).

5Nigel Bevan, “Quality in use: Meeting user needs for quality,” Journal of Systems and Software 49, Issue 1

(December 1999): 89–96, ISSN 0164-1212.

c01.indd 4c01.indd 4 4/4/2011 2:24:47 PM4/4/2011 2:24:47 PM

Technical Debt x 5

INTERNAL QUALITY

The needs of the developers and administrators of an application drive its internal quality.
Developers put their focus on readable code that is easy to understand, adapt, and extend. If they
do not do so, implementing the customer’s future change requests becomes more diffi cult and thus
more expensive over time. There is an increased danger that even small changes to the software will
lead to unexpected side effects.

The internal quality of software is virtually imperceptible to customers and end users. End users
expect software to satisfy all, or at least most, of their functional expectations and to be easy to use.
If, upon acceptance, the product is “fast enough,” most customers are satisfi ed.

Bad internal quality shows up in the longer term, though. It takes longer to fi x even trivial bugs.
Any changes or extensions to the software require a huge effort. Quite often, the developers sooner
or later ask for a budget to clean up and refactor the code. Because customers or management often
do not see the benefi t of refactoring, these requests often are turned down.

Refactoring means modifying the internal structure of software, without chang-
ing its visible behavior.

Automated developer tests of individual software modules (unit tests), discussed in Chapter 2,
allow for immediate feedback about new bugs that have been introduced when changing the code.
Without automated tests, refactoring the code is a tough job.

A main goal of quality assurance, or to be exact, quality management, is to make the costs and
benefi ts of internal quality transparent to all parties that are involved. Bad internal quality causes
additional costs in the long term. If these costs can be quantifi ed, it is possible to make the case for
achieving good internal quality, because that reduces costs. This seems to be the only way of making
management or the customer consider allocating a budget for code refactoring.

TECHNICAL DEBT

Ward Cunningham coined the term “technical debt”:

Although immature code may work fi ne and be completely acceptable to the
customer, excess quantities will make a program unmasterable, leading to extreme
specialization of programmers and fi nally an infl exible product. Shipping fi rst-
time code is like going into debt. A little debt speeds development so long as it
is paid back promptly with a rewrite. Objects make the cost of this transaction
tolerable. The danger occurs when the debt is not repaid. Every minute spent
on not-quite-right code counts as interest on that debt. Entire engineering

c01.indd 5c01.indd 5 4/4/2011 2:24:47 PM4/4/2011 2:24:47 PM

6 x CHAPTER 1 SOFTWARE QUALITY

organizations can be brought to a standstill under the debt load of an uncon-
solidated implementation, object-oriented or otherwise.6

Cunningham compares bad code with a fi nancial loan that has an interest rate. A loan can be a good idea if it
helps the project to ship a product more quickly. If the loan is not paid back, however, by refactoring the code
base and thus improving the internal quality, a considerable amount of additional cost in the form of interest piles
up over time. At some point, the interest payments reduce the fi nancial scope, until fi nally someone must declare
bankruptcy. With regard to software development, this means that an application has become unmaintainable.
Every small change to the code has become so expensive that it is not economically feasible to maintain the code.

Lack of internal quality tends to be more of a problem when development is being outsourced to a third party.
Performing quality assurance, and especially writing unit tests, raises the development cost in the short term
without an immediately measurable benefi t. Because the focus often lies on reducing the project costs and
keeping the time to market short, the developers have no opportunity to deliver high-quality code. The dam-
age is done, however, and the customer must bear considerably higher maintenance costs in the long term.

It is crucial for every software project, and especially outsourced projects, not only to defi ne qual-
ity criteria with regard to external quality, but also to ask for a sensible level of internal quality.
Of course, this requires the customer to allocate a somewhat bigger budget, so the developers have
some fi nancial scope to account for internal quality.

Operating and maintenance costs of software are usually vastly underestimated. A medium-sized soft-
ware project may last for one or two years, but the resulting application may be in operation for decades.
The year 2000 problem proved that many applications are operational much longer than originally
expected. Especially for applications that must be modifi ed frequently, account for the biggest share of
cost operation and maintenance. Web applications are known to require frequent changes, which is one
of the reasons why many developers choose a dynamic language like PHP to implement them.

