CHAPTER 1

INTRODUCTION

In thiz chapter we will define the probilem we are golving and give mathematical
models of the problem, based on the physical laws of nature. Before we do this,
let’s jump in with an example.

Alice and Bob

Alice has just sent Bob a question in a game of Truth or Dare. The question is
represented by two digital symbols (8; and s5) as shown in Table 1.1. After sending
an initial symbol s, the symbols are sent one at a time. Each is modified as it
travels along a direct path to the receiver, so that it gets multiplied by —10. The
symbhols also travel along a second path, bouncing off a building, as shown in Fig.
1.1. The signal along this path gets multiplied by 9 and delayed so that it arrives
at the same time as the next symbol arrives along the direct path. There is also
noise which is added to the received signal.
At Bob’s phone, the received values can be modeled as

1 ~10s1 4+ 980 + m1
fa = —1082 +951 + 1. (11)

Suppose the actual received values are

™M = ]., T2 = —7. (1‘2)
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Table 1.1  DPossible messages

Index Representation Message
&1 82
1 +1 -1 “Do you like classical music?”
2 -1 -1 “Do yvou like soccer?”

3 +1 +1 “Do you like me?”

Figure 1.1 Dispersive scenario.

Which message was sent? How would you figure it out? Would it help if symbol s
were known or thought to be +17 Think about different approaches for determining
the transmitted symbols. Try them out. Do they give the same answer? Do they
give valid answers {the sequence s; = —1 33 = +1 is not in the table)?

1.1 THE IDEA

Channel equalization is about solving the problem of intersymbol interference (IST).
What is ISI7 First, information can be represented as digital symbols. Letters
and words on computers are represented using the symbols © and 1. Speech and
music are represented using integers by sampling the signal, as shown in Fig, 1.2,
These numbers can be converted into base 2. 'I'hus, the number 6 hecomes 110
{¢tx1+4+1x2+1x4}). There are different ways of mapping the symbols 0 and 1
into values for transmission. One mapping is to represent 0 with +1 and 1 with
—1. 'Fhus, 119 is transmitted as using the series —1 —1 +1. The symbols 0 and 1
are often referred to as Boolean values. The transmitfed values are called modem
symbols or simply symbols.

ISI is the interference between symbols that can occur at the receiver. In the
Alice and Bob example, we saw that one symbol was interfered by a previous symbol
due to a second signal path. This is a problem in cell phone communications, and
we will refer to it as the dispersive channel scenario. A cell tower transmitter sends
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Figure 1.2 Sampling and digitizing speech.

a series or packet of digital symbols to a cell phone. The transmitted signal travels
through the air, often bouncing off of walls and buildings, before arriving at the cell
phone recetver. The receiver’s job is to figure out what symbols were sent. This is
an example of the channel equalization problem.

To solve this problem, we would like & mathematical model of what is happening.
The model should be based on the laws of physics. Cell phone signals are transmit-
ted using electromagnetic (radio) waves. The signal travels through the air, along
a path to the receiver. From the laws of physics, the effect of this “channel” is
multiplication by a channel coeflicient. Thus, if s is the transmitted symbol, then
cs is the received symbol, where ¢ is a channel coefficient. 1o keep things simple,
we will assume ¢ is a real number {(e.g., -~10), though in practice it is a complex
number with real and imaginary parts (amplitude and phase).

Sometimes the channel is dispersive, so that the signal travels along multiple
paths with different path lengths, as illustrated in Fig. 1.1. The first path goes
directly from the transmitter to the receiver and has channel coefficient ¢ = -10.
The second path bounces off a building, so it is longer, which delays the signal like
an echo. It has channel coefficient d = 9. There is also noise present. The overall
mathematical model of the received signal values is given in {1.}}. The portion of
the received signal containing the transmitted symbols is illustrated in Fig. 1.3.

Notice that the model includes terms n,, n2 to model Tandom noise. The laws
of physics tell us that electrons bounce around randomly, more so at higher tem-
peratures. We call this thermal noise. Such noise sdds to the received signal.
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Figure 1.3 Boeoeived signal exaanple.

While we don’t know the noise values, we do know that they are usually small.
In fact, physics tells us that the likelihood of noise taking on a particular value is
given by the histogram in Fig. 1.4. Such noise is called Gaussion, named after
the scientist Gauss. ‘The average noise value is 0. The average of the square of
a noise value is denoted o? (the average of nf or n3). We call the average of the .
square energy or power {energy per sample). We will assume we know this power.
If needed, it would be estimated in practice. One more assumption regarding the
noise terms. We will assume different noise values are unrelated (uncorrelated}.
‘Thus, knowing n; would tell us nothing about .

1.2 MORE DETAILS

How well an eqgualizer performs depends on how large the noise power is, relative
to the signal power. A useful measure of this is the signal-to-noise ratio (SNR). It
is defined as the ratio of sighal power {8) to noise power (N), i.e., 8/N. If we are
told that the noise power is o2 = 100, we just need to figure out the signal power
s

We can use the model for ro in (1.1} to determine S. 'The input signal power S
is the average of the signal component (—10s2 + 9$1)%, averaged over the possible
values of s; and g4. Fhis turns out to be 181, which can be computed one of two
ways. One way is to consider all possible combinations of 8; and s3. For example,
the combination s; = +1 and s = +1 gives a signal term of —10(+1)+9{+1) = —1
which has power (—1)? == 1. Assuming all combinations are possible!, the average
power becomes

8 = (/-1 + (-19)% + (19)? +1?] = 181. {1.3)

Another way to compute 8 is to use the fact that s; and s; are assumed to be
unrelated, When two terms are unrelated, their powers add. The power in —10s;

1This is not guite true, because one combination does not occur according to Table 1.1, However,
for most practical systems, this aspect can be ignored.
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Figure 1.4 Noise histogram for noise power s?=1.

is the average of [(—10}(-+1)]? and [(—10}(—1)]?, which is 100. We could have used
the property that the average of ¢s is ¢* times the average of 5. The power in 95,
is 81, so the total signal power is 181. 'Fhus, the input SNR is

SNR = 181/100 = 1.81. (1.4)

It is common to express SNR in units of decibels, abbreviated dB. These units are
obtained by taking the base 10 logarithm and then multiplying by 10. Thus, the
SNR of 1.81 becomes 10log,,(1.81) = 2.6 dB.

