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1.1 Introduction

Driven by the necessity to incorporate the observed stylized features of asset
prices, continuous-time stochastic modeling has taken a predominant role
in the financial literature over the past two decades. Most of the proposed
models are particular cases of a stochastic volatility component driven by a
Wiener process superposed with a pure-jump component accounting for the
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4 CHAPTER 1 Estimation of NIG and VG Models

discrete arrival of major influential information. Accurate approximation of the
complex phenomenon of trading is certainly attained with such a general model.
However, accuracy comes with a high cost in the form of hard estimation and
implementation issues as well as overparameterized models. In practice, and
certainly for the purpose motivating the task of modeling in the first place,
a parsimonious model with relatively few parameters is desirable. With this
motivation in mind, parametric exponential Lévy models (ELM) are one of the
most tractable and successful alternatives to both stochastic volatility models and
more general Itô semimartingale models with jumps.

The literature of geometric Lévy models is quite extensive (see Cont &
Tankov (2004) for a review). Owing to their appealing interpretation and
tractability in this work, we concentrate on two of the most popular classes: the
variance-gamma (VG) and normal inverse Gaussian (NIG) models proposed by
Carr et al . (1998) and Barndorff-Nielsen (1998), respectively. In the ‘‘symmetric
case’’ (which is a reasonable assumption for equity prices), both models require
only one additional parameter, κ , compared to the two-parameter geometric
Brownian motion (also called the Black–Scholes model). This additional param-
eter can be interpreted as the percentage excess kurtosis relative to the normal
distribution and, hence, this parameter is mainly in charge of the tail thickness
of the log return distribution. In other words, this parameter will determine
the frequency of ‘‘excessively’’ large positive or negative returns. Both models
are pure-jump models with infinite jump activity (i.e., a model with infinitely
many jumps during any finite time interval [0, T ]). Nevertheless, one of the
parameters, denoted by σ , controls the variability of the log returns and, thus, it
can be interpreted as the volatility of the price process.

Numerous empirical studies have shown that certain parametric ELM,
including the VG and the NIG models, are able to fit daily returns extremely
well using standard estimation methods such as maximum likelihood estimators
(MLE) or method of moment estimators (MME) (c.f. Eberlein & Keller (1995);
Eberlein & Özkan (2003); Carr et al . (1998); Barndorff-Nielsen (1998); Kou
& Wang (2004); Carr et al . (2002); Seneta (2004); Behr & Pötter (2009),
Ramezani & Zeng (2007), and others). On the other hand, in spite of their
current importance, very few papers have considered intraday data. One of our
main motivations in this work is to analyze whether pure Lévy models can still
work well to fit the statistical properties of log returns at the intraday level.

As essentially any other model, a Lévy model will have limitations when
working with very high frequency transaction data and, hence, the question
is rather to determine the scales where a Lévy model is a good probabilistic
approximation of the underlying (extremely complex and stochastic) trading
process. We propose to assess the suitability of the Lévy model by analyzing
the signature plots of the point estimates at different sampling frequencies. It
is plausible that an apparent stability of the point estimates for certain ranges
of sampling frequencies provides evidence of the adequacy of the Lévy model
at those scales. An earlier work along these lines is Eberlein & Özkan (2003),
where this stability was empirically investigated using hyperbolic Lévy models
and MLE (based on hourly data). Concretely, one of the main points therein was
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to estimate the model’s parameters from daily mid-day log returns1 and, then,
measure the distance between the empirical density based on hourly returns and
the 1-h density implied by the estimated parameters. It is found that this distance
is approximately minimal among any other implied densities. In other words,
if fδ(·; θ∗

d ) denotes the implied density of Xδ when using the parameters θ∗
d

estimated from daily mid-day returns and if f ∗
h (·) denotes the empirical density

based on hourly returns, then the distance between fδ(·; θ∗
d ) and f ∗

h is minimal
when δ is approximately 1 h. Such a property was termed the time consistency of
Lévy processes.

In this chapter, we further investigate the consistency of ELM for a wide rage
of intraday frequencies using intraday data of the US equity market. Although
natural differences due to sampling variation are to be expected, our empirical
results under both models exhibit some very interesting common features across
the different stocks we analyzed. We find that the estimator of the volatility
parameter σ is quite stable for sampling frequencies as short as 20 min or less. For
higher frequencies, the volatility estimates exhibit an abrupt tendency to increase
(see Fig. 1.6 below), presumably due to microstructure effects. In contrast, the
kurtosis estimator is more sensitive to microstructure effects and a certain degree
of stability is achieved only for mid-range frequencies of 1 h and more (see
Fig. 1.6 below). For higher frequencies, the kurtosis decreases abruptly. In fact,
opposite to the smooth signature plot of σ at those scales, the kurtosis estimates
consistently change by more than half when going from hourly to 30-min log
returns. Again, this phenomenon is presumably due to microstructure effects
since the effect of an unaccounted continuous component will be expected to
diminish when the sampling frequency increases.

One of the main motivations of Lévy models is that log returns follow ideal
conditions for statistical inference in that case; namely, under a Lévy model
the log returns at any frequency are independent with a common distribution.
Owing to this fact, it is arguable that it might be preferable to use a parsimonious
model for which efficient estimation is feasible, rather than a very accurate model
for which estimation errors will be intrinsically large. This is similar to the
so-called model selection problem of statistics where a model with a high number
of parameters typically enjoys a small mis-specification error but suffers from a
high estimation variance due to the large number of parameters to estimate.