Other applications, for example, fi nancial applications running on mainframes or telephone exchange
software that needs to be highly available, are seldom modifi ed. Although one new release per quarter may
seem hectic for these kinds of applications, many Web applications require multiple releases each month.

Ron Jefferies reminds us that sacrifi cing internal quality to speed up development is a bad idea:

If slacking on quality makes us go faster, it is clear evidence that there is room to
improve our ability to deliver quality rapidly.7

It is obvious that the value of internal quality scales up with increasing change frequency of an
application. Figure 1-1 shows that the relative cost of a bugfi x in the coding phase of a project is 10
times, and in the operations phase is over 100 times, bigger than in the requirements phase. This
proves that trying to postpone costs by delaying tasks in software development projects does not
make sense from an economical point of view alone.

6Ward Cunningham, “The WyCash Portfolio Management System,” March 26, 1992, accessed April 17,
2010, http://c2.com/doc/oopsla92.html.

7Ron Jefferies, “Quality vs Speed? I Don’t Think So!” April 29, 2010, accessed May 1, 2010, http://
xprogramming.com/articles/quality/.

c01.indd 6c01.indd 6 4/4/2011 2:24:49 PM4/4/2011 2:24:49 PM

Constructive Quality Assurance x 7

Requirements Design Code Developer Tests Acceptance Tests Operations

R
e

la
ti

v
e

 c
o

s
t

o
f

a
 b

u
g

fi
x

0
5

0
10

0
15

0

1x 5x
10x

20x

50x

> 150x

FIGURE 1- 1: Relative cost of a bugfix8

CONSTRUCTIVE QUALITY ASSURANCE

Both Capability Maturity Model Integration (CMMI) and Software Process Improvement and
Capability Determination (SPICE)9 have a narrower view on quality assurance than many others,
because they exclude testing.10 All steps that CMMI and SPICE suggest with regard to organi-
zational structure and process organization are prerequisites for the success of analytical activi-
ties like test and review of the fi nished software product and all measures of constructive quality
assurance. Kurt Schneider defi nes constructive quality assurance as “measures that aim at improv-
ing selected software quality aspects on construction instead of afterward by verifi cation and
correction.”11

The insight that avoiding bugs is better than fi nding and fi xing them afterward is not new. Dijkstra
wrote as early as 1972:

Those who want really reliable software will discover that they must fi nd means of
avoiding the majority of bugs to start with, and as a result the programming process
will become cheaper. If you want more effective programmers, you will discover

8Barry Boehm, Ricardo Valerdi, and Eric Honour, “The ROI of Systems Engineering: Some Quantitative
Results for Software-Intensive Systems,” Systems Engineering 11, Issue 3 (August 2008): 221–234, ISSN
1098-1241.

9CMMI is explained in detail at http://www.sei.cmu.edu/cmmi/, and in ISO/IEC 12207. SPICE is
covered in ISO/IEC 15504.

10Malte Foegen, Mareike Solbach und Claudia Raak, Der Weg zur professionellen IT: Eine praktische
Anleitung für das Management von Veränderungen mit CMMI, ITIL oder SPICE (Springer, 2007. ISBN
978-3-540-72471-1).

11Kurt Schneider, Abenteuer Softwarequalität—Grundlagen und Verfahren für Qualitätssicherung und
Qualitätsmanagement (dpunkt.verlag, 2007. ISBN 978-3-89864-472-3).

c01.indd 7c01.indd 7 4/4/2011 2:24:49 PM4/4/2011 2:24:49 PM

8 x CHAPTER 1 SOFTWARE QUALITY

that they should not waste their time debugging—they should not introduce
bugs to start with.12

One approach to prevent the writing of defective software is test-fi rst programming. Test-fi rst pro-
gramming is a technical practice that allows for constructive quality assurance by writing the test
code before writing the production code. Test-driven development, which is based on test-fi rst pro-
gramming, ideally implies the following:

 � All production code has been motivated by a test. This reduces the risk of writing unneces-
sary production code.

 � All production code is covered by at least one test (code coverage). Modifi cations of the pro-
duction code cannot lead to unexpected side effects.

 � Production code is testable code and thus clean code.

