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FINANCIAL DATA AND THEIR
PROPERTIES

The importance of quantitative methods in business and finance has increased
substantially in recent years because we are in a data-rich environment and the
economies and financial markets are more integrated than ever before. Data are
collected systematically for thousands of variables in many countries and at a finer
timescale. Computing facilities and statistical packages for analyzing complicated and
high dimensional financial data are now widely available. As a matter of fact, with
an internet connection, one can easily download financial data from open sources
within a software package such as R. All of these good features and capabilities are
free and widely accessible.

The objective of this book is to provide basic knowledge of financial time series,
introduce statistical tools useful for analyzing financial data, and gain experience
in financial applications of various econometric methods. We begin with the basic
concepts of financial data to be analyzed throughout the book. The software R is intro-
duced via examples. We also discuss different ways to visualize financial data in R.
Chapter 2 reviews basic concepts of linear time series analysis such as stationarity and
autocorrelation function, introduces simple linear models for handling serial depen-
dence of the data, and discusses regression models with time series errors, seasonality,
unit-root nonstationarity, and long-memory processes. The chapter also considers
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2 FINANCIAL DATA AND THEIR PROPERTIES

exponential smoothing for forecasting and methods for model comparison. Chapter 3
considers some applications of the models introduced in Chapter 2 in the form of case
studies. The goal is to help readers understand better data analysis, empirical modeling,
and making inference. It also points out the limitations of linear time series models
in long-term prediction. Chapter 4 focuses on modeling conditional heteroscedasticity
(i.e., the conditional variance of an asset return). It introduces various econometric
models for describing the evolution of asset volatility over time. The chapter also dis-
cusses alternative methods to volatility modeling, including use of daily high and low
prices of an asset. In Chapter 5, we demonstrate some applications of volatility models
using, again, some case studies. All steps for building volatility models are given, and
the merits and weaknesses of various volatility models are discussed, including the
connection to diffusion limit of continuous time models. Chapter 6 is concerned with
analysis of high frequency financial data. It starts with special characteristics of high
frequency data and gives models and methods that can be used to analyze such data.
It shows that nonsynchronous trading and bid-ask bounce can introduce serial correla-
tions in a stock return. It also studies the dynamic of time duration between trades and
some econometric models for analyzing transaction data. In particular, we discuss the
use of logistic linear regression and probit models to study the stock price movements
in consecutive trades. Finally, the chapter studies the realized volatility using intraday
log returns. Chapter 7 discusses risk measures of a financial position and their use
in risk management. It introduces value at risk and conditional value at risk to quan-
tify the risk of a financial position within a holding period. It also provides various
methods for calculating risk measures for a financial position, including RiskMet-
rics, econometric modeling, extreme value theory, quantile regression, and peaks over
thresholds.

The book places great emphasis on application and empirical data analy-
sis. Every chapter contains real examples, and, in many occasions, empirical
characteristics of financial time series are used to motivate the development of
econometric models. In some cases, simple R scripts are given on the web page
for specific analysis. Many real data sets are also used in the exercises of each
chapter.

1.1 ASSET RETURNS

Most financial studies involve returns, instead of prices, of assets. Campbell et al.
(1997) give two main reasons for using returns. First, for average investors, return of
an asset is a complete and scale-free summary of the investment opportunity. Second,
return series are easier to handle than price series because the former have more
attractive statistical properties. There are, however, several definitions of an asset
return.

Let Pt be the price of an asset at time index t . We discuss some definitions of
returns that are used throughout the book. Assume for the moment that the asset pays
no dividends.
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One-Period Simple Return. Holding the asset for one period from date t − 1
to date t would result in a simple gross return

1 + Rt = Pt

Pt−1
or Pt = Pt−1(1 + Rt ). (1.1)

The corresponding one-period simple net return or simple return is

Rt = Pt

Pt−1
− 1 = Pt − Pt−1

Pt−1
. (1.2)

For demonstration, Table 1.1 gives five daily closing prices of Apple stock in
December 2011. From the table, the 1-day gross return of holding the stock from
December 8 to December 9 is 1 + Rt = 393.62/390.66 ≈ 1.0076 so that the corre-
sponding daily simple return is 0.76%, which is (393.62-390.66)/390.66.

Multiperiod Simple Return. Holding the asset for k periods between dates
t − k and t gives a k -period simple gross return

1 + Rt [k ] = Pt

Pt−k
= Pt

Pt−1
× Pt−1

Pt−2
× · · · × Pt−k+1

Pt−k

= (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)

=
k−1∏
j=0

(1 + Rt−j ).

Thus, the k -period simple gross return is just the product of the k one-period simple
gross returns involved. This is called a compound return . The k -period simple net
return is Rt [k ] = (Pt − Pt−k )/Pt−k .

To illustrate, consider again the daily closing prices of Apple stock of Table 1.1.
Since December 2 and 9 are Fridays, the weekly simple gross return of the stock is
1 + Rt [5] = 393.62/389.70 ≈ 1.0101 so that the weekly simple return is 1.01%.

In practice, the actual time interval is important in discussing and comparing
returns (e.g., monthly return or annual return). If the time interval is not given, then
it is implicitly assumed to be one year. If the asset was held for k years, then the
annualized (average) return is defined as

Annualized{Rt [k ]} =
⎡
⎣k−1∏

j=0

(1 + Rt−j )

⎤
⎦

1/k

− 1.

