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BASIC PROBABILITY THEORY

1.1 INTRODUCTION

Probability theory is the mathematics of randomness. This statement immediately
invites the question “What is randomness?” This is a deep question that we cannot
attempt to answer without invoking the disciplines of philosophy, psychology, math-
ematical complexity theory, and quantum physics, and still there would most likely
be no completely satisfactory answer. For our purposes, an informal definition of ran-
domness as “what happens in a situation where we cannot predict the outcome with
certainty” is sufficient. In many cases, this might simply mean lack of information.
For example, if we flip a coin, we might think of the outcome as random. It will be
either heads or tails, but we cannot say which, and if the coin is fair, we believe that
both outcomes are equally likely. However, if we knew the force from the fingers at
the flip, weight and shape of the coin, material and shape of the table surface, and
several other parameters, we would be able to predict the outcome with certainty,
according to the laws of physics. In this case we use randomness as a way to describe
uncertainty due to lack of information.1

Next question: “What is probability?” There are two main interpretations of prob-
ability, one that could be termed “objective” and the other “subjective.” The first is

1To quote the French mathematician Pierre-Simon Laplace, one of the first to develop a mathematical
theory of probability: “Probability is composed partly of our ignorance, partly of our knowledge.”
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FIGURE 1.1 Consecutive relative frequencies of heads in 100 coin flips.

the interpretation of a probability as a limit of relative frequencies; the second, as a
degree of belief. Let us briefly describe each of these.

For the first interpretation, suppose that we have an experiment where we are
interested in a particular outcome. We can repeat the experiment over and over and
each time record whether we got the outcome of interest. As we proceed, we count
the number of times that we got our outcome and divide this number by the number of
times that we performed the experiment. The resulting ratio is the relative frequency
of our outcome. As it can be observed empirically that such relative frequencies tend
to stabilize as the number of repetitions of the experiment grows, we might think of
the limit of the relative frequencies as the probability of the outcome. In mathematical
notation, if we consider n repetitions of the experiment and if Sn of these gave our
outcome, then the relative frequency would be fn = Sn/n, and we might say that
the probability equals limn→∞ fn. Figure 1.1 shows a plot of the relative frequency
of heads in a computer simulation of 100 hundred coin flips. Notice how there is
significant variation in the beginning but how the relative frequency settles in toward
1
2 quickly.

The second interpretation, probability as a degree of belief, is not as easily quan-
tified but has obvious intuitive appeal. In many cases, it overlaps with the previous
interpretation, for example, the coin flip. If we are asked to quantify our degree of
belief that a coin flip gives heads, where 0 means “impossible” and 1 means “with
certainty,” we would probably settle for 1

2 unless we have some specific reason to
believe that the coin is not fair. In some cases it is not possible to repeat the experi-
ment in practice, but we can still imagine a sequence of repetitions. For example, in
a weather forecast you will often hear statements like “there is a 30% chance of rain
tomorrow.” Of course, we cannot repeat the experiment; either it rains tomorrow or it
does not. The 30% is the meteorologist’s measure of the chance of rain. There is still
a connection to the relative frequency approach; we can imagine a sequence of days



SAMPLE SPACES AND EVENTS 3

with similar weather conditions, same time of year, and so on, and that in roughly
30% of the cases, it rains the following day.

The “degree of belief” approach becomes less clear for statements such as “the
Riemann hypothesis is true” or “there is life on other planets.” Obviously, these
are statements that are either true or false, but we do not know which, and it is not
unreasonable to use probabilities to express how strongly we believe in their truth. It is
also obvious that different individuals may assign completely different probabilities.

How, then, do we actually define a probability? Instead of trying to use any of
these interpretations, we will state a strict mathematical definition of probability. The
interpretations are still valid to develop intuition for the situation at hand, but instead
of, for example, assuming that relative frequencies stabilize, we will be able to prove
that they do, within our theory.

1.2 SAMPLE SPACES AND EVENTS

As mentioned in the introduction, probability theory is a mathematical theory to
describe and analyze situations where randomness or uncertainty are present. Any
specific such situation will be referred to as a random experiment. We use the term
“experiment” in a wide sense here; it could mean an actual physical experiment such
as flipping a coin or rolling a die, but it could also be a situation where we simply
observe something, such as the price of a stock at a given time, the amount of rain in
Houston in September, or the number of spam emails we receive in a day. After the
experiment is over, we call the result an outcome. For any given experiment, there is
a set of possible outcomes, and we state the following definition.

Definition 1.1. The set of all possible outcomes in a random experiment is called
the sample space, denoted S.

Here are some examples of random experiments and their associated sample spaces.

Example 1.1. Roll a die and observe the number.

Here we can get the numbers 1 through 6, and hence the sample space is

S = {1, 2, 3, 4, 5, 6}
�

Example 1.2. Roll a die repeatedly and count the number of rolls it takes until the
first 6 appears.

Since the first 6 may come in the first roll, 1 is a possible outcome. Also, we may fail
to get 6 in the first roll and then get 6 in the second, so 2 is also a possible outcome. If
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we continue this argument we realize that any positive integer is a possible outcome
and the sample space is

S = {1, 2, . . . }
the set of positive integers. �

Example 1.3. Turn on a lightbulb and measure its lifetime, that is, the time until it fails.

Here it is not immediately clear what the sample space should be since it depends on
how accurately we can measure time. The most convenient approach is to note that
the lifetime, at least in theory, can assume any nonnegative real number and choose
as the sample space

S = [0, ∞)

where the outcome 0 means that the lightbulb is broken to start with. �

In these three examples, we have sample spaces of three different kinds. The first is
finite, meaning that it has a finite number of outcomes, whereas the second and third
are infinite. Although they are both infinite, they are different in the sense that one
has its points separated, {1, 2, . . . } and the other is an entire continuum of points.
We call the first type countable infinity and the second uncountable infinity. We will
return to these concepts later as they turn out to form an important distinction.

In the examples above, the outcomes are always numbers and hence the sample
spaces are subsets of the real line. Here are some examples of other types of sample
spaces.

Example 1.4. Flip a coin twice and observe the sequence of heads and tails.

With H denoting heads and T denoting tails, one possible outcome is HT , which
means that we get heads in the first flip and tails in the second. Arguing like this,
there are four possible outcomes and the sample space is

S = {HH, HT, TH, TT }
�

Example 1.5. Throw a dart at random on a dartboard of radius r.

If we think of the board as a disk in the plane with center at the origin, an outcome is
an ordered pair of real numbers (x, y), and we can describe the sample space as

S = {(x, y) : x2 + y2 ≤ r2}
�
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Once we have described an experiment and its sample space, we want to be able to
compute probabilities of the various things that may happen. What is the probability
that we get 6 when we roll a die? That the first 6 does not come before the fifth roll?
That the lightbulb works for at least 1500 h? That our dart hits the bull’s eye? Certainly,
we need to make further assumptions to be able to answer these questions, but before
that, we realize that all these questions have something in common. They all ask for
probabilities of either single outcomes or groups of outcomes. Mathematically, we
can describe these as subsets of the sample space.

Definition 1.2. A subset of S, A ⊆ S, is called an event.

Note the choice of words here. The terms “outcome” and “event” reflect the fact
that we are describing things that may happen in real life. Mathematically, these are
described as elements and subsets of the sample space. This duality is typical for
probability theory; there is a verbal description and a mathematical description of
the same situation. The verbal description is natural when real-world phenomena
are described and the mathematical formulation is necessary to develop a consistent
theory. See Table 1.1 for a list of set operations and their verbal description.

Example 1.6. If we roll a die and observe the number, two possible events are that
we get an odd outcome and that we get at least 4. If we view these as subsets of the
sample space, we get

A = {1, 3, 5} and B = {4, 5, 6}
If we want to use the verbal description, we might write this as

A = {odd outcome} and B = {at least 4}
�

We always use “or” in its nonexclusive meaning; thus, “A or B occurs” includes the
possibility that both occur. Note that there are different ways to express combinations
of events; for example, A \ B = A ∩ Bc and (A ∪ B)c = Ac ∩ Bc. The latter is known
as one of De Morgan’s laws, and we state these without proof together with some
other basic set theoretic rules.

TABLE 1.1 Basic Set Operations and Their Verbal Description

Notation Mathematical Description Verbal Description

A ∪ B The union of A and B A or B (or both) occurs
A ∩ B The intersection of A and B Both A and B occur
Ac The complement of A A does not occur
A \ B The difference between A and B A occurs but not B

Ø The empty set Impossible event
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Proposition 1.1. Let A, B, and C be events. Then

(a) (Distributive Laws) (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C)
(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(b) (De Morgan’s Laws) (A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

As usual when dealing with set theory, Venn diagrams are useful. See Figure 1.2 for
an illustration of some of the set operations introduced above. We will later return to
how Venn diagrams can be used to calculate probabilities. If A and B are such that
A ∩ B = ∅, they are said to be disjoint or mutually exclusive. In words, this means
that they cannot both occur simultaneously in the experiment.

As we will often deal with unions of more than two or three events, we need more
general versions of the results given above. Let us first introduce some notation. If
A1, A2, . . . , An is a sequence of events, we denote

n⋃
k=1

Ak = A1 ∪ A2 ∪ · · · ∪ An

the union of all the Ak and

n⋂
k=1

Ak = A1 ∩ A2 ∩ · · · ∩ An

the intersection of all the Ak. In words, these are the events that at least one of the
Ak occurs and that all the Ak occur, respectively. The distributive and De Morgan’s
laws extend in the obvious way, for example(

n⋃
k=1

Ak

)c

=
n⋂

k=1

Ac
k

BA

A �∩B B \A

BA

FIGURE 1.2 Venn diagrams of the intersection and the difference between events.
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It is also natural to consider infinite unions and intersections. For example, in Example
1.2, the event that the first 6 comes in an odd roll is the infinite union {1} ∪ {3} ∪
{5} ∪ · · · and we can use the same type of notation as for finite unions and write

{first 6 in odd roll} =
∞⋃

k=1

{2k − 1}

For infinite unions and intersections, distributive and De Morgan’s laws still extend
in the obvious way.

1.3 THE AXIOMS OF PROBABILITY

In the previous section, we laid the basis for a theory of probability by describing ran-
dom experiments in terms of the sample space, outcomes, and events. As mentioned,
we want to be able to compute probabilities of events. In the introduction, we men-
tioned two different interpretations of probability: as a limit of relative frequencies
and as a degree of belief. Since our aim is to build a consistent mathematical theory, as
widely applicable as possible, our definition of probability should not depend on any
particular interpretation. For example, it makes intuitive sense to require a probability
to always be less than or equal to one (or equivalently, less than or equal to 100%).
You cannot flip a coin 10 times and get 12 heads. Also, a statement such as “I am
150% sure that it will rain tomorrow” may be used to express extreme pessimism
regarding an upcoming picnic but is certainly not sensible from a logical point of
view. Also, a probability should be equal to one (or 100%), when there is absolute
certainty, regardless of any particular interpretation.

Other properties must hold as well. For example, if you think there is a 20% chance
that Bob is in his house, a 30% chance that he is in his backyard, and a 50% chance
that he is at work, then the chance that he is at home is 50%, the sum of 20% and
30%. Relative frequencies are also additive in this sense, and it is natural to demand
that the same rule apply for probabilities.

We now give a mathematical definition of probability, where it is defined as a
real-valued function of the events, satisfying three properties, which we refer to as
the axioms of probability. In the light of the discussion above, they should be intuitively
reasonable.

Definition 1.3 (Axioms of Probability). A probability measure is a function P ,
which assigns to each event A a number P(A) satisfying

(a) 0 ≤ P(A) ≤ 1

(b) P(S) = 1
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(c) If A1, A2, . . . is a sequence of pairwise disjoint events, that is, if i /= j, then
Ai ∩ Aj = ∅, then

P

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

P(Ak)

We read P(A) as “the probability of A.” Note that a probability in this sense is a real
number between 0 and 1 but we will occasionally also use percentages so that, for
example, the phrases “The probability is 0.2” and “There is a 20% chance” mean the
same thing.2

The third axiom is the most powerful assumption when it comes to deducing
properties and further results. Some texts prefer to state the third axiom for finite
unions only, but since infinite unions naturally arise even in simple examples, we
choose this more general version of the axioms. As it turns out, the finite case follows
as a consequence of the infinite. We next state this in a proposition and also that the
empty set has probability zero. Although intuitively obvious, we must prove that it
follows from the axioms. We leave this as an exercise.

Proposition 1.2. Let P be a probability measure. Then

(a) P(∅) = 0

(b) If A1, . . . , An are pairwise disjoint events, then

P(
n⋃

k=1

Ak) =
n∑

k=1

P(Ak)

In particular, if A and B are disjoint, then P(A ∪ B) = P(A) + P(B). In general,
unions need not be disjoint and we next show how to compute the probability of a union
in general, as well as prove some other basic properties of the probability measure.

Proposition 1.3. Let P be a probability measure on some sample space S and let
A and B be events. Then

(a) P(Ac) = 1 − P(A)

(b) P(A \ B) = P(A) − P(A ∩ B)

(c) P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

(d) If A ⊆ B, then P(A) ≤ P(B)

2If the sample space is very large, it may be impossible to assign probabilities to all events. The class of
events then needs to be restricted to what is called a σ-field. For a more advanced treatment of probability
theory, this is a necessary restriction, but we can safely disregard this problem.
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Proof. We prove (b) and (c), and leave (a) and (d) as exercises. For (b), note that
A = (A ∩ B) ∪ (A \ B), which is a disjoint union, and Proposition 1.2 gives

P(A) = P(A ∩ B) + P(A \ B)

which proves the assertion. For (c), we write A ∪ B = A ∪ (B \ A), which is a disjoint
union, and we get

P(A ∪ B) = P(A) + P(B \ A) = P(A) + P(B) − P(A ∩ B)

by part (b). �

Note how we repeatedly used Proposition 1.2(b), the finite version of the third axiom.
In Proposition 1.3(c), for example, the events A and B are not necessarily disjoint but
we can represent their union as a union of other events that are disjoint, thus allowing
us to apply the third axiom.

Example 1.7. Mrs Boudreaux and Mrs Thibodeaux are chatting over their fence
when the new neighbor walks by. He is a man in his sixties with shabby clothes and
a distinct smell of cheap whiskey. Mrs B, who has seen him before, tells Mrs T that
he is a former Louisiana state senator. Mrs T finds this very hard to believe. “Yes,”
says Mrs B, “he is a former state senator who got into a scandal long ago, had to
resign and started drinking.” “Oh,” says Mrs T, “that sounds more probable.” “No,”
says Mrs B, “I think you mean less probable.”

Actually, Mrs B is right. Consider the following two statements about the shabby
man: “He is a former state senator” and “He is a former state senator who got into
a scandal long ago, had to resign, and started drinking.” It is tempting to think that
the second is more probable because it gives a more exhaustive explanation of the
situation at hand. However, this is precisely why it is a less probable statement. To
explain this with probabilities, consider the experiment of observing a person and the
two events

A = {he is a former state senator}
B = {he got into a scandal long ago, had to resign, and started drinking}

The first statement then corresponds to the event A and the second to the event A ∩ B,
and since A ∩ B ⊆ A, we get P(A ∩ B) ≤ P(A). Of course, what Mrs T meant was
that it was easier to believe that the man was a former state senator once she knew
more about his background.

In their book Judgment under Uncertainty, Kahneman et al. [5], show empirically
how people often make similar mistakes when asked to choose the most probable
among a set of statements. With a strict application of the rules of probability, we get
it right. �
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Example 1.8. Consider the following statement: “I heard on the news that there is a
50% chance of rain on Saturday and a 50% chance of rain on Sunday. Then there
must be a 100% chance of rain during the weekend.”

This is, of course, not true. However, it may be harder to point out precisely where
the error lies, but we can address it with probability theory. The events of interest are

A = {rain on Saturday} and B = {rain on Sunday}

and the event of rain during the weekend is then A ∪ B. The percentages are refor-
mulated as probabilities so that P(A) = P(B) = 0.5 and we get

P(rain during the weekend) = P(A ∪ B)

= P(A) + P(B) − P(A ∩ B)

= 1 − P(A ∩ B)

which is less than 1, that is, the chance of rain during the weekend is less than 100%.
The error in the statement lies in that we can add probabilities only when the events
are disjoint. In general, we need to subtract the probability of the intersection, which
in this case is the probability that it rains both Saturday and Sunday. �

Example 1.9. A dartboard has an area of 143 in.2 (square inches). In the center of
the board, there is the “bulls eye,” which is a disk of area 1 in.2. The rest of the
board is divided into 20 sectors numbered 1, 2, . . . , 20. There is also a triple ring
that has an area of 10 in.2 and a double ring of area 15 in.2 (everything rounded to
nearest integers). Suppose that you throw a dart at random on the board. What is the
probability that you get (a) double 14, (b) 14 but not double, (c) triple or the bull’s
eye, and (d) an even number or a double?

Introduce the events F = {14}, D = {double}, T = {triple}, B = {bull’s eye}, and
E = {even}. We interpret “throw a dart at random” to mean that any region is hit with
a probability that equals the fraction of the total area of the board that region occupies.
For example, each number has area (143 − 1)/20 = 7.1 in.2 so the corresponding
probability is 7.1/143. We get

P(double 14) = P(D ∩ F ) = 0.75

143
≈ 0.005

P(14 but not double) = P(F \ D) = P(F ) − P(F ∩ D)

= 7.1

143
− 0.75

143
≈ 0.044
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P(triple or bulls eye) = P(T ∪ B) = P(T ) + P(B)

= 10

143
+ 1

143
≈ 0.077

P(even or double) = P(E ∪ D) = P(E) + P(D) − P(E ∩ D)

= 71

143
+ 15

143
− 7.5

143
≈ 0.55

�

Let us say a word here about the interplay between logical statements and events.
In the previous example, consider the events E = {even} and F = {14}. Clearly, if
we get 14, we also get an even number. As a logical relation between statements, we
would express this as

the number is 14 ⇒ the number is even

and in terms of events, we would say “If F occurs, then E must also occur.” But this
means that F ⊆ E and hence

{the number is 14} ⊆ {the number is even}
and thus the set-theoretic analog of “⇒” is “⊆” that is useful to keep in mind.