An intrinsic assumption discussed above is that standard estimation methods
are indeed efficient in this high frequency data setting. This is, however,
an overstatement (typically overlooked in the literature) since the population
distribution of high frequency sample data coming from a true Lévy model
depends on the sampling frequency itself and, in spite of having more data,
high frequency data does not necessarily imply better estimation results. Hence,
another motivation for this work is to analyze the performance of the two most
common estimators, namely the method of moments estimators (MME) and the

1These returns are derived from prices recorded in the middle of the trading session. The idea
behind the choice of these prices is to avoid the typically high volatility at the opening and closing
of the trading session.
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MLE, when dealing with high frequency data. As an additional contribution of
this analysis, we also propose a simple novel numerical scheme for computing the
MME. On the other hand, given the inaccessibility of closed forms for the MLE,
we apply an unconstrained optimization scheme (Powell’s method) to find them
numerically.

By Monte Carlo simulations, we discover the surprising fact that neither
high frequency sampling nor MLE reduces the estimation error of the volatility
parameter in a significant way. In other words, estimating the volatility parameter
based on, say, daily observations has similar performance to doing the same based
on, say, 5-min observations. On the other hand, the estimation error of the
parameter controlling the kurtosis of the model can be significantly reduced
by using MLE or intraday data. Another conclusion is that the VG MLE is
numerically unstable when working with ultra-high frequency data while both
the VG MME and the NIG MLE work quite well for almost any frequency.

The remainder of this chapter is organized as follows. In Section 1.2, we
review the properties of the NIG and VG models. Section 1.3 introduces a
simple and novel method to compute the moment estimators for the VG and the
NIG distributions and also briefly describes the estimation method of maximum
likelihood. Section 1.4 presents the finite-sample performance of the moment
estimators and the MLE via simulations. In Section 1.5, we present our empirical
results using high frequency transaction data from the US equity market. The
data was obtained from the NYSE TAQ database of 2005 trades via Wharton’s
WRDS system. For the sake of clarity and space, we only present the results for
Intel and defer a full analysis of other stocks for a future publication. We finish
with a section of conclusions and further recommendations.

1.2 The Statistical Models

1.2.1 GENERALITIES OF EXPONENTIAL LÉVY MODELS

Before introducing the specific models we consider in this chapter, let us briefly
motivate the application of Lévy processes in financial modeling. We refer
the reader to the monographs of Cont & Tankov (2004) and Sato (1999)
or the recent review papers Figueroa-López (2011) and Tankov (2011) for
further information. Exponential (or Geometric) Lévy models are arguably the
most natural generalization of the geometric Brownian motion intrinsic in the
Black–Scholes option pricing model. A geometric Brownian motion (also called
Black–Scholes model) postulates the following conditions about the price process
(St )t≥0 of a risky asset:

(1) The (log) return on the asset over a time period [t, t + h] of length h, that is,

Rt,t+h := log
St+h

St

is Gaussian with mean μh and variance σ 2h (independent of t);
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(2) Log returns on disjoint time periods are mutually independent;

(3) The price path t →St is continuous; that is, P(Su →St , as u → t, ∀ t) = 1.

The previous assumptions can equivalently be stated in terms of the so-called log
return process (Xt )t , denoted henceforth as

Xt := log
St

S0
.

Indeed, assumption (1) is equivalent to ask that the increment Xt+h − Xt of
the process X over [t, t + h] is Gaussian with mean μh and variance σ 2h.
Assumption (2) simply means that the increments of X over disjoint periods of
time are independent. Finally, the last condition is tantamount to asking that X
has continuous paths. Note that we can represent a general geometric Brownian
motion in the form

St = S0eσWt+μt ,

where (Wt)t≥0 is the Wiener process. In the context of the above Black–Scholes
model, a Wiener process can be defined as the log return process of a price process
satisfying the Black–Scholes conditions (1)–(3) with μ = 0 and σ 2 = 1.

As it turns out, assumptions (1)–(3) above are all controversial and believed
not to hold true especially at the intraday level (see Cont (2001) for a concise
description of the most important features of financial data). The empirical
distributions of log returns exhibit much heavier tails and higher kurtosis than
a Gaussian distribution does and this phenomenon is accentuated when the
frequency of returns increases. Independence is also questionable since, for
example, absolute log returns typically exhibit slowly decaying serial correlation.
In other words, high volatility events tend to cluster across time. Of course,
continuity is just a convenient limiting abstraction to describe the high trading
activity of liquid assets. In spite of its shortcomings, geometric Brownian motion
could arguably be a suitable model to describe low frequency returns but not
high frequency returns.

An ELM attempts to relax the assumptions of the Black–Scholes model
in a parsimonious manner. Indeed, a natural first step is to relax the Gaussian
character of log returns by replacing it with an unspecified distribution as follows:

(1′) The (log) return on the asset over a time period of length h has
distribution Fh, depending only on the time span h.

This innocuous (still desirable) change turns out to be inconsistent with condition
(3) above in the sense that (2) and (3) together with (1′) imply (1). Hence, we
ought to relax (3) as well if we want to keep (1′). The following is a natural
compromise:

(3′) The paths t → St exhibit only discontinuities of first kind (jump
discontinuities).
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Summarizing, an exponential Lévy model for the price process (St )t≥0 of a
risky asset satisfies conditions (1′), (2), and (3′). In the following section, we
concentrate on two important and popular types of exponential Lévy models.

1.2.2 VARIANCE-GAMMA AND NORMAL INVERSE
GAUSSIAN MODELS

The VG and NIG Lévy models were proposed in Carr et al . (1998) and Barndorff-
Nielsen (1998), respectively, to describe the log return process Xt := log St/S0
of a financial asset. Both models can be seen as a Wiener process with drift
that is time-deformed by an independent random clock. That is, (Xt ) has the
representation

Xt = σW (τ (t)) + θτ (t) + bt, (1.1)

where σ > 0, θ , b ∈ R are given constants, W is Wiener process, and τ is a
suitable independent subordinator (nondecreasing Lévy process) such that

Eτ (t) = t, and Var(τ (t)) = κt.

