
 PART I

INTRODUCTION AND STATE
OF THE ART

CO
PYRIG

HTED
 M

ATERIA
L

 CHAPTER 1

FORMAL METHODS: APPLYING
{LOGICS IN, THEORETICAL}
COMPUTER SCIENCE
 DIEGO LATELLA
 ISTI - CNR, Pisa, Italy

 1.1 INTRODUCTION AND STATE OF THE ART

 Giving a comprehensive defi nition of formal method s (FM s) is a hard and
risky task, since they are still subject of ongoing research and several aspects
of FMs, going from the foundational ones to those purely applicative, are in
continuous change and evolution. Nevertheless, in order to fi x the terms of
discussion for the issues dealt with in this book, and only for the purpose of
this book, by FMs we will mean all notations having a precise mathematical
defi nition of both their syntax and semantics, together with their associated
theory and analysis methods, that allow for describing and reasoning about
the behavior of (computer) systems in a formal manner, assisted by automatic
(software) tools. FMs play a major role in computer engineering and in the
broader context of system engineering, where also the interaction of machines
with humans is taken into consideration:

 All engineering disciplines make progress by employing mathematically based
notations and methods. Research on ‘ formal methods ’ follows this model and
attempts to identify and develop mathematical approaches that can contribute
to the task of creating computer systems (both their hardware and software
components). [26]

 The very origins of FMs go back to mathematical logic — or, more precisely, to
that branch of mathematical logic that gave rise to logics in computer science

3

Formal Methods for Industrial Critical Systems: A Survey of Applications, First Edition.
Edited by Stefania Gnesi and Tiziana Margaria.
© 2013 IEEE. Published 2013 by John Wiley & Sons, Inc.

4 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

(LICS) and theoretical computer science (TCS). An eminent example of these
roots is the milestone work of Alan Turing [42] where key concepts and theo-
retical, intrinsic limitations of the algorithmic method — central to computer
science in general and FMs in particular — are captured in precise terms. The
above issues of computability have become one of the main subjects of scien-
tifi c development in the fi eld of automatic computation in the 30th ’ s of the
previous century. Central to the scientifi c discussion of that period was the
clarifi cation of the key notion of formal system , with a clear separation of
syntax and semantics and with the notion of a formal proof calculus, defi ning
 computational steps [41] . Several fi elds of LICS and TCS have contributed to
the development of the foundations of FMs, like language and automata
theory, programming/specifi cation language syntax and semantics, and program
verifi cation. More recently, solid contributions to the specifi cation and analysis
of systems — in particular concurrent/distributed systems — have been pro-
vided. These contributions range from the defi nition of specifi c notations, or
classes of notations, to the development of solid mathematical and/or logic
theories supporting such notations, to the development of techniques and
effi cient algorithms for the automatic or semiautomatic analysis of models of
systems or of their requirements, and to the development of reliable automatic
tools that implement such algorithms. In the following, we briefl y describe
some of the most relevant examples of (classes of) notations equipped with
solid theories — process algebras; Petri nets; state - based approaches like VDM,
Z, and B; and temporal logics — and analysis techniques — model checking and
theorem proving. We will also recall abstract interpretation, which, although
not bound to any particular notation, as a general theory of approximation of
semantics constitutes another key contribution to FMs. We underline that what
follows is not intended to be a comprehensive treatment of FMs, which would
require much more space, and that it offers an overview of the fi eld as of the
time of writing:

 • Notations and Supporting Theories
 � Process Algebras . Process algebra [30] is an algebraic approach to the

study of concurrent processes. Its tools are algebraic languages for the
specifi cation of processes and the formulation of statements about them,
together with congruence laws on which calculi are defi ned for the veri-
fi cation of these statements. Typical process algebraic operators are
 sequential , nondeterministic , and parallel composition . Some of the main
process algebras are CCS, CSP, and ACP.

