
P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PART I
Overview

1

CO
PYRIG

HTED
 M

ATERIA
L



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

2



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

1 Introduction

The creation of genuinely new software has far more in common with developing a new
theory of physics than it does with producing cars or watches on an assembly line.

—T. Bollinger

Software that drives the operations of sensors and communication among sensors is
basic to any meaningful application of sensor networks. The goal of this book is to
provide an understanding of how this software functions; how it allows the sensors
to gather information, process it, and interact with each other in networks; and how
these networks interact with the physical world. One aim of this book is to provide
fundamental information necessary to write efficient sensor network software. A
second aim is to provide a balance between theory and applications, so that the
subject matter is complete (self-contained).

Wireless sensor network (WSN) applications may consist of diverse sensors with
varying capabilities. For example, sensors may range from an extremely constrained
8-bit “mote” to less resource-constrained 32-bit “microservers.” These sensors may
be organized in different network configurations, which use different communication
and data dissemination protocols, most software development platforms consist of
libraries that implement message-passing interprocess communication (IPC) primi-
tives, tools to support simulation, emulation, and visualization of networked systems,
and services that support networking, sensing, and time synchronization. Given all of
this diversity, there is an underlying theme of software development and deployment
that cuts across platforms.

1.1 SOME FOUNDATIONAL INFORMATION

This section provides some basic information necessary for understanding the sensors
and sensor networks.

1.1.1 Sensors

Typically a sensor is composed of components that sense the environment, process the
data, and communicate with other sensors/computers. A sensor responds to a physical
stimulus, such as heat, light, sound, or pressure, and produces a measurable electrical

Fundamentals of Sensor Network Programming: Applications and Technology, By S. S. Iyengar, N. Parameshwaran,
V. V. Phoha, N. Balakrishnan, and C. D. Okoye Copyright C© 2011 John Wiley & Sons, Inc.

3



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

4 INTRODUCTION

Data Sinks

Sensing
Nodes

FIGURE 1.1 Networking structure of a distributed sensor network.

signal. Thus a sensor with its own sensing device, a memory, and a processor can
typically be programmed with a high-level programming language, such as CorJava.
The sensing devices can range from nanosensors to micro- and megasensors. In the
remainder of this book when we refer to a sensor, we refer to a whole system such
as a mote, which may have more than one physical sensor, its memory, processor,
and other associated circuitry. Figure 1.1 shows a distributed sensor architecture and
various components.

1.1.2 Sensor Networks

A distributed sensor network (DSN) is a collection of sensors distributed logically or
geographically over an environment in order to collect data. Distributed computing
and distributed problem solving are commonly used in DSN in order to abstract
relevant information from the data gathered and derive appropriate inferences. This
kind of data fusion can be used to compensate for the shortcomings of the in-
dividual sensor in real-world enviornments. For more details on sensor networks,
see Refs. 1–3.

Most references to the term sensor network can denote multiple sensing configura-
tions to be used in multiple contexts. Sensor networks typically consist of numerous
sensing devices that may communicate over wired or wireless media, and may have as
intrinsic properties limitations in computational capability, communication, or energy
reserve. This does not imply that all sensor deployments consist of severely resource-
constrained devices; for example, radar, closed-circuit cameras, and other wireline
devices are commonly used in sensor network experimentations in academia and
military research. These sensing devices possess reasonable computational capabil-
ity and more importantly, may not have limited energy or constrained communication



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

NEXT-GENERATION SENSOR NETWORKED TINY DEVICES 5

abilities. The main crux of this book is focused on the class of sensors having severely
constrained computation, communication, and energy resources. These devices range
from penny to matchbox in size and are deployed in an ad hoc and nonplanned (ran-
dom) fashion. Examples of such devices include the mote platforms commonly used
in academia.

1.2 NEXT-GENERATION SENSOR NETWORKED TINY DEVICES

1.2.1 Domain-Specific Challenges

Development of software in wireless sensor networks draws on experiences across
several domains in computer science and some engineering disciplines such as

1. Networking. Networking knowledge is critical in sensor networks, providing
information on how large-scale mobile ad hoc wireless networks can be created
and managed efficiently.