We will be interested in two extremes: low input SNR and high input SNR.
When input SNR. ig low, performance is limited by noise. When input SNR iz high,
performance is limited by ISI.

1.2.1 General dispersive and MIMO scenarios

In general, we can write the received values in terms of channel coeflicients ¢ and
d, keeping in mind that we know the values for ¢ and d. Thus, for the dispersive
scenario, we have

Tm = C8m + d8m-.1 + 0y m = 1,2 elc,, (1.5)
where the noise power ig g2, The corresponding SNR. is

SNR. = (¢* + d%) /. (1.6)
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A block diagram of thig scenario is given in Fig. 1.5,
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Figure 1.5 Dispersive scenario Dock diagran.

We will also consider a second ISI scenario, the multiple-input multiple-output
(MINMO) scenario, illustrated in Fig. 1.6. 1'wo symbols {s; and s2) are transmitted,
each from a different transmit antenna. Both are received at two receive antennas.
There is only a single, direct path from each transmit antenna to each receive
antenna. The two received values are modeled as

ry = —10sy +9s9 +my
ry = T8 — 68y + no. (1.7

Thus, we have ISI from ancther symbol transmitted at the same time on the same
channel. In this case we have two input SNRs, one for each symbol. For each
symbol, signal power iz the sum of the squares of the channel coeflicients associated
with that symbol. Thus,

SNR(1} = {{-10)®47%)/100 =1.49 = 1.7 dB (1.8)
SNR(2) = (9%+4(—6)*)/160=1.17 = 0.7 dB. (1.9)

In general, the MIMO scenario can be modeled as

ry = ¢8;) +dsa+ny

= esy t+ fag 4+ ne. {1.10)

This is sometimes written in matrix form as
s d § n
(al=1e Fl0s ][] (L1

r=Hs+n. (1.12)

or simply
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transmitter receiver
Figure 1.6 MIMO secenario.
The corresponding SNR. values are
SNR(1) = {(c®+e%)/o? {1.13)
SNR(2) = (d®+ )02 {1.14)

1.2.2 Use of complex numbers

Finally, in radic applications, the received values are actually complex numbers,
with real and imaginary parts. We refer to the real part as the in-phase (I} compo-
nent and the imaginary part as the quadrature (QQ) component. At the transmitter,
the I component is used to modulate a cosine waveform, and the Q component is
used to modulate the negative of a sine waveform. These two waveforms are or-
thogonal {do not interfere with one another), so it is convenient to use complex
numbers, as the real and imaginary parts are kept separate. Also, the arithmetic
of complex numbers corresponds to the phase shift relationship between sine and
cosine,

‘We can send one bit on the I component {the I bit) as +1 or —1 and one bit on
the @ component (the ( bit} as +j or —j, where j {{ is often used in mathematics
textbooks) indicates the Q component and behaves like /—1. This leads to a
eonstellotion of four possible symbol values: 1+ 4, 1+ j, -1 —j, and +1 — j. This
is shown in Fig. 1.7 and is called Quadrature Phage Shift Keying {QPSK).

1.3 THE MATH

In this section, a model is developed for the transmitter and channel, and sources of
ISI at the receiver are discussed. To keep the math simple, we consider time-division
multiplexing (TDM), in which symbuols are transmitted sequentially in time, There
is only one transmit antenna and one receive antenna, which is sometimes referred
to as single-input single-output (SISO). A block diagram showing the system and
notation is given in Fig. 1.8. A notation table iz given at the end of the book.
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Figure 1.8 System hlock diagram showing notation.

We will use a complex, baseband equivalent of the system., A radio signal can
be written as the sum of cosine component and a sine component, i.e.,

2(t) = up(£) V2 cos(2r fot) — () V2sin(2m £,.8), (1.15)

where f, is the carrier frequency in Hertz {cycles per second). The two components
are orthogonal (oceupy different signal dimensions} under normal assumptions. The
v'2 is included so that the power is the average of w2(t) + u?(t). We can rewrite
{1.15) as

Re{u(t)v2exp(2n f£)}, (1.16)
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where u(t) = u.(t) + jui(t) is the complex envelope of the radio signal. We can
model the system at the complex envelope level, referred to as complex baseband,
rather than having to include the carrier frequency term.

We will assurme the receiver radio extracts the complex envelope from the received
signal. For example, the real part of the complex envelope can be obtained by
multiplying by +/2 cos(2n f,t) and using a baseband filter that passes the signal.
Mathematically,

y(t) = 2(8)V2 cos(2r fot) = up(£)2 cos®(2m ot} — u;(£)2sin(2m f.2) cos(2n f,t).
(1.17)
Using the fact that cos?(A) = 0.5(1 + cos{2A4}), we obtain

Yr(t) = uo (8] + up{t) cos{2n2f.£) — u;(t)2sin(27 f.t) cos(2x f 1) (1.18)

A filter can be used to eliminate the second and third terms on the right-hand side
{r.h.s.). Similarly, the imaginary part of the complex envelope can be obtained by
multiplying by +/2sin(2x f.t) and using & baseband Blter that passes the signal.

Notice that we have switched to a condinuous time waveform u(t). Thus, when
we send symbols one after another, we have to explain how we transition from
one symbol to the next. We will see that each discrete symbol has a pulse shape
associated with it, which explains how the symbol pets started and finishes up in
time.

1.3.1  Transmitter

At the transmitter, modem symbols are transmitted sequentially as

z(t)=VE, Y stm)p(t—ml), (1.19)

=0
where
e F, is the average received energy per symbol,

s s(m) is the complex (modem) symbol transmitted during symbol period m,
and

» p(t) is the symbol waveform or pulse shape {usually purely real).

The symbols are normalized so that E{|s(m)|?} = 1, where E{-} denotes expected
value.? Fhe pulse shape is also normalized so that ff’o lp(H)j? dt = 1.

In (1.19) we have assumed a continuous {infinite) streamn of symbols. In practice,
a block of N, symbols is usually transmitted as a packet. Usually N, is sufficiently
large that the infinite model is reasonable for most symbols in the block. Theoret-
ically, symhols on the edge of the block should be treated differently. However, in
most cases, it is reasonable (and simpler) to treat all the symbols the same.

