
CHAPTER 1

BASIC CONCEPTS OF STRUCTURAL
DYNAMICS

1.1 THE DYNAMIC ENVIRONMENT

Structural engineers are familiar with the analysis of structures for static
loads in which a load is applied to the structure and a single solution is
obtained for the resulting displacements and member forces. When con-
sidering the analysis of structures for dynamic loads, the term dynamic
simply means “time-varying.” Hence, the loading and all aspects of the
response vary with time. This results in possible solutions at each instant
during the time interval under consideration. From an engineering stand-
point, the maximum values of the structural response are usually the
ones of particular interest, especially when considering the case of struc-
tural design.

Two different approaches, which are characterized as either deter-
ministic or nondeterministic, can be used for evaluating the structural
response to dynamic loads. If the time variation of the loading is fully
known, the analysis of the structural response is referred to as a deter-
ministic analysis . This is the case even if the loading is highly oscillatory
or irregular in character. The analysis leads to a time history of the dis-
placements in the structure corresponding to the prescribed time history
of the loading. Other response parameters such as member forces and
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2 BASIC CONCEPTS OF STRUCTURAL DYNAMICS

relative member displacements are then determined from the displace-
ment history.

If the time variation of the dynamic load is not completely known but
can be defined in a statistical sense, the loading is referred to as a random
dynamic loading , and the analysis is referred to as nondeterministic. The
nondeterministic analysis provides information about the displacements
in a statistical sense, which results from the statistically defined loading.
Hence, the time variation of the displacements is not determined, and
other response parameters must be evaluated directly from an indepen-
dent nondeterministic analysis rather than from the displacement results.
Methods for nondeterministic analysis are described in books on random
vibration. In this text, we only discuss methods for deterministic analysis.

1.2 TYPES OF DYNAMIC LOADING

Most structural systems will be subjected to some form of dynamic load-
ing during their lifetime. The sources of these loads are many and varied.
The ones that have the most effect on structures can be classified as envi-
ronmental loads that arise from winds, waves, and earthquakes. A second
group of dynamic loads occurs as a result of equipment motions that arise
in reciprocating and rotating machines, turbines, and conveyor systems.
A third group is caused by the passage of vehicles and trucks over a
bridge. Blast-induced loads can arise as the result of chemical explosions
or breaks in pressure vessels or pressurized transmission lines.

For the dynamic analysis of structures, deterministic loads can be
divided into two categories: periodic and nonperiodic. Periodic loads
have the same time variation for a large number of successive cycles.
The basic periodic loading is termed simple harmonic and has a sinu-
soidal variation. Other forms of periodic loading are often more complex
and nonharmonic. However, these can be represented by summing a
sufficient number of harmonic components in a Fourier series analysis.
Nonperiodic loading varies from very short duration loads (air blasts) to
long-duration loads (winds or waves). An air blast caused by some form
of chemical explosion generally results in a high-pressure force having a
very short duration (milliseconds). Special simplified forms of analysis
may be used under certain conditions for this loading, particularly for
design. Earthquake loads that develop in structures as a result of ground
motions at the base can have a duration that varies from a few seconds to
a few minutes. In this case, general dynamic analysis procedures must be
applied. Wind loads are a function of the wind velocity and the height,
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shape, and stiffness of the structure. These characteristics give rise to
aerodynamic forces that can be either calculated or obtained from wind
tunnel tests. They are usually represented as equivalent static pressures
acting on the surface of the structure.

1.3 BASIC PRINCIPLES

The fundamental physical laws that form the basis of structural dynamics
were postulated by Sir Isaac Newton in the Principia (1687).1 These laws
are also known as Newton’s laws of motion and can be summarized as
follows:

First law: A particle of constant mass remains at rest or moves with
a constant velocity in a straight line unless acted upon by a force.

Second law: A particle acted upon by a force moves such that the
time rate of change of its linear momentum equals the force.

