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1.1 Introduction

This is a book about regression modeling, but when we refer to regression
models, what do we mean? The regression framework can be characterized
in the following way:

1. We have one particufar variable that we are interested in understanding
or modeling, such as sales of a particular product, sale price of a home, or
voting preference of a particular voter. This variable is called the target,
response, or dependent variable, and is usually represented by .
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4 CHAPTER 1 Multiple Linear Regression

2. We have a set of p other variables that we think might be useful in pre-
dicting or modeling the target variable (the price of the product, the com-
petitor’s price, and so on; or the lot size, number of bedrooms, number
of bathrooms of the home, and so on; or the gender, age, income, party
membership of the voter, and so on). These are called the predicting, or
independent variables, and are usually represented by x4, x2, etc.

Typically, a regression analysis is used for one {or more) of three purposes:

1. modeling the relationship between x and y;
2. prediction of the target variable (forecasting);
3. and testing of hypotheses.

In this chapter we introduce the basic multiple linear regression model,
and discuss how this model can be used for these three purposes. Specifically,
we discuss the interpretations of the estimates of different regression param-
eters, the assumptions underlying the model, measures of the strength of the
relationship between the target and predictor variables, the construction of
tests of hypotheses and intervals related to regression parameters, and the
checking of assumptions using diagnostic plots.

1.2 Concepts and Background Material

1.2.1 THE LINEAR REGRESSION MODEL

The data consist of n sets of observations {x1;, 2, -. .. Tpi, ¥}, which rep-
resent a random sample from a larger population. It is assumed that these
observations satisfy a linear relationship,

W= 0o+ Grxs+-- —l—ﬁpxm + &5, (I.I)

where the 8 coefficients are unknown parameters, and the =; are random
ecror terms. By a linear model, it is meant that the model is linear in the
parameters; a quadratic model,

%= o + iwi + Bo? + &5,

paradoxically enough, is a linear model, since 2 and x? are just versions of x;
and xa.

It is important to recognize that this, or any statistical model, is not
viewed as a true representation of reality; rather, the goal is that the model
be a useful representation of reality. A model can be used to explore the re-
lationships between variables and make accurate forecasts based on those re-
lationships even if it is not the “truth.” Further, any statistical model 1s only
temporary, representing a provisional version of views about the random pro-
cess being studied. Models can, and should, change, based on analysis using
the current model, selection among several candidate models, the acquisition
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The simple linear regression model. The solid line corresponds to the
true regression line, and the dotted lines correspond to the random errors ;.

of new data, and so on. Further, it is often the case that there are several dif-
ferent models that are reasonable representations of reality. Having said this,
we will sometimes refer to the “true” model, but this should be understood as
referring to the underlying form of the currently hypothesized representation
of the regression relationship.

The special case of (1.1) with p = 1 corresponds to the simple regression
model, and is consistent with the representation in Figure 1.1. The solid line
is the true regression line, the expected value of y given the value of z. The
dotted lines are the random errors ¢; that account for the lack of a perfect
association between the predictor and the target vartables.

I.2.2 ESTIMATION USING LEAST SQUARES

The true regression function represents the expected relationship between the
target and the predictor variables, which is unknown. A primary goal of a
regression analysis is to estimate this relationship, or equivalently, to estimate
the unknown parameters 3. This requires a dara-based rule, or criterion,
that will give a reasonable estimate. The standard approach is least squares
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Least squares estimation for the simple linear regression model, using
the same data as in Figure r.1. The gray line corresponds to the true regressien line,
the solid black line corresponds to the fitted least squares line (designed to estimate the
gray line), and the lengths of the dotted lines correspond to the residuals. The sum of
squared values of the lengths of the dotted lines is minimized by the solid black line.

regression, where the estimates are chosen to minimize

(23

Z[%‘ — (8o + Brni + - + Bozpi) (1.2)

=1

Figure 1.2 gives a graphical representation of least squares that is based on
Figure 1.1. Now the true regression line is represented by the gray line, and
the solid black line is the estimated regression line, designed to estimate the
{unknown) gray line as closely as possible. For any choice of estimated param-
eters 3, the estimated expected response value given the observed predictor
values equals

= ,(}0 + ,é]:?,'n' +---+ ,Bp.??pf_,

and is called the fitted value. The difference between the observed value ;
and the fitted value ; is called the residual, the set of which are represented
by the lengths of the dotted lines in Figure 1.2. The least squares regression
line minimizes the sum of squares of the lengths of the dotted lines; that is,
the ordinary least squares (OLS) estimates minimize the sum of squares of the
residuals.
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Least squares estimation for the multiple linear regression model with
twa predictors. The plane corresponds to the fitted least squares relationship, and the
lengths of the vertical lines correspond to the residuals. The sum of squared values of
the Jengths of the vertical lines is minimized by the plane.