2. Power Systems. Sensor networks, also rely on information from computer
science and electrical and nanosystems engineering, in the creation of energy
efficient software and hardware components, resulting in improved life of
sensor networks.

3. Data Management. Experience in large-scale data management and data mining
techniques is required in sensor networks since huge heterogenous datastreams
are generated from these ubiquitous sensing devices.

4. Data Fusion. Since most devices have basic sensing capabilities, the need to
create software systems capable of combining data from multiple sources to
create more complex representation of the world is necessary; hence the need
for data fusion. Fusion systems draw on advances in artificial intelligence,
statistical analysis, and distributed systems.

1.2.2 Technology-Driven Methods

A few examples of technology driven methods in sensor networks follow.

1. Flooding, such as broadcast of packets in a synchronized network from source
to destination until the path is formed to find the topology

2. Clustering, including K-means clustering to find K centers and form a cluster
to minimize the distance between nodes in a dense region and efficiently form
a topology

3. Short-path algorithms for data aggregation, such as data aggregation trees to
form wireless spanners to efficiently collect data periodically

4. Distributed algorithms for energy and reusability loading and fault tolerance
in large sensor networks



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

6 INTRODUCTION

1.2.3 Wireless Sensor Network Environment

Sensor Network make it possible to monitor, instruct, or control various domains
such as homes, buildings, warzones, cities, and forests. Sensor networks can ob-
serve the sensing environment at a close range and thus have many advantages,
such as ability to monitor smallest details, proximity to places which are difficult
to reach by humans, for example difficult terrain or hazardous environment. The
major limitations of sensors are their limited power supply, limited communica-
tion bandwidth and range, and limited computation ability and memory capacity.
Data transmission consumes a large percentage of energy; reducing the amount of
data transmitted is the primary focus of data processing. The small bandwidth of
the wireless links represents a challenge for data processing. Because of the lim-
ited communication radius of a sensor node, data may have to go through multiple
hops to reach the final destination. This leads to extra power consumption in sen-
sor nodes on the relay path. Limited processing and memory capacities restrict the
complexity of data processing algorithms running at the sensor nodes. The inter-
mediate results and other data are also burdensome to store in the node because
of limited memory size. Sensor data are a stream: a real-time, continuous, ordered
sequence with limited control over the order in which items arrive and the limita-
tions of low battery life, low bandwidth, and low processing power and operating
memory present programming challenges that are unique to the sensor network
environment.

1.3 SENSOR NETWORK SOFTWARE

A network architecture and protocols are essential foundations for building software
applications.

Developing computational/communication systems for deployment and applica-
tion for wireless sensor networks has been a challenge since the mid-1990s. More
Specifically, wireless ad hoc sensor networks have been largely designed with static
and custom architectures for specific tasks, thus providing inflexible operation and
interaction capabilities. WSN applications need to be programmed with constrained
memory and process-centric resource requirements in mind, in order to write com-
munication code with real-time sensing deadlines, which are critical to a dedicated
scheduled measuring task. In short, the problem is the choice of abstraction for
the sensor node runtime environment. Our computational framework or paradigm
called INSPIRE, defines and supports nanofootprint and real-time deadlines, sched-
uled tasks for computing, and allows communication and sensing resources at the
sensor nodes to be efficiently harnessed in high density event driven application-
sensing fashion, through the use of an object oriented framework. A key feature of
the runtime abstraction is that all the infrastructure used by the kernel is simulated to
provide wireless communications using renewable energy resources with its unique
extended lifetime model. This allows it to scale all the code to any processor. The
implementation of INSPIRE on a target prototype node occupies less than 10–40 kB



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

SENSOR NETWORK SOFTWARE 7

(kilobytes) of code memory; for details, refer to Chapter 10. The distributed source
coding implementation is used to measure the sensing activity and memory overheads
using traditional sensor applications without constraints, but more importantly, we
highlight the reliability of the transmitted data from the measuring applications.