Third law: If two particles act on each other, the force exerted by the
first on the second is equal in magnitude and opposite in direction
to the force exerted by the second on the first.

Newton referred to the product of the mass, m , and the velocity, dv/dt ,
as the quantity of motion that we now identify as the momentum . Then
Newton’s second law of linear momentum becomes

d(mv̇)

dt
= f (1.1)

where both the momentum, m(dv/dt), and the driving force, f , are func-
tions of time. In most problems of structural dynamics, the mass remains
constant, and Equation (1.1) becomes

m

(
dv̇

dt

)
= ma = f (1.2)

An exception occurs in rocket propulsion in which the vehicle is losing
mass as it ascends. In the remainder of this text, time derivatives will be
denoted by dots over a variable. In this notation, Equation (1.2) becomes
mv̈ = f .

1I. Newton, The Principia: Mathematical Principles of Natural Philosophy , 1687.
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Figure 1.1 Rotation of a mass about a fixed point (F. Naeim, The Seismic
Design Handbook , 2nd ed. (Dordrecht, Netherlands: Springer, 2001), reproduced
with kind permission from Springer Science+Business Media B.V.)

Newton’s second law can also be applied to rotational motion, as
shown in Figure 1.1. The angular momentum , or moment of momentum,
about an origin O can be expressed as

L = r(mv̇) (1.3)

where L = the angular momentum
r = the distance from the origin to the mass, m
v̇ = the velocity of the mass

When the mass is moving in a circular arc about the origin, the angu-
lar speed is θ̇ , and the velocity of the mass is r θ̇ . Hence, the angular
momentum becomes

L = mr2θ̇ (1.4)

The time rate of change of the angular momentum equals the torque:

torque = N = dL

dt
= mr2θ̈ (1.5)

If the quantity mr2 is defined as the moment of inertia, Iθ , of the mass
about the axis of rotation (mass moment of inertia), the torque can be
expressed as

Iθ θ̈ = N (1.6)

where d2θ/dt2 denotes the angular acceleration of the moving mass; in
general, Iθ = ∫

ρ2dm. For a uniform material of mass density μ, the
mass moment of inertia can be expressed as

Iθ = μ

∫
ρ2dV (1.7)
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The rotational inertia about any reference axis, G , can be obtained
from the parallel axis theorem as

IG = Iθ + mr2 (1.8)

Example 1.1 Consider the circular disk shown in Figure 1.2a. Deter-
mine the mass moment of inertia of the disk about its center if it has
mass density (mass/unit volume) μ, radius r , and thickness t . Also deter-
mine the mass moment of inertia of a rectangular rod rotating about one
end, as shown in Figure 1.2b. The mass density of the rod is μ, the
dimensions of the cross section are b × d , and the length is r .

I0 = μ

∫
ρ2dV where dV = ρ(dθ)(dρ)t

I0 = μt
∫ 2π

0

∫ r

0
ρ3dρdθ = μtπ

r4

2

The mass of the circular disk is m = πr2tμ.

r
dq

rdq

q

dr
r

(a)

Figure 1.2a Circular disk
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(b)

⋅⋅

Figure 1.2b Rectangular rod
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Hence, the mass moment of inertia of the disk becomes

I0 = mr2

2

I0 = μ

∫
ρ2dV where, for a rectangular rod: dV = (bd)dρ

I0 = μbd
∫ r

0
ρ2dρ = μbd

r3

3

The mass of the rod is m = bdrμ, and the mass moment of inertia of
the rod becomes

I0 = mr2

3

The rigid-body mass properties of some common structural geometric
shapes are summarized in Figure 1.3.