TABLE 1.1. Daily Closing Prices of Apple Stock from December 2 to 9, 2011

Date 12/02 12/05 12/06 12/07 12/08 12/09
Price($) 389.70 393.01 390.95 389.09 390.66 393.62
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This is a geometric mean of the k one-period simple gross returns involved and can
be computed by

Annualized{Rt [k ]} = exp

⎡
⎣1

k

k−1∑
j=0

ln(1 + Rt−j )

⎤
⎦ − 1,

where exp(x) denotes the exponential function and ln(x) is the natural logarithm of the
positive number x . Because it is easier to compute arithmetic average than geometric
mean and the one-period returns tend to be small, one can use a first-order Taylor
expansion to approximate the annualized return and obtain

Annualized{Rt [k ]} ≈ 1

k

k−1∑
j=0

Rt−j . (1.3)

Accuracy of the approximation in Equation (1.3) may not be sufficient in some appli-
cations, however.

Continuous Compounding. Before introducing continuously compounded
return, we discuss the effect of compounding. Assume that the interest rate of a bank
deposit is 10% per annum and the initial deposit is $1.00. If the bank pays interest
once a year, then the net value of the deposit becomes $1(1+0.1) = $1.1, 1 year
later. If the bank pays interest semiannually, the 6-month interest rate is 10%/2 =
5% and the net value is $ 1(1 + 0.1/2)2 = $1.1025 after the first year. In general,
if the bank pays interest m times a year, then the interest rate for each payment
is 10%/m and the net value of the deposit becomes $1(1 + 0.1/m)m , 1 year later.
Table 1.2 gives the results for some commonly used time intervals on a deposit of
$1.00 with interest rate of 10% per annum. In particular, the net value approaches

TABLE 1.2. Illustration of the Effects of Compounding: the Time Interval is 1 Year and the
Interest Rate is 10% Per Annum

Number of Interest Rate Net
Type Payments per Period Value

Annual 1 0.1 $1.10000
Semiannual 2 0.05 $1.10250
Quarterly 4 0.025 $1.10381
Monthly 12 0.0083 $1.10471

Weekly 52
0.1

52
$1.10506

Daily 365
0.1

365
$1.10516

Continuously ∞ $1.10517
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$1.1052, which is obtained by exp(0.1) and referred to as the result of continuous
compounding . The effect of compounding is clearly seen.

In general, the net asset value A of continuous compounding is

A = C exp(r × n), (1.4)

where r is the interest rate per annum, C is the initial capital, and n is the number of
years. From Equation (1.4), we have

C = A exp(−r × n), (1.5)

which is referred to as the present value of an asset that is worth A dollars n years
from now, assuming that the continuously compounded interest rate is r per annum.

Continuously Compounded Return. The natural logarithm of the simple
gross return of an asset is called the continuously compounded return or log return:

rt = ln(1 + Rt ) = ln
Pt

Pt−1
= pt − pt−1, (1.6)

where pt = ln(Pt ). Continuously compounded returns rt enjoy some advantages over
the simple net returns Rt . First, consider multiperiod returns. We have

rt [k ] = ln(1 + Rt [k ]) = ln[(1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1)]

= ln(1 + Rt ) + ln(1 + Rt−1) + · · · + ln(1 + Rt−k+1)

= rt + rt−1 + · · · + rt−k+1.

Thus, the continuously compounded multiperiod return is simply the sum of contin-
uously compounded one-period returns involved. Second, statistical properties of log
returns are more tractable.

To demonstrate, we again consider the daily closing prices of Apple stock of
Table 1.1. The daily log return from December 8 to December 9 is rt = log(393.62) −
log(390.66) ≈ 0.75% and the weekly log return from December 2 to December 9 is
rt [5] = log(393.62) − log(389.70) ≈ 1.00%. One can easily verify that the weekly
log return is the sum of the five daily log returns involved.

Portfolio Return. The simple net return of a portfolio consisting of N assets is
a weighted average of the simple net returns of the assets involved, where the weight
on each asset is the percentage of the portfolio’s value invested in that asset. Let p
be a portfolio that places weight wi on asset i . Then, the simple return of p at time t
is Rp,t = ∑N

i=1 wi Rit , where Rit is the simple return of asset i .
The continuously compounded returns of a portfolio, however, do not have the

above convenient property. If the simple returns Rit are all small in magnitude, then
we have rp,t ≈ ∑N

i=1 wi rit , where rp,t is the continuously compounded return of the
portfolio at time t . This approximation is often used to study portfolio returns.



6 FINANCIAL DATA AND THEIR PROPERTIES

Dividend Payment. If an asset pays dividends periodically, we must modify
the definitions of asset returns. Let Dt be the dividend payment of an asset between
dates t − 1 and t , and Pt be the price of the asset at the end of period t . Thus, dividend
is not included in Pt . Then, the simple net return and continuously compounded return
at time t become

Rt = Pt + Dt

Pt−1
− 1, rt = ln(Pt + Dt ) − ln(Pt−1).

Excess Return. Excess return of an asset at time t is the difference between
the asset’s return and the return on some reference asset. The reference asset is often
taken to be riskless such as a short-term U.S. Treasury bill return. The simple excess
return and log excess return of an asset are then defined as

Zt = Rt − R0t , zt = rt − r0t , (1.7)

where R0t and r0t are the simple and log returns of the reference asset, respectively.
In the finance literature, the excess return is thought of as the payoff on an arbitrage
portfolio that goes long in an asset and short in the reference asset with no net initial
investment.

Remark. A long financial position means owning the asset. A short position involves
selling an asset one does not own. This is accomplished by borrowing the asset from
an investor who has purchased it. At some subsequent date, the short seller is obligated
to buy exactly the same number of shares borrowed to pay back the lender. Because
the repayment requires equal shares rather than equal dollars, the short seller benefits
from a decline in the price of the asset. If cash dividends are paid on the asset while
a short position is maintained, these are paid to the buyer of the short sale. The short
seller must also compensate the lender by matching the cash dividends from his own
resources. In other words, the short seller is also obligated to pay cash dividends on
the borrowed asset to the lender. �

Summary of Relationship. The relationships between simple return Rt and
continuously compounded (or log) return rt are

rt = ln(1 + Rt ), Rt = ert − 1.