In general, a symbol can be one of M possible values, drawn from the set § =
£S;;5 = 1...M}. These M possible complex symbol values can have different

2in this case, expectation is taken over all possible symbol vatues.
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phases {phase modulation) and/or different amplitudes (emplitude modulation).
For good receiver performance, we would like these symbol values to be as different
from one another as possible for a given average symbol power. Note that with
M possible symbol values, we can transmit log, (M) bits {e.g., 3 bits have M = 8
possible combinations)

Medulation is typically Gray-mapped Quadrature Amplitude Modulation (QAM),
_ such as Quadrature Phase Shift Keying (QPSK) {illustrated in Fig. 1.7) and 16-
QAM (illustrated in Fig. 1.9). These can he viewed as Binary Phase Shift Key-
ing (BPSK) and 4-ary Amplitude Shift Keying (4-ASK) on the in-phase (I} and
quadrature (Q}) axes. The 4-ASK constellation, illustrated in Fig. 1.10, conveys
two modem bits: a most significant bit (MSB) and a least significant bit (LSB).
‘I'"he MSB has better distance properties, giving it a lower error rate than the LSB.

Q

@ & ® &

® e & ®
—t+—+> |
1 3

e o | o o

Figure 1.9 16-QAM.

As for pulse shaping, root-Nyquist pulse shapes are typically used, which have
the property that their sampled antocorrelation function is given by

Ry(mi) 2 f_ b+ w8 dt = 8(m), (1.20)

where superscript “*" denotes complex conjugation and d(m) is the Kronecker
delta function (1 for a = 0 and 0 for other integer values of m). (The pulse
shape p(t) is typically purely real.} Such pulse shaping prevents ISI at the receiver
when the channe! is not dispersive and the receiver initially filters the signal using
a filter matched to the pulse shape (see Chapter 2). Sometimes partial-response
pulse shaping is used, in which ISI is intentionally introduced at the transmitter to
enable higher data rates. :
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Figure 1.18  4-ASK with Gray mapping.

A commonly used root-Nyguist pulse shape is root-raised cosine. Its autocorre-
lation function is given by

_ [ sin{xt/T) cos(Fwt/T)
min = (i) (P2t _—

where 3 is the rolloff. The RRC waveform and its autocorrelation function are
shown in Fig. 1.11 for a rolloff of 0.22 {22% excess bandwidth).

1.3.2 Channel

The transmitted sighal passes through a communications channel on the way to
the receive antenna of a particular device. We can model this aspect of the channel
as a linear filter and characterize this filter by its impulse response. The actnal,
physical channel may consist of hundreds of paths on a continutum of path delays.
Fortunately, for an arbitrary channel, the channel response can be modeled as a
finite-impulse-response (FIR) filter, using a tap-spacing that meets the Nyquist
sampling criterion (sampling rate at least twice the bandwidth) for the transmitted
signal {typically between | and 2 samples per symbal period). The accuracy of this
model depends on how many tap delays are used.

Regulatory bodies typically limit the amount of bandwidth a wireless signal
is allowed to occupy. Thus, the channel is bandlimited. Theoretically, for root-
Nyquist pulse shaping, the radio bandwidth must be at least as large as the symbol
rate (baud rate) {the baseband equivalent bandwidth is half the baud rate, giving &
Nyquist sampling period of one symbol period). Conversely, for a given bandwidth,
the symbol rate with root-Nyquist pulse shaping is limited to the radio bandwidth
or twice the baseband bandwidth. T'his limit in symbol rate is sometimes referred
to as the Nyquist rate. .

However, in most systems, a slightly larger bandwidth is used, giving rise to the
notion of excess bandwidth. When excess bandwidth is low, it is reasonable to
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Figure 1.11 Raized cosine fimetion.

approximate the channel with a symbol-spaced channel model, especially when the
channel is highly dispersive {signal energy spread out in time due to the channel).

Consider an example in which the transmitter uses RRC pulse shaping with
rolloff 0.22. The Nyquist sampling period is 1/1.22 or 0.82 symbol periods. Thus,
for an arbitrary channel, we would need a tap spacing of 0.827" for smaller. As
most simulation programs work with a sampling rate that is a power of 2 times
the symbol rate, a convenient tap spacing would be 0.757. If the channel is well-
modeled with a single tap at delay 0, the received signal {after filtering with a RRC
filter) would give us the raised cosine function shown in Fig. 1.11. To recover the
symbol at time 0, we would sample at time 0, where the raizsed cosine function is
at its maximum. Notice that when recovering the next symbol, we would sample
at time 1, and the effect of the symbot at time 0 would be 0 (no ISI), In fact, we
can see that when recovering any other symbol, the effect of symbol 0 would be 0,
as the zero crossings are symbol-spaced relative to the peak.

Suppose, instead, that the channel is well-modeled by two taps 0.751" apart.
An exemple with path coefficients 0.5 and 0.5 is shown in Fig. 1.12 {the x axis
is normalized so that the peak occurs st time 0). Relative to Fig. 1.11, we see
that the symbol is spread out more in time, or dispersed. Hence, the channel is
considered dispersive, Observe that when recovering the next symbol at time 1,
there is ISI from symbeol 0.
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Figure 1.12  Effect of dispersion due to two, 0.75T-spaced, equal amplitude paths on
raised cosine with 0.22 rolloff.

Another aspect of the channel is noise, which can be modeled as an additive
term to the received signal. Characterization of the noise is discussed in the next
subsection.

Putting these two aspects together, the received signal can be modeled as

L-1
() > gt — ) + n(t), {1.22)

£=0

where L is the number of taps or {resolvable) paths, g¢ is the medium response or
path coefficient for the fth path, and 7; is the path delay for the £th path. Note
that we use | to emphasize that this is a model. This means we think of n(t) as a
stochastic process rather than a particular realization of the noise.

By substituting {1.19) into (1.22}, we obtain the following model for the received
signal: '

() = VE, i At — mT)s(m) + n{t), {1.23)
where
L-1
R{t) = >~ geplt ~ 7¢) (1.24)

=0
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is the “channel” response, which includes the symbol waveform at the transmitter
as well as the medium response.

1.3.2.1 Noise and interference models The term n(f) models noise. Here we will
assume this noise is additive, white Gaunssian noise (AWGN). Such noise is implicitly
assumed to have zero mean, ie.,

ma(t) £ E{n(t)} = 0. (1.25)

The term “white” noise means twe things. First, it means that different samples
of the noise are uncorrefated. It also means that its moments are not a funcion of
time. That is, the covariance function is given by

Cally, ta) 2 E{lnlt)) — ma(8)][n* () — mi(t2}]} = Nodp{ts — 2}, (1.26)

where d;;(7} denotes the Dirac delta function {a unity-area impulse at = 0).