 � Petri Nets . Petri nets were originally proposed by Petri [33] for describ-
ing interacting fi nite - state machines and are constituted by a fi nite set
of places , a fi nite set of transitions , a fl ow relation from places to transi-
tions and from transitions to places, and weights associated to the fl ows.
A Petri net can be given an appealing graphical representation, which
makes specifi cations intuitively understandable. A state of a Petri net is
given by marking its places, that is, associating a number of tokens to

INTRODUCTION AND STATE OF THE ART 5

places. Rules are defi ned to fi re a transition by moving tokens, hence
changing the state of the net. Many extensions and variations of Petri
nets have been proposed, for example, adding values to tokens [18] , time
 [19, 29] , or probabilities to transitions [3] .

 � VDM, Z, B . The fi rst widely used formal specifi cation languages resorted
to the use of traditional mathematical concepts such as sets, functions,
and fi rst - order predicate logic. VDM [5] was proposed mainly for
describing the denotational semantics of programming languages. Z [38]
used the same concepts for defi ning types, which describe the entities
and the state space of the system of interest. Properties of the state space
are described in Z by means of invariant predicates. State transitions
are expressed by relations between inputs and outputs of the operations
of the models. The B method [1] adds behavioral specifi cations by means
of abstract machines . The language is complemented with a refi nement -
 based development method, which includes the use of theorem proving
for maintaining the consistency of refi nements. Reference 2 is a nice,
informal introduction to the key concepts of system modeling in a math-
ematical framework as above.

 � Temporal Logics . Temporal logic [13] is a special type of modal logic,
and it provides a formal system for qualitatively describing and reason-
ing about how the truth values of assertions change over system com-
putations. Typical temporal logic operators include sometimes P , which
is true now if there is a future moment in time in which P becomes true,
and always P , which is true now if P is true at all future moments. Spe-
cifi c temporal logics differ for the model of time they use (e.g., linear
time vs. branching time) and/or the specifi c set of temporal operators
they provide.

 • Analysis Techniques and Tools

 � Model Checking . Model checking is a verifi cation technique in which
effi cient algorithms are used to check, in an automatic way, whether a
desired property holds for a (usually fi nite) model of the system, typi-
cally a state - transition structure, like an automaton [4, 7] . Very powerful
logics have been developed to express a great variety of system proper-
ties, and high - level languages have been designed to specify system
models. Examples of the former are various variants of temporal logic,
and notable examples of the latter are process algebras, imperative
languages, and graphical notations. Prominent examples of model check-
ers are SMV [9] , SPIN [22] , and TLC [28] .

 � Automated Theorem Proving . Automated theorem proving is the
process of getting a computer to agree that a particular theorem is true.
The theorems of interest may be in traditional mathematical domains,
or they may be in other fi elds such as digital computer design [37, 44] .
When used for system validation, the system specifi cation S and its real-
ization R are formulas of some appropriate logic. Checking whether the

6 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

realization satisfi es the specifi cation amounts to verify the validity of the
formula S ⇒ R , and this can be done — at least partially, and sometimes
completely — automatically by a computer program, the theorem prover.
Classical theorem provers are PVS [39] , HOL [43] , and Nqthm [6] .

 • Abstract Interpretation . Abstract interpretation is a theory of the approx-
imation of semantics of (programming or specifi cation) languages. It
applies both to data and to control. It formalizes the idea that the
semantics can be more or less precise according to the considered level
of observation. If the approximation is coarse enough, the abstraction
of a semantics yields a less precise but computable version. Because of
the corresponding loss of information, not all questions can be answered,
but all answers given by the effective computation of the approximate
semantics are always correct [12] .

 A key difference between FMs and their mother disciplines of LICS and TCS
is that the former attempt to provide the (software or systems) engineer with

 concepts and techniques as thinking tools, which are clean, adequate, and con-
venient, to support him (or her) in describing, reasoning about, and constructing
complex software and hardware systems. [41]

 Emphasis is thus on construction rather than reduction and in pragmatics
rather than classical issues like completeness. This shift in emphasis applies in
general to what W. Thomas calls logic for computer science [41] — as opposed
to more traditional logic in computer science — but it certainly applies to FMs
in particular. Are FMs succeeding in their mission? Although a complete
answer cannot be given yet — since we have not witnessed a complete and
widespread uptake of FMs by an industry in computer engineering — there is
a clear trend that justifi es a tendency toward a positive answer to the above
question, as it will be briefl y elaborated below.

