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    1.1    INTRODUCTION AND STATE OF THE ART 

 Giving a comprehensive defi nition of  formal method s ( FM s) is a hard and 
risky task, since they are still subject of ongoing research and several aspects 
of FMs, going from the foundational ones to those purely applicative, are in 
continuous change and evolution. Nevertheless, in order to fi x the terms of 
discussion for the issues dealt with in this book, and only for the purpose of 
this book, by FMs we will mean all notations having a precise mathematical 
defi nition of both their syntax and semantics, together with their associated 
theory and analysis methods, that allow for describing and reasoning about 
the behavior of (computer) systems in a formal manner, assisted by automatic 
(software) tools. FMs play a major role in computer engineering and in the 
broader context of system engineering, where also the interaction of machines 
with humans is taken into consideration:

  All engineering disciplines make progress by employing mathematically based 
notations and methods. Research on  ‘ formal methods ’  follows this model and 
attempts to identify and develop mathematical approaches that can contribute 
to the task of creating computer systems (both their hardware and software 
components).   [26]     

 The very origins of FMs go back to mathematical logic — or, more precisely, to 
that branch of mathematical logic that gave rise to  logics in computer science  
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( LICS ) and  theoretical computer science  ( TCS ). An eminent example of these 
roots is the milestone work of Alan Turing  [42]  where key concepts and theo-
retical, intrinsic limitations of the algorithmic method — central to computer 
science in general and FMs in particular — are captured in precise terms. The 
above issues of computability have become one of the main subjects of scien-
tifi c development in the fi eld of automatic computation in the 30th ’ s of the 
previous century. Central to the scientifi c discussion of that period was the 
clarifi cation of the key notion of  formal system , with a clear separation of 
syntax and semantics and with the notion of a formal proof calculus, defi ning 
 computational steps   [41] . Several fi elds of LICS and TCS have contributed to 
the development of the foundations of FMs, like language and automata 
theory, programming/specifi cation language syntax and semantics, and program 
verifi cation. More recently, solid contributions to the specifi cation and analysis 
of systems — in particular concurrent/distributed systems — have been pro-
vided. These contributions range from the defi nition of specifi c notations, or 
classes of notations, to the development of solid mathematical and/or logic 
theories supporting such notations, to the development of techniques and 
effi cient algorithms for the automatic or semiautomatic analysis of models of 
systems or of their requirements, and to the development of reliable automatic 
tools that implement such algorithms. In the following, we briefl y describe 
some of the most relevant examples of (classes of) notations equipped with 
solid theories — process algebras; Petri nets; state - based approaches like VDM, 
Z, and B; and temporal logics — and analysis techniques — model checking and 
theorem proving. We will also recall abstract interpretation, which, although 
not bound to any particular notation, as a general theory of approximation of 
semantics constitutes another key contribution to FMs. We underline that what 
follows is  not  intended to be a comprehensive treatment of FMs, which would 
require much more space, and that it offers an overview of the fi eld as of the 
time of writing:

    •      Notations and Supporting Theories 
    �      Process Algebras .      Process algebra  [30]  is an algebraic approach to the 

study of concurrent processes. Its tools are algebraic languages for the 
specifi cation of processes and the formulation of statements about them, 
together with congruence laws on which calculi are defi ned for the veri-
fi cation of these statements. Typical process algebraic operators are 
 sequential ,  nondeterministic , and  parallel composition . Some of the main 
process algebras are CCS, CSP, and ACP.  

   �      Petri Nets .      Petri nets were originally proposed by Petri  [33]  for describ-
ing interacting fi nite - state machines and are constituted by a fi nite set 
of  places , a fi nite set of  transitions , a fl ow relation from places to transi-
tions and from transitions to places, and weights associated to the fl ows. 
A Petri net can be given an appealing graphical representation, which 
makes specifi cations intuitively understandable. A state of a Petri net is 
given by marking its places, that is, associating a number of  tokens  to 
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places. Rules are defi ned to fi re a transition by moving tokens, hence 
changing the state of the net. Many extensions and variations of Petri 
nets have been proposed, for example, adding values to tokens  [18] , time 
 [19, 29] , or probabilities to transitions  [3] .  