In the VG model, τ (t) is Gamma distributed with scale parameter β := κ and
shape parameter α := t/κ , while in the NIG model τ (t) follows an inverse
Gaussian distribution with mean μ = 1 and shape parameter λ = 1/(tκ). In the
formulation (Eq. 1.1), τ plays the role of a random clock aimed at incorporating
variations in business activity through time.

The parameters of the model have the following interpretation (see Eqs.
(1.6) and (1.17) below).

1. σ dictates the overall variability of the log returns of the asset. In the
symmetric case (θ = 0), σ 2 is the variance of the log returns per unit time.

2. κ controls the kurtosis or tail heaviness of the log returns. In the symmetric
case (θ = 0), κ is the percentage excess kurtosis of log returns relative to the
normal distribution multiplied by the time span.

3. b is a drift component in calendar time.

4. θ is a drift component in business time and controls the skewness of log
returns.

The VG can be written as the difference of two Gamma Lévy processes

Xt = X +
t − X −

t + bt, (1.2)

where X + and X − are independent Gamma Lévy processes with respective
parameters

α+ = α− = 1

κ
, β± :=

√
θ2κ2 + 2σ 2κ ± θκ

2
.
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One can see X + (respectively X −) in Equation (1.2) as the upward (respectively
downward) movements in the asset’s log return.

Under both models, the marginal density of Xt (which translates into the
density of a log return over a time span t) is known in closed form. In the VG
model, the probability density of Xt is given by

pt (x) =
√

2e
θ(x−bt)

σ2

σ
√

πκ
t
κ �( t

κ
)

⎛⎜⎝ |x − bt|√
2σ2

κ
+ θ2

⎞⎟⎠
t
κ − 1

2

K t
κ − 1

2

⎛⎜⎝ |x − bt|
√

2σ2

κ
+ θ2

σ 2

⎞⎟⎠ ,

(1.3)

where K is the modified Bessel function of the second kind (c.f. Carr et al .
(1998)). The NIG model has marginal densities of the form

pt (x) = te
t
κ + θ(x−bt)

σ2

π

(
(x − bt)2 + t2σ2

κ

θ2

κσ2 + 1
κ2

)− 1
2

K1

⎛⎜⎝
√

(x − bt)2 + t2σ2

κ

√
σ2

κ
+ θ2

σ 2

⎞⎟⎠ . (1.4)

Throughout the chapter, we assume that the log return process {Xt}t≥0 is
sampled during a fixed time interval [0, T ] at evenly spaced times ti = iδn, i =
1, . . . , n, where δn = T /n. This sampling scheme is sometimes called calendar
time sampling (Oomen, 2006). Under the assumption of independence and
stationarity of the increments of X (conditions (1’) and (2) in Section 1.2.1), we
have at our disposal a random sample

�n
i := �n

i X := Xiδn − X(i−1)δn , i = 1, . . . , n, (1.5)

of size n of the distribution fδn(·) := fδn(·; σ , θ , κ , b) of Xδn . Note that, in this
context, a larger sample size n does not necessarily entail a greater amount of
useful information about the parameters of the model. This is, in fact, one of
the key questions in this chapter: Does the statistical performance of standard
parametric methods improve under high frequency observations? We address
this issue by simulation experiments in Section 1.4. For now, we introduce the
statistical methods used in this chapter.

1.3 Parametric Estimation Methods

In this part, we review the most used parametric estimation methods: the method
of moments and maximum likelihood. We also present a new computational
method to find the moment estimators of the considered models. It is worth
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pointing out that both methods are known to be consistent under mild conditions
if the number of observations at a fixed frequency (say, daily or hourly) are
independent.

1.3.1 METHOD OF MOMENT ESTIMATORS

In principle, the method of moments is a simple estimation method that can be
applied to a wide range of parametric models. Also, the MME are commonly
used as initial points of numerical schemes used to find MLE, which are
typically considered to be more efficient. Another appealing property of moment
estimators is that they are known to be robust against possible dependence
between log returns since their consistency is only a consequence of stationarity
and ergodicitity conditions of the log returns. In this section, we introduce a new
method to compute the MME for the VG and NIG models.

Let us start with the VG model. The mean and first three central moments
of a VG model are given in closed form as follows (Cont & Tankov (2003),
pp. 32 & 117):

μ1(Xδ) := E(Xδ) = (θ + b)δ,

μ2(Xδ) := Var(Xδ) = (σ 2 + θ2κ)δ, (1.6)

μ3(Xδ) := E(Xδ − EXδ)3 = (3σ 2θκ + 2θ3κ2)δ,

μ4(Xδ) := E(Xδ − EXδ)4 = (3σ 4κ + 12σ 2θ2κ2 + 6θ4κ3)δ + 3μ2(Xδ)2.

The MME is obtained by solving the system of equations resulting from
substituting the central moments of Xδn in Equation 1.6 by their corresponding
sample estimators:

μ̂k,n := 1

n

n∑
i=1

(
�n

i − �̄(n)
)k

, k ≥ 2, (1.7)

where �n
i is given as in Equation 1.5 and �̄(n) := ∑n

i=1 �n
i /n. However, solving

the system of equations that defines the MME is not straightforward and, in gen-
eral, one will need to rely on a numerical solution of the system. We now describe
a novel simple method for this purpose. The idea is to write the central moments
in terms of the quantity E := θ2κ/σ 2. Concretely, we have the equations

μ2(Xδ) = δσ 2(1 + E), μ3(Xδ) = δσ 2θκ(3 + 2E),

μ4(Xδ)

3μ2
2(Xδ)

− 1 = κ

δ

1 + 4E + 2E2

(1 + E)2
.