1.3.1 Technology-Driven Software

Individual updates of software are impractical because of the large number of nodes
and the relative inaccessibility of deployed nodes. One solution for updating software
in sensor nodes is the deployment of a support network of small, mobile, temporarily
attachable nodes with virtual connections from a host PC to individual nodes. This
scheme allows the use of standard tools to update the software in the individual sensor
nodes. For many sensor networks in field applications, such as sensors deployed in
unreachable places such as in water or trees, it is desirable to remotely update the
software on the sensor nodes.

The following are a few issues to be considered when updating the nodes with
software updates:

� Updates need to be planned. The items included in planning are tradeoffs of
different updates relative to energy costs, the injection strategy for network
configuration, and size reduction techniques that result in quick updates.

� Injection strategies of software. The strategies could include updating individual
nodes, or sending updates to a base station or to a number of select nodes that
may then disseminate the updates to other nodes.

� How software would be activated. Software may be either automatically acti-
vated or based on a set of rules, or manual activation may be required. To meet
the requirements for backward/forward version compatibility, control over the
order of node activation may be needed.

� Checking the downloaded software for integrity, version mismatch, and platform
mismatch, and dynamically checking the operation of the downloaded software
after it has been activated.

� Monitoring of update-related faults.
� Security-related issues, such as key distribution, authentication, secrecy, in-

tegrity, and authorization.
� Problems related to very small nodes, such as limited code memory, and almost

no RAM or EEPROM (random-access or electrically erasable programmable
read-only memory) for storing new code. Techniques may need to be developed
for incremental building of new code into code memory (usually flash-RAM).

� Version control, that is, prevention version mismatch.
� Heterogeneity of sensor nodes. There can be various forms of heterogeneity; for

example, there may be a mix of platforms, or a network may consist of a small
number of “spine”/data backbone (shown to be optimal for data delivery) and
a large number of lower-power nodes (for data collection). Here the backbone



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

8 INTRODUCTION

nodes will have to handle different versions of their code base as well as different
codebases.

� Performance. The time required to update nodes as well as tradeoffs between
time and energy need to be considered.

� Provisions to recover from faulty updates, with mechanisms to verify the new
software both before and during execution.

1.4 PERFORMANCE-DRIVEN NETWORK
SOFTWARE PROGRAMMING

There are four basic issues here:

1. Quality of Service. In sensor networks quality of service is an important metric
to analyze the performance and reliability of different WSN routing algorithms.
As the sensor nodes use fixed batteries to sense and communicate, it is neces-
sary to collaboratively use the network resources to minimize power usage and
when idling, conserve power by using ultra-low-duty cycling. The communica-
tion module of a sensor mote uses a software “stack” and a radio to receive and
transmit information. The network stack has many layers, spanning from phys-
ical layer to network layer; with various functionalities. By design, a running
stack needs to use a small footprint and be power-aware, avoiding unnecessary
overheads at every layer. The QoS can be defined as how the stack performs load
balancing (reusability index), power-aware sleep scheduling (due to network
density), and the reliability of sending sensed data wirelessly (at the datalink
layer).

2. Reusability Index. This performance-based index can described as the number
of times that a given node has been used as a clusterhead to communicate to a
base station or a sink during its lifetime. As many of the clusterhead selection
algorithms are distributed in nature, they will not overuse a specific node more
than the critical number of times. If all nodes are used evenly, then the reliability
of the network increases during the entire lifetime of the node.

3. Sleep Scheduling. Most of the deployed sensor network applications are dense
because of the limited radio transmission range, so even when not transmitting,
data nodes are subjected to overhearing and collision. These factors severely
impact the total power consumed. So, in a dense deployment if a sufficient
number of nodes are awake to receive the multihop traffic, then other nodes can
shut off their radios after exchanging the next polling time, to minimize idling.
By activating only a subset of nodes and scheduling timeslots for nodes to be
active, sleep scheduling saves on power and avoids dropped packets. The end
goal of each of these methods is to continue reciving data from the network for
as long as possible.