If the returns Rt and rt are in percentages, then

rt = 100 ln

(
1 + Rt

100

)
, Rt = 100

(
ert /100 − 1

)
.

Temporal aggregation of the returns produces

1 + Rt [k ] = (1 + Rt )(1 + Rt−1) · · · (1 + Rt−k+1),
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Figure 1.1. Time plots of daily returns of IBM stock from January 2, 2001 to December 31,

2010: Panels (a) and (b) show simple and log returns, respectively.

rt [k ] = rt + rt−1 + · · · + rt−k+1.

If the continuously compounded interest rate is r per annum, then the relationship
between present and future values of an asset is

A = C exp(r × n), C = A exp(−r × n).

Example 1.1. If the monthly log return of an asset is 4.46%, then the corresponding
monthly simple return is 100[exp(4.46/100) − 1] = 4.56%. Also, if the monthly log
returns of the asset within a quarter are 4.46%, −7.34% , and 10.77%, respectively,
then the quarterly log return of the asset is (4.46 − 7.34 + 10.77)% = 7.89%. �

Figure 1.1 shows the time plots of daily simple and log returns of IBM stock
from January 2, 2001 to December 31, 2010. There are 2515 observations. From the
plots, the behavior of log returns is similar to that of the simple returns. As a matter
of fact, the correlation coefficient between the simple and log returns is 0.9997. This
is understandable because, when x is close to zero, log(1 + x) ≈ x and daily simple
returns of IBM stock are small in the sampling period.

1.2 BOND YIELDS AND PRICES

Bonds are a financial instrument that will pay the face value (or par value) to its
holder at the time of maturity. Some bonds also pay interest periodically referring to
as coupon payment . Zero-coupon bonds do not pay periodic interest. Bond yield is



8 FINANCIAL DATA AND THEIR PROPERTIES

the return an investor will receive by holding a bond to maturity. In finance, several
types of bond yield are used. The common ones are the current yield and yield to
maturity (YTM).

Current Yield. The current yield denotes the percentage return that the annual
coupon payment provides the investor. Mathematically, we have

Current yield = Annual interest paid in dollars

Market price of the bond
× 100%.

For example, if an investor paid $90 for a bond with face value of $100, also known
as par value, and the bond paid a coupon rate of 5% per annum, then the current
yield of the bond is ct = (0.05 × 100)/90 × 100% = 5.56%. We use the subscript t
to signify that the yield is typically time dependent. From the definition, current yield
does not include any capital gains or losses of the investment. For zero-coupon bonds,
the yield is calculated as follows:

Current yield =
(

Face value

Purchase price

)1/k

− 1,

where k denotes time to maturity in years. For instance, if an investor purchased a
zero-coupon bond with face value $100 for $90 and the bond will mature in 2 years,
then the yield is ct = (100/90)1/2 − 1 = 5.41%.

Yield to Maturity. The current yield does not consider the time value of money,
because it does not consider the present value of the coupon payments the investor
will receive in the future. Therefore, a more commonly used measurement of bond
investment is the YTM . The calculation of YTM, however, is more complex. Simply
put, YTM is the yield obtained by equating the bond price to the present value of
all future payments. Suppose that the bond holder will receive k payments between
purchase and maturity. Let y and P be the YTM and price of the bond, respectively.
Then,

P = C1

1 + y
+ C2

(1 + y)2
+ · · · + Ck + F

(1 + y)k
,

where F denotes the face value and Ci is the i th cash flow of coupon payment.
Suppose that the coupon rate is α per annum, the number of payments is m per year,
and the time to maturity is n years. In this case, cash flow of coupon payment is
Fα/m , and the number of payments is k = mn . The bond price and YTM can be
formulated as

P = αF

m

[
1

(1 + y)
+ 1

(1 + y)2
+ · · · + 1

(1 + y)k

]
+ F

(1 + y)k

= αF

my

[
1 − 1

(1 + y)k

]
+ F

(1 + y)k
.
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The table below gives some results between bond price and YTM assuming that
F = $100, coupon rate is 5% per annum payable semiannually, and time to maturity
is 3 years.

Yield Semiannual Bond
to Maturity (%) Rate (%) Price ($)

6 3.0 97.29
7 3.5 94.67
8 4.0 92.14
9 4.5 89.68
10 5.0 87.31

From the table, we see that as the YTM increases the bond price decreases. In other
words, YTM is inversely proportional to the bond price. In practice, we observed bond
price so that YTM must be calculated. The solution is not easy to find in general, but
calibration can be used to obtain an accurate approximation. As an example, suppose
that one paid $94 to purchase the bond shown in the prior table. From which, we see
that the YTM must be in the interval [7,8]%. With trial and error, we have

Yield Semiannual Bond
to Maturity (%) Rate (%) Price ($)

7.1 3.55 94.41
7.2 3.6 94.16
7.3 3.65 93.90
7.25 3.625 94.03
7.26 3.63 94.00

Therefore, the YTM is approximately 7.26% per annum for the investor. Many finan-
cial institutions provide online programs that calculate bond YTM and price, for
example, Fidelity Investments.

U.S. Government Bonds. The U.S. Government issues various bonds to
finance its debts. These bonds include Treasury bills, Treasury notes, and Treasury
bonds. A simple description of these bonds is given below.