 FMs have been used extensively in the past for security, fault tolerance,
general consistency, object - oriented programs, compiler correctness, protocol
development, hardware verifi cation and computer - aided design, and human
safety (see References 32 and 46 for extensive bibliographies on the use of
FMs in the above areas). There are several IT industries, mainly larger ones
like IBM, Intel, Lucent/Cadence, Motorola, and Siemens, which use FM tech-
niques for quality assurance in their production processes [10, 31] , and that
FMs are making their way into software development practices is clear even
from the words of Bill Gates:

 Things like even software verifi cation, this has been the Holy Grail of computer
science for many decades but now in some very key areas, for example, driver
verifi cation we're building tools that can do actual proof about the software and
how it works in order to guarantee the reliability. [17] .

INTRODUCTION AND STATE OF THE ART 7

 FMs and related tools are also used as a supporting technology in branches of
fundamental sciences, like biology (see for instance Reference 40), physics, and
others [24] . Moreover, FMs are used for the design and validation of safety
critical systems, for example, in areas like aerospace * [34] . In the international
standards for the engineering of safety critical systems, like those for space or
transportation, more and more recommend or mandate the use of FMs. Exam-
ples of these engineering standards are the ECSS E - 40 - 01 [15] and the
CENELEC EN 50128 [14] . The need of FMs has been recognized also in other
scientifi c communities, in particular the dependability one, as witnessed, for
instance, by the organization of the specifi c workshop on Model Checking for
Dependable Software - Intensive Systems in one edition of the International
Conference on Dependable Systems and Networks, the most respectable con-
ference in the fi eld (for a discussion on the prominent role that FMs play — and
will more and more play in the future — in the area of dependability, see also
Reference 45). Finally, several commercial organizations nowadays provide
FM - oriented services (some are listed in Reference 11). Unfortunately, the
question on the success of FM cannot be fully answered yet also because many
tools used in the industry are proprietary tools on which detailed information
is very seldom publicly available; similarly, details on the specifi c methodolo-
gies and processes using such tools and the methodologies they support are
diffi cult to be obtained for similar reasons † — a notable exception to this trend
is Reference 21 where the AT & T Bell Laboratories NewCoRe project is
described, which clearly shows how benefi cial FMs can be in the software
development process.

 On the other hand, one can assess the success of a scientifi c/technological
discipline also by the very advances that have been accomplished in the dis-
cipline itself, and, in the last few years, there have been tremendous advances
in the fi eld of FMs. First of all, their coverage has been broadened from purely
functional aspects of behavior toward nonfunctional features of systems such
as the following [27] :

 • Space and Mobility . Several calculi and logics — and associated support
tools — have been extended/developed in order to explicitly deal with
notions like the (physical, discrete) space occupied by computing ele-
ments, their migration from one place to another, and its implication on
 network connectivity and the communication structure ; thus, space and
mobility — which are essential notions when developing or reasoning
about large distributed networked applications — are fi rst - class objects in
these formal frameworks.

 † Some advocates of FMs claim that this itself is a proof that FM and related tools are considered
strategic in industrial contexts and this by itself can show their success.

 * A guide on the selection of appropriate FM can be found in the offi cial site of Formal Methods
Europe [16] .

8 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

 • Security . Several calculi and logics — and associated support tools — have
been extended/developed specifi cally for the modeling of security proto-
cols and their desirable properties and for verifying or falsifying that the
latter are satisfi ed by the former.

 • Bounded Resources . Methods based on logics, types, and calculi — and
associated support tools — have been developed for modeling and control-
ling allocation and deallocation of resources and for expressing the trust
involved in resource allocation and its propagation .

 • Continuous Time (and Hybrid Systems in General) . In the last 15 years,
several varieties of automata, process algebras, and logics — and associ-
ated support tools — have been extended with elements of continuous
nature, like for instance time , and functions of continuous variables with
their derivatives .

 • Stochastic Behavior . Elements of stochastic behavior, like probabilistic
choices and stochastic durations , have been introduced in models like
automata and process algebra, and corresponding operators have been
added to proper logics, thus providing conceptual formal , language - based
tools for the modeling and reasoning about of performance and depend-
ability attributes and requirements. Automatic software tools for (process
algebras/automata) discrete simulation and for Markov chains and Markov
decision processes model checking constitute their practical support
counterpart.