In higher dimensions (p > 1) the true and estimated regression relation-
ships correspond to planes (p = 2) or hyperplanes (p > 3), but otherwise the
principles are the same. Figure 1.3 illustrates the case with two predictors.
The length of each vertical line corresponds to a residual (solid lines refer to
positive residuals while dashed lines refer to negative residuals), and the (least
squares) plane that goes through the observations is chosen to minimize the
sum of squares of the residuals.

The linear regression model can be written compactly using matrix nota-
tion. Define the following matrix and vectors as follows:

Bo
Iz - xp 1 3 €]
1
X: y: ﬁ: . £ =
Iz Lpn Un 3 En
My

The regression model (1.1) is then

y=XpB+e.
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The normal equations [which determine the minimizer of (1.2)] can be
shown (using multivariate calculus) to be

(X'X)3 = Xy,
which implies that the least squares estimates satisty
B=(X'X)7'X'y.
The fitted values are then
y=XB=XX'X)"' Xy = Hy, (1.3)

where H = X{X’'X )71 X' is the so-called “hat™ matrix {since it takes y to ¥).
The residuals e = y — ¥ thus satisfy

e=y-—§=y- X(X'X)'X'y=(I-X(X'X)"'X)y, (14

or
e={I-Hy.

I.2.3 ASSUMPTIONS

The least squares criterion will not necessarily yield sensible results unless
certain assumptions hold. One is given in (1.1) — the linear model should
be appropriate. In addition, the following assumptions are needed to justify
using least squares regression.

1. The expected value of the errors is zero (E(e;) = 0 for all ¢). That 1s, it
cannot be true that for certain observations the model is systematically
too low, while for others it is systematically too high. A violation of this
assumption will lead to difficulties in estimating 5;. More importantly,
this reflects that the model does not include a necessary systematic com-
ponent, which has instead been absorbed into the error terms.

2. The variance of the errors is constant (V(g;) = o2 for all i). Thar is,
it cannot be true that the strength of the model is more for some parts
of the population (smaller o) and less for other parts (larger o). This
assumption of constant variance is called homoscedasticity, and its vio-
lation (nonconstant variance) is called heteroscedasticity. A violation of
this assumption means that the least squares estimates are not as efficient
as they could be in estimating the true parameters, and better estimates
are available. More importantly, it also results in poorly calibrated confi-
dence and {especially) prediction intervals.

3. The errors are uncorrelated with each other. That is, it cannot be true
that knowing that the model underpredicts ¥ (for example) for one par-
ticular observation says anything at all about what it does for any other
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observation. This viclation most often occurs in data that are ordered in
time (time series data), where errors that are near each other in time are
often similar to each other (such time-related correlation is called auto-
correlation). Violation of this assumption can lead to very misleading
assessments of the strength of the regression.

4. The errors are normally distributed. This is needed if we want to con-
struct any confidence or prediction intervals, or hypothesis tests, which
we usually do. If this assumption is viotated, hypothesis tests and confi-
dence and prediction intervals can be very misleading.

Since violation of these assumptions can potentially lead to completely mis-
leading results, a fundamental part of any regression analysis is to check them
using various plots, tests, and diagnostics.

1.3 Methodology

I.3.1 INTERPRETING REGRESSION COEFFICIENTS

The least squares regression coefficients have very specific meanings. They
are often misinterpreted, so it is important to be clear on what they mean

{and do not mean}. Consider first the intercept, Go.

Bo: The estimated expected value of the target variable when the predictors
all equal zero.

Note that this might not have any physical interpretation, since a zero value
for the predictor(s) might be impossible, or might never come close to occur-
ring in the observed data. In that situation, it is pointless to try to interpret
this value, If all of the predictors are centered to have mean zero, then 3
necessarily equals Y, the sample mean of the target values. Note that if there
is any particular value for each predictor that is meaningful in some sense, if
each variable is centered around its particular value, then the intercept is an
estimate of E{y) when the predictors all have those meaningful values,

The estimated coefficient for the jth predictor {j = 1,....p) is inter-
preted in the following way.