The difference between mass and weight is sometimes confusing, par-
ticularly to those taking a first course in structural dynamics. The mass,
m , is a measure of the quantity of matter, whereas the weight, w , is a
measure of the force necessary to impart a specified acceleration to a
given mass. The acceleration of gravity, g , is the acceleration that the
gravity of the earth would impart to a free-falling body at sea level,
which is 32.17 ft/sec2 or 386.1 in/sec2. For engineering calculations, the
acceleration of gravity is often rounded to 32.2 ft/sec2, which results in
386.4 in/sec2 when multiplied by 12 in/ft. Therefore, mass does not equal
weight but is related by the expression w = mg. To keep this concept
straight, it is helpful to carry units along with the mathematical operations.

The concepts of the work done by a force, and of the potential and
kinetic energies , are important in many problems of dynamics. Multiply
both sides of Equation (1.2) by dv/dt and integrate with respect to time:

∫ t2

t1

f (t)v̇dt =
∫ t2

t1

mv̈v̇dt (1.9)

Because v̇dt = dv and v̈dt = dv̇, Equation (1.9) can be written as
∫ v2

v1

f (t)dv = 1

2
m

(
v̇2

2 − v̇2
1

)
(1.10)

The integral on the left side of Equation (1.10) is the area under the force-
displacement curve and represents the work done by the force f (t). The two
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Figure 1.3 Transitional mass and mass moment of inertia (F. Naeim, The
Seismic Design Handbook , 2nd ed. (Dordrecht, Netherlands: Springer, 2001),
reproduced with kind permission from Springer Science+Business Media B.V.)

terms on the right represent the final and initial kinetic energies of the mass.
Hence, the work done is equal to the change in kinetic energy.

Consider a force that is acting during the time interval (t1, t2). The
integral I = ∫

f (t)dt is defined as the impulse of the force during the
time interval. According to Newton’s second law of motion, f = mv̈. If
both sides are integrated with respect to t ,

I =
∫ t2

t1

f (t)dt = m (v̇2 − v̇1) (1.11)

Hence, the impulse, I , is equal to the change in the momentum. This
relation will be useful in analyzing the result of applying a large force
for a brief interval of time as will be demonstrated in a later section.
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Newton’s laws of motion lead, in special circumstances, to the fol-
lowing three important properties of motion (conservation laws):

1. If the sum of the forces acting on a mass is zero, the linear momen-
tum is constant in time.

2. If the sum of the external torques acting on a particle is zero, the
angular momentum is constant in time.

3. In a conservative force field, the sum of the kinetic and potential
energies remains constant during the motion.

It should be noted that nonconservative forces include frictional forces
and forces that depend on velocity and time.

The term degrees of freedom in a dynamic system refers to the least
number of displacement coordinates needed to define the motion of the
system. If the physical system is represented as a continuum, an infinite
number of coordinates would be needed to define the position of all
the mass of the system. The system would thus have infinitely many
degrees of freedom. In most structural systems, however, simplifying
assumptions can be applied to reduce the degrees of freedom and still
obtain an accurate determination of the displacement.

A constraint is a restriction on the possible deformed shape of a
system, and a virtual displacement is an infinitesimal, imaginary change
in configuration that is consistent with the constraints.

In 1717, Johann Bernoulli posed his principle of virtual work , which
is basically a definition of equilibrium that applies to dynamic as well as
static systems. The principle of virtual work states that if, for any arbi-
trary virtual displacement that is compatible with the system constraints,
the virtual work under a set of forces is zero, then the system is in equilib-
rium. This principle can be restated in terms of virtual displacements—a
form that is more applicable to structural systems. It states that if a sys-
tem that is in equilibrium under a set of forces is subjected to a virtual
displacement that is compatible with the system constraints, then the total
work done by the forces is zero. The vanishing of the virtual work done
is equivalent to a statement of equilibrium.

In his book Traite de Dynamique (1743)2, the French mathematician
Jean le Rond d’Alembert proposed a principle that would reduce a prob-
lem in dynamics to an equivalent one in statics. He developed the idea

2J. d’Alembert, Traite de Dynamique, 1743, available at http://www.archive.org/details/trait
dedynamiqu00dalgoog.
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that mass develops an inertia force that is proportional to its acceleration
and opposing it:

fi = −mv̈ (1.12)

d’Alembert’s principle also states that the applied forces together with
the forces of inertia form a system in equilibrium.