 � The pain that existing bad code causes is amplifi ed, because that code cannot be tested or can
be tested only with disproportional effort. This is a motivation to keep replacing existing bad
code through refactoring.

Studies like that done by David S. Janzen13 show that test-driven development can lead to signifi cant
improvements in developer productivity and better software quality.

Constructive quality assurance and normal software development cannot be clearly separated.
Object-oriented programming and the use of design patterns improve the adaptability of software.
Writing clean code (see next section) and concepts like a three-layer architecture or model-view-
controller, when used properly, lead to signifi cant improvements with regard to testability, maintain-
ability, and reusability of the individual software components.

CLEAN CODE

In his book, Clean Code, Robert C. Martin lets Dave Thomas (among others) answer the question
“what is clean code?”:

Clean code can be read, and enhanced by a developer other than its original author.
It has unit and acceptance tests. It has meaningful names. It provides one way rather
than many ways for doing one thing. It has minimal dependencies, which are explicitly
defi ned, and provides a clear and minimal API. Code should be literate since depending
on the language, not all necessary information can be expressed clearly in code alone.14

12Edsger W. Dijkstra, “The humble programmer,” Communications of the ACM 45, Issue 10 (October 1972):
859–866. ISSN 0001-0782.

13David S. Janzen, Software Architecture Improvement through Test-Driven Development (University of
Kansas, Electrical Engineering and Computer Science, Lawrence, Kansas, USA, 2006).

14Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (Prentice Hall International,
2008. ISBN 978-0-132-35088-4).

c01.indd 8c01.indd 8 4/4/2011 2:24:49 PM4/4/2011 2:24:49 PM

Clean Code x 9

Steve Freeman and Nat Pryce add to this thought by stating that code that is easy to test must be
good:

For a class to be easy to unit-test, the class must have explicit dependencies that
can easily be substituted and clear responsibilities that can easily be invoked and
verifi ed. In software-engineering terms, that means that the code must be loosely
coupled and highly cohesive—in other words, well-designed.15

Let’s take a closer look at these terms.

Explicit and Minimal Dependencies

All dependencies of a method to test must be clearl y and explicitly defi ned in the method’s API.
This implies that all required objects must be passed either to the constructor of the class or to the
tested method itself (dependency injection). Required objects should never be created in the meth-
od’s body, because this disallows swapping them out for mock objects. The fewer dependencies a
method has, the easier it becomes to write tests.

Clear Responsibilities

The single responsibility principle (SRP)16 states that a clas s should have one clearly defi ned
responsibility and should contain only those methods that are directly involved with fulfi lling
that responsibility. There should never be more than one reason to change a class. If the respon-
sibility of a class is clearly defi ned and its methods are easy to call and can be verifi ed through
their return values, then writing unit tests for a class is a rather trivial task.

No Duplication

A class that does too much and has no clear responsibility is “a splen did breeding place for dupli-
cated code, chaos, and death.”17 Duplicated code makes software maintenance more diffi cult,
because each code duplicate must be kept consistent, and a defect that has been found in duplicated
code cannot be fi xed in just one spot.

Short Methods with Few Execution Branches

The longer a method is, the harder it is to understand. A short method is not only easier to
understand and reuse, but also easier to test. Fewer execution paths means that fewer tests are
required.

15Steve Freeman and Nat Pryce, Growing Object-Oriented Software, Guided by Tests (Addison-Wesley,
2009. ISBN 978-0-321-50362-6).

16Robert C. Martin, Agile Software Development. Principles, Patterns, and Practices (Prentice Hall
International, 2002. ISBN 978-0-135-97444-5).

17Martin Fowler, Refactoring. Wie Sie das Design vorhandener Software verbessern (Addison-Wesley, 2000.
ISBN 3-8273-1630-8).

c01.indd 9c01.indd 9 4/4/2011 2:24:49 PM4/4/2011 2:24:49 PM

10 x CHAPTER 1 SOFTWARE QUALITY

SOFTWARE METRICS

There are various software metrics for measuring internal quality. T hey are the basis for quantifying
the costs that emerge from bad internal quality.