B;: The estimated expected change in the target variable associated with a one

unit change in the jth predicting variable, holding all else in the model
fixed.

There are several noteworthy aspects to this interpretation. First, note
the word associated — we cannot say that a change in the target variable is
cansed by a change in the predictor, only that they are associated with each
other. That is, correlation does not imply causation.

Another key point is the phrase “holding all else in the model fixed,” che
implications of which are often ignored. Consider the following hypothetical
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example. A random sample of college students at a particular university is
taken in order to understand the relationship between college grade point
average (GPA) and other variables. A model is built with college GPA as a
function of high school GPA and the standardized Scholastic Aptitude Test
(SAT), with resultant least squares fit

College GPA = 1.3 + .7 x High School GPA — .0001 x SAT.

It is tempting to say {and many people would say) that the coefficient for SAT
score has the “wrong sign,” because it says that higher values of SAT are asso-
ciated with lower values of college GPA. This is not correct. The problem is
that it is likely in this context that what an analyst would find intuitive is the
marginal relationship between college GPA and SAT score alone (ignoring
all else), one that we would indeed expect to be a direct (positive) one. The
regression coefficient does not say anything about that marginal relationship.
Rather, it refers to the conditional (sometimes called partial} relationship that
takes the high school GPA as fixed, which is apparently that higher values
of SAT are associated with lower values of college GPA, holding high school
GPA fixed. High school GPA and SAT are no doubt related to each other,
and it is quite likely that this relationship between the predictors would com-
plicate any understanding of, or intuition about, the conditional relattonship
between college GPA and SAT score. Multiple regression coefficients should
not be interpreted marginally; if you really are interested in the relationship
between the target and a single predictor alone, you should simply do a re-
gresston of the target on only that variable. This does not mean that multiple
regression coefficients are uninterpretable, only that care is necessary when
interpreting them.

Another common use of multiple regression that depends on this con-
dittonal interpretation of the coefficients is to explicitly include “control”
variables in a model in order to try to account for their effect statistically.
This is particularly important in observational data (data that are not the re-
sult of a designed experiment), since in that case the effects of other variables
cannot be ignored as a result of random assignment in the experiment. For
observational data it is not possible to physically intervene in the experiment
to “hold other variables fixed,” but the multiple regression framework effec-
tively allows this to be done statistically.

I.3.2 MEASURING THE STRENGTH OF THE REGRESSION RELA-
TIONSHIP

The least squares estimates possess an important property:

T

Z('y@ -Yy = Z(yi —-6.)° + Z(ﬁsﬁ -Y)%
im1 1 =1

i=

This formula says that the variability in the target variable (the left side of the
equation, termed the corrected total sum of squares) can be split into two mu-
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tually exclusive parts — the variability left over after doing the regression (the
first term on the right side, the residual sum of squares}), and the variability
accounted for by doing the regression (the second term, the regression sum of
squares). This immediately suggests the usefulness of R? as a measure of the
strength of the regression relationship, where

2 2.5 —Y)® _  RegressionSS Residual 8S

T S.(-Y)? Corrected total S5~ Corrected total SS°

The R? value (also called the coefficient of determination) estimates the pop-
ulation proportion of variability in ¥ accounted for by the best linear combi-
nation of the predictors. Values closer to 1 indicate a good deal of predictive
power of the predictors for the target variable, while values closer to 0 indicate
little predictive power. An equivalent representation of R? is

R? = corr(is, §:)°.

where

Sy — V) - 7)
S -TrR -1

is the sample correlation coefficient between y and ¥ (this correlation is called
the multiple correlation coefficient). That is, R? is a direct measure of how
similar the observed and fitted target values are.

It can be shown that B? is biased upwards as an estimate of the population
proportion of variability accounted for by the regression. The adjusted B?
corrects this bias, and equals

Corr(y?.s y1 =

Rﬁsz—ﬁ(l—Rﬂ‘ (1.5)
It is apparent from (1.5) that unless p is large relative to n — p — 1 (that is,
unless the number of predictors is large relative to the sample size), R? and
RZ2 will be close to each other, and the choice of which to use is a minor
concern. What is perhaps more interesting is the nature of B2 as providing
an explicit tradcoff between the strength of the fit (the first term, with larger
R? corresponding to stronger fit and larger R2) and the complexity of the
maodel (the second term, with larger p corresponding to more complexity and
smaller RZ). This tradeoff of fidelity to the data versus simplicity will be
important in the discussion of model selection in Section 2.3.1.