From these equations, it follows that

3μ2
3(Xδ)

μ2(Xδ)
(
μ4(Xδ) − 3μ2

2(Xδ)
) = E (3 + 2E)2(

1 + 4E + 2E2
)
(1 + E)

:= f (E). (1.8)
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In spite of appearances, the above function f (E) is a strictly increasing concave
function from (−1 + 2−1/2, ∞) to (−∞, 2) and, hence, the solution of
the corresponding sample equation can be found efficiently using numerical
methods. It remains to estimate the left-hand side of Equation 1.8. To this end,
note that the left-hand side term can be written as 3Skw(Xδ)2/Krt(Xδ), where
Skw and Krt represent the population skewness and kurtosis:

Skw(Xδ) := μ3(Xδ)

μ2(Xδ)3/2
and Krt(Xδ) := μ4(Xδ)

μ2(Xδ)2
− 3. (1.9)

Finally, we just have to replace the population parameters by their empirical
estimators:

V̂arn := 1

n − 1

n∑
i=1

(
�n

i − �̄n)2
, Ŝkwn := μ̂3,n

μ̂
3/2
2,n

, K̂rtn := μ̂4,n

μ̂2
2,n

− 3. (1.10)

Summarizing, the MME can be computed via the following numerical scheme:

1. Find (numerically) the solution Ê∗
n of the equation

f (E) = 3 Ŝkw
2
n

K̂rtn
; (1.11)

2. Determine the MME using the following formulas:

σ̂ 2
n := V̂arn

δn

(
1

1 + Ê∗
n

)
, κ̂n := δn

3
K̂rtn

(
(1 + Ê∗

n )2

1 + 4Ê∗
n + 2Ê∗

n
2

)
, (1.12)

θ̂n := μ̂3,n

δnσ̂ 2
n κ̂n

(
1

3 + 2Ê∗
n

)
, b̂n := 1

δn
�̄n − θ̂n = XT

T
− θ̂n. (1.13)

We note that the above estimators will exist if and only if Equation 1.11
admits a solution Ê∗ ∈ (−1 + 2−1/2, ∞), which is the case if and only if

3 Ŝkw
2
n

K̂rtn

< 2.

Furthermore, the MME estimator κ̂n will be positive only if the sample kurtosis
K̂rtn is positive. It turns out that in simulations this condition is sometimes
violated for small-time horizons T and coarse sampling frequencies (say, daily or
longer). For instance, using the parameter values (1) of Section 1.4.1 below and
taking T = 125 days (half a year) and δn = 1 day, about 80 simulations out of
1000 gave invalid κ̂ , while only 2 simulations result in invalid κ̂ when δn = 1/2
day.
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Seneta (2004) proposes a simple approximation method built on the assump-
tion that θ is typically small. In our context, Seneta’s method is obtained by
making the simplifying approximation Ê∗

n ≈ 0 in the Equations 1.12 and 1.13,
resulting in the following estimators:

σ̂ 2
n := V̂arn

δn
, κ̂n := δn

3
K̂rtn, (1.14)

θ̂n := μ̂3,n

3δnσ̂ 2
n κ̂n

= Ŝkwn(V̂arn)1/2

δnK̂rtn

, b̂n := XT

T
− θ̂n. (1.15)

Note that the estimators (Eq. 1.14) are, in fact, the actual MME in the restricted
symmetric model θ = 0 and will indeed produce a good approximation of the
MME estimators (Eqs. 1.12 and 1.13) whenever

Q∗
n := 3 Ŝkw

2
n

K̂rtn

,

and, hence, Ê∗
n is ‘‘very’’ small. This fact has been corroborated empirically by

multiple studies using daily data as shown in Seneta (2004).
The formulas (Eqs. 1.14 and 1.15) have appealing interpretations as noted

already by Carr et al . (1998). Namely, the parameter κ determines the percentage
excess kurtosis in the log return distribution (i.e., a measure of the tail fatness
compared to the normal distribution), σ dictates the overall volatility of the
process, and θ determines the skewness. Interestingly, the estimator σ̂ 2

n in
Equation 1.14 can be written as

σ̂ 2
n = 1

T − δn

n∑
i=1

(
Xiδn − X(i−1)δn − XT

n

)2

= 1

T − δn
RV n + O

(
1

n

)
,

where RV n is the well-known realized variance defined by

RV n :=
n∑

i=1

(
Xiδn − X(i−1)δn

)2
. (1.16)

Let us finish this section by considering the NIG model. In this setting,
the mean and first three central moments are given by Cont & Tankov (2003)
(p. 117):

μ1(Xδ) := E(Xδ) = (θ + b)δ,

μ2(Xδ) := Var(Xδ) = (σ 2 + θ2κ)δ, (1.17)

μ3(Xδ) := E(Xδ − EXδ)3 = (3σ 2θκ + 3θ3κ2)δ,

μ4(Xδ) := E(Xδ − EXδ)4 = (3σ 4κ + 18σ 2θ2κ2 + 15θ4κ3)δ + 3μ2(Xδ)2.
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Hence, the Equation 1.8 takes the simpler form

3μ2
3(Xδ)

μ2(Xδ)
(
μ4(Xδ) − 3μ2

2(Xδ)
) = 9E

5E + 1
:= f (E), (1.18)

and the analogous equation (Eq. 1.11) can be solved in closed form as

Ê∗
n = Ŝkw

2
n

3 K̂rtn − 5 Ŝkw
2
n

. (1.19)

Then, the MME will be given by the following formulas:

σ̂ 2
n := V̂arn

δn

(
1

1 + Ê∗
n

)
, κ̂n := δn

3
K̂rtn

(
1 + Ê∗

n

1 + 5Ê∗
n

)
, (1.20)

θ̂n := μ̂3,n

δnσ̂ 2
n κ̂n

(
1

3 + 3Ê∗
n

)
, b̂n := 1

δn
�̄n − θ̂n = XT

T
− θ̂n. (1.21)

1.3.2 MAXIMUM LIKELIHOOD ESTIMATION

Maximum likelihood is one of the most widely used estimation methods, partly
due to its theoretical efficiency when dealing with large samples. Given a random
sample x = (x1, . . . , xn) from a population distribution with density f (·|θ )
depending on a parameter θ = (θ1, . . . , θp), the method proposes to estimate θ

with the value θ̂ = θ̂ (x) that maximizes the so-called likelihood function

L(θ |x) :=
n∏

i=1

f (xi|θ ).