 An account of advances in the above - mentioned fi elds together with a rich
bibliography can be found in Reference 31 . Moreover, the fi eld of application
of FMs has been broadened too, including novel disciplines, like computational
biology, to mention just one. Finally, the capabilities of the tools supporting
FMs have been dramatically improved. For instance, some model checking
techniques

 work especially well for concurrent software, which, as luck will have it, is the
most diffi cult to debug and test with traditional means [22] ,

 and nowadays, model checkers are able to deal with system models of up to
10 100 states and, in some cases, even up to 10 100 [4, 20] . Nevertheless, there are
still several open problems in the area of FM, among which are the
following:

 • Most specifi cation — and especially automatic verifi cation — techniques do
not easily scale up due to the infamous state explosion problem, which
arises when the system to be modeled and verifi ed has many independent
actions that can occur in parallel.

 • Although signifi cant progress has taken place in the fi eld of compositional
specifi cation of concurrent systems (notably by the introduction of process
algebras), the same cannot be claimed for verifi cation. In particular,

FUTURE DIRECTIONS 9

 compositionality is not currently fully exploited in model checking
techniques.

 • Many specifi cation paradigms and verifi cation techniques developed
independently from one another, often giving rise to maybe technically
unjustifi ed dichotomies. Lack of full integration between different
paradigms — like state - oriented ones of some specifi cation languages
versus action/event - oriented ones of others — or between different veri-
fi cation techniques — like automated theorem proving versus model
checking — is likely to be detrimental for each of such paradigms or
techniques.

 • FMs should fi nd their way toward full acceptance and use in system — and
particularly software — engineering. They should be smoothly embedded
into more traditional industrial production processes.

 1.2 FUTURE DIRECTIONS

 In the medium/long - term future, the grand challenge for FMs will be large -
 scale industrialization and intensifi cation of fundamental research efforts.
This is necessary for tackling the challenge of computer — and in particular
software — reliability. The latter will be a major grand challenge in computer
science and practice [11] .

 On a more technical level, several research directions will require particular
effort. In the following list, some of them are briefl y presented. The list is
necessarily incomplete and its items necessarily interrelated; the order of
appearance of the items in the list does not imply any relative priority or level
of importance:

 • In the context of abstract interpretation , “ general purpose, expressive and
cost - effective abstractions have to be developed e.g. to handle fl oating
point numbers, data dependencies (e.g. for parallelization), liveness prop-
erties with fairness […], timing properties for embedded software [and]
probabilistic properties, etc. Present - day tools will have to be enhanced
to handle higher - order compositional modular analysis and to cope with
new programming paradigms involving complex data and control con-
cepts (such as objects, concurrent threads, distributed/mobile program-
ming, etc.), to automatically combine and locally refi ne abstractions in
particular to cope with ‘ unknown ’ answers ” [11] . Moreover, new ways for
exploiting abstraction for (extended) static analysis, including the use of
theorem proving, will need to be investigated [35] .

 • In the context of model checking [7, 8, 24] , abstraction will be a major
pillar. It will be of vital help especially for winning over the state explo-
sion problem. Moreover, it will allow the extension of model checking to
infi nite models. Finally, it will make model checking of software programs

10 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

(and not only their specifi cations) a reality [23] . Research is needed in
order to embed abstraction techniques within model checking ones. The
following are some of the issues that need to be further investigated: (1)
how to build — possibly automatically — an abstract model from a concrete
one; (2) how to identify spurious abstract counterexamples provided by
the model checking algorithms when checking an abstract model reports
an error — spurious counterexamples originate from the very fact that an
abstract model necessarily contains less information than the concrete
one; (3) how to refi ne an abstract model when a spurious counterexample
is detected in order to eliminate it; (4) how to derive concrete counterex-
amples from abstract (nonspurious) ones; and (5) how to develop methods
for verifying parameterized systems, that is, systems with arbitrarily many
identical components. Another major pillar will be compositionality .
There is no hope to be able to model check — and in general, analyze —
 complex real - life systems of the future, like global ubiquitous systems,
without having the possibility of exploiting their structure and
architecture — that is, them being composed of simpler components. Com-
positional reasoning and compositional model checking will play a major
role in the area of automated verifi cation of concurrent systems. Finally,
a smooth integration of model checking and theorem proving will result
in a quantum leap in verifi cation for example, by facilitating the modeling
and verifi cation of infi nite - state systems, for which powerful induction
principles will be available together with effi cient proof of base cases.