The only parameter left unaccounted for in the estimation scheme is the
variance of the errors o2, An unbiased estimate is provided by the residual

mean square,
5,2 = Z?:l(y'!' - g’i)z )

.6

n—p—1 (1-6)

This estimate has a direct, but often underappreciated, use in assessing the
practical importance of the model. Does knowing z,.. .., x, really say any-

thing of value about ? This isn’t a question that can be answered completely
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statistically; it requires knowledge and understanding of the data (that is, it
requires context). Recall that the model assumes that the exrors are normally
distributed with standard deviation o. This means that, roughly speaking,
95% of the time an observed y value falls within +20 of the expected response

E{yy =0+ Jiz + - + Bpry.
E{y) can be estimated for any given set of x values using
= ;%0 + B] ot -+ .JL'.E))p:IIp,

while the square root of the residual mean square {1.6), termed the standard
error of the estimate, provides an estimate of o that can be used in construct-
ing this rough prediction interval +£24.

1.3.3 HYPOTHESIS TESTS AND CONFIDENCE INTERVALS FOR 3

There are two types of hypothesis tests related to the regression coefficients
of immediate interest.

1. Do any of the predictors provide predictive power for the target variable?
This 15 a test of the overall significance of the regression,

Hy: = =8 =0

versus
H, :some 3; # 0, i=1,...,p

The test of these hypotheses is the F-test,

_ Regression MS _ Regression 3S/p
" Residual MS ~ Residual 88/(n — p — 1)’

This is referenced against a null F-distribution on (p.n — p — 1) degrees
of freedom.

2, Given the other variables in the model, does a particular predictor pro-
vide additional predictive power? This corresponds to a test of the signif-
icance of an individual coefficient,

HOZIBJ':D, j—_—l.,.,_’p

YEISsUs
H,: 8, #0.

This s tested using a #-test,
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which is compared to a t-distribution on n — p — 1 degrees of freedom.
Other values of 3; can be specified in the null hypothesis (say #;0), with
the #-statistic becoming
B — Bio

t; = = 1.7

! 5.e. (ﬁj ) ( )
The values of §€.(3;) are obtained as the square roots of the diagonal ele-
ments of V{3) = (X' X}~ 16%, where 5% is the residual mean square (1.6).
Note that for simple regression {p = 1) the hypotheses corresponding to
the overall significance of the model and the significance of the predictor

are identical,
Ho : 331 =0

Yersus

H,: 5 #0.

Given the equivalence of the sets of hypotheses, it is not surprising that
the associated tests are also equivalent; in fact, F = ti, and the associated
tail probabilitics of the two tests are identical.

A t-test for the intercept also can be constructed as in (1.7), although this
does not refertoa hypothesis about a predictor, but rather about whether
the expected target is equal o a specified value Fog if all of the predictors
equal zero. As was noted in Section 1.3.1, this is often not physically
meaningful (and therefore of little interest), because the condition that all
predictors equal zero cannot occur, or does not come close to occurring
in the observed data.

As is always the case, a confidence interval provides an alternative way of
summarizing the degree of precision in the estimate of a regression parameter.
That is, 2 100 x (1 — @)% confidence interval for 3; has the form

B L ITISRB,),

where ¢ 7 ~! is the appropriate critical value at two-sided level o for a -
distribution on n — p — 1 degrees of freedom.

I.3.4 FITTED VALUES AND PREDICTIONS

The rough prediction interval § + 26 discussed in Section 1.3.2 is an approx-
imate 95% interval because it ignores the variability caused by the need to
estimate o, and uses only an approximate normal-based critical value. A more
accurate assessment of this is provided by a prediction interval given a par
ticular value of x. This interval provides guidance as to how precise gy is as a
prediction of y for some particular specified value x;, where §; is determined
by substituting the values x; into the estimated regression equation; its width
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depends on both & and the position of xq relative to the centroid of the pre-
dictors (the point located at the means of ali predictors), since values farther
from the centroid are harder to predict as precisely. Specifically, for a simple
regression, the estimated standard error of a predicted value based on a value
zg of the predicting variable is

— A 1 ap — X )2
S-E-(ylf)=a\/1+;+(°7)

Z(:‘Cf - Y)Q .
More generally, the variance of a predicted value is
V(i) = [+ x(X' X)), (1-8)

Here xq is taken to include 2 1 in the first entry (corresponding to the inter-
cept in the regression model). The prediction interval is then

fo =10 7 7ISE(35)-

where §8.(45) = V(5.