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PERFORMANCE-DRIVEN NETWORK SOFTWARE PROGRAMMING 9

4. Datalink Reliability. Data must be not only available but also accurate. In wire-
less sensor networks a node needs to not only communicate with its neighbors
also forward the periodic sensed data over the network. Many of the MAC
protocols are designed for efficient ad hoc communications but not for reliable
data sensing as the radio does not have a way to filter floor noise or a new
sensed value in harsh environments. For this reason, a twoway handshake is
necessary between the MAC and the datalink layer, which allows them to re-
liably capture the new data everytime a data aggregation is performed. With
this reliable datalink mechanism the clusterhead can further fuse the data from
neighboring sensors and discard any false values.

1.4.1 Routing

In a sensor network stack the network layer is solely responsible for route planning
and maintenance. Most of the energy used by the network is due to its routing activity.
In implementing routing there are two methods, one at the network layer, which is
controlled by distributed algorithms to form clusters and uses efficient clusterhead
selection, and another at the MAC layer, which uses multihop routing to forward data
at the lower layers by using best-effort QoS.

1.4.2 Data Aggregation

In a large sensor network deployment many parameters are sensed over a wide area
and are periodically sent to the central coordinator. As the sensed parameters are the
same at every node (similar sensor types are attached), WSN data aggregation allows
reduction of the redundancy in a transmission by statistically evaluating the frequency
of occurring samples and the trend direction that they have during its lifetime. When
sensor nodes sample individually, only the aggregated data are transmitted, thus
increasing the local processing and decreasing the radio usage per aggregation cycle.
A simple example is using data compression at the nodes to send fewer bits during
each transmission.

1.4.3 Security

Security is a constant threat to outdoor wireless environments; thus it is prudent
to have an encryption algorithm that allows encryption and decryption of wireless
communications. One novel way to implement a security algorithm is to have a
oneway function which is NP-complete at the predeployment stage and cannot be
decrypted with limited resources in a deployed site of operation. This method is more
suitable in other applications of networks; in the case of WSN networks, because
of the nature of their distribution one can design a network polynomial key that is
not a local function. The broadcast message cannot be decrypted when a few nodes
are compromised as it needs to have other parameters that are well distributed and
concealed from the intruder.



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

10 INTRODUCTION

1.5 UNIQUE CHARACTERISTICS OF PROGRAMMING
ENVIRONMENTS FOR SENSOR NETWORKS

Sensor networks differ from both wired and wireless computer networks in many
ways. The topology of sensor networks can change rapidly and frequently. The
nodes in a sensor network do not have a global identifier such as an IP (Internet
Protocol) address, and the number of sensor nodes in a sensor network may be an
order of magnitude greater than that in a typical computer network. The memory and
the processing capabilities of sensor nodes are limited in comparison to nodes in a
computer network. These characteristics lead to a programming environment that is
unique. Thus, the programs need to be short and efficient, providing capabilities of
interfaces and links of components and modules to each other. Additionally, to save
battery power, the nodes may need to have aggressive power management capabilities;
thus the programming environment needs to provide mechanisms such as split phase,
the nonblocking equivalent of common power-saving techniques such as the sleep
command.

1.6 GOALS OF THE BOOK

The goals of this book are to develop programming methodologies unique to sensor
networks, and present in an organized fashion techniques for programming of sen-
sors to enable them to work effectively as a group. Thus, although the focus is on
programming of the individual sensor, the goal is to enable the sensor to work within
a collaborative environment.

1.7 WHY TinyOS AND NesC

TinyOS is an emerging platform that provides a framework for the most common type
of sensor application programming. Thus we have a tool that can be implemented on
small Crossbow sensors and a wireless sensor network that can be ported to different
classrooms and laboratories. NesC provides a C-type, component-based language.

In NesC a module is the lowest level of component abstraction that implements
any commands provided in its interface. It may directly address a particular hardware
component such as a light sensor, providing methods that abstract the actual operation
of that particular hardware component. Several modules may be grouped together
using a configuration to form a larger component.