 • In the area of FMs for security , access to resources , and trust , we expect
the development of security - oriented languages, directly derived from the
theories and calculi for mobility and security mentioned in Section 1.1 .
Moreover, specifi c protocols for mobile agents to acquire and to manage
resources need to be developed, which will base access negotiation on an
evaluation of trust , the level of which will in turn depend on knowledge
and belief about agents and on how trust is propagated . Such protocols
will undergo serious and intense investigation and assessment including
automatic verifi cation [27] .

 • In the area of hybrid systems, the basic ideas used in the current tools for
representing state sets generated by complex continuous functions in
hybrid automata (including timed automata) will be further developed,
and related effi cient algorithms will be developed, which will facilitate
automated reasoning on hybrid system models. More emphasis will be
put on efforts for unifi cation with control theory [27] .

 • Model checking techniques for stochastic and probabilistic models and
logics will be further developed in order to scale up to real - life system
sizes. Particular emphasis will be put on the problem of counterexample
generation and on the tailoring of numerical analysis algorithms and
techniques required for such kinds of model checking. Moreover, integra-
tion with mobile and hybrid models as above will be required in order to

REFERENCES 11

model and verify essential aspects of future global ubiquitous computing
 [27] .

 • Game semantics is a promising approach to the formal semantics of
specifi cation/programming languages and logics, which has developed
from mathematical games, logics, and combinatorial game theory and
category theory. Although it lays more on the side of foundations for FMs,
it will provide solid basis for advances in model checking — especially with
respect to compositionality — partial specifi cation and modeling, integration
of qualitative and quantitative approaches, and developments in physics -
 based models of computation — for example, quantum computing [27] .

 • Finally, in order to properly face the “ engineering challenge ” of FMs, a
proper merging of the languages of formulas and diagrams must be
devised. Attempts have been made in the software engineering commu-
nity, and especially in the industry, most notably with the UML — although
not particularly impressive from the mathematical foundations ’ point of
view. On the other hand, there are other, historical examples like the
equivalence of Boolean formulas and ordered binary decision diagrams,
or regular expressions and fi nite automata, which have been quite suc-
cessful and which resulted in useful engineering tools. This should push
research on “ [t]heories which support merging diagram - based languages
with term - or formula - based ones ” since this “ would help in designing
better specifi cation languages ” [41] .

 Although the above list is far to be complete, we can defi nitely claim that
all the above lines of research are essential for properly facing the grand
research challenges in information systems [25] , in TCS and its applications
 [36] , and for making the potentials of LICS and TCS fully exploited in com-
puter science and engineering as well as in other branches of science and
engineering [24] .

 ACKNOWLEDGMENTS

 The author wishes to thank Peter Neumann (SRI Int., USA), Rocco de Nicola
(University of Florence, Italy), and Scott Smolka (SUNY, USA) for precious
suggestions; Stefania Gnesi and Alessandro Fantechi, for their help on a
number of issues; and Mieke Massink and Angelo Morzenti for reviewing the
present report.

 REFERENCES

 1. J. R. Abrial . The B - Book . Cambridge University Press , 1996 .
 2. J. R. Abrial . Faultless systems: Yes we can . IEEE Computer Society , 42 (9) : 30 – 36 , 2009 .

12 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

 3. M. Ajmone Marsan , G. Conte , and G. Balbo . A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems . ACM Transactions
on Computer Systems , ACM Press, 2 (2): 93 – 122 , 1984 .