This prediction interval should not be confused with a confidence inter-
val for a fitted value. The prediction interval is used to provide an interval
estimate for a prediction of y for one member of the population with a particular
value of x¢; the confidence interval is used to provide an interval estimate for
the true expected value of y for all members of the population with a particular
value of xg. The corresponding standard error, termed the standard error for
a fitted value, is the square root of

V(i) = x(X'X) " x06%, (1-9)
with corresponding confidence interval

do 0 TISE(G5).

A comparison of the two estimated variances (1.8) and (1.9) shows that the
variance of the predicted value has an extra o term, which corresponds to
the inherent variability in the population. Thus, the confidence interval for a
fitted value will always be narrower than the prediction interval, and is often
much narrower (especially for large samples), since increasing the sample size
will always improve estimation of the expected response value, but cannot
lessen the inherent variability in the population associated with the prediction
of the target for a single observation.

1.3.5 CHECKING ASSUMPTIONS USING RESIDUAL PLOTS

As was noted earlier, all of these tests, intervals, predictions, and so on, are
based on the belief that the assumptions of the regression model hold. Thus,
it is crucially important that these assumptions be checked. Remarkably
enough, a few very simple plots can provide much of the evidence needed
to check the assumptions.
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1. A plot of the residuals versus the fitted values. This plot should have no
pattern to it; that is, no structure should be apparent. Certain kinds of
structure indicate potential problems:

(a) A point (or a few points) isolated at the top or bottom, or left or right.
In addition, often the rest of the points have a noticeable “tilt” to them.
These isolated points are unusual points, and can have a strong effect
on the regression. They need to be examined carefully, and possibly
removed from the data set.

{b) An impression of different heights of the point cloud as the plot is
examined from left to right. This indicates potential heteroscedasticity
(nonconstant variance).

2. Plots of the residuals versus each of the predictors. Again, a plot with no
apparent structure is desired.

3. If the data set has a time structure to it, residuals should be plotted versus
time. Again, there should be no apparent pattern. If there is a cyclical
structure, this indicates that the errors are not uncorrelated, as they are
supposed to be (that is, there is potentially autocorrelation in the errors).

4. A normal plot of the restduals. This plot assesses the apparent normality
of the residuals, by plotting the observed ordered residuals on one axis
and the expected positions (under normality) of those ordered residuals
on the other. The plot should look like a straight line (roughly). Isolated
points once again represent unusual observations, while a curved line
indicates that the errors are probably not normally distributed, and tests
and intervals might not be trustworthy.

Note that all of these plots should be routinely examined in any regression
analysis, although in order to save space not all will necessarily be presented
in ali of the analyses 1n the book.

An implicit assumption in any model that is being used for prediction
is that the future “looks like” the past; that is, it is not sufficient that these
assumptions appear to hold for the available data, as they also must continue
to hold for new data on which the estimated mode! is applied. Indeed, the
assumption Is stronger than that, since it must be the case that the furure
1s exactly the same as the past, in the sense that all of the properties of the
model, including the precise values of all of the regression parameters, are the
same. This is unlikely to be exactly true, so a more realistic point of view is
that the future should be similar enough to the past so that predictions based
on the past are useful. A related point is that predictions should not be based
on extrapolation, where the predictor values are far from the values used to
build the model. Similarly, if the observations form a time series, predictions
far into the future are unlikely to be very useful.

In general, the more complex a model is, the less likely it is that all of
its characteristics will remain stable going forward, which implies that a rea-
sonable goal is to try to find a model that is as simple as it can be while still
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accounting for the important effects in the data. This leads to questions of
model building, which is the subject of the next chapter.

1.4 Example — Estimating Home Prices

Determining the appropriate sale price for a home is clearly of great interest
to both buyers and sellers. While this can be done in principle by examining
the prices at which other similar homes have recently sold, the well-known
existence of strong effects related to location means that there are likely to
be relatively few homes with the same important characteristics to make the
comparison. A solution to this problem is the use of hedonic regression mod-
els, where the sale prices of a set of homes in a particular area are regressed
on impaortant characteristics of the home such as the number of bedrooms,
the living area, the lot size, and so on. Academic research on this topic is
plentiful, going back to at least Wabe (1971).