   �      VDM, Z, B .      The fi rst widely used formal specifi cation languages resorted 
to the use of traditional mathematical concepts such as sets, functions, 
and fi rst - order predicate logic. VDM  [5]  was proposed mainly for 
describing the denotational semantics of programming languages. Z  [38]  
used the same concepts for defi ning types, which describe the entities 
and the state space of the system of interest. Properties of the state space 
are described in Z by means of  invariant  predicates. State transitions 
are expressed by relations between inputs and outputs of the operations 
of the models. The B method  [1]  adds behavioral specifi cations by means 
of  abstract machines . The language is complemented with a refi nement -
 based development method, which includes the use of theorem proving 
for maintaining the consistency of refi nements. Reference  2  is a nice, 
informal introduction to the key concepts of system modeling in a math-
ematical framework as above.  

   �      Temporal Logics .      Temporal logic  [13]  is a special type of modal logic, 
and it provides a formal system for qualitatively describing and reason-
ing about how the truth values of assertions change over system com-
putations. Typical temporal logic operators include  sometimes P , which 
is true now if there is a future moment in time in which  P  becomes true, 
and  always P , which is true now if  P  is true at all future moments. Spe-
cifi c temporal logics differ for the model of time they use (e.g., linear 
time vs. branching time) and/or the specifi c set of temporal operators 
they provide.    

   •      Analysis Techniques and Tools 

    �      Model Checking .      Model checking is a verifi cation technique in which 
effi cient algorithms are used to check, in an automatic way, whether a 
desired property holds for a (usually fi nite) model of the system, typi-
cally a state - transition structure, like an automaton  [4, 7] . Very powerful 
logics have been developed to express a great variety of system proper-
ties, and high - level languages have been designed to specify system 
models. Examples of the former are various variants of temporal logic, 
and notable examples of the latter are process algebras, imperative 
languages, and graphical notations. Prominent examples of model check-
ers are SMV  [9] , SPIN  [22] , and TLC  [28] .  

   �      Automated Theorem Proving .      Automated theorem proving is the 
process of getting a computer to agree that a particular theorem is true. 
The theorems of interest may be in traditional mathematical domains, 
or they may be in other fi elds such as digital computer design  [37, 44] . 
When used for system validation, the system  specifi cation S  and its  real-
ization R  are formulas of some appropriate logic. Checking whether the 
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realization satisfi es the specifi cation amounts to verify the validity of the 
formula  S    ⇒    R , and this can be done — at least partially, and sometimes 
completely — automatically by a computer program, the theorem prover. 
Classical theorem provers are PVS  [39] , HOL  [43] , and Nqthm  [6] .  

   •      Abstract Interpretation .      Abstract interpretation is a theory of the approx-
imation of semantics of (programming or specifi cation) languages. It 
applies both to data and to control. It formalizes the idea that the 
semantics can be more or less precise according to the considered level 
of observation. If the approximation is coarse enough, the abstraction 
of a semantics yields a less precise but computable version. Because of 
the corresponding loss of information, not all questions can be answered, 
but all answers given by the effective computation of the approximate 
semantics are always correct  [12] .      

 A key difference between FMs and their mother disciplines of LICS and TCS 
is that the former attempt to provide the (software or systems) engineer with

  concepts and techniques as thinking tools, which are clean, adequate, and con-
venient, to support him (or her) in describing, reasoning about, and constructing 
complex software and hardware systems.   [41]     

 Emphasis is thus on construction rather than reduction and in pragmatics 
rather than classical issues like completeness. This shift in emphasis applies in 
general to what W. Thomas calls  logic for computer science   [41]  — as opposed 
to more traditional logic  in  computer science — but it certainly applies to FMs 
in particular. Are FMs succeeding in their mission? Although a complete 
answer cannot be given yet — since we have not witnessed a complete and 
widespread uptake of FMs by an industry in computer engineering — there is 
a clear trend that justifi es a tendency toward a positive answer to the above 
question, as it will be briefl y elaborated below. 