1.4 DYNAMIC EQUILIBRIUM

The basic equation of static equilibrium used in the displacement method
of analysis has the form

p = kv (1.13)

where p = the applied force
k = the stiffness resistance
v = the resulting displacement

If the statically applied force is now replaced by a dynamic or time-
varying force, p(t), the equation of static equilibrium becomes one of
dynamic equilibrium and has the form

p(t) = mv̈(t) + cv̇(t) + kv(t) (1.14)

where the dot represents differentiation with respect to time.
A direct comparison of these two equations indicates that two sig-

nificant changes that distinguish the static problem from the dynamic
problem were made to Equation (1.13) in order to obtain Equation (1.14).
First, the applied load and the resulting response are now functions of
time; hence, Equation (1.14) must be satisfied at each instant of time
during the time interval under consideration. For this reason, it is usually
referred to as an equation of motion . Second, the time dependence of the
displacements gives rise to two additional forces that resist the applied
force and have been added to the right side.

The first term is based on Newton’s second law of motion and incorpo-
rates d’Alembert’s concept of an inertia force that opposes the motion.
The second term accounts for dissipative or damping forces that are
inferred from the observed fact that oscillations in a structure tend to
diminish with time once the time-dependent applied force is removed.
These forces are generally represented by viscous damping forces that
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are proportional to the velocity with the constant of proportionality, c,
referred to as the damping coefficient :

fd = cv̇ (1.15)

It must also be recognized that all structures are subjected to gravity
loads such as self-weight (dead load) and occupancy load (live load) in
addition to any dynamic loading. In an elastic system, the principle of
superposition can be applied, so that the responses to static and dynamic
loadings can be considered separately and then combined to obtain the
total structural response. However, if the structural behavior becomes
nonlinear, the response becomes dependent on the load path, and the
gravity loads must be considered concurrently with the dynamic loading.

Under the action of severe dynamic loading, the structure will most
likely experience nonlinear behavior, which can be caused by material
nonlinearity and/or geometric nonlinearity. Material nonlinearity occurs
when stresses at certain critical regions in the structure exceed the elastic
limit of the material. The equation of dynamic equilibrium for this case
has the general form

p(t) = mv̈(t) + cv̇(t) + k(t)v(t) (1.16)

where the stiffness or resistance, k , is a function of the yield condition in
the structure, which, in turn, is a function of time. Geometric nonlinearity
is caused by the gravity loads acting on the deformed position of the
structure. If the lateral displacements are small, this effect, which is
often referred to as the P -� effect , can be neglected. However, if the
lateral displacements become large, this effect must be considered by
augmenting the stiffness matrix, k , with the geometric stiffness matrix,
kg , which includes the effect of axial loads.

In order to define the inertia forces completely, it would be necessary
to consider the acceleration of every mass particle in the structure and
the corresponding displacement. Such a solution would be prohibitively
complicated and time-consuming. The analysis procedure can be greatly
simplified if the mass of the structure can be concentrated (lumped) at a
finite number of discrete points and the dynamic response of the struc-
ture can be represented in terms of this limited number of displacement
components (degrees of freedom). The number of degrees of freedom
required to obtain an adequate solution will depend on the complexity
of the structural system. For some structures, a single degree of freedom



PROBLEMS 11

may be sufficient, whereas, for others, several hundred degrees of free-
dom may be required.

PROBLEMS

Problem 1.1

Determine the mass moment of inertia of the rectangular and triangular
plates when they rotate about the hinges, as shown in Figure 1.4. Assume
both plates have a constant thickness. Express your result in terms of the
total system mass.

a

b

b

Figure 1.4