 4. C. Baier and J. - P. Katoen . Principles of Model Checking . The MIT Press , 2008 .
 5. D. Bjorner and C. Jones . Formal Specifi cation and Software Development . Prentice

Hall International , 1982 .
 6. R. Boyer . Nqthm, the Boyer - Moore prover, 2003 . Available at: http://www.cs.utexas.

edu/users/boyer/ftp/nqthm/index.html.
 7. E. Clarke , E. Emerson , and J. Sifakis . Model checking: Algorithmic verifi cation and

debugging. Turing lecture . Communications of the ACM , 52 (11): 75 – 84 , 2009 .
 8. E. Clarke , O. Grumberg , S. Jha , Y. Lu , and H. Veith . Progress in the state explosion

problem in model checking . In R. Wilhelm , ed., Informatics 10 Years Back 10 Years
Ahead, Volume 2000 of Lectures Notes in Computer Science , pp. 176 – 194 . Springer -
 Verlag , 2000 .

 9. E. Clarke , O. Grumberg , and D. Peled . Model Checking . MIT Press , 1999 .
 10. E. Clarke , J. Wing , et al. Formal methods: State of the art and future directions .

 ACM Computing Surveys , ACM Press, 28 (4): 626 – 643 , 1996 .
 11. P. Cousot . Abstract interpretation based formal methods and future challenges . In

 R. Wilhelm , ed., Informatics 10 Years Back 10 Years Ahead, Volume 2000 of Lectures
Notes in Computer Science , pp. 138 – 156 , 2000 .

 12. P. Cousot . Abstract Interpretation and Semantics, September 30, 2003 . Available at:
 http://www.di.ens.fr/ ∼ cousot/Equipeabsint - eg.shtml.

 13. A. Emerson . Temporal and modal logics . In J. van Leeuwen , ed., Handbook of
Theoretical Computer Science — Vol. B: Formal Models and Semantics , pp. 995 – 1072 .
 Elsevier , 1990 .

 14. European Committee for Electrotechnical Standardization. CENELEC . Railway
application — Communications, signalling and processing systems — Software for
railway control and protection systems . CENELEC EN 50128. 2011 .

 15. European Cooperation for Space Standardization ECSS . Space segment software .
ECSS E - 40 - 01. 1999 .

 16. Formal Methods Europe . FME Home Page, September 30, 2003 . Available at:
 http://www.fmeurope.org.

 17. B. Gates . Remarks by Bill Gates. WinHEC 2002 Seattle — Washington April 18,
 2002 . Available at: http://www.microsoft.com/billgates/speeches/2002/04 - 18winhec.
asp [Accessed October 6, 2003].

 18. H. Genrich . Predicate/transition nets . In G. Rozenberg , ed., Advances in Petri Nets
1986, Volume 254 of Lectures Notes in Computer Science , pp. 207 – 247 . Springer -
 Verlag , 1986 .

 19. C. Ghezzi , D. Mandrioli , S. Morasca , and M. Pezzè . A unifi ed high - level Petri net
formalism for time - critical systems . IEEE Transactions on Software Engineering ,
 17 (2): 160 – 172 , 1991 .

 20. L. Hoffman . Talking model - checking technology. A conversation with the 2007
ACM A. M. Turing Award winners . Communications of the ACM , 51 (7): 110 – 112 ,
 2008 .

 21. G. Holzmann . The theory and practice of a formal method: NewCoRe . In Proceed-
ings of the 13th IFIP World Congress , pp. 35 – 44 . IFIP, 1994 .

REFERENCES 13

 22. G. Holzmann . The SPIN Model Checker. Primer and Reference Manual . Addison -
 Wesley , 2003 .

 23. R. Jhala and R. Majumdar . Software model checking . ACM Computing Surveys ,
 41 (4): 21:2 – 21:54 , 2009 .

 24. D. Johnson . Challenges for Theoretical Computer Science, 2000 . Draft Report from
the Workshop on Challenges for Theoretical Computer Science held in Portland
on May 19, 2000. Available at: http://www2.research.att.com/~dsj/nsfl ist.html.

 25. A. Jones , ed. Grand research challenges in information systems . Computer Research
Association, 2003 .

 26. C. Jones . Thinking tools for the future of computing science . In R. Wilhelm , ed.,
 Informatics 10 Years Back 10 Years Ahead, Volume 2000 of Lectures Notes in Com-
puter Science , pp. 112 – 130 , 2000 .