 FMs have been used extensively in the past for security, fault tolerance, 
general consistency, object - oriented programs, compiler correctness, protocol 
development, hardware verifi cation and computer - aided design, and human 
safety (see References  32  and  46  for extensive bibliographies on the use of 
FMs in the above areas). There are several IT industries, mainly larger ones 
like IBM, Intel, Lucent/Cadence, Motorola, and Siemens, which use FM tech-
niques for quality assurance in their production processes  [10, 31] , and that 
FMs are making their way into software development practices is clear even 
from the words of Bill Gates:

  Things like even software verifi cation, this has been the Holy Grail of computer 
science for many decades but now in some very key areas, for example, driver 
verifi cation we're building tools that can do actual proof about the software and 
how it works in order to guarantee the reliability.   [17] .    
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 FMs and related tools are also used as a supporting technology in branches of 
fundamental sciences, like biology (see for instance Reference  40 ), physics, and 
others  [24] . Moreover, FMs are used for the design and validation of safety 
critical systems, for example, in areas like aerospace  *    [34] . In the international 
standards for the engineering of safety critical systems, like those for space or 
transportation, more and more recommend or mandate the use of FMs. Exam-
ples of these engineering standards are the ECSS E - 40 - 01  [15]  and the 
CENELEC EN 50128  [14] . The need of FMs has been recognized also in other 
scientifi c communities, in particular the dependability one, as witnessed, for 
instance, by the organization of the specifi c workshop on Model Checking for 
Dependable Software - Intensive Systems in one edition of the International 
Conference on Dependable Systems and Networks, the most respectable con-
ference in the fi eld (for a discussion on the prominent role that FMs play — and 
will more and more play in the future — in the area of dependability, see also 
Reference  45 ). Finally, several commercial organizations nowadays provide 
FM - oriented services (some are listed in Reference  11 ). Unfortunately, the 
question on the success of FM cannot be fully answered yet also because many 
tools used in the industry are proprietary tools on which detailed information 
is very seldom publicly available; similarly, details on the specifi c methodolo-
gies and processes using such tools and the methodologies they support are 
diffi cult to be obtained for similar reasons  †   — a notable exception to this trend 
is Reference  21  where the AT & T Bell Laboratories NewCoRe project is 
described, which clearly shows how benefi cial FMs can be in the software 
development process. 

 On the other hand, one can assess the success of a scientifi c/technological 
discipline also by the very advances that have been accomplished in the dis-
cipline itself, and, in the last few years, there have been tremendous advances 
in the fi eld of FMs. First of all, their coverage has been broadened from purely 
functional aspects of behavior toward nonfunctional features of systems such 
as the following  [27] :

    •      Space and Mobility .      Several calculi and logics — and associated support 
tools — have been extended/developed in order to explicitly deal with 
notions like the (physical, discrete)  space  occupied by computing ele-
ments, their  migration  from one place to another, and its implication on 
 network connectivity  and the  communication structure ; thus, space and 
mobility — which are essential notions when developing or reasoning 
about large distributed networked applications — are fi rst - class objects in 
these formal frameworks.  

   †       Some advocates of FMs claim that this itself is a proof that FM and related tools are considered 
strategic in industrial contexts and this by itself can show their success. 

  *      A guide on the selection of appropriate FM can be found in the offi cial site of  Formal Methods 
Europe   [16] . 
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   •      Security .      Several calculi and logics — and associated support tools — have 
been extended/developed specifi cally for the modeling of  security  proto-
cols and their desirable properties and for verifying or falsifying that the 
latter are satisfi ed by the former.  

   •      Bounded Resources .      Methods based on logics, types, and calculi — and 
associated support tools — have been developed for modeling and control-
ling  allocation  and  deallocation  of resources and for expressing the  trust  
involved in resource allocation and its  propagation .  

   •      Continuous Time (and Hybrid Systems in General) .      In the last 15 years, 
several varieties of automata, process algebras, and logics — and associ-
ated support tools — have been extended with elements of  continuous  
nature, like for instance  time , and functions of continuous variables with 
their  derivatives .  