Venn diagrams turn out to provide a nice and useful interpretation of probabilities.
If we imagine the sample space S to be a rectangle of area 1, we can interpret the
probability of an event A as the area of A (see Figure 1.3). For example, Proposition
1.3(c) says that P(A ∪ B) = P(A) + P(B) − P(A ∩ B). With the interpretation of
probabilities as areas, we thus have

P(A ∪ B) = area of A ∪ B

= area of A + area of B − area of A ∩ B

= P(A) + P(B) − P(A ∩ B)

Total area = 1

S

area of A

P� (A)=

FIGURE 1.3 Probabilities with Venn diagrams.
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BA

C

FIGURE 1.4 Venn diagram of three events.

since when we add the areas of A and B, we count the area of A ∩ B twice and must
subtract it (think of A and B as overlapping pancakes where we are interested only
in how much area they cover). Strictly speaking, this is not a proof but the method
can be helpful to find formulas that can then be proved formally. In the case of three
events, consider Figure 1.4 to argue that

Area of A ∪ B ∪ C = area of A + area of B + area of C

− area of A ∩ B − area of A ∩ C − area of B ∩ C

+ area of A ∩ B ∩ C

since the piece in the middle was first added three times and then removed three
times, so in the end we have to add it again. Note that we must draw the diagram so
that we get all possible combinations of intersections between the events. We have
argued for the following proposition, which we state and prove formally.

Proposition 1.4. Let A, B, and C be three events. Then

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− P(A ∩ B) − P(A ∩ C) − P(B ∩ C)

+ P(A ∩ B ∩ C)

Proof. By applying Proposition 1.3(c) twice—first to the two events A ∪ B and C

and second to the events A and B—we obtain

P(A ∪ B ∪ C) = P(A ∪ B) + P(C) − P((A ∪ B) ∩ C)

= P(A) + P(B) − P(A ∩ B) + P(C) − P((A ∪ B) ∩ C)
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The first four terms are what they should be. To deal with the last term, note that by
the distributive laws for set operations, we obtain

(A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C)

and yet another application of Proposition 1.3(c) gives

P((A ∪ B) ∩ C) = P((A ∩ C) ∪ (B ∩ C))

= P(A ∩ C) + P(B ∩ C) − P(A ∩ B ∩ C)

which gives the desired result. �

Example 1.10. Choose a number at random from the numbers 1, . . . , 100. What is
the probability that the chosen number is divisible by either 2, 3, or 5?

Introduce the events

Ak = {divisible by k} for k = 1, 2, . . .

We interpret “at random” to mean that any set of numbers has a probability that is
equal to its relative size, that is, the number of elements divided by 100. We then get

P(A2) = 0.5, P(A3) = 0.33, and P(A5) = 0.2

For the intersection, first note that, for example, A2 ∩ A3 is the event that the number
is divisible by both 2 and 3, which is the same as saying it is divisible by 6. Hence
A2 ∩ A3 = A6 and

P(A2 ∩ A3) = P(A6) = 0.16

Similarly, we get

P(A2 ∩ A5) = P(A10) = 0.1, P(A3 ∩ A5) = P(A15) = 0.06

and

P(A2 ∩ A3 ∩ A5) = P(A30) = 0.03

The event of interest is A2 ∪ A3 ∪ A5, and Proposition 1.4 yields

P(A2 ∪ A3 ∪ A5) = 0.5 + 0.33 + 0.2 − (0.16 + 0.1 + 0.06) + 0.03 = 0.74

�

It is now easy to believe that the general formula for a union of n events starts by
adding the probabilities of the events, then subtracting the probabilities of the pairwise
intersections, adding the probabilities of intersections of triples, and so on, finishing
with either adding or subtracting the intersection of all the n events, depending on
whether n is odd or even. We state this in a proposition that is sometimes referred to
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as the inclusion–exclusion formula. It can, for example, be proved by induction, but
we leave the proof as an exercise.

Proposition 1.5. Let A1, A2, . . . , An be a sequence of n events. Then

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

P(Ak)

−
∑
i<j

P(Ai ∩ Aj)

+
∑

i<j<k

P(Ai ∩ Aj ∩ Ak)

...

+ (−1)n+1P(A1 ∩ A2 ∩ · · · ∩ An)

We finish this section with a theoretical result that will be useful from time to time.
A sequence of events is said to be increasing if

A1 ⊆ A2 ⊆ · · ·

and decreasing if

A1 ⊇ A2 ⊇ · · ·

In each case we can define the limit of the sequence. If the sequence is increasing,
we define

lim
n→∞ An =

∞⋃
k=1

Ak

and if the sequence is decreasing

lim
n→∞ An =

∞⋂
k=1

Ak

Note how this is similar to limits of sequences of numbers, with ⊆ and ⊇ correspond-
ing to ≤ and ≥, respectively, and union and intersection corresponding to supremum
and infimum. The following proposition states that the probability measure is a con-
tinuous set function. The proof is outlined in Problem 18.
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Proposition 1.6. If A1, A2, . . . is either increasing or decreasing, then

P( lim
n→∞ An) = lim

n→∞ P(An)

1.4 FINITE SAMPLE SPACES AND COMBINATORICS

The results in the previous section hold for an arbitrary sample space S. In this section,
we will assume thatS is finite,S = {s1, . . . , sn}, say. In this case, we can always define
the probability measure by assigning probabilities to the individual outcomes.

Proposition 1.7. Suppose that p1, . . . , pn are numbers such that

(a) pk ≥ 0, k = 1, . . . , n

(b)
n∑

k=1

pk = 1

and for any event A ⊆ S, define

P(A) =
∑

k:sk∈A

pk

Then P is a probability measure.

Proof. Clearly, the first two axioms of probability are satisfied. For the third, note
that in a finite sample space, we cannot have infinitely many disjoint events, so we
only have to check this for a disjoint union of two events A and B. We get

P(A ∪ B) =
∑

k:sk∈A∪B

pk =
∑

k:sk∈A

pk +
∑

k:sk∈B

pk = P(A) + P(B)

and we are done. (Why are two events enough?) �

Hence, when dealing with finite sample spaces, we do not need to explicitly give the
probability of every event, only for each outcome. We refer to the numbers p1, . . . , pn

as a probability distribution on S.

Example 1.11. Consider the experiment of flipping a fair coin twice and counting the
number of heads. We can take the sample space

S = {HH, HT, TH, TT }
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and let p1 = · · · = p4 = 1
4 . Alternatively, since all we are interested in is the number

of heads and this can be 0, 1, or 2, we can use the sample space

S = {0, 1, 2}

and let p0 = 1
4 , p1 = 1

2 , p2 = 1
4 . �

Of particular interest is the case when all outcomes are equally likely. If S has n

equally likely outcomes, then p1 = p2 = · · · = pn = 1
n

, which is called a uniform
distribution on S. The formula for the probability of an event A now simplifies to

P(A) =
∑

k:sk∈A

1

n
= #A

n

where #A denotes the number of elements in A. This formula is often referred to as
the classical definition of probability since historically this was the first context in
which probabilities were studied. The outcomes in the event A can be described as
favorable to A and we get the following formulation.

Corollary 1.1. In a finite sample space with uniform probability distribution

P(A) = # favorable outcomes

# possible outcomes

In daily language, the term “at random” is often used for something that has a uniform
distribution. Although our concept of randomness is more general, this colloquial
notion is so common that we will also use it (and already have). Thus, if we say “pick
a number at random from 1, . . . , 10,” we mean “pick a number according to a uniform
probability distribution on the sample space {1, 2, . . . , 10}.”

Example 1.12. Roll a fair die three times. What is the probability that all numbers
are the same?

The sample space is the set of the 216 ordered triples (i, j, k), and since the die is fair,
these are all equally probable and we have a uniform probability distribution. The
event of interest is

A = {(1, 1, 1), (2, 2, 2), . . . , (6, 6, 6)}

which has six outcomes and probability

P(A) = # favorable outcomes

# possible outcomes
= 6

216
= 1

36

�
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Example 1.13. Consider a randomly chosen family with three children. What is the
probability that they have exactly one daughter?

There are eight possible sequences of boys and girls (in order of birth), and we get
the sample space

S = {bbb, bbg, bgb, bgg, gbb, gbg, ggb, ggg}
where, for example, bbg means that the oldest child is a boy, the middle child a boy,
and the youngest child a girl. If we assume that all outcomes are equally likely, we
get a uniform probability distribution on S, and since there are three outcomes with
one girl, we get

P(one daughter) = 3

8

�

Example 1.14. Consider a randomly chosen girl who has two siblings. What is the
probability that she has no sisters?

Although this seems like the same problem as in the previous example, it is not. If, for
example, the family has three girls, the chosen girl can be any of these three, so there
are three different outcomes and the sample space needs to take this into account. Let
g∗ denote the chosen girl to get the sample space

S = {g∗gg, gg∗g, ggg∗, g∗gb, gg∗b, g∗bg, gbg∗, bg∗g, bgg∗, g∗bb, bg∗b, bbg∗}
and since 3 out of 12 equally likely outcomes have no sisters we get

P(no sisters) = 1

4

which is smaller than the 3
8 we got above. On average, 37.5% of families with three

children have a single daughter and 25% of girls in three-children families are single
daughters. �

1.4.1 Combinatorics

Combinatorics, “the mathematics of counting,” gives rise to a wealth of probability
problems. The typical situation is that we have a set of objects from which we draw
repeatedly in such a way that all objects are equally likely to be drawn. It is often
tedious to list the sample space explicitly, but by counting combinations we can find
the total number of cases and the number of favorable cases and apply the methods
from the previous section.

The first problem is to find general expressions for the total number of com-
binations when we draw k times from a set of n distinguishable objects. There are
different ways to interpret this. For example, we can draw with or without replacement,
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depending on whether the same object can be drawn more than once. We can also
draw with or without regard to order, depending on whether it matters in which order
the objects are drawn. With these distinctions, there are four different cases, illustrated
in the following simple example.

Example 1.15. Choose two numbers from the set {1, 2, 3} and list the possible
outcomes.

Let us first choose with regard to order. If we choose with replacement, the possible
outcomes are

(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

and if we choose without replacement

(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)

Next, let us choose without regard to order. This means that, for example, the outcomes
(1, 2) and (2, 1) are regarded as the same and we denote it by {1, 2} to stress that this
is the set of 1 and 2, not the ordered pair. If we choose with replacement, the possible
cases are

{1, 1}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {3, 3}
and if we choose without replacement

{1, 2}, {1, 3}, {2, 3}
�

To find expressions in the four cases for arbitrary values of n and k, we first need the
following result. It is intuitively quite clear, and we state it without proof.

Proposition 1.8. If we are to perform r experiments in order, such that there are
n1 possible outcomes of the first experiment, n2 possible outcomes of the second
experiment, . . . , nr possible outcomes of the rth experiment, then there is a total of
n1n2 · · · nr outcomes of the sequence of the r experiments.

This is called the fundamental principle of counting or the multiplication principle.
Let us illustrate it by a simple example.

Example 1.16. A Swedish license plate consists of three letters followed by three
digits. How many possible license plates are there?

Although there are 28 letters in the Swedish alphabet, only 23 are used for license
plates. Hence we have r = 6,n1 = n2 = n3 = 23, andn4 = n5 = n6 = 10. This gives
a total of 233 × 103 ≈ 12.2 million different license plates. �
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We can now address the problem of drawing k times from a set of n objects. It turns
out that choosing with regard to order is the simplest, so let us start with this and first
consider the case of choosing with replacement. The first object can be chosen in n

ways, and for each such choice, we have n ways to choose also the second object, n

ways to choose the third, and so on. The fundamental principle of counting gives

n × n × · · · × n = nk

ways to choose with replacement and with regard to order.
If we instead choose without replacement, the first object can be chosen in n ways,

the second in n − 1 ways, since the first object has been removed, the third in n − 2
ways, and so on. The fundamental principle of counting gives

n(n − 1) · · · (n − k + 1)

ways to choose without replacement and with regard to order. Sometimes, the notation

(n)k = n(n − 1) · · · (n − k + 1)

will be used for convenience, but this is not standard.

Example 1.17. From a group of 20 students, half of whom are female, a student
council president and vice president are chosen at random. What is the probability
of getting a female president and a male vice president?

The set of objects is the 20 students. Assuming that the president is drawn first,
we need to take order into account since, for example, (Brenda, Bruce) is a favorable
outcome but (Bruce, Brenda) is not. Also, drawing is done without replacement. Thus,
we have k = 2 and n = 20 and there are 20 × 19 = 380 equally likely different ways
to choose a president and a vice president. The sample space is the set of these 380
combinations and to find the probability, we need the number of favorable cases.
By the fundamental principle of counting, this is 10 × 10 = 100. The probability of
getting a female president and male vice president is 100

380 ≈ 0.26. �

Example 1.18. A human gene consists of nucleotide base pairs of four different
kinds, A, C, G, and T . If a particular region of interest of a gene has 20 base pairs,
what is the probability that a randomly chosen individual has no base pairs in
common with a particular reference sequence in a database?

The set of objects is {A, C, G, T }, and we draw 20 times with replacement and with
regard to order. Thus k = 20 and n = 4, so there are 420 possible outcomes, and let
us, for the sake of this example, assume that they are equally likely (which would
not be true in reality). For the number of favorable outcomes, n = 3 instead of 4
since we need to avoid one particular letter in each choice. Hence, the probability is
320/420 ≈ 0.003. �
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Example 1.19 (The Birthday Problem). This problem is a favorite in the probability
literature. In a group of 100 people, what is the probability that at least two have the
same birthday?

To simplify the solution, we disregard leap years and assume a uniform distribution
of birthdays over the 365 days of the year. To assign birthdays to 100 people, we
choose 100 out of 365 with replacement and get 365100 different combinations. The
sample space is the set of those combinations, and the event of interest is

A = {at least two birthdays are equal}
and as it turns out, it is easier to deal with its complement

Ac = {all 100 birthdays are different}
To find the probability of Ac, note that the number of cases favorable to Ac is obtained
by choosing 100 days out of 365 without replacement and hence

P(A) = 1 − P(Ac) = 1 − 365 × 364 × · · · × 266

365100 ≈ 0.9999997

Yes, that is a sequence of six 9s followed by a 7! Hence, we can be almost certain
that any group of 100 people has at least two people sharing birthdays. A similar
calculation reveals the probability of a shared birthday already exceeds 1

2 at 23 peo-
ple, a quite surprising result. About 50% of school classes thus ought to have kids
who share birthdays, something that those with idle time on their hands can check
empirically. �

A check of real-life birthday distributions will reveal that the assumption of birthdays
being uniformly distributed over the year is not true. However, the already high proba-
bility of shared birthdays only gets higher with a nonuniform distribution. Intuitively,
this is because the less uniform the distribution, the more difficult it becomes to avoid
birthdays already taken. For an extreme example, suppose that everybody was born
in January, in which case there would be only 31 days to choose from instead of 365.
Thus, in a group of 100 people, there would be absolute certainty of shared birthdays.
Generally, it can be shown that the uniform distribution minimizes the probability of
shared birthdays (we return to this in Problems 55 and 56).

Example 1.20 (The Birthday Problem Continued). A while ago I was in a group of
exactly 100 people and asked for their birthdays. It turned out that nobody had the
same birthday as I do. In the light of the previous problem, would this not be a very
unlikely coincidence?

No, because here we are only considering the case of avoiding one particular birthday.
Hence, with

B = {at least 1 out of 99 birthdays is the same as mine}
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we get

Bc = {99 birthdays are different from mine}

and the number of cases favorable to Bc is obtained by choosing with replacement
from the 364 days that do not match my birthday. We get

P(B) = 1 − P(Bc) = 1 − 36499

36599 ≈ 0.24

Thus, it is actually quite likely that nobody shares my birthday, and it is at the same
time almost certain that at least somebody shares somebody else’s birthday. �

Next, we turn to the case of choosing without regard to order. First, suppose that we
choose without replacement and let x be the number of possible ways, in which this
can be done. Now, there are n(n − 1) · · · (n − k + 1) ways to choose with regard to
order and each such ordered set can be obtained by first choosing the objects and then
order them. Since there are x ways to choose the unordered objects and k! ways to
order them, we get the relation

n(n − 1) · · · (n − k + 1) = x × k!

and hence there are

x = n(n − 1) · · · (n − k + 1)

k!
(1.1)

ways to choose without replacement, without regard to order. In other words, this is
the number of subsets of size k of a set of size n, called the binomial coefficient, read
“n choose k” and usually denoted and defined as

(
n

k

)
= n!

(n − k)!k!

but we use the expression in Equation (1.1) for computations. By convention,

(
n

0

)
= 1

and from the definition it follows immediately that

(
n

k

)
=

(
n

n − k

)

which is useful for computations. For some further properties, see Problem 24.
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Example 1.21. In Texas Lotto, you choose five of the numbers 1, . . . , 44 and one
bonus ball number, also from 1, . . . , 44. Winning numbers are chosen randomly.
Which is more likely: that you match the first five numbers but not the bonus ball or
that you match four of the first five numbers and the bonus ball?