 27. M. Kwiatkowska and V. Sassone (moderators). Science for Global Ubiquitous
Computing, 2003 . Proposal for discussion nr. 2 in the context of the Grand Chal-
lenges for Computing Research initiative sponsored by the UK Computing Research
Committee with support from EPSRC and NeSC.

 28. L. Lamport . Specifying Systems: The TLA + Language and Tools for Hardware and
Software Engineers . Addison - Wesley , 2002 .

 29. P. Merlin and D. Farber . Recoverability of communication protocols . IEEE Transac-
tions on Communications , 24 (9): 1036 – 1043 , 1976 .

 30. R. Milner . Operational and algebraic semantics of concurrent processes . In J. van
 Leeuwen , ed., Handbook of Theoretical Computer Science — Vol. B: Formal Models
and Semantics , pp. 1201 – 1242 . Elsevier , 1990 .

 31. R. Milner , A. Gordon , V. Sassone , P. Buneman , F. Gardner , S. Abramsky , and M.
 Kwiatkowska . Theories for ubiquitous processes and data . Platform for a 15 - year
grand challenge, 2003 . This paper is written as a background for Reference [27].

 32. P. Neumann . Practical architectures for survivable systems and networks. Technical
Report Cont. 1 - 732 - 427 - 5099 — Final Report, SRI International, 2000 . Available at:
 http://www.csl.sri.com/users/neumann/ [Accessed September 30, 2003].

 33. W. Reisig . Petri Nets — An Introduction, Volume 4 of EATCS Monographs on Theo-
retical Computer Science . Springer - Verlag , 1985 .

 34. J. Rushby . Formal methods and the certifi cation of critical systems . Technical Report
CSL - 93 - 7, SRI International, 1993 . Also issues under the title Formal Methods and
Digital Systems Validation for Airborne Systems as NASA CR 4551.

 35. K. Rustan and M. Leino . Extended static checking: a ten - year perspective . In R.
 Wilhelm , ed., Informatics 10 Years Back 10 Years Ahead, Volume 2000 of Lectures
Notes in Computer Science , pp. 157 – 175 , 2000 .

 36. A. Selman . Challenges for Theory of Computing, 1999 . Report of an NSF - Sponsored
Workshop on Research in Theoretical Computer Science held in Chicago on March
11 – 12, 1999. Available at: http://http://www.cse.buffalo.edu/~selman/report/.

 37. N. Shankar . Automated deduction for verifi cation . ACM Computing Surveys ,
 41 (4): 20:2 – 20:56 , 2009 .

 38. J. Spivey . The Z Notation — A Reference Manual . Prentice Hall International , 1989 .

 39. SRI International — Computer Science Laboratory . The PVS Specifi cation and
Verifi cation System, September 30, 2003 . Available at: http://pvs.csl.sri.com/.

14 FORMAL METHODS: APPLYING {LOGICS IN, THEORETICAL} COMPUTER SCIENCE

 40. The BioSPI Project . The BioSPI Project Home Page, October 27, 2003 . Available
at: http:// www.wisdom.weizmann.ac.il/~biopsi.

 41. W. Thomas . Logic for computer science: The engineering challenge . In R. Wilhelm ,
ed., Informatics 10 Years Back 10 Years Ahead, Volume 2000 of Lectures Notes in
Computer Science , pp. 257 – 267 , 2000 .

 42. A. M. Turing . On computable numbers with an application to the entscheidung-
sproblem . Proceedings of the London Mathematical Society , 2 (42): 230 – 265 , 1936 .

 43. University of Cambridge — Computer Laboratory . Automated Reasoning Group
HOL page. Available at: http://www.cl.cam.ac.uk/research/hvg/HOL/.

 44. Various Authors. Wikipedia, September 30, 2003 . Available at: http://www.wikipedia.org
 45. J. Woodcock (moderator). Dependable Systems Evolution. A Grand Challenge for

Computer Science, 2003 . Proposal for discussion nr. 6 in the context of the Grand
Challenges for Computing Research initiative sponsored by the UK Computing
Research Committee with support from EPSRC and NeSC.

 46. J. Woodcock , P. G. Larsen , J. Bicarregui , and J. Fitzgerald . Formal methods: Practice
and experience . ACM Computing Surveys , 41 (4): 19:2 – 19:36 , 2009 .