1.8 ORGANIZATION OF THE BOOK

The book is organized as follows. In Part I, we present an overview of the subject of
sensor network programming, beginning with a general introduction in the remainder
of this chapter (Chapter 1). Chapter 2 gives a general description of the wireless



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

ORGANIZATION OF THE BOOK 11

sensors. It explains the basic components of a sensor, its sensing environment, and the
various roles that a sensor can play in a wireless sensor network. Chapter 3 discusses
current sensor technology, including the major families and types of sensors currently
in use, including the Mica, Telos, Tmote Sky families, and others.

Part II provides a general background for sensor network (SN) programming,
beginning with discussions on data structures for sensor computing programming in
Chapter 4. Sensor computing programming of individual sensors in a SN environment
requires an understanding of data structures, such as arrays, queues, stacks, and lists,
which are essential to programming. For network implementation, an understanding
of graphs is useful to appreciate routing and message passing. Thus, Chapter 4
explains those data structures, which are essential for programming in a wireless
sensor network environment. Chapter 5 explains the tiny operating system (TinyOS)
environment, and is essential to understanding the subsequent chapters. It presents
the structure of application programming interfaces (APIs) built using a nesC like
structure, which facilitates the readability of the examples given in the rest of that
chapter. For the sake of completeness and continuity, Chapter 5 also includes a
bare-minimum description of nesC programming language. In Chapter 6, on nesC
programming, the nesC language is formally introduced and some major concepts in
the language are discussed.

Part III discusses and presents examples of sensor network implementation. Chap-
ter 7 provides a basic introduction to sensor programming. It discusses some of the
challenges encountered when programming large numbers of sensors and some inter-
faces provided by TinyOS to alleviate these programming challenges. Chapter 8, on
algorithms for wireless sensor networks, is the core and the major focus of the book.
It gives detailed descriptions of various algorithms and their implementation in nesC.
In Chapter 9, on techniques for protocol programming, we discuss several protocols
used in most wireless sensor networks and provide accompanying pseudocode to
explain the concepts.

Part IV presents real-world scenarios in sensor network programming. In Chap-
ter 10 we discuss some programming abstractions that simplify the development
and deployment of sensors. Chapter 11 presents standards for building WSN ap-
plications, with a brief overview of the ZigBee networking standard. Chapter 12
discusses an active sensor approach to distributed algorithms, widely known as
INSPIRE (innovation in sensor programming implementation for real-time envi-
ronments). Chapter 13 explores the performance analysis of networks in some detail
with respect to power-aware algorithms. Chapter 14 describes sensor network mod-
eling through design and simulation. This chapter presents an architecture of a sensor
simulator and a sensor node that is used in the simulator, and further elaborates that
OMNeT++ is a viable discrete-event simulation framework for studying both the
networking aspects and the distributed computing aspects of sensor networks. We
present the architecture of a sensor node that is used in the simulator and the general
architecture of the simulator. Chapter 15 presents a MATLAB implementation of
simple data processing and decisionmaking logic to be used to detect and respond
to events in an airport baggage-handling system. Chapter 16 consists of closing
comments.



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

12 INTRODUCTION

1.9 FUTURE DEMANDS ON SENSOR-BASED SOFTWARE

In the future, advances in microelectromechanical systems (MEMSs) will lead to
miniature sensing devices of about 20 (�m micrometers) to a millimeter in length.
These devices will be self-powered, allowing even more collaboration with other
devices. In regard to software, more standards specifying how data can be exported
between different sensor networks will be established, allowing a more enriched and
integrated sensing experience such as

� Real-time collaboration between navigation systems and traffic monitoring sen-
sors

� Current information about seat availability at local restaurants or physicians
offices

� Real-time environmental awareness by a wide range of applications and devices
leading to better management of scarce resources, such as smart energy-saving
homes.

In this regard, the principles addressed in this book will serve as building blocks for
developing large-scale, longlived systems requiring self-organization and adaptivity.

PROBLEMS

1.1 Define the following:
(a) Sensor

(b) Ad hoc network

(c) Distributed sensor network

(d) Wireless sensor network

(e) Reusability index

1.2 Discuss some of the design challenges that set wireless sensor networks apart
from conventional networks.

1.3 Crossbow Technology Inc.’s MTS400 multisensor board is one of the most
popular multipurpose heterogeneous sensing devices available on the market.
Research and prepare a two-page report discussing the specifications and
functionality of the MTS400 multisensor board.