Since we have to match five of our six numbers in each case, are the two not equally
likely? Let us compute the probabilities and see. The set of objects is {1, 2, . . . , 44}
and the first five numbers are drawn without replacement and without regard to order.
Hence, there are

(44
5

)
combinations and for each of these there are then 44 possible

choices of the bonus ball. Thus, there is a total of
(44

5

) × 44 = 47, 784, 352 different
combinations. Introduce the events

A = {match the first five numbers but not the bonus ball}
B = {match four of the first five numbers and the bonus ball}

For A, the number of favorable cases is 1 × 43 (only one way to match the first five
numbers, 43 ways to avoid the winning bonus ball). Hence

P(A) = 1 × 43(
44

5

)
× 44

≈ 9 × 10−7

To find the number of cases favorable to B, note that there are
(5

4

) = 5 ways to match

four out of five winning numbers and then
(39

1

) = 39 ways to avoid the fifth winning
number. There is only one choice for the bonus ball and we get

P(B) = 5 × 39 × 1(
44

5

)
× 44

≈ 4 × 10−6

so B is more than four times as likely as A. �

Example 1.22. You are dealt a poker hand (5 cards out of 52 without replacement).
(a) What is the probability that you get no hearts? (b) What is the probability that
you get exactly k hearts? (c) What is the most likely number of hearts?

We will solve this by disregarding order. The number of possible cases is the number
of ways in which we can choose 5 out of 52 cards, which equals

(52
5

)
. In (a), to get

a favorable case, we need to choose all 5 cards from the 39 that are not hearts. Since
this can be done in

(39
5

)
ways, we get

P(no hearts) =

(
39

5

)
(

52

5

) ≈ 0.22
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In (b), we need to choose k cards among the 13 hearts, and for each such choice, the
remaining 5 − k cards are chosen among the remaining 39 that are not hearts. This
gives

P(k hearts) =

(
13

k

)(
39

5 − k

)
(

52

5

) , k = 0, 1, . . . , 5

and for (c), direct computation gives the most likely number as 1, which has
probability 0.41. �

The problem in the previous example can also be solved by taking order into account.
Hence, we imagine that we get the cards one by one and list them in order and note
that there are (52)5 different cases. There are (13)k(39)5−k ways to choose so that
we get k hearts and 5 − k nonhearts in a particular order. Since there are

(5
k

)
ways to

choose position for the k hearts, we get

P(k hearts) =

(
5

k

)
(13)k(39)5−k

(52)5

which is the same as we got when we disregarded order above. It does not matter
to the solution of the problem whether we take order into account, but we must be
consistent and count the same way for the total and the favorable number of cases. In
this particular example, it is probably easier to disregard order.

Example 1.23. An urn contains 10 white balls, 10 red balls, and 10 black balls. You
draw five balls at random without replacement. What is the probability that you do
not get all colors?

Introduce the events

R = {no red balls}, W = {no white balls}, B = {no black balls}

The event of interest is then R ∪ W ∪ B, and we will apply Proposition 1.4. First note
that by symmetry, P(R) = P(W) = P(B). Also, each intersection of any two events
has the same probability and finally R ∩ W ∩ B = ∅. We get

P(not all colors) = 3P(R) − 3P(R ∩ W)

In order to get no red balls, the 5 balls must be chosen among the 20 balls that are not
red and hence

P(R) =
(

20

5

) /(
30

5

)
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Similarly, to get neither red nor white balls, the five balls must be chosen among the
black balls and

P(R ∩ W) =
(

10

5

) /(
30

5

)

We get

P(not all colors) = 3

((
20

5

)
−

(
10

5

)) /(
30

5

)
≈ 0.32

�

Example 1.24. The final case, choosing with replacement and without regard to order,
turns out to be the trickiest. As we noted above, when we choose without replacement,
each unordered set of k objects corresponds to exactly k! ordered sets. The relation is
not so simple when we choose with replacement. For example, the unordered set {1, 1}
corresponds to one ordered set (1, 1), whereas the unordered set {1, 2} corresponds
to two ordered sets (1, 2) and (2, 1). To find the general expression, we need to take
a less direct route.

Imagine a row of n slots, numbered from 1 to n and separated by single walls where
slot number j represents the jth object. Whenever object j is drawn, a ball is put in slot
number j. After k draws, we will thus have k balls distributed over the n slots (and slots
corresponding to objects never drawn are empty). The question now reduces to how
many ways there are to distribute k balls over n slots. This is equivalent to rearranging
the n − 1 inner walls and the k balls, which in turn is equivalent to choosing positions
for the k balls from a total of n − 1 + k positions. But this can be done in

(
n−1+k

k

)
ways, and hence this is the number of ways to choose with replacement and without
regard to order. �

Example 1.25. The Texas Lottery game “Pick 3” is played by picking three numbers
with replacement from the numbers 0, 1, . . . , 9. You can play “exact order” or
“any order.” With the “exact order” option, you win when your numbers match the
winning numbers in the exact order they are drawn. With the “any order” option, you
win whenever your numbers match the winning numbers in any order. How many
possible winning combinations are there with the “any order” option?

We have n = 10, k = 3, and the winning numbers are chosen with replacement and
without regard to order and hence there are

(
10 − 1 + 3

3

)
=

(
12

3

)
= 220

possible winning combinations. �
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Example 1.26. Draw twice from the set {1, . . . , 9} at random with replacement.
What is the probability that the two drawn numbers are equal?

We have n = 9 and k = 2. Taking order into account, there are 9 × 9 = 81 possible
cases, 9 of which are favorable. Hence the probability is 9

81 = 1
9 . If we disregard

order, we have
(9−1+2

2

) = 45 possible cases and still 9 favorable and the probability
is 9

45 = 1
5 . Since whether we draw with or without regard to order does not seem to

matter to the question, why do we get different results?
The problem is that in the second case, when we draw without regard to order,

the distribution is not uniform. For example, the outcome {1, 2} corresponds to the
two equally likely ordered outcomes (1, 2) and (2, 1) and is thus twice as likely as
the outcome {1, 1}, which corresponds to only one ordered outcome (1, 1). Thus, the
first solution 1

9 is correct. �

Thus, when we draw with replacement but without regard to order, we must be careful
when we compute probabilities, since the distribution is not uniform, as it is in the
other three cases. Luckily, this case is far more uncommon in applications than are
the other three cases. There is one interesting application, though, that has to do
with the number of integer solutions to a certain type of equation. If we look again
at the way in which we arrived at the formula and let xj denote the number of balls
in slot j, we realize that we must have x1 + · · · + xn = k and get the following
observation.

Corollary 1.2. There are
(
n−1+k

k

)
nonnegative integer solutions (x1, . . . , xn) to the

equation x1 + · · · + xn = k.

The four different ways of choosing k out of n objects are summarized in Table 1.2.
Note that when we choose without replacement, k must be less than or equal to n, but
when we choose with replacement, there is no such restriction.

We finish with another favorite problem from the probability literature. It combines
combinatorics with previous results concerning the probability of a union.

Example 1.27 (The Matching Problem). The numbers 1, 2, . . . , n are listed in
random order. Whenever a number remains in its original position in the permutation,
we call this a “match.” For example, if n = 5, then there are two matches in the

TABLE 1.2 Choosing k Out of n Objects

With Replacement Without Replacement

With regard to order nk n(n − 1) · · · (n − k + 1)

Without regard to order

(
n − 1 + k

k

) (
n

k

)
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permutation 32541 and none in 23451. (a) What is the probability that there are no
matches? (b) What happens to the probability in (a) as n → ∞?

Before we solve this, let us try to think about part (b). Does it get easier or harder
to avoid matches when n is large? It seems possible to argue for both. With so many
choices, it is easy to avoid a match in each particular position. On the other hand,
there are many positions to try, so it should not be too hard to get at least one match.
It is not easy to have good intuition for what happens here.

To solve the problem, we first consider the complement of no matches and intro-
duce the events

A = {at least one match}
Ak = {match in the kth draw}, k = 1, 2, . . . , n

so that

A =
n⋃

k=1

Ak

We will apply Proposition 1.5, so we need to figure out the probabilities of the events
Ak as well as all intersections of two events, three events, and so on.

First, note that there are n! different permutations of the numbers 1, 2, . . . , n. To
get a match in position k, there is only one choice for that number and the rest can be
ordered in (n − 1)! different ways. We get the probability

P(Ak) = # favorable outcomes

# possible outcomes
= (n − 1)!

n!
= 1

n

which means that the first sum in Proposition 1.5 equals 1. To get a match in both
the ith and the jth positions, we have only one choice for each of these two positions
and the remaining n − 2 numbers can be ordered in (n − 2)! ways and

P(Ai ∩ Aj) = (n − 2)!

n!
= 1

n(n − 1)

Since there are
(
n
2

)
ways to select two events Ai and Aj , we get the following equation

for the second sum in Proposition 1.5:

∑
i<j

P(Ai ∩ Aj) =
(

n

2

)
1

n(n − 1)

= n(n − 1)

2!
× 1

n(n − 1)
= 1

2!
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Proceeding to the third sum, a similar argument gives that, for fixed i < j < k,

∑
i<j<k

P(Ai ∩ Aj ∩ Ak) =
(

n

3

)
× 1

n(n − 1)(n − 2)
= 1

3!

and the pattern emerges. The jth sum in Proposition 1.5 equals 1/j!, and with the
alternating signs we get

P(at least one match) = 1 −
n∑

j=2

(−1)j

j!
= 1 −

n∑
j=0

(−1)j

j!

which finally gives

P(no matches) =
n∑

j=0

(−1)j

j!

This is interesting. First, the probability is not monotone in n, so we cannot say
that it gets easier or harder to avoid matches as n increases. Second, as n → ∞,
we recognize the limit as the Taylor expansion of e−1 and hence the probability of
no matches converges to e−1 ≈ 0.37 as n → ∞. We can also note how rapid the
convergence is; already for n = 4, the probability is 0.375. Thus, for all practical
purposes, the probability to get no matches is 0.37 regardless of n. In Problem 36,
you are asked to find the probability of exactly j matches. �

1.5 CONDITIONAL PROBABILITY AND INDEPENDENCE

In this section, we introduce the important notion of conditional probability. The idea
behind this concept is that the value of a probability can change if we get additional
information. For example, the probability of contracting lung cancer is higher among
smokers than nonsmokers and the probability of voting Republican is higher in Texas
than in Massachusetts.

To arrive at a formal definition of conditional probabilities, we consider the ex-
ample with the dartboard from Example 1.9. Suppose you throw darts repeatedly
at random on a dartboard and consider only those darts that hit the number 14. In
the long run, what proportion of those will also be doubles? Since the area of 14 is
142/20 = 7.1 in.2 and the area of the double ring inside 14 is 15/20 = 0.75 in.2, in the
long run we expect the proportion 0.75/7.1 ≈ 0.11 of hits of 14 to also be doubles.
To express this as a statement about probabilities, we can say that if we know that
a dart hits 14, the probability that it is also a double is 0.11. Since the probability
of 14 is P(F ) = 7.1/143 and of both double and 14 is P(F ∩ D) = 0.75/143, we
see that the probability that a dart hits a double if we know that it hits 14 is the ratio
P(F ∩ D)/P(F ).

Now, consider a sample space in general and let A and B be two events. If we know
that B occurred in an experiment, what is the probability that A also occurred? We
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can draw a Venn diagram and apply the same reasoning as above. Since the fraction of
area of A inside B is P(A ∩ B)/P(B), it seems reasonable that this is the probability
we seek. This is the intuition behind the following definition.

Definition 1.4. Let B be an event such that P(B) > 0. For any event A, denote and
define the conditional probability of A given B as

P(A|B) = P(A ∩ B)

P(B)

We think of this as the probability of A if we know that B has occurred. Hence, to
compute a conditional probability means to compute a probability given additional
information.

Example 1.28. Let us revisit Mrs B and Mrs T from Example 1.7. If we introduce a
third event

C = {he is shabby-looking}
then one way to interpret Mrs T’s comment “that sounds more probable” is that

P(A|B ∩ C) > P(A|C)

that is, given that more of the background is known, it seems more likely that the
person is who Mrs B says he is. �

Example 1.29. Roll a die and observe the number. Let

A = {odd outcome} and B = {at least 4}
What is P(A|B)?

We solve this in two different ways: (1) by using the definition and (2) by intuitive
reasoning. Since P(A ∩ B) = P({5}) = 1

6 and P(B) = 1
2 , the definition gives

P(A|B) = P(A ∩ B)

P(B)
= 1/6

1/2
= 1

3

If we think about this intuitively, to condition on the event B means that we get the
additional information that the outcome is at least 4. Since one of these three outcomes
is also odd and outcomes are equally likely, the conditional probability of odd is 1

3 . �

There is no general rule for whether it is easier to use the definition or intuitive
reasoning. In the previous example, the “one out of three” approach works since
outcomes are equally likely, but this is not always the case.

Conditional probabilities can make it easier to compute probabilities of inter-
sections. Say that we want to compute P(A ∩ B) but that it is tricky to do so
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directly. However, if we can find P(B) and P(A|B), then the definition tells us that
P(A ∩ B) = P(A|B)P(B) and we are done. Let us look at some examples of this.

Example 1.30. In Example 1.8, we had the events A = {rain on Saturday} and
B = {rain on Sunday}, where P(A) = P(B) = 0.5. Now, suppose that a rainy day is
followed by another rainy day with probability 0.7. What is the probability of rain
during the weekend?

We already know that the probability of a rainy weekend is

P(A ∪ B) = 1 − P(A ∩ B)

where we can now compute P(A ∩ B) as

P(A ∩ B) = P(B|A)P(A) = 0.7 × 0.5 = 0.35

and we get

P(A ∪ B) = 0.65

as the probability of rain during the weekend. �

Example 1.31. From a deck of cards, draw four cards at random, without replace-
ment. If you get j aces, draw j cards from another deck. What is the probability of
getting exactly two aces from each deck?

With

A = {two aces from the first deck}
B = {two aces from the second deck}

the event of interest is A ∩ B, and it is not that easy to figure out its probability
directly. However, if we use conditional probabilities, it is simple. We get

P(A) =

(
4

2

)(
48

2

)
(

52

4

) and P(B|A) =

(
4

2

)
(

52

2

)

and hence

P(A ∩ B) = P(B|A)P(A) =

(
4

2

)(
48

2

)
(

52

4

) ×

(
4

2

)
(

52

2

) ≈ 0.0001

�



30 BASIC PROBABILITY THEORY

Example 1.32. The online bookseller amazon.com has a feature called the “Gold
Box.” When you enter this, you are presented with 10 special offers to buy various
merchandise, anything from books and DVDs, to kitchenware and the “Panasonic
ER411NC nose and ear hair groomer.” The offers are presented one at a time and
each time you have to decide whether to take it or to pass. If you take it, you are done
and will not get to see the rest of the offers. If you pass, that offer is gone and cannot
be retrieved. Suggest a strategy that gives you at least 25% chance to win the best offer.

Let us assume that the offers are presented in random order. If your strategy is to
always take the first offer or if you choose at random, your chance to win is 10%.
How can this be improved?

A better strategy is to let five offers pass, remember the best thus far, and take the
next offer that is better. If this never happens, you are forced to take the last offer.
One case in which you will certainly win is if the second best offer is among the first
five and the best is among the remaining five. Thus, let

A = {second best offer is among the first five}
B = {best offer is among the last five}

so that the event of interest is A ∩ B, which has probability

P(A ∩ B) = P(A|B)P(B)

Since the offers are randomly ordered, the best offer is equally likely to be in any
position and hence P(B) = 5

10 . Given that the best is among the last five, the second
best is equally likely to be any of the remaining nine, so the probability that it is
among the first five is P(A|B) = 5

9 and we get

P(get the best offer) = 5

9
× 5

10
≈ 0.28

which is larger than 0.25. Note that A ∩ B is not the only way in which you can get
the best offer, so the true probability is in fact higher than 0.28.

Generally, if there are n offers, the same strategy gives a probability to get the best
offer that is at least

P(A ∩ B) = P(A|B)P(B) = n/2

n − 1
× n/2

n
= n

4(n − 1)

which is greater than 1
4 regardless of n [if n is odd, we can replace n/2 by (n + 1)/2].

It is quite surprising that we can do so well and for example have at least 25%
chance to find the best of 10 million offers. It can be shown that an even better
strategy is to first discard roughly ne−1 offers and then take the next that is better. The
probability to win is then approximately e−1 ≈ 0.37 (a number that also showed up in
Example 1.27). �
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The way in which we have defined conditional probability makes good intuitive sense.
However, remember that a probability is defined as something that satisfies the three
axioms in Definition 1.3. We must therefore show that whenever we condition on an
event B, the definition of conditional probability does not violate any of the axioms.
We state this in a proposition.

Proposition 1.9. For fixed B, P(A|B) satisfies the probability axioms:

(a) 0 ≤ P(A|B) ≤ 1

(b) P(S|B) = 1

(c) If A1, A2, . . . is a sequence of pairwise disjoint events, then

P

( ∞⋃
k=1

Ak

∣∣∣∣ B

)
=

∞∑
k=1

P(Ak|B)

Proof. Since A ∩ B ⊆ B, we get 0 ≤ P(A ∩ B) ≤ P(B) and part (a) follows. For (b),
note that B ⊆ S so that P(S ∩ B) = P(B) and hence P(S|B) = 1. Finally, for (c) first
note that ( ∞⋃

k=1

Ak

)
∩ B =

∞⋃
k=1

(Ak ∩ B)

and since A1, A2, . . . are pairwise disjoint, so are the events A1 ∩ B, A2 ∩ B, . . . ,

and we get

P

(( ∞⋃
k=1

Ak

)
∩ B

)
=

∞∑
k=1

P(Ak ∩ B)

Divide both sides with P(B) to conclude the proof. �

It is easily realized that P(B|B) = 1, and with this in mind, we can think of
conditioning on B as viewing B as the new sample space. The nice thing about the
proposition is that we now know that conditional probabilities have all the properties
of probabilities that we stated in Proposition 1.3. We restate these properties for
conditional probabilities in a corollary.