Ancther imphcit assumption with AWGN is that it is proper, also referred to
as circuler.  This has to do with the relation between the real and imaginary
parts of an arbitrary noise sample n(ty) = n = n, + jn;. With circular noise,
the real and imaginary components of n{t,) are uncorrelated and have the same
distribution. With AWGN, this distribution is assumed to be Gaussian, which is a
good model for thermal noise. A circular, complex Gaussian random variable (r.v.)
has probability density function (PDF)

| — 2
o) = e | b (127

where m,, is the mean, assumed to be zero, and NV, is the one-sided power spectral
density of the original radio signal {noise on the I and Q components has variance
o2 = Ny/2). If we write n = n, + jn;, where n, and n; are real random variables,
then n, is Gaussian with PDF

. - 2
Su (3} = (e = mr) }

1
ex
VaNy P { No

and has cumulative distribution funetion (CDF)

x 1 a?
/ exp{-—-—}da (1.29)
—oe VAN "

1- (1/2)erfe ( :N") , (1.30)

(1.28)

Fo (2) 2 Prin, < 2}

1

:

where

erfe(y) £ 2 fooe'“zdu {1.31)
: 7=, .
and erfe(—y) == 2 — erfe{y). There are tables and software routines for evaluating
the erfc function.

Bandwidth (BW) limitations and the presence of noise Yimit the rate informa-
tion can be reliably transmitted. For Gaussian noise, Shannon showed that the
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information rate {in bits per second) is limited by the capacity (C) of the channel,
which is given by
' = BWlog,(1 + SNR). {1.32)

"T'he area of information theory includes the development of modulation and coding
procedures that approach this limit. For our purposes, it iz important to note
that increasing the symbol rate beyond the Nyquist rate and using equalization to
address the resulting ISI has its limits.

1.3.3 Receiver

At the receiver, the medium-filtered, noisy signal is processed to detect which mes-
sage was sent. One way to do this is to first detect the modem symbols (demodula-
tion). The term “equalization” is usually reserved for a form of demodulation that
directly addresses ISI in some way.

Based on our system model, there are severa! sources of ISI at the receiver.

1. Interference from different symbol periods. Symbols sent before are after a
particular symbol can interfere because of

{a) the transmit pulse shape,
(b) a dispersive medium, and/or

{c) the receive filter response.

2. Interference from different transmitters. Symbols sent from other transmitters
are either

{a) also intended for the receiver {MIMO scenario) or

(b) intended for another receiver or another user (cochannel interference}.

In a single-path channel, such interference can be synchronocus (time-aligned)
or asynchronous.

Noise and ISI cause the receiver to make errors. For example, it can detect the
incorrect modem symbol, which can give rise to an incorrect bit value. This may
lead to incorrect detection of which message was sent. In later chapters, we will
compare receivers based on their bit error rate (BER), which will be defined as the
probability that a detected bit value is in error. It will be measured by counting
the fraction of bits that are in error (e.g., 2 +1 was transmitted and the received
detected a —1). Other useful measures of performance are symbaol error rate (SER)
and frame erasure rate {FER). The latter refers to the probability that s message
or frame is in error. )

"Throughout this book, we will focus on colerent forms of equalization, in which it
is assumed that the medium response can be estimated to determine the amplitude
and phase effects of the medium. This is typically done by transmitting some known
reference {pilot) symbols. We will not consider noncoherent forms, which only work
for certain modulation schemes. Also, we will not consider blind equalization, in
which there are no pilot symbols being transmitted.
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1.4 MORE MATH

In this section, more elaborate system models and scenarios are considered. Addi-
tional sources of ISl at the receiver are identified.

The system model is extended by constdering several multiplicities. The trans-
mitter multiplexes multiple symbols in paraliel, such as code-division multiplexing
{(CDM) and orthogonal frequency-division multiplexing (OFDM) of symbols. TDM
can be viewed as a special case in which the number of symbols sent in parallel is
one, .

Multiple transmit and receive antennas are also introduced, covering the cases of
cochannel interference and MIMO. This salso introduces the notion of code-division
multiple access (CDMA) and time-division multiple access (TDMA), in which dif-
ferent transmitters access the channel using different spreading codes or different
time slots.

1.41 Transmitter

We assume there are Ny transmit antennas. At transmit antenna t, modem symbols
are transmitted in paraliel using K paraltel multiplexing channels (PMCs). For
CDM, K is the number of spreading codes in use; for OFDM, K is the number of
subcarriers, 'TDM can be viewed as a special case of CDM in which K = 1.

The transmitted signal is given by’

K-1
() = Z\{ EM (k) Z s(‘}(m)agn(t—mi'“), (1.33)

k=0 =
where

. E,E”(k) is the average received symbol energy on PMC £ of transmit antenna

LB

. ss)(m) is the {modem) symbol transmitted cn PMC k of transmit antenna i
during symbol period m, and

af.:}n(t) is the symbol waveform for the symbol transmitted on PMC % of
transmit antenna i during symbol period m.

Symbols are normalized so that E{|3m(m)|2} = 1. The symbol waveforms are also
normalized so that {7 | (’) ) (t)]2dt = 1. ‘A block diagram is shown in Fig. 1.13
for the case of a single transmltter {transmitter superscript { has been omitted).

1411 TDM For TDM, symbols are sent one at a time (K = 1), and the symbol
waveform is simply

afi, (6) = p(t), (1.34)

where p(t) is the symbuol pulse shape. Notice that the symbol waveform is the same
for each symbol period m.
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Figure 1.13  Tramsmitter block diagram showing parallel nmadtiplexing channels.

1412 CDM For CDM, symbols are sent in parallel on different spreading wave-
forms. The symbol waveform is formed from a spreading code or sequence of “chip”

values, i.e.,
Ne.-1

a (B = 1/VN) Y el (iplt — ), (1.35)

=1}

where

e N, is the number of chips used (the spreading factor),

. c}c‘)m(n) is the nth chip value for the spreading code for symbol transmitted

on spreading code % of transmit antenna ¢ during symbol period m, and
® p(t) is the chip pulse shape.