• Treasury bills (T-Bills) mature in one year or less. They do not pay interest
prior to maturity and are sold at a discount of the face value (or par value) to
create a positive YTM. The commonly used maturities are 28 days (1 month),
91 days (3 months), 182 days (6 months), and 364 days (1 year). The minimum
purchase is $100. The discount yield of T-Bills is calculated via

Discount yield (%) = F − P

F
× 360

Days till maturity
× 100(%),



10 FINANCIAL DATA AND THEIR PROPERTIES

where F and P denote the face value and purchase price, respectively. The
U.S. Treasury Department announces the amounts of offering for 13- and 26-
week bills each Thursday for auction on the following Monday and settlement
on Thursday. Offering amount for 4-week bills are announced on Monday for
auction the next day and settlement on Thursday. Offering amounts for 52-week
bills are announced every fourth Thursday for auction the next Tuesday and
settlement on Thursday.

• Treasury notes (T-Notes) mature in 1–10 years. They have a coupon payment
every 6 months and face value of $1000. These notes are quoted on the sec-
ondary market at percentage of face value in thirty-seconds of a point. For
example, a quote 95 : 08 on a note indicates that it is trading at a discount
$(95 + 8/32) × 1000 = $952.5. The 10-year Treasury note has become the
security most frequently quoted when discussing the U.S. government bond
market; see the Chicago Board Options Exchange (CBOE) 10-year Notes of
the next section. Figures 1.5 and 1.7 show, respectively, the time plots of the
daily yield and its return of the 10-year T-Notes.

• Treasury bonds (T-Bonds) have longer maturities, ranging from 20 to 30 years.
They have a coupon payment every 6 months and are commonly issued with
maturities 30 years. The 30-year bonds were suspended for a 4-year and 6-
month period starting October 31, 2001, but they were reintroduced in February
2006 and are now issued quarterly.

1.3 IMPLIED VOLATILITY

Stock options are financial contracts. A call option on Stock A gives its holder the
right, but not obligation, to buy certain shares of Stock A at a prespecified price within
a given period of time. A put option, on the other hand, gives its holder the right,
but not obligation, to sell certain shares of the stock at a prespecified price within a
given period of time. The prespecified price is called the strike price and the time
period is referred to as time to maturity . In the United States, a stock option typically
involves 100 shares of the underlying stock. The options are traded at the options
markets such as CBOE. There are many types of options. The well-known ones are
the European options, which can only be exercised at the time of maturity, and the
American options, which can be exercised any time before maturity. See Hull (2011)
for further details. If an option would result in a positive cash flow to its holder if
it were exercised immediately, we say that the option is in-the-money . If an option
would result in a negative cash flow to its holder if it were exercised immediately,
we say that the option is out-of-the-money . Finally, if an option would result in zero
cash flow to its holder if it were exercised immediately, we say that the option is
at-the-money .

The price of an option depends on many factors such as strike price, risk-free inter-
est rate, and the current price and volatility of the stock. See, for instance, the famous
Black–Scholes formula. This closed-form solution was derived under the assumption
that the stock price follows a geometric Brownian motion. For the purpose of this
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chapter, it suffices to say that the only factor in the Black–Scholes formula that is not
directly observable is the volatility of the stock. By volatility, we mean the conditional
standard deviation of the stock price. In practice, we can use the observed price of an
option and the Black–Scholes formula to back out the value of the stock volatility.
This volatility is referred to as the implied volatility . Similar to the YTM of bonds,
calibration is often used to obtain the implied volatility or an approximation of it.

The most well-known implied volatility is the volatility index (VIX) of CBOE.
The index was originally designed in 1993 to measure the market’s expectation of
30-day volatility implied by at-the-money S&P 100 index option prices. However, the
index was updated by CBOE and Goldman Sachs in 2003 to reflect a new measure
of expected volatility. It is now based on the S&P 500 index (SPX) and estimates
expected volatility by averaging the weighted prices of SPX puts and calls over a
wide range of strike prices. See CBOE VIX white paper for further information. This
new VIX is often regarded as the market fear factor and has played an important role
in the financial markets. As a matter of fact, VIX futures and options are now traded
on CBOE.

Figure 1.2 shows the time plot of the updated VIX index from January 2, 2004
to November 21, 2011 for 1988 observations. From the plot, the financial market was
very volatile in late 2008 and in the beginning of 2009. The volatility was also high
in 2011. We shall analyze the VIX index in later chapters. Also, see Chapter 4 for
more information on asset volatility.
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10
20

30
40

50
60

70
80

Year

V
IX

Figure 1.2. Time plot of the VIX index of Chicago Board Options Exchange from January 2,

2004 to November 21, 2011.
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1.4 R PACKAGES AND DEMONSTRATIONS

Before studying some real examples of financial data, we briefly introduce the R
program to be used extensively in the book. The package and commands used to
perform the analysis will be given when needed. Our goal is to make the empirical
analysis as easy as possible so that readers can reproduce the results shown in the book.

R is a free software available from http://www.r-project.org. It runs on many
operating systems, including Linux, MacOS X, and Windows. One can click CRAN
on its web page to select a nearby CRAN Mirror to download and install the software
and selected packages. The simplest way to install the program is to follow the online
instructions and to use the default options. Because R is an open-source software, it
contains hundreds of packages developed by researchers around the world for various
statistical analyses. For financial time series analysis, the Rmetrics of Dr. Diethelm
Wuertz and his associates has many useful packages, including fBasics, fGarch, and
fPortfolio. We use many functions of these packages in the book. We also use some
other packages that are powerful and easy to use in R, for example, the evir package
for extreme value analysis in R. Further information concerning installing R and the
commands used can be found either on the web page of the book or on the author’s
teaching web page. There exist several introductory books for R; see, for instance,
Adler (2010) and Crawley (2007). The R commands are case sensitive and must be
followed exactly.