This analysis is based on a sample from public data on sales of one-family
homes in the Levittown, NY area from June zo10 through May 2011. Levit-
town is famous as the first planned suburban community built using mass
production methods, being aimed at former members of the military after
World War II. Most of the homes in this community were built in the late
1940s to early 19508, without basements and designed to make expansion on
the second floor relatively easy.

For each of the 85 houses in the sample, the number of bedrooms, num-
ber of bathrooms, living area (in square feet), lot size (in square feet), the year
the house was built, and the property taxes are used as potential predictors of
the sale price. In any analysts the first step is to look at the data, and Figure
1.4 gives scatter plots of sale price versus each predictor. It is apparent that
there is a positive association between sale price and each variable, other than
number of bedrooms and lot size. We also note that there are two houses
with unusually large living areas for this sample, two with unusually large
property taxes (these are not the same two houses), and three that were built
6 or 7 vears later than all of the other houses in the sample.

The output below summarizes the results of a multiple regression fit.

Coefficients:
Estimate Std. Error t wvalue PBPri>[t|)

{Intercept) -7.14%=+06 2.820e+06 -—-1.871 0.065043
Bedrooms -1.2292+04 9.,347e+03 -1.315 0.192361
Bathrooms 5.170e+04 1.30%e+04 3,948 0.000171 #==«
Living.area 6.590e+01l 1.59Be+01 4,124 9.22e-05 #+x
Lot .size -3.971e-01 4.194e+00 ~0.214 0.831197
Year.built 3.761let+03 1.963e+03 1,916 £.058581
2,832e+00 0.521 0.603734

Property.tax 1.476e+00
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Scatter plots of sale price versus each predictor for the home price data.

Signif. codes:
0 fww%x’ 0,001 f++" 0,01 *«" 0,05 7.7 0.1 7 1

Residual standard errcor: 473280 on 78 degrees of freedom
Multiple R-squared: 0.5065, Adjusted R-sguared: 0.4685
F-statistic: 13.34 on 6 and 78 DF, p-value: 2.416e-10

The overall regression is strongly statistically significant, with the tail
probability of the F-test roughly 107*°, The predictors account for roughly
50% of the variability in sale prices (R* =~ 0.5). Two of the predictors (num-
ber of bathrooms and living area) are highly statistically significant, with tail
probabilities less than .0002, and the coetficient of the year built variable is
marginally statistically significant. The coefficients imply that given all else
in the model is held fixed, one additional bathroom in a house is associated
with an estimated expected price that is $51,700 higher; one additional square



1§ CHAPTER 1 Multiple Lincar Regression

toot of living area is associated with an estimated expected price that is $65.90
higher (given the typical value of the living area variable, a more meaningful
statement would probably be that an additional 100 square feet of living area
is associated with an estimated expected price that is $659 higher); and a house
being built one year later is associated with an estimated expected price that
15 $3761 higher.

This is a situation where the distinction between a confidence interval
for a fitted value and a prediction interval (and which is of more interest 10 a
particular person) is clear. Consider a house with 3 bedrooms, 1 bathroom,
1050 square feet of living area, 6000 square foot lot size, built 1n 194g, with
$6306 in property taxes. Substituting thosc values into the above equation
gives an estimated cxpected sale price of a house with these characteristics
equal to $265,360. A buyer or a seller is interested in the sale price of cne
particular house, so a prediction interval for the sale price would provide
a range for what the buyer can expect to pay and the seller expect to get.
The standard error of the estimate & = $47,380 can be used to construct a
rough prediction interval, in that roughly 95% of the time a house with these
characteristics can be expected to sell for within +(2)(47380) = +$94,360 of
that estimated sale price, but a more exact interval might be required. On the
other hand, a home appraiser or tax assessor is more interested in the typical
{average) sale price for all homes of that type in the area, so they can give
a justifiable interval estimate giving the precision of the estimate of the true
expected value of the house, so a confidence interval for the fitted value is
desired.

Exact 95% intervals for a house with these characteristics can be obtained
from statistical software, and turn out to be ($167277, $363444) for the pre-
diction interval and {$238482, $292239) for the confidence interval. As ex-
pected, the prediction interval is much wider than the confidence interval,
since it reflects the inherent variability in sale prices in the population of
houses; indeed, it is probably too wide to be of any practical value in this
case, but an interval with smaller coverage (that is expected to include the
actual price only 50% of the time, say) might be useful (a 50% interval in
this case would be ($231974, $298746), so a seller could be told that there is a
50/50 chance that their house will sell for a value in this range).