Chip values are assumed to have unity average energy and are typically unity-
amplitude QPSK symbols. For transmitter i, the spreading codes are typically
orthogonal when time-aligned, i.e.,

N.—1

ST L)) L (n) = Nedlk — ka). (1.36)

w=I}

A commonly used set of orthogonal sequences is the Walsh/Hadamard or Walsh
code set. There are K codes of length K, where K = 2%a and alpha is the order.
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For K =1 (order (}), the single Walsh code is +1. Higher-order code sets can be
generated as rows of a matrix W () which is formed order-recursively using

W%a - lg Wia—-1) (1.37)

Wia) = [ Wia—1) —W(a—-1} |-
The K = 4 Walsh codes for N, == 4 are given in I'able 1.2.

Table 1.2 Walsh codes of lengtl: 4

Index Code
0 +1 +1 +1 41
1 +1 -1 +1 -1
2 +1 +1 -1 -1
3 +1 -1 —1 +1

In cellular communicsation systems, spreading sequences are formed by scram-
bling a set of Walsh codes with a pseudo-random QPSK scrambling sequence that
is much longer than the symbol period, so that each symbol period uses a different
set of orthogonal spreading sequences. This is referred to as longrode scrambling.
Using the same orthogonal codes for each symbol period is referred to as short codes.
For good performance in possibly dispersive channels, scrambled Walsh codes are
used. We will assume longeode scrambling throughout, as use of short codes is a
special case in which a,(.:_)i,n(t) is the same for each m.

Now we have two ways to view TDM. As suggested earlier, we can think of TDM
as a special case of CDM in which one symbol is sent at a time, so that K = 1,
N=11.=T, c’.;;)m(n) =1, and (1.34) holds. This is the most common way to
think of TDM.

However, sometimes it is useful to think of TDM as sending K > 1 symbols
in paraliel using special spreading cocdes. For example, we can think of TDM as
sending K = 4 symbols in parallel using the codes in Table 1.3.

Table 1.3 TDM codes of length 4

Index Code

0 1000
1 0100
2 0010
3 0001

1413 OFDM For OFDM, symbols are sent in parallel on different subcarri-
ers. The symbol waveform is similar in structure to CDM, except the “spreading
sequences” are related to complex sinusoidal functions. While there are different
forms of OFDM, we will consider a form in which each symbol period can be di-
vided into a cyclic prefix (CP) or guard interval followed by a main block (MB).
An example is given in Fig. 1.14.
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Nu=2 N =4

CP|CP|MB(MB|MB|MB

F ¥
h 4

Figure 1.14 OFDM symbol block,

The symbol waveform can be expressed as

Ne—1

(&) = (1/V/Ne) 3 enl(mip(t — nTo)alt — mT), (1.38)

n=(
where

® N, = Ngp + Npsp is the number of nonzero chips in the symbol waveform,

Nep is the number of chips in the cyclic prefix,

Nprg is the number of chips in the main block,

.

cx{n) is the nth unity-amplitude chip value for the symbol transmitted on
subcarrier &, independent of transmit antenna §,

p{t) is the chip pulse shape, and

a(t) is a rectangular windowing function.

The first Ngp values are the cyclic prefix values and the remaining Ny;p values
are the main block values. The total symbol period is given by T = N T,.

A reasonable approximation is to ignore the windowing effects at the edges of
each symbol period. The symbol waveform simplifies to

N.—1

ol () ~ (1/v/No) Y ex(mp(t - nTo), (1.39)

n=0

which we recognize as the same form as CDM with short codes. Thus, the CDM
model can be used to obtain results for both CDM and OFDM. The difference is
the particular spreading sequences used.

With OFDM, the main block sequences aré given by

Sfu(n) =exp(32rkn/K), n=0 ... Nyp— 1 (1.40)



20 INTRODUCTION

I'he K = 4 main block sequences of length Ny; 5 = 4 are given in Table 1.4, Similar
to CDM, the main block sequences are orthogonal when time aligned, i.e.,

Nuya—1
Z ck, (nYeky (n) = Npgdl(ky — ko). (1.41)

a={

They have an additional property in that a circular shift of the sequence is
equivalent to applying a phase shift to the original sequence. Specifically,

An©8) = exp(j2nkin—8)/K)
= exp{—j2nkl/K)exp (j2rkn/K)
exp (—32rk€/K) fr(n). (1.42)

where © denotes subtraction modulus Ny p. This property implies that the se-
quences are also orthogonal with circular shifts of one another, ie,

Ny -1

37 ek (0 (n® &) = Nagpblhy — k), (1.43)

=i}

where & denotes modular addition using modulus Nprg. We will see in the next
chapter that the use of a cyclic prefix and discarding of certain receive samples
makes delayed versions of the symbol appear as circular shifts. This allows orthog-
onality to be preserved in a dispersive channel. {From a CDM point of view, the
CP makes interference a function of periodic erasscorrelations, which are “perfect”
in this case.)

Table 1.4 Main block OFDM sequences of length 4

hndex  Subcarrier chip sequence
0 +1 +1 +1F +1

s i
2 +1 -1 +1 -
3 41 -5 -1 +j

The CP is obtained by repeating the last Ngop chip values and pre-appending
them. Thus, the overall chip sequence is given by
_ ) Nup—Nep+n-1), 0<n<Ncp—1
eiln) = { feln — Nor), Nep<n<N,—1 (144)
Though less commen, it is possible to have a CP in a CDM system. In this
case, a windowing function a{t) would not be used. A CP can also be used when

transmitting a block of TDM symhols. The uplink of the Long Term Evolution
(LTE) system [Dah08] can be interpreted as a form of DM with a cyclic prefix.
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1.4.2 Channel

The model used in the previous section is extended to allow for multiple transmit
and receive antennas. The received vector (N, receive antennas} can be modeled

as
Ny L~1

HONDID I LRI G ARR 0] (1.45)
i=1 £=0
where ggi) is a vector of medium response coeflicients, one per receive antenna.
Also, unless otherwise indicated, all vectors are column vectors.

In general, the medium responses from transmit antennas in different locations
will have different path delays. We can handle this case by modeling all possible
path delays and setting some of the coefficient vectors to zero.