1.4.1 Installation of R Packages

Using default options in R installation creates an icon on the desktop of a computer.
One can start the R program simply by double clicking the R icon. For Windows, a
RGui window will appear with command menu and the R Console. To install pack-
ages, one can click on the command Packages to select Install packages.
A pop-up window appears asking users to select an R mirror (similar to R installa-
tion mentioned before). With a selected mirror, another pop-up window appears that
contains all available packages. One can click on the desired packages for installation.

With packages installed, one can load them into R by clicking on the command
Packages followed by clicking Load packages. A pop-up window appears that
contains all installed packages for users to choose. An alternative approach to load
a package is to use the command library. See the demonstration in the following
discussion.

1.4.2 The Quantmod Package

To begin with, we consider a useful R package for downloading financial data directly
from some open sources, including Yahoo Finance, Google Finance, and the Federal
Reserve Economic Data (FRED) of Federal Reserve Bank of St. Louis. The package
is quantmod by Jeffry A. Ryan. It is highly recommended that one installs it. The
package requires three additional packages that need to be installed as well. They are
TTR, xts, and zoo.
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Once installed, the quantmod package allows users, with internet connection, to
use tick symbols to access daily stock data from Yahoo and Google Finance and to use
series name to access over 1000 economic and financial time series from FRED. The
command is getSymbols. The package also has some nice functions, for example,
obtaining time series plots of closing price and trading volume. The command is
chartSeries. The default option of these two commands is sufficient for basic
analysis of financial time series. One can use subcommands to further enhance the
capabilities of the package such as specifying the time span of interest in get-
Symbols. Interested readers may consult the document associated with the package
for description of the commands available. Here, we provide a simple demonstra-
tion. Figure 1.3 shows the time plots of daily closing price and trading volume of
Apple stock from January 3, 2007 to December 2, 2011. The plot also shows the
price and volume of the last observation. The subcommand theme = "white" of
chartSeries is used to set the background of the time plot. The default is black.
Figure 1.4 shows the time plot of monthly U.S. unemployment rates from January
1948 to November 2011. Figure 1.5 shows the time plot of daily interest rate of 10-
year treasures notes from January 3, 2007 to December 2, 2011. These are the interest
rates from the CBOE obtained from Yahoo Finance. As there is no volume, the sub-
command TA = NULL is used to omit the time plot of volume in chartSeries.
The commands head and tail show, respectively, the first and the last six rows of
the data.

R Demonstration with quantmod package Output edited. > denotes R
prompt and explanation starts with %.

> library(quantmod) % Load the package

> getSymbols("AAPL") % Download daily prices of Apple stock from Yahoo

[1] "AAPL" % I ran R on 2011-12-03 so that the last day was 12-02.

> dim(AAPL) % (dimension): See the size of the downloaded data.

[1] 1241 6

> head(AAPL) % See the first 6 rows of the data

Open High Low Close Volume Adjusted

2007-01-03 86.29 86.58 81.90 83.80 44225700 83.80

2007-01-04 84.05 85.95 83.82 85.66 30259300 85.66

....

2007-01-10 94.75 97.80 93.45 97.00 105460000 97.00

> tail(AAPL) % See the last 6 rows of the data

Open High Low Close Volume Adjusted

2011-11-25 368.42 371.15 363.32 363.57 9098600 363.57

.....

2011-12-01 382.54 389.00 380.75 387.93 13709400 387.93

2011-12-02 389.83 393.63 388.58 389.70 13537700 389.70

> chartSeries(AAPL,theme="white") % Plot the daily price and volume

% The subcommand theme is used to obtain white background of the plot.

> chartSeries(AAPL)%Not shown giving the same plot with black background.

% The next command specifies the data span of interest

> getSymbols("AAPL",from="2005-01-02", to="2010-12-31")
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Figure 1.3. Time plots of daily closing price and trading volume of Apple stock from January
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Figure 1.5. Time plot of Chicago Board Options Exchange interest rates of 10-year Treasury

notes from January 3, 2007 to December 2, 2011.

[1] "AAPL"
> head(AAPL)

AAPL.Open AAPL.High AAPL.Low AAPL.Close AAPL.Volume Adjusted
2005-01-03 64.78 65.11 62.60 63.29 24714000 31.65
2005-01-04 63.79 65.47 62.97 63.94 39171800 31.97
......

> getSymbols("UNRATE",src="FRED")%Download unemployment rates from FRED.
[1] "UNRATE"
> head(UNRATE)

UNRATE
1948-01-01 3.4
1948-02-01 3.8
......

1948-06-01 3.6
> chartSeries(UNRATE,theme="white") % Plot monthly unemployment rates
% The subcommand "src" is used to specify the data source.
% The default is Yahoo.
> getSymbols("INTC",src="google") % Download data from Google.
[1] "INTC"
> head(INTC)

INTC.Open INTC.High INTC.Low INTC.Close INTC.Volume
2007-01-03 20.45 20.88 20.14 20.35 68665100
2007-01-04 20.63 21.33 20.56 21.17 87795400
.....
2007-01-10 21.09 21.62 21.03 21.52 75522200

> getSymbols(" ˆ TNX") % Download CBOE 10-year Treasures Notes
[1] "TNX"
> head(TNX)

TNX.Open TNX.High TNX.Low TNX.Close Volume Adjusted
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2007-01-03 4.66 4.69 4.64 4.66 0 4.66
2007-01-04 4.66 4.66 4.60 4.62 0 4.62
.....
2007-01-10 4.67 4.70 4.66 4.68 0 4.68
> chartSeries(TNX,theme="white",TA=NULL) % Obtain plot without volume.