Corollary 1.3. Provided that the conditional probabilities are defined, the following
properties hold:

(a) P(Ac|B) = 1 − P(A|B)

(b) P(B \ A|C) = P(B|C) − P(A ∩ B|C)
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(c) P(A ∪ B|C) = P(A|C) + P(B|C) − P(A ∩ B|C)

(d) If A ⊆ B, then P(A|C) ≤ P(B|C)

It is important to keep in mind that properties of probabilities hold for events to the
left of the conditioning bar and that the event to the right is fixed (see Problem 37).

If we think of probability as a measure of degree of belief, we can think of condi-
tional probability as an update of that degree, in the light of new information. Here
is an example of a logical oddity that philosophers of science love to toss around to
confuse the rest of us.

Example 1.33. Consider the hypothesis “all swans are white.” We can say that
each observation of a white swan strengthens our belief in, or corroborates, the
hypothesis. Also, since the two statements “all swans are white” and “all nonwhite
objects are nonswans” are logically equivalent, the hypothesis is also corroborated
by the observation of something that is neither white nor a swan. Thus, every sighting
of a yellow dog corroborates the hypothesis that all swans are white.3

Weird, isn’t it? A zoologist trying to prove the hypothesis would certainly decide
to examine swans for whiteness, rather than checking various red, green, and blue
objects to make sure that they are not swans. Still, there is certainly nothing wrong
with the logic, so how can the paradox be resolved? Let us try a probabilistic approach.

Suppose that we have all examinable objects in a big urn. Suppose that there are
n such objects, k of which are white, and that the other n − k are black (representing
“nonwhite”). Suppose further that j of the objects are swans, and call the remaining
objects “ravens,” another favorite bird among philosophers of science. If we do not
know anything about the whiteness of swans, we may assume that the j swans are
randomly spread among the n objects. Thus, when we choose a swan, the probability
that it is white is k

n
(if we have very strong belief in the hypothesis to begin with, we

can just introduce a lot of white “dummy objects” to make this probability anything
we want). The probability that the hypothesis is true can now be thought of as the
probability to get only white objects when we draw without replacement j times
(assign the “swan property” to j objects). Our hypothesis is then the event

H = {all swans are white} = {get j white objects}

Let us choose with regard to order (which does not matter to the problem, but expres-
sions get less messy). Thus, the probability that all swans are white is

P(H) = k(k − 1) · · · (k − j + 1)

n(n − 1) · · · (n − j + 1)

3For ornithologists: This has nothing to do with Cygnus atratus.
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We now follow two different strategies: (a) to examine swans and (b) to examine
black objects. Suppose that we get a corroborating observation. How does this affect
the probability of H , now pertaining to the remaining n − 1 objects? Let Ca and Cb

be the events to get corroborating observations with the two strategies, respectively.
With strategy (a), a corroborating observation means that one white swan has been
removed, and the conditional probability of H becomes

P(H |Ca) = (k − 1)(k − 2) · · · (k − j + 1)

(n − 1)(n − 2) · · · (n − j + 1)

With strategy (b), one black raven has been removed, and we get

P(H |Cb) = k(k − 1) · · · (k − j + 1)

(n − 1)(n − 2) · · · (n − j)

Both these are larger than the original P(H), so each corroborating observation indeed
strengthens belief in the hypothesis. But do they do so to equal extents? Let us compare
the two conditional probabilities. We get

P(H |Ca)

P(H |Cb)
= n − j

k

If we now assume that the number of swans is less than the number of black objects,
certainly a reasonable assumption, we have that j < n − k, which gives k < n − j,
and hence

P(H |Ca)

P(H |Cb)
> 1

so that the observation of a black raven does corroborate the hypothesis but not as
much as the sighting of a white swan. The intuition is simple: since there are fewer
swans than black objects, it is easier to check the swans. If instead j > n − k, strategy
(b) would be preferable. If we, for example, were to corroborate the hypothesis “All
Volvo drivers live outside the Vatican,” it would be better to ask a thousand Vaticanos
what they drive, than to track down Volvo drivers in London and Paris to check if
they happen to be vacationing Swiss Guardsmen. �

1.5.1 Independent Events

In the previous section, we dealt with conditional probabilities and learned to interpret
them as probabilities that are computed given additional information. It is easy to
think of cases when such additional information is irrelevant and does not change the
probability. For example, if we are about to flip a fair coin, the probability to get heads
is 1

2 . Now suppose that we get the additional information that the coin was flipped once
yesterday and showed heads. Since our upcoming coin flip is not affected by what
happened yesterday and we know that the coin is fair, the conditional probability given
this information is still 1

2 . With A = {heads in next flip} and B = {heads yesterday}
we thus have P(A) = P(A|B); the unconditional and conditional probabilities are the
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same. Since P(A|B) = P(A ∩ B)/P(B), this means that P(A ∩ B) = P(A)P(B), and
we call two events with this property independent.

Definition 1.5. If A and B are two events such that

P(A ∩ B) = P(A)P(B)

then they are said to be independent.

Not surprisingly, events that are not independent are called dependent. In the intro-
ductory motivation for the definition, we talked about conditional and unconditional
probabilities being equal. We could take this as the definition of independence, but
since conditional probabilities are not always defined, we use the definition of inde-
pendence above and get the following consequence.

Corollary 1.4. If P(A|B) is defined, then the events A and B are independent if
and only if P(A) = P(A|B).

When checking for independence, it might sometimes be easier to condition on the
eventBc instead ofB, that is, by supposing thatB did not occur. Intuitively, information
regarding B and information on Bc are equivalent since saying that one occurred is
the same as saying that the other one did not occur. This is stated formally as follows.

Proposition 1.10. If A and B are independent, then A and Bc are also independent.

Proof. By Proposition 1.3(b), we get

P(A ∩ Bc) = P(A \ B) = P(A) − P(A ∩ B)

and if A and B are independent, this equals

P(A) − P(A)P(B) = P(A)(1 − P(B)) = P(A)P(Bc)

and A and Bc are independent. �

Example 1.34. In Example 1.30, suppose that a rainy Saturday and a rainy Sunday
are independent events. What is the probability of rain during the weekend?

In this case

P(A ∩ B) = P(A)P(B) = 0.25
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and hence

P(A ∪ B) = 0.75

which we note is higher than the 0.65 we obtained if rainy Saturdays are more likely
to be followed by rainy Sundays. The reason is that under this assumption, rainy
Saturdays and Sundays tend to come together more often than under the independence
assumption. �

Example 1.35. A card is chosen at random from a deck of cards. Consider the events

A = {the card is an ace} and H = {the card is a heart}

Are A and H independent?

Let us first solve this by using the definition. We have P(A) = 4
52 , P(H) = 1

4 , and
P(A ∩ H) = P(ace of hearts) = 1

52 and hence

P(A ∩ H) = P(A)P(H)

so that A and H are independent. Intuitively, the events give no information about
each other. The probability of drawing an ace is 4

52 = 1
13 and if we are given the

information that the chosen card is a heart, the probability of an ace is still 1
13 . The

proportion of aces is the same in the deck as within the suit of hearts. �

Example 1.36. Consider the previous example but suppose that we have removed
the 2 of spades from the deck. Are the events A and H still independent?

At first glance, we might think that the answer is “Yes” since the 2 of spades
has nothing to do with either hearts or aces. However, the probabilities are now
P(A) = 4

51 , P(H) = 13
51 , and P(A ∩ H) = P(ace of hearts) = 1

51 and hence

P(A ∩ H) /= P(A)P(H)

and A and H are no longer independent. Intuitively, although the 2 of spades has
nothing to do with hearts or aces, its removal changes the proportion of aces in the
deck from 4

52 to 4
51 but does not change the proportion within the suit of hearts, where

it remains at 1
13 . Formulated as a statement about conditional probabilities, we have

that

P(A) = 4

51
and P(A|H) = 1

13

which are not equal. �



36 BASIC PROBABILITY THEORY

Example 1.37. Are disjoint events independent?

It seems that disjoint events have nothing to do with each other and should thus be
independent. However, this reasoning is faulty. The correct reasoning is that if we
condition on one event having occurred, then the other cannot have occurred, and
hence its conditional probability drops to 0. We can also see this from the definition
of independence since if A and B are disjoint, then A ∩ B = ∅ and hence P(A ∩ B) =
P(∅) = 0, which does not equal the product P(A)P(B) (assuming that neither of these
probabilities equal 0). Hence, the answer in general is “absolutely not.” �

In Example 1.36, the events {ace} and {hearts} are dependent. Computation yields that
P(A) = 0.078 and P(A|H) = 0.077, so the difference is negligible from a practical
point of view. We could say that although the events are dependent, the dependence is
not strong. Compare this with the case of disjoint events where the conditional prob-
ability drops down to 0, which indicates a much stronger dependence. Dependence
could also go in different directions; P(A|B) could be either larger or smaller than
P(A). We will later return to the problem of measuring the degree of dependence in
a more general context (see also Problem 42).

The following two examples illustrate how it is not always obvious which event
to condition on and how it is important to find the correct such event.

Example 1.38. You know that your new neighbors have two children. Given that
they have at least one daughter, what is the conditional probability that they have two
daughters?

The sample space is

S = {bb, bg, gb, gg}
where b represents boy, g represents girl, and the order is birth order. If we assume
that genders are equally likely and that genders of different children are independent,
each outcome has probability 1

4 . Since the outcome bb is out of the question and
one out of the other three outcomes has two girls, the conditional probability is 1

3 .
Formally

P(gg|bg, gb, gg) = P(gg)

P(bg, gb, gg)
= 1/4

3/4
= 1

3

�

Example 1.39. You know that your new neighbors have two children. One day you
see the mother taking a walk with a girl. What is the probability that the other child
is also a girl?

This looks like the same problem. On the basis of your observation, you rule out the
outcome bb and the conditional probability of another girl is 1

3 . On the other hand,
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since we assume that genders of different children are independent, the probability
ought to be 1

2 .
Confusing? Let us clear it up. The first solution is incorrect, but why? While it

is true that the probability of two girls, given at least one girl, is 1
3 , this is not the

correct event on which to condition in this case. We are not just observing “at least
one girl;” we are observing the mother walking with a particular girl. This distinction
is important but quite subtle, and requires that we extend the sample space to be able
to also describe how the mother chooses which child to walk with.4 Thus, we split
each outcome into two, and if we denote the child that goes for the walk by an asterisk,
the new sample space is

S = {b∗b, bb∗, b∗g, bg∗, g∗b, gb∗, g∗g, gg∗}
where, for example, b∗g means that the older child is a boy, and the younger, a girl,
and that the mother takes a walk with the boy. If the mother chooses child at random,
each outcome has probability 1

8 . It is now easy to see that four outcomes have the
mother walking with a girl and that two of these have another girl, and we arrive at
the solution 1

2 once more (see also Problem 80). �

We also want to define independence of more than two events. To arrive at a
reasonable definition, let us first examine an example that highlights one of the
problems that must be addressed.

Example 1.40. Flip two fair coins and consider the events

A = {heads in first flip} = {HH, HT }
B = {heads in second flip} = {HH, TH}
C = {different in first and second flip} = {HT, TH}.

Then, for example, P(A ∩ B) = P(HH) = 1
4 = P(A)P(B), so A and B are indepen-

dent. Similarly, it is easy to show that any two of the events are independent. Hence,
these events are pairwise independent. However, it does not seem quite right to say
that the three events A, B, and C are independent since, for example, C is not inde-
pendent of the event A ∩ B. Indeed, P(C) = 1

2 but P(C|A ∩ B) = 0, since if A ∩ B

has occurred, both flips showed heads and C is impossible. �

This example indicates that in order to call three events independent, we want each
event to be independent of any combination of the other two. It turns out that the
following definition guarantees this (see Problem 53).

4Ironically, in the first edition of his excellent book Innumeracy: Mathematical Illiteracy and Its Conse-
quences, John Allen Paulos described this problem a bit obscurely [4]. His terse formulation was “Consider
now some randomly selected family of four. Given that Myrtle has a sibling, what is the conditional prob-
ability that her sibling is a brother?” and he went on to claim that the probability is 2

3 . This ambiguity was
clarified in the 2001 edition.



38 BASIC PROBABILITY THEORY

Definition 1.6. Three events A, B, and C are called independent if the following
two conditions hold:

(a) They are pairwise independent

(b) P(A ∩ B ∩ C) = P(A)P(B)P(C)

For more than three events, the definition is analogous and can also be extended to
infinitely many events.

Definition 1.7. The events A1, A2, . . . are called independent if

P(Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P(Ai1 )P(Ai2 ) · · · P(Aik )

for all sequences of integers i1 < i2 < · · · < ik, k = 2, 3, . . .

Sometimes events satisfying this definition are called mutually independent, to dis-
tinguish from pairwise independent, which, as we have seen, is a weaker property.

Example 1.41. Recall the experiment of rolling a die repeatedly until the first 6
appears. What is the probability that this occurs in the nth roll for n = 1, 2, . . . ?

The event of interest is

Bn = {first 6 in nth roll}, n = 1, 2, . . .

and let us also introduce the events

Ak = {6 in kth roll}, k = 1, 2, . . .

Note the difference: Bn is the event that the first 6 comes in the nth roll; Ak, the event
that we get 6 in the kth roll but not necessarily for the first time. How do the events
relate to each other? Obviously, B1 = A1. For n = 2, note that B2 is the event that
we do not get 6 in the first roll and that we do get 6 in the second roll. In terms of the
Ak, this is Ac

1 ∩ A2. In general

Bn = Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n−1 ∩ An

To compute the probability of Bn, we make two reasonable assumptions: that the die
is fair and that rolls are independent. The first assumption means that P(Ak) = 1

6 for
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all k and the second that probabilities of intersections equal products of probabilities.
Since independence carries over to complements, we get

P(Bn) = P(Ac
1 ∩ Ac

2 ∩ · · · ∩ Ac
n−1 ∩ An)

= P(Ac
1)P(Ac

2) · · · P(Ac
n−1)P(An)

= 5

6
× 5

6
× · · · × 5

6
× 1

6

and we conclude that

P(Bn) = 1

6

(
5

6

)n−1

, n = 1, 2, . . .

�

More generally, consider independent repetitions of a trial where the event A occurs
with probability p > 0 and let E be the event that we never get A. With

Bn = {first occurrence ofA comes after the nth trial}
we have

E =
∞⋂

n=1

Bn

where

P(Bn) = P(the first n trials give Ac) = (1 − p)n

by independence. The Bn are clearly decreasing (why?), so by Proposition 1.6 we get

P(E) = lim
n→∞ P(Bn) = 0

and we summarize in the following corollary.

Corollary 1.5. In independent repetitions of a trial, any event with positive proba-
bility occurs sooner or later.

From Example 1.21, we can compute the probability to win the Texas Lotto jackpot
(match all numbers including bonus ball) as 1/47, 784, 352 = 2.1 × 10−8. This is
very small, but if you keep playing, the last result tells you that you will win even-
tually.5 It may take some time, though; there are two draws a week and if you play
every time for 50 years, the probability that you never win is

(1 − 2.1 × 10−8)5200 ≈ 0.9999

5The subtle difference between certain occurrence and occurrence with probability one is important in a
more advanced study of probability theory but not for us at this point.
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The probability that you win in a drawing is very low, but since there are millions
of players in each draw, the probability that somebody wins is much higher. Suppose
that 5 million number combinations are played independently and at random for a
drawing. The probability that somebody wins is

1 − (1 − 2.1 × 10−8)5,000,000 ≈ 0.10

which is not that low, and it could be you.

Example 1.42 (Reliability Theory). Consider a system of two electronic compo-
nents connected in series. Each component functions with probability p and the
components function independent of each other. What is the probability that the
system functions?

If we interpret “functions” as the natural “lets current through,” then the system
functions if and only if both components function. Hence, with the events

A = {system functions}
A1 = {first component functions}
A2 = {second component functions}

we get A = A1 ∩ A2 and by independence

P(A) = P(A1)P(A2) = p2

If the components are instead connected in parallel, the system functions as long as
at least one of the components function, and we have

A = A1 ∪ A2

which gives

P(A) = P(A1 ∪ A2) = 1 − P(Ac
1 ∩ Ac

2)

= 1 − (1 − P(A1))(1 − P(A2)) = 1 − (1 − p)2

These are simple examples from the discipline of reliability theory where the proba-
bility of functioning is referred to as the reliability of a system. Hence, we have seen
that the reliability of a series system is p2 and that of a parallel system is 1 − (1 − p)2.
An obvious generalization is to n components, where the reliability of a series system
is pn and that of a parallel system is 1 − (1 − p)n. This does not have to be about
electronic components but applies to any situation where a complex system is depen-
dent on its individual parts to function. The series system is sometimes referred to as
a weakest-link model. �
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1.6 THE LAW OF TOTAL PROBABILITY AND BAYES’ FORMULA

In this section, we will address one of the most important uses of conditional proba-
bilities. The basic idea is that if a probability is hard to compute directly, it might help
to break the problem up in special cases, where in each special case the conditional
probability is easier to compute. For example, suppose that you buy a used car in
a city where street flooding due to heavy rainfall is a common problem. You know
that roughly 5% of all used cars have previously been flood-damaged and estimate
that 80% of such cars will later develop serious engine problems, whereas only 10%
of used cars that are not flood-damaged develop the same problems. What is the
probability that your car will later run into this kind of trouble?

Here is a situation where you can compute the probability in each of two different
cases, flood-damaged or not flood-damaged (and no used-car dealer worth his salt
would ever let you know which).