A software metric is, in general, a function that maps a software unit onto a
numeric value. This value says how well a software unit fulfi lls a quality goal.18

Testability is an important criterion for maintainability in the ISO/IEC 9126-1 software quality
model. Examples for quantifying the testability based on object-oriented software metrics can be
found in “Predicting Class Testability using Object-Oriented Metrics” by Magiel Bruntink and Arie
van Deursen,19 and in “Metric Based Testability Model for Object Oriented Design (MTMOOD)”
by R. A. Khan and K. Mustafa.20

A good overview of object-oriented software metrics is Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of Object-Oriented Systems
by Michele Lanza and Radu Marinescu (Springer, 2006. ISBN 978-3-540-24429-5).

The following sections discuss some metrics that are especially relevant for testability.

Cyclomatic Complexity and npath Complexity

The cyclomatic complexity is the number of possible decision paths in a program or program
unit, usually a method or class.21 It is calculated by counting the control structures and Boolean
operators in a program unit, and it represents the structural complexity of a program unit.
McCabe claims that a sequence of commands is easier to understand than a branch in the con-
trol fl ow.

A large cyclomatic complexity indicates that a program unit is susceptible to defects and hard to
test. The more execution paths a program unit has, the more tests are required. The npath com-
plexity counts the number of acyclic execution paths.22 To keep this number fi nite and eliminate
redundant information, the npath complexity does not take every possible iteration of loops into
account.

18Schneider, Abenteuer.

19Magiel Bruntink and Arie van Deursen, “Predicting Class Testability using Object-Oriented Metrics,”
SCAM ’04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE International
Workshop (2004): 136–145. ISBN 0-7695-2144-4.

20R. A. Khan and K. Mustafa, “Metric Based Testability Model for Object Oriented Design (MTMOOD),”
SIGSOFT Software Engineering Notes 34, Issue 2 (March 2009): 1–6. ISSN 0163-5948.

21Thomas J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering 2, No. 4 (IEEE
Computer Society Press, Los Alamitos, CA, USA, 1976).

22Brian A. Nejmeh, “NPATH: A Measure of Execution Path Complexity and its Applications,”
Communications of the ACM 31, Issue 2 (February 1988): 188–200. ISSN 0001-0782.

c01.indd 10c01.indd 10 4/4/2011 2:24:49 PM4/4/2011 2:24:49 PM

Software Metrics x 11

Change Risk Anti-Patterns (CRAP) Index

The Change Risk Anti-Patterns (CRAP) Index, fo rmerly known as Change Risk Analysis and
Predictions Index, does not directly refer to testability. We mention it here because it is calculated
from the cyclomatic complexity and the code coverage that is achieved by the tests.

Code that is not too complex and has adequate test coverage has a low CRAP index. This means
that the risk that changes to the code will lead to unexpected side effects is lower than for code that
has a high CRAP index. Code with a high CRAP index is complex and has few or even no tests.

The CRAP index can be lowered by writing tests or by refactoring the code. The refactoring pat-
terns extract method and replace conditional by polymorphism, for example, allow for shortening
methods and reducing the number of decision paths, and thus the cyclomatic complexity.

Non-Mockable T otal Recursive Cyclomatic Complexity

Miško Hevery, creator of the so-called Testability Explorer (http://code.google.com/p/test-
ability-explorer/), a tool to measure testability of Java code, defi ned the non-mockable total
recursive cyclomatic complexity software metric. The name is composed of the following parts:

 � Cyclomatic complexity: This is the structural complexity of a method.

 � Recursive: We look at the cyclomatic complexity of a method and take into account the cyc-
lomatic complexity of the called code.

 � Total: The structural complexity of object creation is also taken into account.

 � Non-mockable: Any dependent code that can be replaced by a mock object is ignored. A
mock object replaces the real object for testing purposes (see Chapter 2).

Basically, the non-mockable total recursive cyclomatic complexity measures the amount of complex
code that cannot be replaced by mock objects for unit testing purposes. These kinds of complex
dependencies that disallow isolating code for testing purposes lead to “pain” when testing. All these
dependencies should be refactored, for example by introducing dependency injection, so that they
can be replaced by mock objects.

Global Mutable State

The global mutable state is another metric that Miško Hevery has defined for his Testability
Explorer. It counts all elements of the global state that a program unit writes to or could pos-
sibly write to. In PHP, these are all global and superglobal variables and static class attributes.