When it exists, such a point estimate θ̂ (x) is called the MLE of θ .
In principle, under a Lévy model, the increments of the log return process

X (which corresponds to the log returns of the price process S) are independent
with common distribution, say fδ(·|θ ), where δ represents the time span of the
increments. As was pointed out earlier, independence is questionable for very high
frequency log returns, but given that, for a large sample, likelihood estimation
is expected to be robust against small dependences between returns, we can still
apply likelihood estimation. The question is again to determine the scales where
both the Lévy model is a good approximation of the underlying process and the
MLE are meaningful. As indicated in the introduction, it is plausible that the
MLE’s stability for certain range of sampling frequencies provides evidence of
the adequacy of the Lévy model at those scales.

Another important issue is that, in general, the probability density fδ is not
known in a closed form or might be intractable. There are several approaches to
deal with this issue such as numerically inverting the Fourier transform of fδ via
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fast Fourier methods (Carr et al ., 2002) or approximating fδ using small-time
expansions (Figueroa-López & Houdré. 2009). In the present chapter, we do
not explore these approaches since the probability densities of the VG and NIG
models are known in closed forms. However, given the inaccessibility of closed
expressions for the MLE, we apply an unconstrained optimization scheme to
find them numerically (see below for more details).

1.4 Finite-Sample Performance via Simulations

1.4.1 PARAMETER VALUES

We consider two sets of parameter values:

1. σ = √
6.447 × 10−5 = 0.0080; κ = 0.422; θ = −1.5 × 10−4;

b = 2.5750 × 10−4;

2. σ = 0.0127; κ = 0.2873; θ = 1.3 × 10−3; b = −1.7 × 10−3;

The first set of parameters (1) is motivated by the empirical study reported in
Seneta (2004) (pp. 182) using the approximated MME introduced in Section 3.1
and daily returns of the Standard and Poor’s 500 Index from 1977 to 1981. The
second set of parameters (2) is motivated by our own empirical results below
using MLE and daily returns of INTC during 2005. Throughout, the time unit
is a day and, hence, for example, the estimated average rate of return per day of
SP500 is

EX (1) = E log

(
S1

S0

)
= θ + b = 1.0750 × 10−4 ≈ 0.1%,

or 0.00010750 × 365 = 3.9% per year.

1.4.2 RESULTS

Below, we illustrate the finite-sample performance of the MME and MLE for both
the VG and NIG models. The MME is computed using the algorithms described
in Section 1.3.1. The MLE was computed using an unconstrained Powell’s
method2 started at the exact MME. We use the closed form expressions for the
density functions (Eqs. 1.3 and 1.4) in order to evaluate the likelihood function.

1.4.2.1 Variance Gamma. We compute the sample mean and sample
standard deviation of the VG MME and the VG MLE for different sampling
frequencies. Concretely, the time span δ between consecutive observations is
taken to be 1/36,1/18,1/12,1/6,1/3,1/2,1 (in days), which will correspond to 10,
20, 30 min, 1, 2, 3 h, and 1 day (assuming a trading period of 6 h per day).

2We employ a MATLAB implementation due to Giovani Tonel obtained through MATLAB
Central (http://www.mathworks.com/matlabcentral/fileexchange/).
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Figure 1.1 plots the sampling mean ¯̂σ δ and the bands ¯̂σ δ ± std(σ̂δ) against the
different time spans δ as well as the corresponding graphs for κ , based on 100
simulations of the VG process on [0, 3 ∗ 252] (namely, three years) with the
parameter values (1) above. Similarly, Fig. 1.2 shows the results corresponding
to the parameter values (2) with a time horizon of T = 252 days and time spans
δ = 10, 20, and 30 min, and also, 1/6, 1/4, 1/3, 1/2, and 1 days, assuming this
time a trading period of 6 h and 30 min per day and taking 200 simulations.
These are our conclusions:

1. The MME for σ performs as well as the computationally more expensive
MLE for all the relevant frequencies. Even though increasing the sampling
frequency slightly reduces the standard error, the net gain is actually very
small even for very high frequencies and, hence, does not justify the use of
high frequency data to estimate σ .

2. The estimation for κ is quite different: Using either high frequency data
or maximum likelihood estimation results in significant reductions of the
standard error (by more than 4 times when using both).

3. The computation of the MLE presents numerical issues (easy to detect) for
very high sampling frequencies (say, δ < 1/6).

4. Disregarding the numerical issues and extrapolating the pattern of the graphs
when δ → 0, we can conjecture that the MLE σ̂ is not consistent when
δ → 0 for a fixed time horizon T , while the MLE κ̂ appears to be a
consistent estimator for κ . Both of these points will be investigated in a
future publication.
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FIGURE 1.1 Sampling mean and standard error of the MME and MLE for the param-
eters σ and κ based on 100 simulations of the VG model with values T = 252 × 3,
σ = √

6.447 × 10−5 = 0.0080; κ = 0.422; θ = −1.5 × 10−4; b = 2.5750 × 10−4.
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FIGURE 1.2 Sampling mean and standard error of the MME and MLE for the parameters σ

and κ based on 200 simulations with values T = 252, σ = 0.0127; κ = 0.2873; θ = 1.3 × 10−3;
b = −1.7 × 10−3.