Let us first think about this in terms of proportions. Out of every 1000 cars sold,
50 are previously flood-damaged and of those, 80%, or 40 cars, will develop serious
engine problems. Among the 950 that are not flood-damaged, we expect 10%, or 95
cars, to develop the same problems. Hence, we get a total of 40 + 95 = 135 cars out
of a 1000, and the probability of future problems is 0.135.

If we introduce the events F = {flood-damaged} and T = {trouble}, we have ar-
gued that P(T ) = 0.135. We also know that P(F ) = 0.05, P(Fc) = 0.95, P(T |F ) =
0.80, and P(T |Fc) = 0.10 and the probability we computed is in fact 0.80 × 0.05 +
0.10 × 0.95 = 0.135. Our probability is a weighted average of the probability in
the two different cases, flood-damaged or not, and the weights are the correspond-
ing probabilities of the cases. The example illustrates the idea behind the following
important result.

Theorem 1.1 (Law of Total Probability). Let B1, B2, . . . be a sequence of events
such that

(a) P(Bk) > 0 for k = 1, 2, . . .

(b) Bi and Bj are disjoint whenever i /= j

(c) S =
∞⋃

k=1

Bk

Then, for any event A, we have

P(A) =
∞∑

k=1

P(A|Bk)P(Bk)

Condition (a) is a technical requirement to make sure that the conditional probabilities
are defined, and you may recall that a collection of sets satisfying (b) and (c) is called
a partition of S.
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Proof. First note that

A = A ∩ S =
∞⋃

k=1

(A ∩ Bk)

by the distributive law for infinite unions. Since A ∩ B1, A ∩ B2, . . . are pairwise
disjoint, we get

P(A) =
∞∑

k=1

P(A ∩ Bk) =
∞∑

k=1

P(A|Bk)P(Bk)

which proves the theorem. �

By virtue of Proposition 1.2, we realize that the law of total probability is also true for
a finite union of events, B1, . . . , Bn. In particular, if we choose n = 2 and B1 equal
to some event B, then B2 must equal Bc, and we get the following corollary.

Corollary 1.6. If 0 < P(B) < 1, then

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)

The verbal description of conditions (b) and (c) in Theorem 1.1 is that we are able
to find different cases that exclude each other and cover all possibilities. This way
of thinking about it is often sufficient to solve problems and saves us the effort to
explicitly find the sample space and the partitioning events.

Example 1.43. A sign reads HOUSTON. Two letters are removed at random and
then put back together again at random in the empty spaces. What is the probability
that the sign still reads HOUSTON?

There are two different cases to consider: the case where two Os are chosen, in
which case the text will always be correct and the case when two different letters are
chosen, in which case the text will be correct when they are put back in their original
order. Clearly, these two cases exclude each other and cover all possibilities and the
assumptions in the law of total probability are satisfied. Hence, without spelling out
exactly what the sample space is, we can define the events

A = {the sign still reads HOUSTON}
B = {two Os are chosen}

and obtain

P(A) = P(A|B)P(B) + P(A|Bc)P(Bc)
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If the two letters are different, they are put back in their original order with probability
1
2 . Hence, the conditional probabilities are

P(A|B) = 1 and P(A|Bc) = 1

2

and P(B) is obtained by noting that we are choosing two letters out of seven without
replacement and without regard to order. The total number of ways to do this is(7

2

) = 21, and since there is only one way to choose the two Os, we get P(B) = 1
21 .

This gives P(Bc) = 20
21 and we get

P(A) = 1 × 1

21
+ 1

2
× 20

21
= 11

21

which is slightly larger than 1
2 , as was to be expected. �

Example 1.44. In the United States, the overall risk of developing lung cancer is
about 0.1%. Among the 20% of the population who are smokers, the risk is about
0.4%. What is the risk that a nonsmoker will develop lung cancer?

Introduce the events C = {cancer} and S = {smoker}. The percentages above give
P(C) = 0.001, P(S) = 0.20, and P(C|S) = 0.004, and we wish to compute P(C|Sc).
The law of total probability gives

P(C) = P(C|S)P(S) + P(C|Sc)P(Sc)

which with our numbers becomes

0.001 = 0.004 × 0.20 + P(C|Sc) × 0.80

which we solve for P(C|Sc) to get

P(C|Sc) = 0.00025

in other words, a 250 in a million risk. �

Example 1.45. Here is an example of a simple game of dice that does not seem to be
to your advantage but turns out to be so.

Consider three dice, A, B, and C, numbered on their six sides as follows:

Die A: 1, 1, 5, 5, 5, 5

Die B: 3, 3, 3, 4, 4, 4

Die C: 2, 2, 2, 2, 6, 6

The game now goes as follows. You and your opponent bet a dollar each, and you offer
your opponent to choose any die and roll it. Next, you choose one of the remaining
dice and roll it, and whoever gets the higher number wins the money. It seems that



44 BASIC PROBABILITY THEORY
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C = 6

A = 1

A = 5

C = 2

FIGURE 1.5 Tree diagram when you roll die C against die A in Example 1.45.

your opponent will have an edge since he gets to choose first. However, it turns out
that once you know his choice, you can always choose so that your probability to win
is more than one half! The reason for this is that, when rolled two by two against each
other, these dice are such that on average A beats B, B beats C, and C beats A. The
probabilities are (using A and C also to denote the numbers on dice A and C)

P(A beats B) = P(A = 5) = 2

3

P(B beats C) = P(C = 2) = 2

3

For the third case, we need to use the law of total probability and get

P(C beats A) = P(C beats A|A = 1) × 1

3
+ P(C beats A|A = 5) × 2

3

= 1 × 1

3
+ P(C = 6) × 2

3
= 1

3
+ 1

3
× 2

3
= 5

9

which is also greater than 1
2 . Although you appear generous to let your opponent

choose first, this is precisely what gives you the advantage.6 �

Tree diagrams provide a nice way to illustrate the law of total probability. We represent
each different case with a branch and look at the leaves to see which cases are of
interest. We then compute the probability by first multiplying along each branch,
then adding across the branches. See Figure 1.5 for an illustration of the situation in
Example 1.45, where you roll die C against die A.

Sometimes, we need to condition repeatedly. For example, to compute P(A|B), it may
be necessary to condition further on some event C. Since a conditional probability is

6A completely deterministic version of this is the game “rock, paper, scissors,” in which you would always
win if your opponent were to choose first. Games like these are called nontransitive.
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a probability, this is nothing new, but the formula looks more complicated. We get

P(A|B) = P(A|B ∩ C)P(C|B) + P(A|B ∩ Cc)P(Cc|B) (1.2)

where we note that every probability has the event B to the right of the conditioning
bar. In Problem 81 you are asked to prove this.

Example 1.46 (Simpson’s Paradox). In a by now famous study of gender bias at
the University of California, Berkeley, it was noted that men were more likely
than women to be admitted to graduate school. In 1 year, in the six largest majors,
45% of male applicants but only 30% of the female ones were admitted. To
further study the bias, we divide the majors into two groups “difficult” and “easy,”
referring to whether it is relatively difficult or easy to be admitted, not to the
subjects themselves. It then turns out that in the “difficult” category, 26% of both
men and women were admitted (actually even slightly above 26% for women and
slightly below for men), so the bias obviously has to be in the other category.
However, in the “easy” category, 80% of women but only 62% of men were
admitted. Thus, there was no bias for difficult majors, a bias against men in easy
majors, and an overall bias against women! Clearly there must be an error somewhere?

Consider a randomly chosen applicant. Let A be the event that the applicant is ad-
mitted, and let M and W be the events that the applicant is a man and a woman,
respectively. We then have P(A|M) = 0.45 and P(A|W) = 0.30. Now also introduce
the events D and E, for “difficult” and “easy” majors. By Table 1.3 we have, for men

P(A|M ∩ D) = 334

1306
≈ 0.26 and P(A|M ∩ E) = 864

1385
≈ 0.62

and for women

P(A|W ∩ D) ≈ 0.26 and P(A|W ∩ E) ≈ 0.80

and hence

P(A|M ∩ D) = P(A|W ∩ D) and P(A|M ∩ E) < P(A|W ∩ E)

but

P(A|M) > P(A|W)

TABLE 1.3 Numbers of Admitted, and Total Numbers
(in Parentheses) of Male and Female Applicants in the
Two Categories “Easy” and “Difficult” at UC Berkeley

Male Female

Easy major 864 (1385) 106 (133)
Difficult major 334 (1306) 451 (1702)
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Thus, the conditional probabilities of being admitted are equal or higher for women
in both categories but the overall probability for a woman to be admitted is lower
than that of a man. Apparently, there was no error, but it still seems paradoxical. To
resolve this, recall Equation 1.43, by which

P(A|W) = P(A|W ∩ D)P(D|W) + P(A|W ∩ E)P(E|W)

and

P(A|M) = P(A|M ∩ D)P(D|M) + P(A|M ∩ E)P(E|M)

and we realize that the explanation lies in the conditional probabilities P(D|W),
P(E|W), P(D|M), and P(E|M), which reflect how men and women choose their
majors. The probabilities that a man chooses a difficult major and an easy major,
respectively, are

P(D|M) = 1306

2691
≈ 0.49 and P(E|M) ≈ 0.51

and the corresponding probabilities for women are

P(D|W) = 1702

1835
≈ 0.93 and P(E|W) ≈ 0.07

Thus, women almost exclusively applied for difficult majors, whereas men applied
equally for difficult and easy majors, and this is the resolution of the paradox. Was
it harder for women to be admitted? Yes. Was this due to gender discrimination? No.
The effect on admission rates that was initially attributed to gender bias was really
due to choice of major, an example of what statisticians call confounding of factors.
The effect of gender on choice of major is a completely different issue. �

The last example is a version of what is known as Simpson’s paradox. If we formulate
it as a mathematical problem, it completely loses its charm. The question then becomes
if it is possible to find numbers A, a, B, b, p, and q, all between 0 and 1, such that

A > a and B > b

and

pA + (1 − p)B < qa + (1 − q)b

No problems here. Let A > a > B > b, and choose p sufficiently close to 0 and q

sufficiently close to 1. Ask your mathematician friends this question, and also if there
is something strange about the Berkeley admissions data, and don’t be surprised if
you get the answer “Yes” to both questions!
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1.6.1 Bayes’ Formula

We next turn to the situation when we know conditional probabilities in one direction
but want to compute conditional probabilities “backward.” The following result is
helpful.

Proposition 1.11 (Bayes’ Formula). Under the same assumptions as in the law
of total probability and if P(A) > 0, then for any event Bj , we have

P(Bj|A) = P(A|Bj)P(Bj)
∞∑

k=1

P(A|Bk)P(Bk)

Proof. Note that, by the law of total probability, the denominator is nothing but P(A),
and hence we must show that

P(Bj|A) = P(A|Bj)P(Bj)

P(A)

which is to say that

P(Bj|A)P(A) = P(A|Bj)P(Bj)

which is true since both sides equal P(A ∩ Bj), by the definition of conditional
probability. �

Again, the obvious analog for finitely many conditioning events holds, and in partic-
ular we state the case of two such events, B and Bc, as a corollary.

Corollary 1.7. If 0 < P(B) < 1 and P(A) > 0, then

P(B|A) = P(A|B)P(B)

P(A|B)P(B) + P(A|Bc)P(Bc)

Example 1.47. The polygraph is an instrument used to detect physiological signs
of deceptive behavior. Although it is often pointed out that the polygraph is not a
lie detector, this is probably the way most of us think of it. For the purpose of this
example, let us retain this notion. It is debated how accurate a polygraph test is, but
there are several reports of accuracies above 95% (and as a counterweight, a Web site
that gladly claims “Don’t worry, the polygraph can be beaten rather easily!”). Let
us assume that the polygraph test is indeed very accurate and that it decides “lie” or
“truth” correctly with probability 0.95. Now consider a randomly chosen individual
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who takes the test and is determined to be lying. What is the probability that this
person did indeed lie?

First, the probability is not 0.95. Introduce the events

L = {the person tells a lie}
LP = {the polygraph reading says the person is lying}

and let T = Lc and TP = Lc
P . We are given the conditional probabilities P(LP |L) =

P(TP |T ) = 0.95, but what we want is P(L|LP ). By Bayes’ formula

P(L|LP ) = P(LP |L)P(L)

P(LP |L)P(L) + P(LP |T )P(T )

= 0.95P(L)

0.95P(L) + 0.05(1 − P(L))

and to be able to finish the computation we need to know the probability that a
randomly selected person would lie on the test. Suppose that we are dealing with a
largely honest population; let us say that one out of a thousand would tell a lie in the
given situation. Then P(L) = 0.001, and we get

P(L|LP ) = 0.95 × 0.001

0.95 × 0.001 + 0.05 × 0.999
≈ 0.02

and the probability that the person actually lied is only 0.02. Since lying is so rare,
most detected lies actually stem from errors, not actual lies. One way to understand
this is to imagine that a large number of, say, 100,000, people are tested. We then
expect 100 liars and of those, 95 will be discovered. Among the remaining 99,900
truthtellers, we expect 5%, or 4995 individuals to be misclassified as liars. Hence,
out of a total of 95 + 4995 = 5090 individuals who are classified as liars, only 95,
or 2% actually are liars. A truth misclassified as a lie is called a “false-positive” and
in this case, we say that the false-positive rate is 98%. �

In the last example, there are two types of errors we can make: classifying a lie as
truth, and vice versa. The probability P(LP |L) to correctly classify a lie as a lie is
called the sensitivity of the procedure. Obviously, we want the sensitivity to be high
but with increased sensitivity we may risk to misclassify more truths as lies as well.
Another probability of interest is therefore the specificity, namely, the probability
P(TP |T ) that a truth is correctly classified as truth. For an extreme but illustrative
example, we can achieve maximum sensitivity by classifying all statements as lies;
however, the specificity is then 0. Likewise, we can achieve maximum specificity by
classifying all statements as truths but then instead getting sensitivity 0. The terms
are borrowed from the field of medical testing for illnesses where good procedures
should be both sensitive to detect an illness but also specific for that illness. For
example, using high fever to diagnose measles would have high sensitivity (not many
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cases of measles will go undetected) but low specificity (many other diseases cause
high fever and will be misclassified as measles).

Another probability of interest in any kind of testing situation is the false-positive
rate, mentioned above. In the lie-detector example, it is P(T |LP ), the probability
that a detected lie is actually a truth. Also, the false-negative rate is P(L|TP ), the
probability that a detected truth is actually a lie. The sensitivity, specificity, false-
positive rate, and false-negative rate are related via Bayes’ formula where we also
need to know the base rate, namely, the unconditional probability P(T ) of telling a lie
(or having a disease). For typical examples from medical testing, see Problem 92 and
subsequent problems.

Example 1.48 (The Monty Hall Problem). This problem has become a modern
classic and was hotly discussed after it first appeared in the column “Ask Marilyn”
in Parade Magazine in 1991. The problem was inspired by the game show “Let’s
Make a Deal” with host Monty Hall, and it goes like this. You are given the choice
of three doors. Behind one door is a car; behind the others are goats. You pick a
door without opening it, and the host opens another door that reveals a goat. He
then gives you the choice to either open your door and keep what is behind it,
or switch to the remaining door and take what is there. Is it to your advantage to switch?

At first glance, it would not seem to make a difference whether you stay or switch
since the car is either behind your door or behind the remaining door. However, this is
incorrect, at least if we make some reasonable assumptions. To solve the problem, we
assume that the car and goats are placed at random behind the doors and that the host
always opens a door and shows a goat. Let us further assume that in the case where
you have chosen the car, he chooses which door to open at random. Now introduce
the two events

C = {you chose the car}
G = {he shows a goat}

so that the probability to win after switching is 1 − P(C|G). But

P(C|G) = P(G|C)P(C)

P(G|C)P(C) + P(G|Cc)P(Cc)
= P(C) = 1

3

since P(G|C) = P(G|Cc) = 1. Thus, if you switch, you win the car with probabil-
ity 2

3 , so switching is to your advantage. Note that the events G and C are in fact
independent.

Intuitively, since you know that the host will always show you a goat, there is
no additional information when he does. Since there are two goats and the host will
always show one of them, to choose a door and then switch is equivalent to choosing
the two other doors and telling the host to open one of them and show you a goat.
Your chance of winning the car is then 2

3 .
One variant of the problem that has been suggested to make it easier to understand

is to assume that there are not 3 but 1000 doors. One has a car, and 999 have goats.
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Once you have chosen, the host opens 998 doors and shows you 998 goats. Given how
unlikely it is that you found the car in the first pick, is it not obvious that you should
now switch to the remaining door? You could also use one of the several computer
simulations that are available online, or write your own. Still not convinced? Ask
Marilyn. �

Example 1.49 (The Monty Hall Problem Continued). Suppose that you are playing
“Let’s Make a Deal” and have made your choice when the host suddenly realizes
that he has forgotten where the car is. Since the show must go on, he keeps a straight
face, takes a chance, and opens a door that reveals a goat. Is it to your advantage to
switch?

Although the situation looks the same from your perspective, it is actually different
since it could have happened that the host revealed the car. With C and G as above,
Bayes’ formula now gives

P(C|G) = P(G|C)P(C)

P(G|C)P(C) + P(G|Cc)P(Cc)

= 1 × (1/3)

1 × (1/3) + (1/2) × (2/3)
= 1

2

so it makes no difference whether you stay or switch. In this case, the showing of a
goat behind the open door actually does give some additional information, and G and
C are no longer independent. �

Example 1.50 (The Island Problem). Probability theory is frequently used in courts
of law, especially when DNA evidence is considered. As an example, consider the
following situation. A person is murdered on an island, and the murderer must be one
of the n remaining islanders. DNA evidence on the scene reveals that the murderer
has a particular genotype that is known to exist in a proportion p in the general
population, and we assume that the islanders’ genotypes are independent. Crime
investigators start screening all islanders for their genotypes. The first one who is
tested is Mr Joe Bloggs, who turns out to have the murderer’s genotype. What is the
probability that he is guilty?