The validity of all of these results depends on whether the assumptions
hold. Figure 1.5 gives a scatter plot of the residuals versus the fitted values and
a normal plot of the residuals for this model fit. There is no apparent pattern
in the plot of residuals versus fitted values, and the ordered residuals form a
roughly straight line in the normal plot, so there are no apparent violations of
assumptions here. The plot of residuals versus each of the predictors (Figure
1.6) also does not show any apparent patterns, other than the houses with
unusual living area and year being built, respectively. It would be reasonabte
to omit these observations to see if they have had an effect on the regression,
but we will postpone discussion of that to Chapter 3, where diagnostics for
unusual observations are discussed in greater detail.
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Residual plots for the home price data. (a) Plot of residuals versus
fitted values, (b) Normal plot of the residuals.

An obvious consideration at this point is that the models discussed here
appear to be overspecified; that is, they include variables that do not appar-
ently add to the predictive power of the model. As was noted earlier, this
suggests the consideration of model building, where a more appropriate (sim-
plified) model can be chosen, which will be discussed in the next chapter.

1.5 Summary

In this chapter we have laid out the basic structure of the linear regression
model, including the assumptions that justify the use of least squares estima-
tion. The three main goals of regression noted at the beginning of the chapter
provide a framework for an organization of the topics covered.

1. Modeling the relationship between x and y:

» the least squares estimates 3 summarize the cxpected change in g for a
given change in an z, accounting for all of the variables in the model;

» the standard error of the estimate & estimates the standard deviation
of the errors;

» R? and R? estimate the proportion of variability in ¥ accounted for
by x;
» and the confidence interval for a fitted value provides a measure of the

precision in estimating the expected target for a gtven set of predictor
values.

2. Prediction of the target variable:
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Scatter plots of residuals versus each predictor for the home price data,

» substituting specified values of x into the fitted regression model gives
an estimate of the value of the target for a new observarion;

¢ the rough prediction interval £2§ provides a quick measure of the
limits of the ability to predict a new observation;

¢ and the exact prediction interval provides a more precise measure of
those limits.

3. Testing of hypotheses:

# the F-test provides a test of the statistical significance of the overall
relationship;

o the t-test for each slope coefficient testing whether the true value is
zero provides a test of whether the variable provides additional predic-
tive power given the other variables;

» and the #-tests can be generalized to test other hypotheses of interest
about the coefficients as well.
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Since all of these methods depend on the assumptions holding, a fundamental
part of any regression analysis is to check those assumptions. The residual
plots discussed in this chapter are a key part of that process, and other diag-
nostics and tests will be discussed in future chapters that provide additicnal
support for that task.

KEY TERMS

Autocorrelation: Correlation between adjacent observations in a (time) se-
ries. In the regression context it is autocorrelation of the errors that is a
violation of assumptions.

Coefficient of determination (1*?): The square of the multiple correlation
coefficient, estimates the proportion of variability in the target variable that
ts explained by the fitted least squares model.

Confidence interval for a fitted value: A measure of precision of the esti-
mate of the expected target value for a given x.

Dependent variable: Characteristic of each member of the sample that is
being modeled. This is also known as the target or response variable.

Fitted value: The least square estimate of the expected target value for a
particular observation obtatned from the fitted regression model.

Heteroscedasticity: Unequal variance; this can refer to observed unequal
variance of the residuals or theoretical unequal variance of the errors.

Homoscedasticity: Equal variance; this can refer to observed equal variance
of the residuals or the assumed equal variance of the errors.

Independent variable(s): Characteristic(s) of each member of the sample
that could be used to model the dependent variable. These are also known as
the predicting variables.

Least squares: A method of estimation that minimizes the sum of squared
deviations of the observed target values from their estimated expected values.

Prediction interval: The interval estimate for the value of the target variable
for an individual member of the population using the fitted regression model.

Residual: The difference between the observed target value and the corre-
sponding fitted value.

Residual mean square: An unbiased estimate of the variance of the errors.
It 1s obtained by dividing the sum of squares of the residuals by (n —p — 1),
where n is the number of observations and p is the number of predicting
variables.

Standard error of the estimate (7): An estimate of o, the standard deviation
of the errors, equaling the square root of the residual mean square.