Changes to the global state are a side effect that not only makes each test more complex,
but requires that every other test be isolated from it. PHPUnit, for example, supports saving
and restoring the global and superglobal variables and static class attributes prior to run-
ning a test, and restoring them after the test, so that modifications of the global state do
not make other tests fail. This isolation, which can be further enhanced by executing each
test in its own PHP process, is resource-intensive and should be avoided by not relying on a
global state.

c01.indd 11c01.indd 11 4/4/2011 2:24:50 PM4/4/2011 2:24:50 PM

12 x CHAPTER 1 SOFTWARE QUALITY

Cohesion and C oupling

A system with strong cohesion is comprised of components responsible for exactly one clearly
defi ned task. Loose coupling is achieved when classes are independent from each other and com-
municate only through well-defi ned interfaces.23 The Law of Demeter24 requires that each method
of an object calls methods only in the same object and methods in objects that were passed to the
method as parameters. Obeying the Law of Demeter leads to clear dependencies and loose cou-
pling. This makes it possible to replace dependencies by mock objects, which makes writing tests
much easier.

TOOLS

Software quality is multifaceted, and equally multifaceted are the tools that PHP developers can use
to measure and improve the software quality of PHP projects.

PHPUnit

PHPUnit (http://phpun.it/) is the de-facto standard for unit testing in PHP. The framework sup-
ports writing, organizing, and executing tests. When writing tests, developers can make use of the
following:

 � Mock objects (see Chapters 2 and 9).

 � Functionality for testing database interaction (see Chapter 10).

 � An integration with Selenium (see Chapter 11) for browser-based end-to-end tests. Test
results can be logged in JUnit and code coverage as Clover XML for continuous integration
purposes (see Chapter 12).

phploc

phploc (http://github/sebastianbergmann/phploc) measures the scope of a PHP project by
means of different forms of the lines of code (LOC) software metric. In addition, the number of
namespaces, classes, methods, and functions of a project are counted, and some values, like the
average complexity and length of classes and methods, are counted. Chapter 12 shows an example
of how phploc can be used.

PHP Copy-Paste-Detector (phpcpd)

The PHP Copy-Paste-Detector (phpcpd) (http://github/sebastianbergmann/phpcpd) searches
for duplicated code, the so-called code clones in a PHP project. Chapter 12 shows how phpcpd
can be used for an automated and regular search for duplicated code in the context of continuous
integration.

23Edward Yourdon and Larry Constantine, Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design (Prentice Hall, 1979. ISBN 978-0138544713.)

24K. J. Lienberherr, “Formulations and Benefi ts of the Law of Demeter,” ACM SIGPLAN Notices 24, Issue 3
(March 1989): 67–78. ISSN 0362-1340.

c01.indd 12c01.indd 12 4/4/2011 2:24:50 PM4/4/2011 2:24:50 PM

Tools x 13

PHP Dead Code Detector (phpdcd)

The PHP Dead Code Detector (phpdcd) (http://github.com/sebastianbergmann/phpdcd)
searches PHP projects for code that is not called anymore and thus potentially can be deleted.

PHP_Depend (pdepend)

PHP_Depend (pdepend) (http://pdepend.org/) is a tool for static code analysis of PHP code. It is
inspired by JDepend and calculates various software metrics, for example the cyclomatic complexity
and npath complexity that were previously mentioned. It also is possible to visualize various aspects
of software quality. Chapter 12 shows how PHP_Depend can be used in the context of continuous
integration, to keep an eye on relevant software metrics while developing.

PHP Mess Detector (phpmd)

The PHP Mess Detector (phpmd) (http://phpmd.org/) is based on PHP_Depend and allows the
defi nition of rules that operate on the “raw data” software metrics that PHP_Depend has calculated.
If a rule is violated, for example because the cyclomatic complexity exceeds a given limit, a warning
or an error is triggered. Chapter 12 shows how the PHP Mess Detector can be used in the context of
continuous integration.