To solve this, we introduce the events

G = {Mr Bloggs is guilty}
B = {Mr Bloggs’ genotype is found at the scene of the crime}

so that we are asking for the probability P(G|B). By Bayes’ formula

P(G|B) = P(B|G)P(G)

P(B|G)P(G) + P(B|Gc)P(Gc)
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Here, P(G) is the probability that Mr Bloggs is guilty before any genotyping has been
done, and if we assume that there is no reason to suspect any particular person more
than anyone else, it is reasonable to let P(G) = 1

n
. If Mr Bloggs is guilty, then his

genotype is certain to show up at the scene of the crime, and we have P(B|G) = 1.
If Mr Bloggs is innocent, his genotype can still show up by chance, which gives
P(B|Gc) = p, the proportion of his genotype in the population. All put together, we
get

P(G|B) = 1 × 1/n

1 × 1/n + p × (n − 1)/n
= 1

1 + (n − 1)p

as the probability that Mr Bloggs is guilty. �

The last problem is a simple example of the general problem of how to quantify the
weight of evidence in forensic identification. This “island problem” has been analyzed
and discussed by lawyers and probabilists and different approaches have shown to
give different results (not all correct).7 We will return to this in more detail in Section
2.5. For now, let us present a simple example that demonstrates how calculations can
go agley.

Example 1.51. You know that your new neighbors have two children. One night you
hear a stone thrown at your window and you see a child running from your yard into
the neighbor’s house. It is dark, and the only thing you can see for certain is that
the child is a boy. The next day you walk over to the neighbor’s house and ring the
doorbell. A boy opens the door. What is the probability that he is guilty?

We will do this in two different ways. First approach: If the other child is a girl, you
know that the boy is guilty and if the other child is a boy, the boy who opened the
door is equally likely to be guilty or not guilty. Thus, with

G = {child who opened the door is guilty}

we condition on the gender of the other child and recall Example 1.39 to obtain

P(G) = P(G|boy)P(boy) + P(G|girl)P(girl)

= 1

2
× 1

2
+ 1 × 1

2
= 3

4
.

Second approach: Note how the situation is similar to that in the previous example,
with genotype replaced by gender and Mr Bloggs replaced by the child who opened

7The island problem is made up (yes, really!), but there is a famous real case, People versus Collins, in
which a couple in Los Angeles was first convicted of a crime, on the basis of circumstantial evidence,
and later acquitted by the California Supreme Court. Both the initial verdict and the appeal were based on
(questionable) probability arguments.
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the door. In that formulation, we have n = 2 and p = 1
2 and we get

P(child who opened the door is guilty) = 1

1 + 1 × (1/2)
= 2

3

There we go again; different methods give different results! As usual, we need to
be very careful with which events we condition on. Let us assume that each child is
equally likely to decide to go out and throw a stone at your window and that each
child is equally likely to open the door. For each gender combination of two children,
we thus choose at random who is guilty and who opens the door, so that each gender
combination is split up into four equally likely cases. Let us use the subscript d for
the child who opened the door and the superscript g for the child who is guilty. The
sample space consists of the 16 equally likely outcomes

S = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bdg

g, bggd, bg
g
d,

g
g
db, gdb

g, ggbd, gb
g
d, g

g
dg, gdg

g, gggd, gg
g
d}

and the event that the child who opened the door is guilty is

G = {bg
db, bb

g
d, b

g
dg, gb

g
d, bg

g
d, g

g
db, g

g
dg, gg

g
d}

What event do we condition on? We know two things: that the guilty child is a boy
and that a boy opened the door. These events are

A = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bggd, gdb

g, gb
g
d}

B = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, bdg

g, ggbd, gb
g
d}

and we condition on their intersection

A ∩ B = {bg
db, bdb

g, bgbd, bb
g
d, b

g
dg, gb

g
d}

Since four of these six outcomes are in G and the distribution on S is uniform, we get

P(child who opened the door is guilty) = P(G|A ∩ B) = 2

3

in accordance with the previous example.
The first approach gives the wrong solution but why? When we computed the

probabilities P(boy) and P(girl), we implicitly conditioned on event B above but
forgot to also condition on A. What we need to do is to compute P(boy) as

P(other child is a boy |A ∩ B) = 2

3

and not 1
2 . Note how the conditional probability that the other child is a boy is higher

now that we also know that the guilty child is a boy. This is quite subtle and resembles
the situation in Example 1.39, in the sense that we need to be careful to condition on
precisely the information we have, no more and no less. We can now state the correct
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version of the first solution. Everything must be computed conditioned on the event
A ∩ B, but for ease of notation let us not write this conditioning out explicitly. We get

P(G) = P(G|boy)P(boy) + P(G|girl)P(girl)

= 1

2
× 2

3
+ 1 × 1

3
= 2

3

just as we should. For a variant, see Problem 99. �

Example 1.52. Consider the previous example and also assume that on your way
over to the neighbor’s, you meet another neighbor who tells you that she saw the
mother of the family take a walk with a boy a few days ago. If a boy opens the door,
what is the probability that he is guilty?

By now you know how to solve this. In the previous sample space, split each outcome
further into two, marking who the mother took a walk with, and proceed. The sample
space now has 32 outcomes, and we will suggest a more convenient approach. We
can view the various sightings of a boy as repeated sampling with replacement from
a randomly chosen family. Let us convert this into a problem about black and white
balls in urns.

Consider three urns, containing two balls each, such that the kth urn contains k

black balls, k = 0, 1, 2. We first choose an urn according to the probabilities 1
4 , 1

2 , and
1
4 (think of the gender combinations above) and then pick balls with replacement and
note their colors. If we do this j times and get only black balls, what is the probability
that we have chosen the urn with only black balls? Let

B = {get only black balls}
Uk = {the kth urn chosen}, k = 0, 1, 2

and compute P(U2|B). The reversed probabilities are

P(B|U0) = 0, P(B|U1) = 1

2j
, P(B|U2) = 1

and Bayes’ formula gives

P(U2|B) = P(B|U2)P(U2)

P(B|U1)P(U1) + P(B|U2)P(U2)

= 1 × (1/4)

(1/2j) × (1/2) + 1 × (1/4)
= 2j−1

2j−1 + 1

In our examples with families and their children, we let urns represent families and
black and white balls represent genders. Consider the probability that the other child
has the same gender as the observed child. In Example 1.39, we have j = 1, which
gives probability 1

2 and in Example 1.51 we have j = 2, which gives probability 2
3 .

Finally, in this example we have j = 3 and probability 4
5 . The more observations we

have on boys, the stronger our belief that both children are boys. �
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FIGURE 1.6 A Punnett square illustrating possible genotypes.

1.6.2 Genetics and Probability

Genetics is a science where probability theory is extremely useful. Recall that genes
occur in pairs where one copy is inherited from the mother and one from the father.
Suppose that a particular gene has two different alleles (variants) called A and a.
An individual can then have either of the three genotypes AA, Aa, and aa. If the
parents both have genotype Aa, what is the probability that their child gets the same
genotype?

We assume that each of the two gene copies from each parent is equally likely to
be passed on to the child and that genes from the father and the mother are inherited
independently. There are then the four equally likely outcomes illustrated in Figure
1.6, and the probability that the child also has genotype Aa is 1

2 (order has no meaning
here, so Aa and aA are the same). Each of the genotypes AA and aa has probability
1
4 . The square in the figure is an example of a Punnett square.

Example 1.53. An allele is said to be recessive if it is required to exist in two copies
to be expressed and dominant if one copy is enough. For example, the hereditary
disease cystic fibrosis (CF) is caused by a recessive allele of a particular gene. Let us
denote this allele C and the healthy allele H so that only individuals with genotype
CC get the disease. Individuals with genotype CH are carriers, that is, they have
the disease-causing allele but are healthy. It is estimated that approximately 1 in 25
individuals are carriers (among people of central and northern European descent; it
is much less common in other ethnic groups). Given this information, what is the
probability that a newborn of healthy parents has CF?

Introduce the events

D = {newborn has CF}
B = {both parents are carriers}

so that

P(D) = P(D|B)P(B)
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since Bc is the event that at least one parent has genotype HH , in which case the
baby will also be healthy. Assuming that the mother’s and father’s genotypes are
independent, we get

P(B) = 1

25
× 1

25
= 1

625

and since the child will get the disease only if it inherits the C allele from each parent,
we get P(D|B) = 1

4 , which gives

P(D) = 1

625
× 1

4
= 1

2500

In other words, the incidence of CF among newborns is 1 in 2500, or 0.04%.
Now consider a family with one child where we know that both parents are healthy,

that the mother is a carrier of the disease allele and nothing is known about the father’s
genotype. What is the probability that the child neither is a carrier nor has the disease?

Let E be the event we are interested in. The mother’s genotype is CH , and we
condition on the father’s genotype to obtain

P(E) = P(E|CH)P(CH) + P(E|HH)P(HH)

= 1

4
× 1

25
+ 1

2
× 24

25
= 0.49

where we figure out the conditional probabilities with Punnett squares. See the prob-
lem section at the end of the chapter for more on genetics. �

1.6.3 Recursive Methods

Certain probability problems can be solved elegantly with recursive methods,
involving the law of total probability. The general idea is to condition on a number
of cases that can either be solved explicitly or lead back to the original problem. We
will illustrate this in a number of examples.

Example 1.54. In the final scene of the classic 1966 Sergio Leone movie The Good,
the Bad, and the Ugly, the three title characters, also known as “Blondie,” “Angel
Eyes,” and “Tuco,” stand in a cemetery, guns in holsters, ready to draw. Let us
interfere slightly with the script and assume that Blondie always hits his target, Angel
Eyes hits with probability 0.9, and Tuco with probability 0.5. Let us also suppose
that they take turns in shooting, that whomever is shot at shoots next (unless he is
hit), and that Tuco starts. What strategy maximizes his probability of survival?

Introduce the events

S = {Tuco survives}
H = {Tuco hits his target}
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Let us first suppose that Tuco tries to kill Blondie. If he fails, Blondie kills Angel
Eyes, and Tuco gets one shot at Blondie. We thus have

P(S) = P(S|H)P(H) + P(S|Hc)P(Hc) = P(S|H)
1

2
+ 1

4

where we need to find P(S|H), the probability that Tuco survives a shootout with
Angel Eyes, who gets the first shot. If we assume an infinite supply of bullets (hey,
it’s a Clint Eastwood movie!), we can solve this recursively. Note how this is repeated
conditioning, as in Equation (1.43), but let us ease the notation and rename the event
that Tuco survives the shootout T . Now let p = P(T ) and condition on the three
events

A = {Angel Eyes hits}
B = {Angel Eyes misses, Tuco hits}
C = {Angel Eyes misses, Tuco misses}

to obtain

p = P(T |A)P(A) + P(T |B)P(B) + P(T |C)P(C)

where P(A) = 0.9, P(B) = 0.1 × 0.5 = 0.05, P(C) = 0.1 × 0.5 = 0.05, P(T |A) =
0, and P(T |B) = 1. To find P(T |C), note that if both Angel Eyes and Tuco have
missed their shots, they start over from the beginning and hence P(T |C) = p. This
gives

p = 0.05 + 0.05p

which gives p = 0.05/0.95, and with this strategy, Tuco has survival probability

P(S) = 0.05

0.95
× 0.5 + 0.25 ≈ 0.28

Next, suppose that Tuco tries to kill Angel Eyes. If he succeeds, he faces certain
death as Blondie shoots him. If he fails, Angel Eyes will try to kill Blondie to maximize
his own probability of survival. If Angel Eyes fails, Blondie kills him for the same
reason and Tuco again gets one last shot at Blondie. Tuco surviving this scenario has
probability 0.5 × 0.1 × 0.5 = 0.025. If Angel Eyes succeeds and kills Blondie, Tuco
must again survive a shootout with Angel Eyes but this time, Tuco gets to start. By
an argument similar to that stated above, his probability to survive the shootout is
p = 0.5 + 0.05p that gives p = 0.5/0.95 and Tuco’s survival probability is

P(S) = 0.025 + 0.5 × 0.9 × 0.5

0.95
≈ 0.26

not quite as good as with the first strategy.
Notice, however, that Tuco really gains from missing his shot, letting the two better

shots fight it out first. The smartest thing he can do is to miss on purpose! If he aims at
Blondie and misses, Blondie kills Angel Eyes and Tuco gets one last shot at Blondie.
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His survival probability is 0.5. An even better strategy is to aim at Angel Eyes, miss
on purpose, and give Angel Eyes a chance to kill Blondie. If Angel Eyes fails, he is a
dead man and Tuco gets one last shot at Blondie. If Angel Eyes succeeds, Tuco again
needs to survive the shootout which, as we just saw, has probability p = 0.5/0.95
and his overall survival probability is

P(S) = 0.1 × 0.5 + 0.9 × 0.5

0.95
≈ 0.52

When Fredric Mosteller presents a similar problem in his 1965 book Fifty Challenging
Problems in Probability [1], he expresses some worry over the possibly unethical
dueling conduct to miss on purpose. In the case of Tuco, we can safely disregard any
such ethical considerations. �

Example 1.55. The shootout between Tuco and Angel Eyes in the previous example
is a special case of the following situation: Consider an experiment where the events
A and B are disjoint and repeat the experiment until either A or B occurs. What is
the probability that A occurs before B?

First, by Corollary 1.5, we will sooner or later get either A or B. Let C be the event
that A occurs before B, let p = P(C), and condition on the first trial. If we get A, we
have A before B for certain and if we get B, we do not. If we get neither, that is, get
(A ∪ B)c, we start over. The law of total probability now gives

p = P(C|A)P(A) + P(C|B)P(B) + P(C|(A ∪ B)c)P(A ∪ B)c)

= P(A) + p(1 − P(A ∪ B))

= P(A) + p(1 − (P(A) + P(B)))

and we have established an equation for p. Solving it gives

p = P(A)

P(A) + P(B)

�

Example 1.56. Recall that a single game in tennis is won by the first player to win
four points but that it must also be won by a margin of at least two points. If no
player has won after six played points, they are at deuce and the first to get two
points ahead wins the game. Suppose that Ann is the server and has probability p of
winning a single point against Bob, and suppose that points are won independent of
each other. If the players are at deuce, what is the probability that Ann wins the game?

We are waiting for the first player to win two consecutive points from deuce, so let
us introduce the events

A = {Ann wins two consecutive points from deuce}
B = {Bob wins two consecutive points from deuce}
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with the remaining possibility that they win a point each, in which case they are back
at deuce. By independence of consecutive points, P(A) = p2 and P(B) = (1 − p)2,
and by Example 1.55 we get

P(Ann wins) = p2

p2 + (1 − p)2

�

Example 1.57. The next sports application is to the game of badminton. The scoring
system is such that you can score a point only when you win a rally as the server. If
you win a rally as the receiver, the score is unchanged, but you get to serve and thus
the opportunity to score. Suppose that Ann wins a rally against Bob with probability
p, regardless of who serves (a reasonable assumption in badminton but would,
of course, not be so in tennis, where the server has a big advantage). What is the
probability that Ann scores the next point if she is the server?

If Ann is the server, the next point is scored either when she wins a rally as server
or loses two consecutive rallies starting from being server. In the remaining case, the
players will start over from Ann being the server with no points scored yet. Hence,
we can apply the formula from Example 1.55 to the events

A = {Ann wins a rally as server}
B = {Ann loses two consecutive rallies as server}

to obtain

P(Ann scores next point) = P(A)

P(A) + P(B)
= p

p + (1 − p)2

If the players are equally good, so that p = 1
2 , the server thus has a 2

3 probability to
score the next point. �

Example 1.58 (Gambler’s Ruin). Next, Ann and Bob play a game where a fair coin
is flipped repeatedly. If it shows heads, Ann pays Bob one dollar, otherwise Bob
pays Ann one dollar. If Ann starts with a dollars and Bob with b dollars, what is the
probability that Ann ends up winning all the money and Bob is ruined?

Introduce the event

A = {Ann wins all the money}

and let pa be the probability of A if Ann’s initial fortune is a. Thinking a few minutes
makes us realize that it is quite complicated to compute pa directly. Instead, let us
condition on the first flip and note that if it is heads, the game starts over with the
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new initial fortunes a − 1 and b + 1, and if it is tails, the new fortunes are a + 1 and
b − 1. Introduce the events

H = {heads in first flip} and T = {tails in first flip}
and apply the law of total probability to get

pa = P(A|H)
1

2
+ P(A|T )

1

2
= 1

2
(pa−1 + pa+1)

or equivalently

pa+1 = 2pa − pa−1

First note that p0 = 0 and let a = 1 to obtain

p2 = 2p1

With a = 2 we get

p3 = 2p2 − p1 = 3p1

and we find the general relation

pa = ap1

Now, pa+b = 1, and hence

p1 = 1

a + b

which finally gives the solution

P(Ann wins all the money) = a

a + b

By symmetry, the same argument applies to give

P(Bob wins all the money) = b

a + b

Note that this means that the probability that somebody wins is 1, which excludes the
possibility that the game goes on forever, something we cannot immediately rule out.

This gambler’s ruin problem is an example of a random walk. We may think of
a particle that in each step decides to go up or down (or, if you prefer, left/right),
and does so independent of its previous path.8 We can view the position after n steps
as Ann’s total gain, so if the walk starts in 0, Ann has won the game when it hits
b, and she has lost when it hits −a. We refer to −a and b as absorbing barriers
(see Figure 1.7). �

8A more romantic allegory is that of a drunken Dutchman who staggers back and forth until he either is
back in his favorite bruine cafe or falls into the canal.
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Ruin after 13 steps

b

− a

FIGURE 1.7 Gambler’s ruin as a random walk.