1.4.3 Some Basic R Commands

After starting R, the first thing to do is to set the working directory. By working
directory, we mean the computer directory where data sets reside and output will be
stored. This can be done in two ways. The first method is to click on the command
File. A pop-up window appears that allows one to select the desired directory. The
second method is to type in the desired directory in the R Console using the command
setwd, which stands for set working directory. See the demonstration in the following
discussion.

R is an object-oriented program. It handles many types of object. For the purposes
of the book, we do not need to study details of an object in R. Explanations will be
given when needed. It suffices now to say that R allows one to assign values to
variables and refer to them by name. The assignment operator is <−, but = can
also be used. For instance, x<− 10 assigns the value 10 to the variable “x.” Here, R
treats “x” as a sequence of real numbers with the first element being 10. There are
several ways to load data into the R working space, depending on the data format.
For simple text data, the command is read.table. For .csv files, the command
is read.csv. The data file is specified in either a single or double quotes; see the R
demonstration. R treats the data as an object and refer to them by the assigned name.
For both loading commands, R stores the data in a matrix framework. As such, one
can use the command dim (i.e., dimension) to see the size of the data. Finally, the
basic operations in R are similar to those we commonly use and the command to exit
R is q().

R Demonstration

> setwd("C:/Users/rst/book/introTS/data") % Set my working directory
> library(fBasics) % Load package
> x <- 10 % Assign value, here "x" is a variable.
> x % See the value of x.
[1] 10 % Here [1] signifies the first element.
> 1 + 2 % Basic operation: addition
[1] 3
> 10/2 % Basic operation: division
[1] 5
% Use * and ˆ for multiplication and power, respectively.
% Use log for the natural logarithm.
> da=read.table(‘d-ibm-0110.txt’,header=T) % Load text data with names.
> head(da) % See the first 6 rows

date return
1 20010102 -0.002206
2 20010103 0.115696
....
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6 20010109 -0.010688
> dim(da) % Dimension of the data object "da".
[1] 2515 2
> da <- read.csv("d-vix0411.csv",header=T) % Load csv data with names.
> head(da) % See the first 6 rows

Date VIX.Open VIX.High VIX.Low VIX.Close
1 1/2/2004 17.96 18.68 17.54 18.22
2 1/5/2004 18.45 18.49 17.44 17.49
....
6 1/9/2004 16.15 16.88 15.57 16.75

1.5 EXAMPLES OF FINANCIAL DATA

In this section, we examine some of the return series in finance. Figure 1.6 shows the
time plot of daily log returns of Apple stock from January 4, 2007 to December 2,
2011. As defined before, daily log returns are simply the change series of log prices.
In R, a change series can easily be obtained by taking the difference of the log prices.
Specifically, rt = ln(P1) − ln(Pt−1), where Pt is the stock price at time t . Note that in
the demonstration, I used adjusted daily price to compute log returns because adjusted
price takes into consideration the stock splits, if any, during the sample period. From
the plot, we see that (i) there exist some large outlying observations and (ii) the returns
were volatile in certain periods but stable in others. The latter characteristic is referred
to as volatility clustering in asset returns. The former, on the other hand, are indicative
that the returns have heavy tails.

Figure 1.7 shows the time plot of daily changes in YTM of the 10-year Treasury
notes also from January 4, 2007 to December 2, 2011. The changes in YTM exhibit
similar characteristics as those of daily returns of Apple stock. Figure 1.8 provides the
time plot of daily log returns of the Dollar–Euro exchange rate. Again, the log returns
of exchange rates have the same features as those of the daily log returns of stock.
The daily Dollar–Euro exchange rate is given in Figure 1.9. The exchange rates are
downloaded from the database FRED.

R Demonstration

> library(quantmod)
> getSymbols("AAPL",from="2007-01-03",to="2011-12-02") %Specify period
[1] "AAPL"
> AAPL.rtn=diff(log(AAPL$AAPL.Adjusted)) % Compute log returns
> chartSeries(AAPL.rtn,theme="white")
> getSymbols(" ˆ TNX",from="2007-01-03",to="2011-12-02")
[1] "TNX"

> TNX.rtn=diff(TNX$TNX.Adjusted) % Compute changes
> chartSeries(TNX.rtn,theme="white")
> getSymbols("DEXUSEU",src="FRED") % Obtain exchange rates from FRED
[1] "DEXUSEU"
> head(DEXUSEU)

DEXUSEU
1999-01-04 1.1812
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Figure 1.6. Time plot of daily log returns of Apple stock from January 3, 2007 to December 2,

2011.
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1999-01-05 1.1760
....

1999-01-11 1.1534
> tail(DEXUSEU)

DEXUSEU
2011-12-09 1.3368
....

2011-12-16 1.3025
> USEU.rtn=diff(log(DEXUSEU$DEXUSEU))
> chartSeries(DEXUSEU,theme="white")
> chartSeries(USEU.rtn,theme="white")

1.6 DISTRIBUTIONAL PROPERTIES OF RETURNS

To gain a better understanding on asset returns, we begin with their distributional
properties. The objective here is to study the behavior of the returns across assets and
over time. Consider a collection of N assets held for T time periods, say, t = 1, . . . , T .
For each asset i , let rit be its log return at time t . The log returns under study are
{rit ; i = 1, . . . , N ; t = 1, . . . , T }. One can also consider the simple returns {Rit ; i =
1, . . . , N ; t = 1, . . . , T } and the log excess returns {zit ; i = 1, . . . , N ; t = 1, . . . , T }.