By substituting (1.33) into (1.45}, we obtain the following model for the received
signal:

N, K-1 - o0 . .
r{t) = Z{ g v B (k) _X_: b (¢~ mT)s (m) +n(), (1.46)

where
. L_l .- .
B0 =3 el (t — 7) (147)
=N
is the channel response,

1.42.1 Noise and interference models Here the noise modet is extended for mul-
tiple receive antennas, and more general noise models are considered. We will still
assume the noise has zero mean, i.e.,

m,(t) 2 E{n(t)} = 0, (1.48)

where boldface is used for column vectors. All vectors are N, x 1.

‘I'he noise may be colored, meaning that there may be correlation from one time
instance to another as well as from one antenna to another, and the covariance
function may be a function of time. For muliipie receive antennas, the correlation
is defined as

Cniti.t2) = E{[n{t:) — my,(¢1)][nft2) ~ mu(t2)]"], (1.49)

where superseript “H” denotes conjugate transpose (Hermitian transpose). If ¢; =
ty + 7 and the correlation depends on both #; and T, then it is considered nonsia-
tionary. If it only depends on 7, it is stationary and is then written as C,{r).

We will still assume the noise is praper, also known as circular.  With circular
Gaussian noise, the I and Q components of n{t) are uncorrelated and have the same
autocorrelation funetion, i.e.,

E(n,()ni(t)) = E{m(t)ni(t)} = 05)Calts,t)  (L50)
E{n,(t)n(t2)} = E{m(t)ni(t2)} = 0. (L51)
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A sample of the noise n = n(#,) Is a complex Gaussisn random vector, Assuming
stationary noise, the noise vector has probability density function (PDF)

1 Hp—1
n = — C,(0)x— . 1.52
f (X) ?TN"|C,;(0)| FXp{(X mﬂ) n ( )(X mn)} ( 2 }
where my,, is the mean, assumed to be zero, C,,(0) is the noise correlation function
at zero lag, sometimes called the spatial covariance, and | - | denotes determinant
of a matrix.

When we assume AWGN, we will assume the noise is uncorrelated across receive
antennas, so that
C.{r) = Noldp(r). (1.53)

where I is the identity matrix.

1.4.22 Scenarios In discnssing approaches and the literasure, it helps to consider
two scenarios. In the first scenario, there is a set of symbols during a given symbol
period, and each symbol in the set interferes with all other symbols in the set {(but
not symhbols from other symbol periods). We will call this the MIMO/Cochannel
scenario as it includes the following.

1. MIMQ scenario. In TDM and CDM, this occurs if the transmit pulse is root-
Nyquist, the medium is not dispersive, and the receiver uses a filter matched
to the transmit pulse and samples at the appropriate time. In the CDM case,
we will assume that codes transmitted from the same antenna are orthogonal.
in OFDM, the medium can he dispersive as long as the delay spread is less
than the length of the cyclic prefix. H there are Ny transmit antennas, then
a set of N; symbols interfere with one another.

2. Synchronous cochannel scenario. This is simitar to the MIMO case, except
that the different transmitted streams are intended for different users. Also,
the transmitters may be at different locations. For TDMA and CDMA, in
addition to the requirements for TDM and CDM in the MIMO case, the dif-
ferent transmitted sighals are assumed to be synchronized to arrive at the
receiver at the same time. For ODMA, an example of this is the synchronous
uplink. For OFDM, the synchronization must be close enough so that subear-
Tiers remain orthogonal, even if transmitted from different antennas. Again,
there are N; symbols that interfere with one another. In the CDMA case,
nonorthogonal codes are typically assumed in the synchronous uplink, so that
there are Ny K symbols interfering with one ancther. However, in this case,
it is usually assumed that K = 1, giving N, interfering symbols.

In ihe nondispersive case, the channel coeflicients are typically assumed to be in-
dependently fading (fading channel) or nonfading and unity (AWGN channel).

With these assumptions, the received sample vector corresponding to the set of
symbols interfering with one another can be modeled as

r = HAs +n, (1.54)

where n is a vector of Gaussian r.v.s with zero mean and covariance C,. While
C. = Nyl in this specific case, we will allow other values for C,, to keep the model
general.
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As for the other terms, we have stacked the symbols from different transmitters
into one symhol vector s. Matrix A is a diagonal matrix given hy

A = diag{E"Y E® ..}, - {1.55)

where the index & has been dropped. The N; x Ny matrix H is the channel matrix.
For example, in the TDM and CDM cases, it can be shown that the ith column of
H is given by

b = gf. (1.56)

The model in (1.54} is also appropriate in other scenarios. It can be used to
maodel the entire block of received data when there is IS1 between symbol periods.
It can also be used to model a window or sub-block of data. of a few symbol periods
when there is ISI between symbol periods. If all symbols are included in s, then H
can have more columns than rows. Sometimes we move the symbols at the edges
of the sub-block out of s and fold them into n, changing C,,. This gives H fewer
columns.

In the second scenario, not all symbols interfere with one another. In addition,
there is a structure to how symbols interfere with one another, because we will
assume the interference is due to a dispersive medium, partial response pulse shap-
ing, or asynchronous transmission of different transmitters. L'hus, for 'I'DM, each
symbol experiences interference from s window of symbols in time. For TDM with
MIMO, a sub-black of N; symbols experiences interference from a window of sub-
blocks in time. In CDM, a sub-block of K symbols experience interference from a
window of symbol sub-blocks in time. We will call this the dispersive/asynchronous
scenario. Note that asynchroncus transmission can be modeled as a dispersive
channel in which different paths have zero energy depending on the transmitter.

In this scenario, we nsually assume the block size is large, so that using (1.54)
to design a block equalizer would lead to large matrices. However, if we were to
use (1.54), we would see that the channel matrix H has nonzero elements along the
middle diagonals and zeros along the outer diagonals.

1.4.3 Receiver

At the receiver, there are several sources of ISI. For the CDM case, the sources are
the same as the TDM case, with an additional source being ISI from other symbols
gent in parallel. In the CDM case, this can be due to the symbol waveform (chip
pulse shape not root-Nyquist or spreading codes not orthogonal) or the medium
response (dispersive)., Typically the spreading waveforms are orthogonal (after chip
pulse matched filtering}, so that ISI from symbols in parallel is due to a dispersive
mediym response.

For the OFDM case, the cyclic prefix is used to avoid IST from symbols sent in
parallel as well as symbols sent sequentially. We will see in the next chapter that
this is achieved by discarding part of the received signal before performing matched
filtering.