Example 1.59. Consider the gambler’s ruin problem from the previous example, but
suppose that Ann has only one dollar and Bob is infinitely wealthy. What is the
probability that Ann eventually goes broke?

Since the range is infinite, we cannot use the technique from above, but let us still
condition on the first coin flip. If it shows heads, Ann’s fortune drops to zero and she
is ruined. If it shows tails, Ann’s fortune goes up to $2, and the game continues. If
Ann is to go broke, her fortune must eventually hit 0, and before it does so, it must
first hit 1. Now, the probability to eventually hit 1 starting from 2 is the same as the
probability to eventually hit 0 starting from 1, and once her fortune is back at 1, the
game starts over from the beginning. If we let B = {Ann goes broke eventually} and
condition on the first flip being heads or tails, we thus get

P(B) = P(B|H)P(H) + P(B|T )P(T ) = 1

2
+ P(B|T )

1

2

Now let q = P(B). By the argument above, P(B|T ) = q2, and we get the equation

q = 1

2
+ q2

2

which we solve for q to get q = 1, so Ann will eventually go broke. Since the game
is fair, there is no trend that drags her fortune down toward ruin, only inevitable bad
luck. �

Example 1.60. Consider the gambler’s ruin problem but suppose that the game is
unfair, so that Ann wins with probability p /= 1

2 in each round. If her initial fortune
is a and Bob’s initial fortune is b, what is the probability that she wins?

The solution method is the same as in the original gambler’s ruin: to condition on
the first flip and apply the law of total probability. Again, let A be the event that Ann
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wins and pa the probability of A if she starts with a dollars. For ease of notation, let
q = 1 − p, the probability that Ann loses a round. We get

pa = P(A|H)P(H) + P(A|T )P(T ) = pa−1q + pa+1p

which gives

pa+1 = 1

p
(pa − qpa−1)

First let a = 1. Since p0 = 0, we get

p2 = 1

p
p1

which we rewrite as

p2 =
(

1 + q

p

)
p1

For a = 2, we get

p3 = 1

p
(p2 − qp1)

= 1

p

(
1 + q

p
− q

)
p1 =

(
1 + q

p
+

(
q

p

)2
)

p1

and the general formula emerges as

pa =
(

1 + q

p
+

(
q

p

)2

+ · · · +
(

q

p

)a−1
)

p1 = 1 − (q/p)a

1 − (q/p)
p1

Finally, we use pa+b = 1 to obtain

1 − (q/p)a+b

1 − (q/p)
p1 = 1

which gives

p1 = 1 − (q/p)

1 − (q/p)a+b

and the probability that Ann wins, starting from a fortune of a dollars, is thus

pa = 1 − (q/p)a

1 − (q/p)a+b

if p /= 1
2 . The game is unfair to Ann if p < 1

2 and to Bob if p > 1
2 . It is interesting to

note that the change in winning probabilities can be dramatic for small changes of p.
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For example, if the players start with 20 dollars each and p = 1
2 , they are equally

likely to win in the end. Now change p to 0.55, so that Ann has a slight edge. Then

p20 = 1 − (0.45/0.55)20

1 − (0.45/0.55)40 ≈ 0.98

so Ann is almost certain to win. See Problem 106 for an interesting application to
roulette. �

Example 1.61 (Penney-ante). We finish the section with a game named for Walter
Penney, who in 1969 described it in an article in Journal of Recreational Mathematics.
If a fair coin is flipped three times, there are eight outcomes

HHH, HHT, HTH, THH, HTT, THT, TTH, TTT

each of which has probability 1
8 . You now suggest the following game to your friend

John.9 You bet $1 each, he gets to choose one of the eight patterns, and you choose
another. A coin is flipped repeatedly, and the sequence of heads and tails is recorded.
Whoever first sees his sequence come up wins. Since all patterns are equally likely
to come up in a sequence of three flips, this game seems fair. However, it turns out
that after John has chosen his pattern, you can always choose so that your chance of
winning is at least 2

3 !

The idea is to always let your sequence end with the two symbols that his begins with.
Intuitively, this means that whenever his pattern is about to come up, there is a good
chance that yours has come up already. For example, if he chooses HHH , you choose
THH , and the only way in which he can win is if the first three flips give heads.
Otherwise, the sequence HHH cannot appear without having a T before it, and thus
your pattern THH has appeared. With these choices, your probability to win is 7

8 .
The general strategy is to let his first two be your last two, and never choose a

palindrome. Suppose that John chooses HTH so that according to the strategy, you
choose HHT . Let us calculate your probability of winning.

Let A be the event that you win, and let p be the probability of A. To find p, we
condition on the first flip. If this is T , the game starts over, and hence P(A|T ) = p.
If it is H , we condition further on the second flip. If this is H , you win (if we start
with HH , then HHT must come before HTH), and if it is T , we condition further on
the third flip. If this is H , the full sequence is HTH , and you have lost. If it is T , the
full sequence is HTT and the game starts over. See the tree diagram in Figure 1.8 for

9Named after John Haigh, who in his splendid book Taking Chances: Winning with Probability [3] describes
this game and names the loser Doyle after Doyle Lonnegan, victim in the 1973 movie The Sting. I feel that
Doyle has now lost enough and in this way let him get a small revenge. Hopefully, John’s book has sold
so well that he is able to take the loss.
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H

Lose

Start over
T

H

T

H

T
Start over

Win

FIGURE 1.8 The four possible cases in Penney-ante when HHT competes with HTH .

an illustration of the possible cases. The law of total probability gives (ignoring the
case in which you lose)

p = P(A|T )P(T ) + P(A|HH)P(HH) + P(A|HTT )P(HTT )

= p × 1

2
+ 1 × 1

4
+ p × 1

8
= 2 + 5p

8

which we solve for p to get p = 2
3 . Just as in the dice game in Example 1.45, your

apparent generosity to let your opponent choose first is precisely what gives you the
advantage. See also Problem 108. �

PROBLEMS

Section 1.2. Sample Spaces and Events

1. Suggest sample spaces for the following experiments: (a) Three dice are rolled
and their sum computed. (b) Two real numbers between 0 and 1 are chosen.
(c) An American is chosen at random and is classified according to gender and
age. (d) Two different integers are chosen between 1 and 10 and are listed in
increasing order. (e) Two points are chosen at random on a yardstick and the
distance between them is measured.

2. Suggest a sample space for Example 1.8.

3. Consider the experiment to toss a coin three times and count the number of
heads. Which of the following sample spaces can be used to describe this
experiment?
(a) S = {H, T }
(b) S = {HHH, TTT }
(c) S = {0, 1, 2, 3}
(d) S = {1, 2, 3}
(e) S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT }
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4. Let A, B, and C be three events. Express the following events in terms of A, B,
and C: (a) exactly one of the events occurs. (b) None of the events occurs. (c)
At least one of the events occurs. (d) All of the events occur.

5. The Stanley Cup final is played in best of seven games. Suppose that the good
old days are brought back and that the final is played between the Boston
Bruins and Montreal Canadiens. Let Bk be the event that Boston wins the kth
game and describe the following events in terms of the Bk: (a) Boston wins
game 1, (b) Boston loses game 1 and wins games 2 and 3, (c) Boston wins the
series without losing any games, (d) Boston wins the series with one loss, and
(e) Boston wins the first three games and loses the series.

Section 1.3. The Axioms of Probability

6. A certain thick and asymmetric coin is tossed and the probability that it lands
on the edge is 0.1. If it does not land on the edge, it is twice as likely to show
heads as tails. What is the probability that it shows heads?

7. Let A and B be two events such that P(A) = 0.3, P(A ∪ B) = 0.5, and
P(A ∩ B) = 0.2. Find (a) P(B), (b) the probability that A but not B occurs,
(c) P(A ∩ Bc), (d) P(Ac), (e) the probability that B does not occur, and (f) the
probability that neither A nor B occurs.

8. LetAbe the event that it rains on Saturday andB the event that it rains on Sunday.
Suppose that P(A) = P(B) = 0.5. Furthermore, let p denote the probability
that it rains on both days. Express the probabilities of the following events as
functions of p: (a) it rains on Saturday but not Sunday. (b) It rains on one day
but not the other. (c) It does not rain at all during the weekend.

9. The probability in Problem 8(b) is a decreasing function of p. Explain this
intuitively.

10. People are asked to assign probabilities to the events “rain on Saturday,” “rain
on Sunday,” “rain both days,” and “rain on at least one of the days.” Which of
the following suggestions are consistent with the probability axioms: (a) 70%,
60%, 40%, and 80%, (b) 70%, 60%, 40%, and 90%, (c) 70%, 60%, 80%, and
50%, and (d) 70%, 60%, 50%, and 90%?

11. Two fish are caught and weighed. Consider the events A = {the first weighs
more than 10 pounds}, B = {the second weighs more than 10 pounds}, and
C = {the sum of the weights is more than 20 pounds}. Argue that C ⊆ A ∪ B.

12. Let A, B, and C be three events, such that each event has probability 1
2 , each

intersection of two has probability 1
4 , and P(A ∩ B ∩ C) = 1

8 . Find the proba-
bility that (a) exactly one of the events occurs, (b) none of the events occurs,
(c) at least one of the events occurs, (d) all of the events occur, and (e) exactly
two of the events occur.

13. (a) Let A and B be two events. Show that

P(A) + P(B) − 1 ≤ P(A ∪ B) ≤ P(A) + P(B)
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(b) Let A1, . . . , An be a sequence of events. Show that

n∑
k=1

P(Ak) − (n − 1) ≤ P

(
n⋃

k=1

Ak

)
≤

n∑
k=1

P(Ak)

14. A particular species of fish is known to weigh more than 10 pounds with prob-
ability 0.01. Suppose that 10 such fish are caught and weighed. Show that the
probability that the total weight of the 10 fish is above 100 pounds is at most
0.1.

15. Consider the Venn diagram of four events below. If we use the “area method”
to find the probability of A ∪ B ∪ C ∪ D, we get

P(A ∪ B ∪ C ∪ D) = P(A) + P(B) + P(C) + P(D)

− P(A ∩ B) − P(A ∩ C) − P(B ∩ D) − P(C ∩ D)

+ P(A ∩ B ∩ C ∩ D)

However, this does not agree with Proposition 1.5 for n = 4. Explain!

DC

A B

16. Choose a number at random from the integers 1,. . . ,100. What is the probability
that it is divisible by (a) 2, 3, or 4, (b) i, j, or k?

17. Consider Example 1.9 where you throw a dart at random. Find the probability
that you get (a) 14 or double, (b) 14, double, or triple, (c) even, double, a number
higher than 10, or bull’s eye.

18. Prove Proposition 1.6 by considering disjoint events B1, B2, . . . defined by
B1 = A1, B2 = A2 \ B1, . . . , Bk = Ak \ Bk−1, . . .

Section 1.4. Finite Sample Spaces and Combinatorics

19. You are asked to select a password for a Web site. It must consist of five
lowercase letters and two digits in any order. How many possible such passwords
are there if (a) repetitions are allowed, and (b) repetitions are not allowed?

20. Consider the Swedish license plate from Example 1.16. Find the probability that
a randomly selected plate has (a) no duplicate letters, (b) no duplicate digits,
(c) all letters the same, (d) only odd digits, and (e) no duplicate letters and all
digits equal.

21. “A thousand monkeys, typing on a thousand typewriters will eventually type
the entire works of William Shakespeare” is a statement often heard in one
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form or another. Suppose that one monkey presses 10 keys at random. What is
the probability that he types the word HAMLET if he is (a) allowed to repeat
letters, and (b) not allowed to repeat letters?

22. Four envelopes contain four different amounts of money. You are allowed to
open them one by one, each time deciding whether to keep the amount or
discard it and open another envelope. Once an amount is discarded, you are not
allowed to go back and get it later. Compute the probability that you get the
largest amount under the following different strategies: (a) You take the first
envelope. (b) You open the first envelope, note that it contains the amount x,
discard it and take the next amount which is larger than x (if no such amount
shows up, you must take the last envelope). (c) You open the first two envelopes,
call the amounts x and y, and discard both and take the next amount that is larger
than both x and y.

23. In the early 1970s, four talented Scandinavians named Agneta, Annifrid, Benny,
and Björn put a band together and decided to name it using their first name
initials. (a) How many possible band names were there? What if a reunion is
planned and the reclusive Agneta is replaced by some guy named Robert? (b) A
generalization of (a): You are given n uppercase letters such that the numbers of
A, B, . . . , Z are nA, nB, . . . , nZ, respectively (these numbers may be 0). Show
that you can create

n!

nA!nB! · · · nZ!

different possible words. Compare with your answers in part (a).

24. Prove the following identities (rather than using the definition, try to give
combinatorial arguments):

(a)

(
n + 1

k + 1

)
=

(
n

k + 1

)
+

(
n

k

)
(b) k

(
n

k

)
= n

(
n − 1

k − 1

)

(c)

(
2n

n

)
=

n∑
k=1

(
n

k

)2

(d)
n∑

k=0

(
n

k

)
= 2n

25. On a chessboard (8 × 8 squares, alternating black and white), you place three
chess pieces at random. What is the probability that they are all (a) in the first
row, (b) on black squares, (c) in the same row, and (d) in the same row and on
the same color?

26. In a regular coordinate system, you start at (0, 0) and flip a fair coin to decide
whether to go sideways to (1, 0) or up to (0, 1). You continue in this way, and
after n flips you have reached the point (j, k), where j + k = n. What is the
probability that (a) all the j steps sideways came before the k steps up, (b) all
the j steps sideways came either before or after the k steps up, and (c) all the
j steps sideways came in a row?
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27. An urn contains n red balls, n white balls, and n black balls. You draw k

balls at random without replacement (where k ≤ n). Find an expression for the
probability that you do not get all colors.

28. You are dealt a bridge hand (13 cards). What is the probability that you do not
get cards in all suits?

29. Recall Texas Lotto from Example 1.21, where five numbers are chosen among
1,. . . ,44 and one bonus ball number from the same set. Find the probability that
you match (a) four of the first five numbers but not the bonus ball, (b) three of
the first five numbers and the bonus ball.

30. You are dealt a poker hand. What is the probability of getting (a) royal flush,
(b) straight flush, (c) four of a kind, (d) full house, (e) flush, (f) straight, (g)
three of a kind, (h) two pairs, and (i) one pair? (These are listed in order of
descending value in poker, not in order of difficulty!)

31. From the integers 1, . . . , 10, three numbers are chosen at random without re-
placement. (a) What is the probability that the smallest number is 4? (b) What
is the probability that the smallest number is 4 and the largest is 8? (c) If you
choose three numbers from 1, . . . , n, what is the probability that the smallest
number is j and the largest is k for possible values of j and k?

32. An urn contains n white and m black balls. You draw repeatedly at random and
without replacement. What is the probability that the first black ball comes in
the kth draw, k = 1, 2, . . . , n + 1?

33. In the “Pick 3” game described in Example 1.25, suppose that you choose the
“any order” option and play the numbers 111. Since there are a total of 220
cases and 1 favorable case, you think that your chance of winning is 1/220.
However, when playing this repeatedly, you notice that you win far less often
than once every 220 times. Explain!

34. How many strictly positive, integer-valued solutions (x1, . . . , xn) are there to
the equation x1 + · · · + xn = k?

35. Ann and Bob shuffle a deck of cards each. Ann wins if she can find a card
that has the same position in her deck as in Bob’s. What is the (approximate)
probability that Ann wins?

36. Consider the matching problem in Example 1.4.17 and let nj be the number of
permutations with exactly j matches for j = 0, 1, . . . , n. (a) Find an expression
for n0. Hint: How does n0/n! relate to the probability computed in the example?
(b) Find the probability of exactly j matches, for j = 0, 1, . . . , n and its limit
as n → ∞. Hint: You need to find nj . First fix a particular set of j numbers,
for example, {1, 2, . . . , j} and note that the number of ways to match exactly
those equals the number of ways to have no matches among the remaining n − j

numbers, which you can obtain from part (a).

Section 1.5. Conditional Probability and Independence

37. Let A and B be two events. Is it then true that P(A|B) + P(A|Bc) = 1? Give
proof or counterexample.
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38. Let A and B be disjoint events. Show that

P(A|A ∪ B) = P(A)

P(A) + P(B)

39. Let A, B, and C be three events such that P(B ∩ C) > 0. Show that

P(A ∩ B ∩ C) = P(A|B ∩ C)P(B|C)P(C)

and that

P(A|B ∩ C) = P(A ∩ B|C)

P(B|C)

40. Let A and B be events, with P(A) = 1
2 and P(B) = 1

3 . Compute both P(A ∪ B)
and P(A ∩ B) if (a) A and B are independent, (b) A and B are disjoint, (c) Ac

and B are independent, and (d) Ac and B are disjoint.

41. A politician considers running for election and has decided to give it two tries.
He figures that the current conditions are favorable and that he has about a
60% chance of winning this election as opposed to a 50–50 chance in the next
election. However, if he does win this election, he estimates that there ought to
be a 75% chance of being reelected. (a) Find the probability that he wins both
elections. (b) Find the probability that he wins the first election and loses the
second. (c) If you learn that he won the second election, what is the probability
that he won the first election? (d) If he loses the first election, what is the
probability that he wins the second?

42. Consider two events A and B. We say that B gives positive information about A,
denoted B↗A, if P(A|B) > P(A), that is if knowing B increases the probability
of A. Similarly, we say that B gives negative information about A, denoted
B↘A, if P(A|B) < P(A). Are the following statements true or false? (a) If
B↗A, then A↗B. (b) If A↗B and B↗C, then A↗C. (c) If B↗A, then
B↘Ac. (d) A↘Ac.