For completeness, we also illustrates in Fig. 1.3 the performance of the
estimators for b and θ for the parameter values (2) based again on 200
simulations during [0, 252] with time spans of 10, 20, and 30 min, and 1/6, 1/4,
1/3, 1/2, and 1 days. There seems to be some gain in efficiency when using MLE
and higher sampling frequencies in both cases but the respective standard errors
level off for δ small, suggesting that neither estimator is consistent for fixed time
horizon. One surprising feature is that the MLE estimators in both cases do not
seem to exhibit any numerical issues for very small δ in spite of being based on
the same simulations as those used to obtain σ̂ and κ̂ .

1.4.2.2 Normal Inverse Gaussian. We now show the estimation results for
the NIG model. Here, we take sampling frequencies of 5, 10, 20, and 30 s, also
1, 5, 10, 20, and 30 min, as well as 1, 2, and 3 h, and finally 1 day (assuming
a trading period of 6 h). Figure 1.4 plots the sampling mean ¯̂σ δ and bands
¯̂σ δ ± std(σ̂δ) against the different time spans δ and the corresponding graphs
for κ , based on 100 simulations of the NIG process on [0, 3 ∗ 252] with the
parameter values (1) above. The results are similar to those of the VG model.
In the case of σ , neither MLE nor high frequency data seem to do better than
standard moment estimators and daily data. For κ , the estimation error can be
reduced as much as 4 times when using high frequency data and maximum
likelihood estimation. The most striking conclusion is that the MLE for the
NIG model does not show any numerical issues when dealing with very high
frequency. Indeed, we are able to obtain results for even 5-s time spans (although
the computational time increases significantly in this case).
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and b based on 200 simulations with values T = 252, σ = 0.0127; κ = 0.2873; θ = 1.3 × 10−3;
b = −1.7 × 10−3.
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eters σ and κ based on 100 simulations of the NIG model with values T = 252 × 3,
σ = √

6.447 × 10−5 = 0.0080; κ = 0.422; θ = −1.5 × 10−4; b = 2.5750 × 10−4.
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1.5 Empirical Results

1.5.1 THE DATA AND DATA PREPROCESSING

The data was obtained from the NYSE TAQ database of 2005 trades via
Wharton’s WRDS system. For the sake of clarity and space, we focus on the
analysis of only one stock, even though other stocks were also analyzed for
this study. We pick Intel (INTC) stock due to its high liquidity (based on the
number of trades or ticks). The raw data was preprocessed as follows. Records of
trades were kept if the TAQ field CORR indicated that the trade was ‘‘regular’’
(namely, it was not corrected, changed, signaled as cancelled, or signaled as an
error). In addition, the condition field was use as a filter. Trades were kept
if they were regular way trades, that is, trades that had no stated conditions
(COND=’’ or COND=‘*’). A secondary filter was subsequently applied to
eliminate some of the remaining incorrect trades. First, for each trading day,
the empirical distribution of the absolute value of the first difference of prices
was determined. Next, the 99.9th percentile of these daily absolute differences
was obtained. Finally, a trade was eliminated if, in magnitude, the difference of
the price from the prior price was at least twice the 99.9th percentile of that
day’s absolute differences and this difference was reversed on the following trade.
Figure 1.5 illustrates the Intel stock prices before (a) and after processing (b).

1.5.2 MME AND MLE RESULTS

The exact and approximated MMEs described in Section 1.3.1 were applied to
the log returns of the stocks at different frequencies ranging from 10 s to 1 day.
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FIGURE 1.5 Intel stock prices during 2005 before and after preprocessing.
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Subsequently, we apply the unconstrained Powell’s optimization method to find
the MLE estimator. In each case, the starting point for the optimization routine
was set equal to the exact MME. Tables 1.1–1.4 show the estimation results
under both models together with the log likelihood values using a time horizon of
one year. Figure 1.6 shows the graphs of the NIG MLE and approximated NIG
MME against the sampling frequency δ based on observations during T = 1
year, T = 6 months, and T = 3 months, respectively.

1.5.3 DISCUSSION OF EMPIRICAL RESULTS

In spite of certain natural differences due to sampling variation, the empirical
results under both models exhibit some very interesting common features that
we now summarize:

1. The estimation of σ is quite stable for ‘‘midrange’’ frequencies (δ ≥ 20 min),
exhibiting a slight tendency to decrease when δ decreases from 1 day to
10 min, before showing a pronounce and clear tendency to increase for small
time spans (δ = 10 min and less). This increasing tendency is presumably
due to the influence of microstructure effects.

2. The point estimators for κ are less stable than those for σ but still their
values are relatively ‘‘consistent’’ for mid-range frequencies of 1 h and more.
This consistency of κ̂ abruptly changes when δ moves from 1/6 of a day
to 30 min, at which point a reduction of about half is experienced under
both models. To illustrate how unlikely such a behavior is in our models,
we consider the simulation experiment of Fig. 1.2 and find out that in only

TABLE 1.1 INTC: VG MLE (Top), Exact VG MME (Middle), and
Approximate VG MME (Bottom)

δ 20 min 30 min 1/6 1/4 1/3 1/2 1

κ̂ 0.0354 0.0542 0.1662 0.1724 0.2342 0.2098 0.2873
σ̂ 0.0115 0.0117 0.0120 0.0121 0.0123 0.0125 0.0127
θ̂ 0.0010 0.0023 0.0019 0.0011 0.0020 0.0020 0.0013
b̂ −0.0014 −0.0027 −0.0023 −0.0015 −0.0024 −0.0023 −0.0017
logL 2.2485e+4 1.4266e+4 6.0015e+3 3.7580e+3 2.6971e+3 1.6783e+3 745.8689