1.6.1 Review of Statistical Distributions and Their Moments

We briefly review some basic properties of statistical distributions and the moment
equations of a random variable. Let Rk be the k -dimensional Euclidean space. A point
in Rk is denoted by x ∈ Rk . Consider two random vectors X = (X1, . . . , Xk )

′ and
Y = (Y1, . . . , Yq )′. Let P(X ∈ A, Y ∈ B) be the probability that X is in the subspace
A ⊂ Rk and Y is in the subspace B ⊂ Rq . For most of the cases considered in this
book, both random vectors are assumed to be continuous.

Joint Distribution. The function

FX ,Y (x , y; θ) = P(X ≤ x , Y ≤ y; θ),

where x ∈ Rp , y ∈ Rq , and the inequality “≤” is a component-by-component operation
and is a joint distribution function of X and Y with parameter θ . Behavior of X and
Y is characterized by FX ,Y (x , y; θ). For instance, the linear dependence between X
and Y is shown by the covariance of the joint distribution. If the joint probability
density function fx ,y (x , y; θ) of X and Y exists, then

FX ,Y (x , y; θ) =
∫ x

−∞

∫ y

−∞
fx ,y (w, z ; θ)dzdw.

In this case, X and Y are continuous random vectors.
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Marginal Distribution. The marginal distribution of X is given by

FX (x ; θ) = FX ,Y (x , ∞, · · · , ∞; θ).

Thus, the marginal distribution of X is obtained by integrating out Y . A similar
definition applies to the marginal distribution of Y .

If k = 1, X is a scalar random variable and the distribution function becomes

FX (x) = P(X ≤ x; θ),

which is known as the cumulative distribution function (CDF) of X . The CDF of
a random variable is nondecreasing (i.e., FX (x1) ≤ FX (x2) if x1 ≤ x2) and satisfies
FX (−∞) = 0 and FX (∞) = 1. For a given probability p, the smallest real number
xp such that p ≤ FX (xp) is called the pth quantile of the random variable X . More
specifically,

xp = inf
x

{x |p ≤ FX (x)}.

We use the CDF to compute the p-value of a test statistic in the book.

Conditional Distribution. The conditional distribution of X given Y ≤ y is
given by

FX |Y ≤y (x; θ) = P(X ≤ x , Y ≤ y; θ)

P(Y ≤ y; θ)
.

If the probability density functions involved exist, then the conditional density of X
given Y = y is

fx |y (x; θ) = fx ,y (x , y; θ)

fy (y; θ)
, (1.8)

where the marginal density function fy (y; θ) is obtained by

fy (y; θ) =
∫ ∞

−∞
fx ,y (x , y; θ)dx .

From Equation (1.8), the relation among joint, marginal, and conditional distribu-
tions is

fx ,y (x , y; θ) = fx |y (x ; θ) × fy (y; θ). (1.9)

This identity is used extensively in time series analysis (e.g., in maximum likeli-
hood estimation). Finally, X and Y are independent random vectors if and only if
fx |y (x; θ) = fx (x; θ). In this case, fx ,y (x , y; θ) = fx (x ; θ)fy (y; θ).
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Moments of a Random Variable. The �th moment of a continuous random
variable X is defined as

m ′
� = E (X �) =

∫ ∞

−∞
x �f (x)dx ,

where E stands for expectation and f (x) is the probability density function of X . The
first moment is called the mean or expectation of X . It measures the central location of
the distribution. We denote the mean of X by μx . For an asset, an interesting question
is whether the mean of its return is zero. In other words, we often consider the
hypothesis testing H0 : μx = 0 versus Ha : μ �= 0 or H0 : μx ≤ 0 versus Ha : μx > 0.

The �th central moment of X is defined as

m� = E [(X − μx )
�] =

∫ ∞

−∞
(x − μx )

�f (x)dx

provided that the integral exists. The second central moment, denoted by σ 2
x , measures

the variability of X and is called the variance of X . The positive square root, σx ,
of variance is the standard deviation of X . For asset returns, variance (or standard
deviation) is a measure of uncertainty and, hence, is often used as a risk measure. The
first two moments of a random variable uniquely determine a normal distribution. For
other distributions, higher order moments are also of interest.

The third central moment measures the symmetry of X with respect to its mean,
whereas the fourth central moment measures the tail behavior of X . In statistics,
skewness and kurtosis , which are normalized third and fourth central moments of X ,
are often used to summarize the extent of asymmetry and tail thickness. Specifically,
the skewness and kurtosis of X are defined as

S (x) = E

[
(X − μx )

3

σ 3
x

]
, K (x) = E

[
(X − μx )

4

σ 4
x

]
.

The quantity K (x) − 3 is called the excess kurtosis because K (x) = 3 for a normal
distribution. Thus, the excess kurtosis of a normal random variable is zero. A dis-
tribution with positive excess kurtosis is said to have heavy tails, implying that the
distribution puts more mass on the tails of its support than a normal distribution does.
In practice, this means that a random sample from such a distribution tends to contain
more extreme values. Such a distribution is said to be leptokurtic. On the other hand,
a distribution with negative excess kurtosis has short tails (e.g., a uniform distribution
over a finite interval). Such a distribution is said to be platykurtic. In finance, the
first fourth moments of a random variable are used to describe the behavior of asset
returns. This does not imply that higher order moments are not important; they are
much harder to study.