PHP_CodeSniff er (phpcs)

The PHP_CodeSniffer (phpcs) (http://pear.php.net/php_codesniffer/) is the most commonly used
tool for static analysis of PHP code. Its countless sniffs to detect code smells25 range from formatting
rules via software metrics to the detection of potential defects and performance problems. Chapter 12
shows how PHP_CodeSniffer can be used in continuous integration to enforce a certain coding standard.

bytekit-cli

bytekit-cli (http://github.com/sebastianbergmann/bytekit-cli) is a command line front-end
for the Bytekit PHP extension (http://bytekit.org/). Bytekit allows for code introspection at
bytecode level. With bytekit-cli it is possible to fi nd code that generates output for a code review.
Disassembling and visualizing of PHP bytecode is also possible.

PHP_CodeBrowser (phpcb)

The PHP_CodeBrowser (phpcb) (http://github.com/mayflowergmbh/PHP_CodeBrowser) is a
report generator taking the XML output of other tools like the PHP Copy-Paste-Detector, PHP_
CodeSniffer, and PHP Mess Detector as input. It generates a unifi ed report, which is extremely use-
ful in continuous integration (see Chapter 12).

CruiseControl and phpUnderControl

phpUnderControl (http://phpUnderControl.org/) is a modifi cation and extension of
CruiseControl (http://cruisecontrol.sourceforge.net/), the Java open-source solution that
originally made continuous integration popular. Sebastian Nohn, in 2006, was one of the fi rst to use

25Fowler, Refactoring.

c01.indd 13c01.indd 13 4/4/2011 2:24:50 PM4/4/2011 2:24:50 PM

14 x CHAPTER 1 SOFTWARE QUALITY

CruiseControl in PHP projects.26 In a meeting of the PHP Usergroup Dortmund in Germany, which
was attended by Manuel Pichler, Kore Nordmann, and Tobias Schlitt, the idea was born to simplify
the confi guration of a continuous integration environment for PHP projects based on CruiseControl.
The result was phpUnderControl, which—like CruiseControl in the Java world—has made continu-
ous integration popular in the PHP world. Manuel Pichler and Sebastian Nohn describe how to
install, confi gure, and operate phpUnderControl in Chapter 12.

Hudson

Like CruiseControl, Hudson (http://hudson-ci.org/) is an open-source solution for continuous
integration. In the Java world, Hudson is superseding the outdated CruiseControl. This is not sur-
prising, because Hudson is more robust and easier to handle, and it is being actively developed. The
php-hudson-template project (http://github.com/sebastianbergmann/php-hudson-template)
is a confi guration template for PHP projects in Hudson.

Arbit

Arbit (http://arbitracker.org/) is a modular solution for project management. It features an issue
tracker, a wiki, a code browser, and a continuous integration server. Arbit is currently still in alpha state and
thus not really suited for production use. You should keep an eye on the project though.

CONCLUSION

A s oftware quality goal can only be reached when it has been defi ned precisely. The software met-
rics that have been introduced in this chapter can help to defi ne these goals. Instead of just gathering
data because the continuous integration server makes it possible, the data should be used to answer
dedicated questions about the quality of the inspected software product. The Goal-Question-Metric
(GQM) approach by Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach,27 summarized by
Kurt Schneider in just one sentence, can help:

Do not measure what is easy to measure, but what you need to reach your improve-
ment goals.28

This chapter outlined some goals for improving the internal quality of software, for example testabil-
ity, maintainability, and reusability. We introduced some software metrics to measure these aspects.
We hope the discussion of “technical debt” will improve mutual understanding between the various
parties involved in a software project and made clear the importance of internal quality of software.

Most Web applications are changed and adapted quite frequently and quickly. Their environment,
for example the size and behavior of the user base, is constantly changing. The internal and external
quality are just snapshots. What was suffi cient yesterday can be insuffi cient today. In a Web environ-
ment, it is especially important to monitor and continuously improve the internal quality, not only
when developing, but also when maintaining the software.

26Sebastian Nohn, “Continuous Builds with CruiseControl, Ant and PHPUnit,” March 7, 2006, accessed
April 28, 2010, http://nohn.net/blog/view/id/ cruisecontrol_ant_and_phpunit.

27Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach, “Goal Question Metric Paradigm,”
Encyclopedia of Software Engineering, 2 Volume Set (John Wiley & Sons, 1994. ISBN 1-54004-8.)

28Schneider, Abenteuer.

c01.indd 14c01.indd 14 4/4/2011 2:24:51 PM4/4/2011 2:24:51 PM