   •      Stochastic Behavior .      Elements of stochastic behavior, like  probabilistic 
choices  and  stochastic durations , have been introduced in models like 
automata and process algebra, and corresponding operators have been 
added to proper logics, thus providing conceptual  formal , language - based 
tools for the modeling and reasoning about of  performance  and  depend-
ability  attributes and requirements. Automatic software tools for (process 
algebras/automata)  discrete simulation  and for Markov chains and Markov 
decision processes  model checking  constitute their practical support 
counterpart.    

 An account of advances in the above - mentioned fi elds together with a rich 
bibliography can be found in Reference  31 . Moreover, the fi eld of application 
of FMs has been broadened too, including novel disciplines, like computational 
biology, to mention just one. Finally, the capabilities of the tools supporting 
FMs have been dramatically improved. For instance, some model checking 
techniques

  work especially well for concurrent software, which, as luck will have it, is the 
most diffi cult to debug and test with traditional means   [22]  ,   

 and nowadays, model checkers are able to deal with system models of up to 
10 100  states and, in some cases, even up to 10 100   [4, 20] . Nevertheless, there are 
still several open problems in the area of FM, among which are the 
following:

    •      Most specifi cation — and especially automatic verifi cation — techniques do 
not easily  scale up  due to the infamous  state explosion  problem, which 
arises when the system to be modeled and verifi ed has many independent 
actions that can occur in parallel.  

   •      Although signifi cant progress has taken place in the fi eld of compositional 
specifi cation of concurrent systems (notably by the introduction of process 
algebras), the same cannot be claimed for verifi cation. In particular, 
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 compositionality  is not currently fully exploited in model checking 
techniques.  

   •      Many specifi cation paradigms and verifi cation techniques developed 
independently from one another, often giving rise to maybe technically 
unjustifi ed dichotomies. Lack of  full integration  between different 
paradigms — like state - oriented ones of some specifi cation languages 
versus  action/event - oriented  ones of others — or between different veri-
fi cation techniques — like automated theorem proving versus model 
checking — is likely to be detrimental for each of such paradigms or 
techniques.  

   •      FMs should fi nd their way toward full acceptance and use in system — and 
particularly software — engineering. They should be smoothly embedded 
into more traditional industrial production processes.     

   1.2    FUTURE DIRECTIONS 

 In the medium/long - term future, the grand challenge for FMs will be large -
 scale industrialization and intensifi cation of fundamental research efforts. 
This is necessary for tackling the challenge of computer — and in particular 
software — reliability. The latter will be a major grand challenge in computer 
science and practice  [11] . 

 On a more technical level, several research directions will require particular 
effort. In the following list, some of them are briefl y presented. The list is 
necessarily incomplete and its items necessarily interrelated; the order of 
appearance of the items in the list does not imply any relative priority or level 
of importance:

    •      In the context of  abstract interpretation ,  “ general purpose, expressive and 
cost - effective abstractions have to be developed e.g. to handle fl oating 
point numbers, data dependencies (e.g. for parallelization), liveness prop-
erties with fairness [ … ], timing properties for embedded software [and] 
probabilistic properties, etc. Present - day tools will have to be enhanced 
to handle higher - order compositional modular analysis and to cope with 
new programming paradigms involving complex data and control con-
cepts (such as objects, concurrent threads, distributed/mobile program-
ming, etc.), to automatically combine and locally refi ne abstractions in 
particular to cope with  ‘ unknown ’  answers ”   [11] . Moreover, new ways for 
exploiting abstraction for (extended) static analysis, including the use of 
theorem proving, will need to be investigated  [35] .  