For both CDM and OFDM, ISI between symbols in parallel can result from time
variation of the medium response {not included in our model). If the variation is
significant within a symbol period, orthogonality is lost.
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‘The receiver may have multiple receive antennas. We will assumne that the fad-
ing medium coefficients are different on the different receive antennas. Common
assumptions are uncorrelated fading at the mobile terminal and some correlation
{e.g., 8.7) at the base station. Such an array of antennss is sometimes called a
diversity array. By contrast, if the fading is completely correlated (magnitude of
the complex correlation is one}, it is sometimes called a phased array. In this case,
the medium coefficients on one antenna are phased-rotated versions of the medium
coefficients on another antenna. The phase depends on the direction of arrival.

1.5 AN EXAMPLE

The examples in the remainder of the book will be wireless communications exam-
ples, specifically radio communications such ag cellular communications. In such
systems, there are several standard models used for the medium response. In this
section we will discuss some of the standard models and provide a set of reference
models for performance results in other chapters.

One is the stetic channel, in which the channel coefficients do not change with
time. A special case is the AWGN channel, which implies not only that AWGN is
present, but that there is a single path (L = 1, 7 = 0 and gy = 1}. This model
makes sense when there are no scattering objects nearby and nothing is in motion.
Thus, there is a Line of Sight (LOS) between the transmitter and receiver.

Another one-tap channel iz the flat fading channel for which L =1, 7y = 0 and
gn is a complex Gaussian random variable with unity power, i.e.,

E{gogo} = 1. (157}

The channe! coefficient is random because it is the result of the signal bouncing off

" of objects (scatterers) and adding at the receiver either constructively or destruc-
tively. If there is are many signal paths, the central limit theorem tells us that the
coefficient should be Gaussian. _

The fading is referred to as Rayleigh fading because the magnitude of the medium
coefficient is Rayleigh distributed. 'T'he phase is uniformly distributed. This model
makes sense when the delay spread of the actual channel (maximum path delay mi-
nus minimum path delay) is much smaller than the symbol {TDM} or chip (CDM,
OFDM) period. The random channel coefficient changes with motion of the trans-
mitter, environment, and/or receiver.

A block fading model will be assumed, for which the random fading value re-
mains constant for a block of data then changes to an independent value for each
subsequent block of data. Such a meodel is realistic when short bursts of data are
transmitted.

We will also consider static and fading dispersive channels for which L > 1. All
models will have fixed valnes for the path delays. The dispersive static channel will
be specified in terms of fixed values for the medium coefficients. For the dispersive
fading channel, each medium coefficient is a complex, Ganssian random variable.
We can collect medinm coefficients from different path delays into a vector g =
lge .- gz—1]7, where superscript 7" denotes transpose. We will assume these
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coefficients are uncorrelated, so that
E{gg”} = Disg{an, ..., 71}, (1.58)

where ay is the average path strength or power for the £th path. The path strengths
are assumed normalized so that they sum to one, For example, a channel with two
paths of relative strengths 0 and —3 dB would have path strengths of 0.666 and
0.334.

S0 what are realistic values for the path delays and average path strengths?
Propagation theory tells use that path sirengths tend to exponentially decay with
delay, so that their relative strengths follow a decaying line in tog units. Sometimes
there is a large reflecting object in the distance, giving rise to a second set of path
delays starting at an offset delay relative to the first set. The Typical Urban (TU)
channel model is based on this.

What about path delays? In wireless channels, the reslity is often that there
is a continuum of path delays. From a Nyquist point of view, we can show that
such a channel can be accurately modeled using Nyquist-spaced path delays. The
Nyquist spacing depends on the bandwidth of the signal relative to the symbol rate.
If the pulse shape has zero excess bandwidth, then a symbol-spaced channel model
is highly accurate. In practical systems, there is usually some excess bandwidth,
80 the use of a symbol-spaced channel model is an approximation. Sometimes the
approximation is reasonable. Otherwise, a fractionally spaced channel model is
used, in which the path delay spacing exceeds the Nyquist spacing. Typically, T'/2
(TDM) or T,./2 (CDM,OFDM) spacing is used.

Though not considered here, other fading channel models exist. Sometimes one
of the medium coefficients vectors is modeled as having a Rice distribution, which
is complex (Gaussian with a nonzero mean. ''his models a strong LOS path. Also,
in addition to block fading, time-correlated fading models exist which capture how
the fading changes gradually with time.

The medium response models can be extended to multiple receive antennas. For
the flat static channel, L = 1, 7o = 0 and gn = a, where a is a vector of unity-
magnitude complex numnbers. The angles of these numbers depend on the direction
of arrival and the configuration of the receive antennas. For the flat fading channel,
L =1, 7 =10and gy is a set of uncorrelated complex Gaussian random variables
with unity power. Note that this implies E; is the average receive symbol energy
per antenna.

For the dispersive static channel, we will gpecify fixed values for the medium
coeflicients. For the dispersive fading channel, we will specify relative average
powers for the medium coeflicients.

In CDM and OFDM, the Nyquist criterion is applied to the chip rate and the chip
pulse shape excess bandwidth. In CDM systems, the amount of excess bandwidth
depends on the particular system, though it is usually fairly small. Experience
suggests that fractionally spaced models are needed with light dispersion, whereas
chip-spaced models are sufficiently accurate when there is heavy dispersion. For
OFDM, chip-spaced models are usually sufficient.
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1.5.1 Reference system and channel models

In later chapters, we will use simulation to compare different equalization ap-
proaches for a TDM system. Notes on how these simulations were performed are
given in Appendix A. Most results will be for QPSK. 1he pulse shape is root-raised
cosine with rolloff (8) 0.22 (22% excess bandwidth).

The following channel models will be used.

TwoTS Dispersive medium with two, nonfading symbol-spaced paths with relative
powers ¢t and —1 dB3 {sum of path energies normalized to unity) and angles 0
and 90 degrees.

TwoFS Dispersive mediwn with two, nonfading halt-symbol-spaced paths with
relative powers 0 and —1 dB (sum of path energies normalized to unity) and
angles 0 and 90 degrees.

TwoTSfade Similar to the TwoTS channel, except that each path experiences
independent, Rayleigh fading, i.e., each path is a complex Gaussian random
variable. The variances of the random variables are set so that £l{gfg} = 1},
and the relative average powers are 0 and —1 dB.

1.6 THE LITERATURE

The general system model and its notation are based on [Wan06b, Ful09]. Real and
complex Ganssian random variables are addressed in a number of places, inchuding
[WhaT1].