κ̂ 0.0571 0.0834 0.1839 0.1804 0.2694 0.1579 0.1383
σ̂ 0.0116 0.0119 0.0120 0.0121 0.0123 0.0124 0.0125
θ̂ 0.0016 0.0010 0.0032 0.0019 0.0024 0.0028 0.0041
b̂ −0.0020 −0.0014 −0.0036 −0.0022 −0.0028 −0.0032 −0.0045
logL 2.2438e+4 1.4243e+4 5.9946e+3 3.7578e+3 2.6966e+3 1.6780e+3 745.5981

κ̂ 0.0573 0.0835 0.1887 0.1819 0.2749 0.1603 0.1423
σ̂ 0.0116 0.0119 0.0121 0.0122 0.0124 0.0124 0.0126
θ̂ 0.0016 0.0010 0.0031 0.0018 0.0024 0.0027 0.0040
b̂ −0.0020 −0.0014 −0.0035 −0.0022 −0.0027 −0.0031 −0.0043
logL 2.2437e+4 1.4243e+4 5.9942e+3 3.7577e+3 2.6965e+3 1.6781e+3 745.6023



20 CHAPTER 1 Estimation of NIG and VG Models

TABLE 1.2 INTC: VG MLE (Top), Exact VG MME (Middle), and
Approximate VG MME (Bottom)

δ 10 s 20 s 30 s 1 min 5 min 10 min

κ̂ 0.0128 0.0112 0.0183 0.0354 0.0501 0.0191
σ̂ 0.0465 0.0300 0.0303 0.0293 0.0173 0.0120
θ̂ −0.0004 −0.0004 −0.0004 −0.0004 −0.0004 −0.0002
b̂ 0.0000 −0.0000 0.0000 0.0000 0.0000 −0.0002
logL 5.2980e+6 2.4338e+6 1.5115e+6 6.6256e+5 1.0540e+5 4.7949e+4

κ̂ 0.0010 0.0023 0.0052 0.0080 0.0153 0.0282
σ̂ 0.0169 0.0152 0.0145 0.0138 0.0125 0.0121
θ̂ −0.0001 0.0014 0.0025 −0.0040 −0.0013 0.0011
b̂ −0.0003 −0.0018 −0.0029 0.0036 0.0009 −0.0015

logL 4.3254e+6 2.0063e+6 1.2823e+6 5.8998e+5 1.0203e+5 4.7897e+4
κ̂ 0.0010 0.0023 0.0052 0.0081 0.0153 0.0282
σ̂ 0.0169 0.0152 0.0145 0.0138 0.0125 0.0121
θ̂ −0.0001 0.0014 0.0025 −0.0040 −0.0013 0.0011
b̂ −0.0003 −0.0018 −0.0029 0.0036 0.0009 −0.0015
logL 4.3254e+6 2.0063e+6 1.2823e+6 5.8987e+5 1.0203e+5 4.7897e+4

TABLE 1.3 INTC: NIG MLE (Top), Exact NIG MME (Middle), and Approx.
NIG MME (Bottom)

δ 20 min 30 min 1/6 1/4 1/3 1/2 1

κ̂ 0.0557 0.0874 0.2621 0.2494 0.3412 0.2024 0.2159
σ̂ 0.0116 0.0118 0.0121 0.0122 0.0124 0.0124 0.0126
θ̂ 0.0019 0.0017 0.0017 0.0012 0.0018 0.0019 0.0019
b̂ −0.0022 −0.0021 −0.0021 −0.0016 −0.0022 −0.0023 −0.0022
logL 2.2498e+4 1.4274e+4 5.9988e+3 3.7575e+3 2.6969e+3 1.6777e+3 745.6436

κ̂ 0.0570 0.0833 0.1791 0.1789 0.2640 0.1554 0.1343
σ̂ 0.0116 0.0119 0.0120 0.0121 0.0123 0.0124 0.0125
θ̂ 0.0016 0.0010 0.0033 0.0019 0.0025 0.0028 0.0042
b̂ −0.0020 −0.0014 −0.0037 −0.0022 −0.0028 −0.0032 −0.0046

logL 2.2498e+4 1.4274e+4 5.9952e+3 3.7564e+3 2.6963e+3 1.6775e+3 745.5409
κ̂ 0.0573 0.0835 0.1887 0.1819 0.2749 0.1603 0.1423
σ̂ 0.0116 0.0119 0.0121 0.0122 0.0124 0.0124 0.0126
θ̂ 0.0016 0.0010 0.0031 0.0018 0.0024 0.0027 0.0040
b̂ −0.0020 −0.0014 −0.0035 −0.0022 −0.0027 −0.0031 −0.0043
logL 2.2498e+4 1.4274e+4 5.9957e+3 3.7563e+3 2.6964e+3 1.6776e+3 745.5465

1 out of the 200 simulations the exact MME estimator for κ increased by
more than twice its value when δ goes from 30 min to 1/6 of a day (only 3
out 200 simulations showed an increment of more than 1.5). In none of the
200 simulation, the MLE estimator for κ increased more than 1.5 its value
when δ goes from 30 min to 1/6 of a day. For the NIG model, using the
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TABLE 1.4 INTC: NIG MLE (Top), Exact NIG MME (Middle), and Approx.
NIG MME (Bottom)

δ 10 s 20 s 30 s 1 min 5 min 10 min

κ̂ 0.1349 0.0061 0.0012 0.0024 0.0125 0.0220
σ̂ 0.0341 0.0190 0.0149 0.0134 0.0119 0.0114
θ̂ −0.0002 0.0007 0.0086 0.0095 0.0042 0.0037
b̂ −0.0000 −0.0009 −0.0088 −0.0097 −0.0044 −0.0038
logL 3.8974e+6 1.8740e+6 1.2188e+6 5.8072e+5 1.0206e+5 4.7957e+4
κ̂ 0.0003 0.0007 0.0012 0.0031 0.0157 0.0252
σ̂ 0.0194 0.0161 0.0148 0.0134 0.0119 0.0114
θ̂ 0.0194 0.0187 0.0160 0.0134 0.0070 0.0042
b̂ −0.0196 −0.0189 −0.0162 −0.0136 −0.0072 −0.0044
logL 3.8863e+6 1.8718e+6 1.2135e+6 5.7856e+5 1.0204e+5 4.7955e+4