1.4 Write a one-page summary of the article by Akyildiz et al. [4].

1.5 Other than those discussed in this introductory chapter, list three advantages
and three disadvantages of sensor networks.

1.6 Crossbow Technology Inc.’s MICAz mote and Europe’s Smart-Its platform are
two popular sensor platforms. Research and contrast the features of MICAz
with smart-Its (in terms of size, weight, battery life, onboard sensors, memory,
CPU, operating system, processing limits, radio range, etc.).



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

PROBLEMS 13

1.7 What are the unique characteristics of programming environments for sensor
network software?

1.8 Other than sleep scheduling, give two techniques to conserve the battery life
(energy) of nodes in a sensor network.

1.9 State the issues to be considered when updating computation/communication
software in a sensor network.

1.10 Does the data aggregation strategy adopted by a sensor network application
affect its operational integrity and security? If “Yes,” explain how and if “No,”
explain why.

1.11 In about five paragraphs discuss any three of your favorite real-world sensor
network applications.

1.12 Sensors mounted on moving objects can open many interesting real-world
applications. For example, sensors are already mounted on devices such as
mobile phones to sense temperature, motion, and other parameters. Sug-
gest some applications where mounting sensors on mobile objects will be
useful.

1.13 Interesting scenarios are created when sensors are made much smaller in size
and are programmed to become more autonomous. “Smart dust” refers to tiny
devices that are capable of limited sensing, computations, and commmications
capabilities, with short lifetime. Suggest some applications where one or many
”bags” of smart dust can be used.

1.14 When wireless sensors become tiny and are deployed in very large number
(such as in several bags of smart dust), interestingly, the overall behavior
of such a system will in some way behave like social systems, exhibiting
autonomy, self control, limited lifetime, and intracommunications. Identify
the management challenges in such a social system. Consider an example
application, and propose specific management solutions appropriate for this
application.

1.15 Traditional programming views programs as a mapping from input values
to output values. Suggest some characteristics of programs written for the
wireless devices. [Hint: A sensor program spends a considerable amount of
time in communication, and thus must be sufficiently ingenious to manage
its resources (such as data and power), and cooperate with other sensors to
achieve the overall behavior as required by the application.]

1.16 In a computer network, each node communicates with the other nodes using
a set of protocols. What will be the limitations of this model when applied
to wireless sensor networks? Suppose that we augment the protocols with
flexible dialog features where each sensor node engages “intelligently” with
the other sensor nodes. What will be the advantages? Discuss the resulting
overhead.



P1: OTA/XYZ P2: ABC

c01 JWBS038-Iyengar August 31, 2010 10:50 Printer: Yet to come

14 INTRODUCTION

1.17 Suppose that we view a WSN as a multiagent system (MAS). Suggest an
application where this view will be appropriate. What will be the undesirable
aspects inherent in such a MAS model?

1.18 Traditional network systems are designed to satisfy strict specifications. Be-
cause of the dynamic and uncertain environments in which WSN is employed,
traditional approaches may not be appropriate. Investigate why this may be
the case. If self-autonomy is one possible solution, how can it help the sensor
network in satisfying the application requierements? What additional compli-
cations will this solution create for the application?

1.19 Indentify some aspects of security issues that are unique to WSN but may not
be present in the traditional computer network systems.

REFERENCES

1. R. R. Brooks and S .S. Iyengar, Multi-Sensor Fusion, Prentice-Hall, Englewood Cliffs, NJ
1997.

2. K. Chakrabarty and S. S. Iyengar, Scalable Infrastructure for Distributed Sensor Networks,
Springer-Verlag, 2005.

3. S. S. Iyengar and R. R. Brooks, eds., Distributed Sensor Networks, CRC Press, Dec. 2004.

4. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, A survey of sensor networks,
IEEE Commun. Mag. 40(8):102–114 (Aug. 2002).