43. Show that both ∅ and the sample space S are independent of any event. Explain
intuitively.

44. Let S be a sample space with n equally likely outcomes where n is a prime
number. Show that there are no independent events (unless one of them is S or
∅).

45. A coin has probability p of showing heads. Flip it three times and consider
the events A = {at most one tails} and B = {all flips are the same}. For which
values of p are A and B independent?

46. A fair coin is flipped twice. Explain the difference between the following: (a)
the probability that both flips give heads, and (b) the conditional probability
that the second flip gives heads given that the first flip gave heads.

47. In December 1992, a small airplane crashed in a residential area near Bromma
Airport outside Stockholm, Sweden. In an attempt to calm the residents, the
airport manager claimed that they should now feel safer than before since the
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probability of two crashes is much smaller than the probability of one crash
and hence it has now become less likely that another crash will occur in the
future.10 What do you think of his argument?

48. Bob and Joe are working on a project. They each have to finish their individual
tasks to complete the project and work independent of each other. When Bob is
asked about the chances of him getting his part done, Joe getting his part done,
and then both getting the entire project done, he estimates these to be 99%,
90%, and 95%, respectively. Is this reasonable?

49. You roll a die and consider the events A: get an even outcome, and B: get at
least 2. Find P(B|A) and P(A|B).

50. You roll a die twice and record the largest number (if the two rolls give the same
outcome, this is the largest number). (a) Given that the first roll gives 1, what is
the conditional probability that the largest number is 3? (b) Given that the first
roll gives 3, what is the conditional probability that the largest number is 3?

51. Roll two fair dice. Let Ak be the event that the first die gives k, and let Bn be the
event that the sum is n. For which values of n and k are Ak and Bn independent?

52. The distribution of blood types in the United States according to the “ABO
classification” is O:45%, A:40%, B:11%, and AB:4%. Blood is also classified
according to Rh type, which can be negative or positive and is independent of
the ABO type (the corresponding genes are located on different chromosomes).
In the U.S. population, about 84% are Rh positive. Sample two individuals at
random and find the probability that (a) both are A negative, (b) one of them is
O and Rh positive, while the other is not, (c) at least one of them is O positive,
(d) one is Rh positive and the other is not AB, (e) they have the same ABO
type, and (f) they have the same ABO type and different Rh types.

53. Let A, B, and C be independent events. Show that A is independent of both
B ∩ C and B ∪ C.

54. You are offered to play the following game: A roulette wheel is spun eight times.
If any of the 38 numbers (0,00,1–36) is repeated, you lose $10, otherwise you
win $10. Should you accept to play this game? Argue by computing the relevant
probability.

55. Consider the following simplified version of the birthday problem in Example
1.19. Divide the year into “winter half” and “summer half.” Suppose that the
probability is p that an individual is born in the winter half. What is the proba-
bility that two people are born in the same half of the year? For which value of
p is this minimized?

56. Consider the birthday problem with two people and suppose that the probability
distribution of birthdays is p1, . . . , p365. (a) Express the probability that they
have the same birthday as a function of thepk. (b) Show that the probability in (a)
is minimized for pk = 1

365 , k = 1, 2, . . . , 365. If you are familiar with Lagrange

10True story!
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multipliers, you can use these. Alternatively, first show that
∑365

k=1(pk − 1
365 +

1
365 )2 ≥ 1

365 .

57. A certain text has one-third vowels and two-thirds consonants. Five letters are
chosen at random and you are asked to guess the sequence. Find the probability
that all guesses are correct if for each letter you (a) guess vowel or consonant
with equal probabilities, (b) guess vowel with probability 1

3 and consonant with
probability 2

3 , and (c) always guess consonant.

58. Two events A and B are said to be conditionally independent given the event C

if

P(A ∩ B|C) = P(A|C)P(B|C)

(a) Give an example of events A, B, and C such that A and B are independent but
not conditionally independent given C. (b) Give an example of events A, B, and
C such that A and B are not independent but conditionally independent given C.
(c) Suppose that A and B are independent events. When are they conditionally
independent given their union A ∪ B? (d) Since the information in C and Cc

is equivalent (remember Proposition 1.10 and the preceding discussion), we
might suspect that if A and B are independent given C, they are also independent
given Cc. However, this is not true in general. Give an example of three events
A, B, and C such that A and B are independent given C but not given Cc.

59. Roll a die twice and consider the events A = {first roll gives at least 4 }, B =
{second roll gives at most 4 }, and C = {the sum of the rolls is 10 }. (a) Find
P(A), P(B), P(C), and P(A ∩ B ∩ C). (b) Are A, B, and C independent?

60. Roll a die n times and let Aij be the event that the ith and jth rolls give the
same number, where 1 ≤ i < j ≤ n. Show that the events Aij are pairwise
independent but not independent.

61. You throw three darts independently and at random at a dartboard. Find the
probability that you get (a) no bull’s eye, (b) at least one bull’s eye, (c) only
even numbers, and (d) exactly one triple and at most one double.

62. Three fair dice are rolled. Given that there are no 6s, what is the probability that
there are no 5s?

63. You have three pieces of string and tie together the ends two by two at random.
(a) What is the probability that you get one big loop? (b) Generalize to n pieces.

64. Choose n points independently at random on the perimeter of a circle. What is
the probability that all points are on the same half-circle?

65. Do Example 1.23 assuming that balls are instead drawn with replacement.

66. A fair coin is flipped n times. Let Ak = {heads in kth flip}, k = 1, 2, . . . , n,
and B = {the total number of heads is even}. Show that A1, . . . , An, B are not
independent but that if any one of them is removed, the remaining n events are
independent (from Stoyanov, Counterexamples in Probability [9]).

67. Compute the reliability of the two systems below given each component func-
tioning independently with probability p.
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68. A system is called a “k-out-of-n system” if it functions whenever at least k

of the n components function. Suppose that components function independent
of each other with probability p and find an expression for the reliability of
the system.

69. You play the following game: You bet $1, a fair die is rolled and if it shows
6 you win $4, otherwise you lose your dollar. If you must choose the number
of rounds in advance, how should you choose it to maximize your chance of
being ahead (having won more than you have lost) when you quit, and what is
the probability of this?

70. Suppose that there is a one-in-a-million chance that a person is struck by light-
ning and that there are n people in a city during a thunderstorm. (a) If n is 2
million, what is the probability that somebody is struck? (b) How large must n

be for the probability that somebody is struck to be at least 1
2 ?

71. A fair die is rolled n times. Once a number has come up, it is called occupied
(e.g., if n = 5 and we get 2, 6, 5, 6, 2, the numbers 2, 5, and 6 are occupied).
Let Ak be the event that k numbers are occupied. Find the probability of A1
(easy) and A2 (trickier).

Section 1.6. The Law of Total Probability and Bayes’ Formula

72. In the United States, the overall chance that a baby survives delivery is 99.3%.
For the 15% that are delivered by cesarean section, the chance of survival
is 98.7%. If a baby is not delivered by cesarean section, what is its survival
probability?

73. You roll a die and flip a fair coin a number of times determined by the number
on the die. What is the probability that you get no heads?

74. In a blood transfusion, you can always give blood to somebody of your own
ABO type (see Problem 52). Also, type O can be given to anybody and those with
type AB can receive from anybody (people with these types are called universal
donors and universal recipients, respectively). Suppose that two individuals are
chosen at random. Find the probability that (a) neither can give blood to the
other, (b) one can give to the other but not vice versa, (c) at least one can give
to the other, and (d) both can give to each other.

75. You have two urns, 10 white balls, and 10 black balls. You are asked to distribute
the balls in the urns, choose an urn at random, and then draw a ball at random
from the chosen urn. How should you distribute the balls in order to maximize
the probability to get a black ball?

76. A sign reads ARKANSAS. Three letters are removed and then put back into
the three empty spaces again, at random. What is the probability that the sign
still reads ARKANSAS?
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77. A sign reads IDAHO. Two letters are removed and put back at random, each
equally likely to be put upside down as in the correct orientation. What is the
probability that the sign still reads IDAHO?

78. In the “Pick 3” game from Example 1.25, play the “any order” options and
choose your three numbers at random. What is the probability that you win?

79. From a deck of cards, draw four cards at random without replacement. If you get
k aces, draw k cards from another deck. What is the probability to get exactly
k aces from the first deck and exactly n aces from the second deck?

80. Recall Example 1.39, where you observe a mother walking with a girl. Find the
conditional probability that the other child is also a girl in the following cases:
(a) The mother chooses the older child with probability p. (b) If the children are
of different genders, the mother chooses the girl with probability p. (c) When
do you get the second solution in the example that the probability equals 1

2 ?

81. Let A, B, and C be three events. Assuming that all conditional probabilities are
defined, show that

P(A|B) = P(A|B ∩ C)P(C|B) + P(A|B ∩ Cc)P(Cc|B).

82. Graduating students from a particular high school are classified as “weak” or
“strong.” Among those who apply to college, it turns out that 56% of the weak
students but only 39% of the strong students are accepted at their first choice.
Does this indicate a bias against strong students?

83. In Example 1.45, if all three dice are rolled at once, which is the most likely to
win?

84. Consider the introduction to Section 1.6. If your car develops engine problems,
how likely is it that the dealer sold you a flood-damaged car?

85. Consider the Monty Hall problem in Example 1.48. (a) What is the relevance
of the assumption that Monty opens a door at random in the case where you
chose the car? (b) Suppose that there are n doors and k cars, everything else
being the same. What is your probability of winning a car with the switching
strategy?

86. The three prisoners Shadrach, Mesach, and Abednego learn that two of them
will be set free but not who. Later, Mesach finds out that he is one of the two,
and, excited, he runs to Shadrach to share his good news. When Shadrach finds
out, he gets upset and complains “Why did you tell me? Now that there are only
me and Abednego left, my chance to be set free is only 1

2 , but before it was 2
3 .”

What do you think of his argument? What assumptions do you make?

87. A box contains two regular quarters and one fake two-headed quarter. (a) You
pick a coin at random. What is the probability that it is the two-headed quarter?
(b) You pick a coin at random, flip it, and get heads. What is the probability
that it is the two-headed quarter?

88. Two cards are chosen at random without replacement from a deck and inserted
into another deck. This deck is shuffled, and one card is drawn. If this card is
an ace, what is the probability that no ace was moved from the first deck?
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89. A transmitter sends 0s and 1s to a receiver. Each digit is received correctly (0
as 0, 1 as 1) with probability 0.9. Digits are received correctly independent of
each other and on the average twice as many 0s as 1s are being sent. (a) If
the sequence 10 is sent, what is the probability that 10 is received? (b) If the
sequence 10 is received, what is the probability that 10 was sent?

90. Consider two urns, one with 10 balls numbered 1 through 10 and one with 100
balls numbered 1 through 100. You first pick an urn at random, then pick a ball
at random, which has number 5. (a) What is the probability that it came from
the first urn? (b) What is the probability in (a) if the ball was instead chosen
randomly from all the 110 balls?

91. Smoking is reported to be responsible for about 90% of all lung cancer. Now
consider the risk that a smoker develops lung cancer. Argue why this is not
90%. In order to compute the risk, what more information is needed?

92. The serious disease D occurs with a frequency of 0.1% in a certain population.
The disease is diagnosed by a method that gives the correct result (i.e., positive
result for those with the disease and negative for those without it) with proba-
bility 0.99. Mr Smith goes to test for the disease and the result turns out to be
positive. Since the method seems very reliable, Mr Smith starts to worry, being
“99% sure of actually having the disease.” Show that this is not the relevant
probability and that Mr Smith may actually be quite optimistic.

93. You test for a disease that about 1 in 500 people have. If you have the disease, the
test is always positive. If you do not have the disease, the test is 95% accurate.
If you test positive, what is the probability that you have the disease?

94. (a) Ann and Bob each tells the truth with probability 1/3 and lies otherwise,
independent of each other. If Bob tells you something and Ann tells you Bob
told the truth, what is the probability Bob told you the truth? (b) Add a third
person, Carol, who is as prone to lying as Ann and Bob one. If Ann says that
Bob claims that Carol told the truth, what is the probability Carol told the truth?

95. A woman witnesses a hit-and-run accident one night and reports it to the police
that the escaping car was black. Since it was dark, the police test her ability
to distinguish black from dark blue (other colors are ruled out) under similar
circumstances and she is found to be able to pick the correct color about 90%
of the time. One police officer claims that they can now be 90% certain that
the escaping car was black, but his more experienced colleague says that they
need more information. In order to determine the probability that the car was
indeed black, what additional information is needed, and how is the probability
computed?

96. Joe and Bob are about to drive home from a bar. Since Joe is sober and Bob is
not, Joe takes the wheel. Bob has recently read in the paper that drunk drivers
are responsible for 25% of car accidents, that about 95% of drivers are sober,
and that the overall risk of having an accident is 10%. “You sober people cause
75% of the accidents,” slurs Bob, “and there are so many of you too! You should
let me drive!” Joe who knows his probability theory has his answer ready. How
does he respond?
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97. Consider Example 1.50, where the murderer must be one of n individuals.
Suppose that Joe Bloggs is initially considered the main suspect and that the
detectives judge that there is a 50–50 chance that he is guilty. If his DNA matches
the DNA found at the scene of the crime, what is then the probability that he is
guilty?

98. Consider a parallel system of two components. The first component functions
with probability p and if it functions, the second also functions with probability
p. If the first has failed, the second functions with probability r < p, due to
heavier load on the single component. (a) What is the probability that the second
component functions? (b) What is the reliability of the system? (c) If the second
component does not function, what is the probability that the first does?

99. Recall Example 1.51, where you know that the guilty child is a boy, a boy opens
the door, and he has one sibling. Compute the probability that the child who
opened the door is guilty if the guilty child opens the door with probability p.

100. Your new neighbors have three children. (a) If you are told about three indepen-
dent observations of a boy, what is the probability that they have three boys? (b)
If you get two confirmations of an observed boy and one of an observed girl,
what is the probability that they have two boys and a girl? (c) If you get j ≥ 1
confirmations of an observed boy and n − j ≥ 1 of an observed girl, what is
the probability that they have two boys and a girl?

101. Consider Example 1.53 about cystic fibrosis. (a) What is the probability that
two healthy parents have a child who neither is a carrier nor has the disease?
(b) Given that a child is healthy, what is the probability that both parents are
carriers (you may disregard parents with the disease)?

102. A genetic disease or condition is said to be sex-linked if the responsible gene
is located on either of the sex chromosomes, X and Y (recall that women have
two X chromosomes and men have one each of X and Y ). One example is
red-green color-blindness for which the responsible gene is located on the X

chromosome. The allele for color-blindness is recessive, so that one normal
copy of the gene is sufficient for normal vision. (a) Consider a couple where
the woman is color-blind and the man has normal vision. If they have a daughter,
what is the probability that she is color-blind? If they have a son? (b) Compute
the probabilities in (a) under the assumption that both parents have normal
vision and the woman’s father was color-blind. (c) It is estimated that about 7%
of men are color-blind but only about 0.5% of women. Explain!

103. Tay–Sachs Disease is a serious genetic disease that usually leads to death in early
childhood. The allele for the disease is recessive and autosomal (not located
on any of the sex chromosomes). (a) In the general population, about 1 in 250
is a carrier of the disease. What incidence among newborns does this give?
(b) Certain subpopulations are at greater risk for the disease. For example, the
incidence among newborns in the Cajun population of Louisiana is 1 in 3600.
What proportion of carriers does this give? (c) Generally, if a serious recessive
disease has a carrier frequency of one in n and an incidence among newborns



PROBLEMS 75

of one in N, what is the relation between n and N? (Why is it relevant that the
disease is “serious?”)

104. Consider the game of badminton in Example 1.57. (a) Find the probability that
Ann scores the next point if she is the receiver. (b) Now suppose that Ann wins
a rally as server with probability pA and let the corresponding probability for
Bob be pB. If Ann serves, what is the probability that she is the next player to
score?

105. In table tennis, a set is won by the first player to reach 11 points, unless the
score is 10–10, in which case serves are alternated and the player who first
gets ahead by two points wins. Suppose that Ann wins a point as server with
probability pA and Bob wins a point as server with probability pB. If the score
is 10–10 and Ann serves, what is the probability that she wins the set?

106. You are playing roulette, each time betting on “odd,” which occurs with prob-
ability 18

38 and gives you even money back. You start with $10 and decide to
play until you have either doubled your fortune or gone broke. Compute the
probability that you manage to double your fortune if in each round you bet
$10, $5, $2, and $1 dollar, respectively. After you have found the best strategy,
give an intuitive explanation of why it is the best and why it is called “bold
play.”

107. In Example 1.59, suppose that Ann wins each round with probability p > 1
2 .

What is the probability that she eventually goes broke?

108. The game of Penney-ante can be played with patterns of any length n. In the
case n = 1, the game is fair (this is trivial); if n = 2, it can be fair or to your ad-
vantage, depending on the patterns chosen, and if n ≥ 3, you can always choose
a winning strategy. (a) Let n = 2, so that the possible patterns are HH, HT, TH ,
and TT . Suggest a strategy and compute your winning probability in the dif-
ferent cases. (b) Let n = 4 and suppose that your opponent chooses HHHH .
Suggest how you should choose your best pattern and compute the winning
probability.

109. In the game of craps, you roll two dice and add the numbers. If you get 7 or
11 (a natural) you win, if you roll 2, 3, or 12 (craps) you lose. Any other roll
establishes your point. You then roll the dice repeatedly until you get either 7
or your point. If you get your point first you win, otherwise you lose. Starting
a new game of craps, what is the probability that you win?