κ̂ 0.0003 0.0007 0.0012 0.0031 0.0160 0.0255
σ̂ 0.0194 0.0161 0.0148 0.0134 0.0120 0.0114
θ̂ 0.0194 0.0187 0.0159 0.0132 0.0069 0.0042
b̂ −0.0196 −0.0188 −0.0161 −0.0134 −0.0070 −0.0044
logL 3.8863e+6 1.8718e+6 1.2135e+6 5.7850e+5 1.0204e+5 4.7955e+4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Sampling frequency δ (in days)

E
st

im
at

or
s 

fo
r 

κ

MLE based on 1 year
Approx. MME based on 1 year
MLE based on 6 months
Approx. MLE based on 6 months
MLE based on 3 months
Approx. MME based on 3 months

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.011

0.0115

0.012

0.0125

0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

Sampling frequency δ (in days)

E
st

im
at

or
s 

fo
r 

σ

Approx. MME based on 1 year
MLE based on 6 months
Approx. MME based on 6 months
MLE based on 3 months
Approx. MME based on 3 months

MLE based on 1 year

Signature plots for the κ estimators
NIG model; INTC 2005

Signature plots for σ estimators
NIG model; INTC 2005

FIGURE 1.6 Signature plots for the MLE and MME for σ under a NIG model based on
different time horizons.

simulations of Fig. 1.4, we found out that in only 3 out of 100 simulations
the MME estimator for κ increased by more than 1.2 when δ goes from
30 min to 1/6 of a day (it never increased for more than 1.5). Such a jump in
the empirical results could be interpreted as a consequence of microstructure
effects.
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3. According to our previous simulation analysis, the estimators for κ are more
reliable when δ gets smaller. Hence, we recommend using the value of the
estimator for δ as small as possible, but still in the range where we suspect
that microstructure effects are relatively low. For instance, one can propose
to take κ̂ = 0.1662 under the VG model (respectively κ̂ = 0.2621 under
the NIG model), or alternatively, one could average the MLE estimators for
δ > 1/2.

4. Under both models, the estimators for κ show a certain tendency to decrease
as δ gets very small (<30 min).

5. Given the higher sensitivity of κ to microstructure effects, one could use
the values of this estimator to identify the range of frequencies where a
Lévy model is adequate and microstructure effects are still low. In the case
of INTC, one can recommend using a Lévy model to describe log returns
higher than 1 h. As an illustration of the goodness of fit, Fig. 1.7 shows the
empirical histograms of δ = 1/6 returns against the fitted VG model and
NIG model using maximum likelihood estimation. We also show the fitted
Gaussian distributions in each case. Both models show very good fit. The
graphs in log scale, useful to check the fit at the tails, are shown in Fig. 1.8.

1.6 Conclusion

Certain parametric classes of ELM have appealing features for modeling intraday
financial data. In this chapter, we lean toward choosing a parsimonious model
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FIGURE 1.8 Logarithm of the histograms of INTC returns for δ = 1/6 and the fitted VG
and NIG models using maximum likelihood estimation.

with few parameters that has natural financial interpretation, rather than a
complex overparameterized model. Even though, in principle, a complex model
will provide a better fit of the observed empirical features of financial data,
the intrinsically less accurate estimation or calibration of such a model might
render it less useful in practice. By contrast, we consider here two simple and
well-known models for the analysis of intraday data: the VG model of Carr et al .
(1998) and the NIG model of Barndorff-Nielsen (1998). These models require
one additional parameter, when compared to the two-parameter Black–Scholes
model, that controls the tail thickness of the log return distribution.

As essentially any other model, a Lévy model will have limitations when
working with very high frequency transaction data and, hence, in our opinion
the real problem is to determine the sampling frequencies at which a specific Lévy
model will be a ‘‘good’’ probabilistic approximation of the underlying trading
process. In this chapter we put forward an intuitive statistical method to solve
this problem. Concretely, we propose to assess the suitability of the Lévy model
by analyzing the signature plots of statistical point estimates at different sampling
frequencies. It is plausible that an apparent stability of the point estimates for
certain ranges of sampling frequencies will provide evidence of the adequacy
of the Lévy model at those scales. At least based on our preliminary empirical
analysis, we find that a Lévy model seems a reasonable model for log returns as
frequent as hourly and that the kurtosis estimate is a more sensitive indicator of
microstructure effects in the data than the volatility estimate, which exhibits a
very stable behavior for sampling time spans as small as 20 min.

We also studied the in-fill numerical performance of the two most widely
used parametric estimators: the MME and the maximum likelihood estimation.
We discover that neither high frequency sampling nor maximum likelihood
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estimation significantly reduces the estimation error of the volatility parameter
of the model. Hence, we can ‘‘safely’’ estimate the volatility parameter using a
simple moment estimator applied to daily closing prices. The estimation of the
kurtosis parameter is quite different. In that case, using either high frequency
data or maximum likelihood estimation can result in significant reductions of
the standard error (by more than 4 times when using both). Both of these results
appear to be new in the statistical literature of high frequency data.

The problem of finding the MLE based on very high frequency data remains
a challenging numerical problem, even if closed form expressions are available
as it is the case of the NIG and VG models. On the contrary, in this chapter,
we propose a simple numerical method to find the MME of the NIG and VG
models. Moment estimators are particularly appealing in the context of high
frequency data since their consistency does not require independence between
log returns but only stationarity and ergodicity conditions.
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