Digital communications background material, including modulation, channel
maodeling, and performance analysis, can be found in [Pro89, Pro01]. The notion of
Nyquist rate for distortionless transmission is developed in [Nyq28]. Nyquist rate
is the result of the Fact that if one is given bandwidth B and time duration T, there
are 21'W independent dimensions or degrees of freedom [Nyq28, Shad9|. Sending
more symbols than independent dimensions leads to 181. I'he notion of channel
capacity is developed in |Shad8, Shad9].

Cellular communications is described in [Lee95, Rap96]. Background material
on OFDM and CDMA can be found in [Sch05, Dah08]. For OFDM, use of the
FFT can found in [WeiTl], and application to mobile radio communications is
discussed in [Cim85]. Using a cyelic prefix in CDM systems is considered in [Bau02).
Information on the discrete Fourier transform can be found in standard signal
processing textbooks, such as [Rob87].

While modeling the channel ag linear is fairly general, the assumption of Rayleigh
or Rice fading is particular to wireless communications. Accurate modeling is
important, because equalization design is usually targeted to particular scenarios
for which reliable communications is desirable. In the literature, channel modeling
information can be found for

» wireless (radic) communications [Tur72, Suz7T7],

¢ wireline commurntications (twisted pair) [Fis95],
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& optical communicatlions over fiber [Aéaﬁ?],

¢ underwater acoustic communications [Sin(9],

» underwater optical communications [Jar08], and
s magnetic recording [Kum84, Pro98].

OFDM equalization when the delay spread exceeds the length of the cyclic prefix
is considered in [Van98]. We will not consider it further, though results for the CDM
case are applicable by redefining the spreading sequences. Equalization when the
channel varies within a symbol period is considered in [Jeo99, Wan06a]. We will
not consider it further.

PROBLEMS

The idea

1.1 Suppose a transmitted symbol, either +1 or —1, passes through a channel,
which multiplies the symbo] by —10 and introduces a very small amount of noise.
Suppose the received value is 8.

a) What most likely is the transmitted symbol?

b) What most likely is the noise value?

¢) What is the other possible noise value?

1.2 Suppose a transmitied symbol, either +1 or —1, passes through a channel,
which muttiplies the current symbol by 1, adds the previous symbol multiplied by 2,
and introduces a very small amount of noise. Suppose you know that the previous
symbol is —1 and the current received value is —1. What most likely is the current
symbol?

1.3 Suppose a transmitted symbol s, either +1 or —1, passes through a channel
which scales the symbol by 5 and adds —10 and introduces a very small amount of
noise. Suppose. the current received value is —3. What most likely is the current
symbol?

1.4 Suppose a transmitted symbol s, either +1 or —1, passes through a nonlinear
channel, which produces 20s% + 10s, and introduces a very small amount of noise.
Suppose the eurrent received value is +9. What most likely is the current symbol?

More details

1.5 Suppose we have the MIMO scenario in whiche=1,d=0,e=0,and f = 1.
Also, suppose the two received values are r; = —1.2 and ry = —0.8.

a) What most likely was the symbol 5,7

b} What most likely was the symbol 527

1.6 Suppose we have the MIMO acenario in whiche=1,d =0,e=2,and f = 1.
Also, suppose the two received values are ry = —1.2 and r; = —0.8.
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a) What most likely was the symbol 5,7
b) Assuming you detected sy correctly, what most likely was the symbol 597

1.7 Suppose we have the dispersive scenario in whichc=4,d =2, ro = 2.1, and
r) 5 not available,
a) Each symbol can take ane of two values. For each of the four combinations
of 51 and 82, determine the corresponding noise value for ns.
b} Which combination corresponds to the smallest magnitude noise value?

1.8 Suppose we have the dispersive scenario in which ¢ = —2 and d = 0. Suppose
QPSK iz sent and r; = —1.84 72.3.

a} What most likely is the [ component of ;7

b} What most iikely is the Q component of 5,7

1.9 Sometimes we want to send two bits in one symbol period. One way to do
this is to send one of four possible symbol values: —3, —1, +1 or +3. Consider
the mapping 00 = =3, 01 = =1, 10 = 41 and 11 = +3. At the receiver, when
mistakes are made due to noise, they typically involve mistaking a symbol for one
if its nearest neighbors. For example, —3 is detected as —1, its nearest neighbor.

a) When —3 is mistaken as —1, how many bit errors are made?

b) When —1 is mistaken as +1, how many bit errors are made?

c) What is the average sighal power, assuming each symbol is equi-likely to
ocecur?

d) Suppose the symbol passes through a channel, which multipiies the symbol
by —10 and introduces a very small amount of noise. Suppose the received
value is —11. What most likely was the transmitted symbol? What were
the transmitted bits?

1.10 Suppose we change the mapping to 00 = -3, 01 = —1, 11 = 41 and
10 = 43, referred to as Gray-mapping.

a} When —1 is mistaken as +1, how many bit errors are made?

b) TIs there a case where a nearest neighbor mistake causes two bit errors?

The math

1.11 Consider a TDM transmitter using a root-Nyquist pulse shape. The signal
passes through a single-path medium with delay m = 0. Suppose the receiver
initially filters the received signal using vigd") = [°_r{r)p*(r — qT — to} dr.

a) For ) = 0, how many symbols does v(g?"} depend on?

b) For ) = T/2, how many symbols does »(¢I") depend on?

¢) For ty = T, how many symbols does v(¢1’) depend on?

d)} Suppose the medium consists of twe paths, with path delays 0 and T

seconds. Now how many symbols does #(¢T) depend on for g = 07

1.12  Suppose the pulse shape is a rectangular pulse shape, so that p{¢) is 1/T on
the interval [0,4} and zerc otherwise.

a) What is Rp(r)?

b) Is this pulse shape root-Nyquist?



PROBLEMS 29

¢} Suppose the receiver initially filters the received signal using »{qT) =
I r{n)p*(r — g1} dr. How many symbols does v(q7T") depend on?

d) Suppose the receiver initially filters the received signal using »{gT) =
f - (r—¢T —T/2) dr. How many symbols does v{¢T") depend on?

1.13 Consider BPSK, in which a detect static can be modeled as z | /Eps + n,
where s is +1 or —1 and n is a Gaussian random variable with zero mean and
variance Ng/2. Derive (A.8).