   •      In the context of  model checking   [7, 8, 24] ,  abstraction  will be a major 
pillar. It will be of vital help especially for winning over the state explo-
sion problem. Moreover, it will allow the extension of model checking to 
infi nite models. Finally, it will make model checking of software  programs  
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(and not only their specifi cations) a reality  [23] . Research is needed in 
order to embed abstraction techniques within model checking ones. The 
following are some of the issues that need to be further investigated: (1) 
how to build — possibly automatically — an abstract model from a concrete 
one; (2) how to identify spurious abstract counterexamples provided by 
the model checking algorithms when checking an abstract model reports 
an error — spurious counterexamples originate from the very fact that an 
abstract model necessarily contains less information than the concrete 
one; (3) how to refi ne an abstract model when a spurious counterexample 
is detected in order to eliminate it; (4) how to derive concrete counterex-
amples from abstract (nonspurious) ones; and (5) how to develop methods 
for verifying  parameterized  systems, that is, systems with arbitrarily many 
identical components. Another major pillar will be  compositionality . 
There is no hope to be able to model check — and in general, analyze —
 complex real - life systems of the future, like global ubiquitous systems, 
without having the possibility of exploiting their structure and 
architecture — that is, them being composed of simpler components. Com-
positional reasoning and compositional model checking will play a major 
role in the area of automated verifi cation of concurrent systems. Finally, 
a smooth  integration  of model checking and theorem proving will result 
in a quantum leap in verifi cation for example, by facilitating the modeling 
and verifi cation of infi nite - state systems, for which powerful induction 
principles will be available together with effi cient proof of base cases.  

   •      In the area of  FMs for security ,  access to resources , and  trust , we expect 
the development of security - oriented languages, directly derived from the 
theories and calculi for mobility and security mentioned in Section  1.1 . 
Moreover, specifi c protocols for mobile agents to acquire and to manage 
resources need to be developed, which will base access negotiation on an 
evaluation of  trust , the level of which will in turn depend on  knowledge  
and  belief  about agents and on how trust is  propagated . Such protocols 
will undergo serious and intense investigation and assessment including 
automatic verifi cation  [27] .  

   •      In the area of  hybrid  systems, the basic ideas used in the current tools for 
representing state sets generated by complex continuous functions in 
hybrid automata (including timed automata) will be further developed, 
and related effi cient algorithms will be developed, which will facilitate 
automated reasoning on hybrid system models. More emphasis will be 
put on efforts for unifi cation with control theory  [27] .  

   •      Model checking techniques for  stochastic  and  probabilistic  models and 
logics will be further developed in order to scale up to real - life system 
sizes. Particular emphasis will be put on the problem of counterexample 
generation and on the tailoring of numerical analysis algorithms and 
techniques required for such kinds of model checking. Moreover, integra-
tion with mobile and hybrid models as above will be required in order to 
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model and verify essential aspects of future global ubiquitous computing 
 [27] .  

   •       Game semantics  is a promising approach to the formal semantics of 
specifi cation/programming languages and logics, which has developed 
from mathematical games, logics, and combinatorial game theory and 
category theory. Although it lays more on the side of foundations for FMs, 
it will provide solid basis for advances in model checking — especially with 
respect to compositionality — partial specifi cation and modeling, integration 
of qualitative and quantitative approaches, and developments in physics -
 based models of computation — for example, quantum computing  [27] .  

   •      Finally, in order to properly face the  “ engineering challenge ”  of FMs, a 
proper  merging  of the languages of formulas and diagrams must be 
devised. Attempts have been made in the software engineering commu-
nity, and especially in the industry, most notably with the UML — although 
not particularly impressive from the mathematical foundations ’  point of 
view. On the other hand, there are other, historical examples like the 
equivalence of Boolean formulas and ordered binary decision diagrams, 
or regular expressions and fi nite automata, which have been quite suc-
cessful and which resulted in useful engineering tools. This should push 
research on  “ [t]heories which support merging diagram - based languages 
with term -  or formula - based ones ”  since this  “ would help in designing 
better specifi cation languages ”   [41] .    

 Although the above list is far to be complete, we can defi nitely claim that 
all the above lines of research are essential for properly facing the grand 
research challenges in information systems  [25] , in TCS and its applications 
 [36] , and for making the potentials of LICS and TCS fully exploited in com-
puter science and engineering as well as in other branches of science and 
engineering  [24] .  
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