In application, moments of a random variable can be estimated by their sample
counterparts. Let {x1, . . . , xT } be a random sample of X with T observations. The
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sample mean is

μ̂x = 1

T

T∑
t=1

xt , (1.10)

the sample variance is

σ̂ 2
x = 1

T − 1

T∑
t=1

(xt − μ̂x )
2, (1.11)

the sample skewness is

Ŝ (x) = 1

(T − 1)σ̂ 3
x

T∑
t=1

(xt − μ̂x )
3, (1.12)

and the sample kurtosis is

K̂ (x) = 1

(T − 1)σ̂ 4
x

T∑
t=1

(xt − μ̂x )
4. (1.13)

Under rather weak conditions, the sample mean μ̂x is a consistent estimate of
μx , meaning that μ̂x converges to μx as T → ∞. More specifically, we have μ̂x ∼
N (μx , σ 2

x /T ) for a sufficiently large T . This result is often used to test any hypothesis
about μx . For instance, consider H0 : μx = 0 versus Ha : μx �= 0. The test statistic is

t =
√

T μ̂x

σ̂x
,

which follows a Student’s-t distribution with T − 1 degrees of freedom. For a suf-
ficiently large T , the test statistic approaches a standard normal distribution. The
decision rule is then to reject H0 at the 100α% level if |t |> Z1−α/2, where Z1−α/2 is
the (1 − α/2)th quantile of the standard normal distribution. Most statistical packages
now provide p-value for each test statistic. The decision rule is then to reject H0 at
the 100α% level if the p-value is less than α.

If X is a normal random variable, then Ŝ (x) and K̂ (x) − 3 are distributed asymp-
totically as normal with zero mean and variances 6/T and 24/T , respectively; see
Snedecor and Cochran (1980, p. 78). These asymptotic properties can be used to test
the normality of asset returns. Given an asset return series {r1, . . . , rT }, to test the
skewness of the returns, we consider the null hypothesis Ho : S (r) = 0 versus the
alternative hypothesis Ha : S (r) �= 0. The t-ratio statistic of the sample skewness in
Equation (1.12) is

t = Ŝ (r)√
6/T

.
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The decision rule is to reject the null hypothesis at the 100α% significance level, if
|t | > Z1−α/2.

Similarly, one can test the excess kurtosis of the return series using the hypotheses
Ho : K (r) − 3 = 0 versus Ha : K (r) − 3 �= 0. The test statistic is

t = K̂ (r) − 3√
24/T

,

which is asymptotically a standard normal random variable. The decision rule is to
reject Ho if and only if the p-value of the test statistic is less than the significance
level α. Jarque and Bera (1987) combine the two prior tests and use the test statistic

JB = Ŝ 2(r)

6/T
+ (K̂ (r) − 3)2

24/T
,

which is asymptotically distributed as a chi-squared random variable with 2 degrees
of freedom, to test for the normality of rt . One rejects Ho of normality if the p-value
of the JB statistic is less than the significance level.

Example 1.2. Consider the daily simple returns of the 3M stock from January 2,
2001 to September 30, 2011. The data are obtained from the Center for Research of
Security Prices (CRSP), University of Chicago. Figure 1.10 shows the time plot of the
data. Here, we use the command basicStats of fBasics in Rmetrics to obtain
summary statistics of the returns and to perform some basic hypothesis testing. From
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Figure 1.10. Time plot of daily simple returns of 3M stock from January 2, 2001 to September

30, 2011.
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the output, we see that there are 2704 data points, the sample mean of the simple
return is 0.0278%, and the sample standard error is 0.0155. The sample skewness
and excess kurtosis are 0.0279 and 4.631, respectively. Next, consider the hypothesis
H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean of the daily 3M simple
return. The test statistic is

t = 0.000278

0.0155/
√

2704
= 0.933,

with p-value 0.35, which is greater than 0.05. Thus, the null hypothesis of zero mean
cannot be rejected at the 5% level. For the skewness, the hypothesis is H0 : S = 0
versus Ha : S �= 0. The test statistic is

t = 0.0279√
6/2704

= 0.59,

with p-value 0.55. Again, one cannot reject zero skewness at the 5% level. For the
excess kurtosis, the hypothesis is H0 : K − 3 = 0 versus Ha : k − 3 �= 0. For the 3M
simple returns, the test statistic is

t = 4.631√
24/2704

= 49.15,

which is large compared with a standard normal random variable. Thus, the p-value
is close to zero and one reject the null hypothesis of K = 3. In other words, the daily
simple returns of 3M stock have heavy tails. Finally, the Jarque–Bera test statistic
is 2422, which is very large compared with a chi-square distribution with 2 degrees
of freedom. Therefore, the normality assumption for the daily 3M simple returns is
rejected. This is not surprising as the returns have heavy tails. �

R Demonstration Output edited.

> library(fBasics) % Load package
> da=read.table("d-mmm-0111.txt",header=T) % Load data

> head(da) % Show the first 6 rows of data
date rtn

1 20010102 -0.010892
....

6 20010109 -0.015727
> mmm=da[,2] % Obtain 3m simple returns
> basicStats(mmm) %Compute summary statistics

mmm
nobs 2704.000000 % Sample size
NAs 0.000000 % No of missing values
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Minimum -0.089569 % Minimum
Maximum 0.098784 % Maximum
1. Quartile -0.007161 % 25th percentile
3. Quartile 0.007987 % 75th percentile
Mean 0.000278 % Sample mean
Median 0.000350 % Sample median
Sum 0.751082 % Sample total
SE Mean 0.000298 % Standard error of Sample mean

% = sqrt(sample variance/sample size)
LCL Mean -0.000306 % Lower bound of 95% C.I.
UCL Mean 0.000862 % Upper bound of 95% C.I.
Variance 0.000240 % Sample variance
Stdev 0.015488 % Sample standard error
Skewness 0.027949 % Sample skewness
Kurtosis 4.630925 & % Sample excess kurtosis

% Commands for individual moments
> mean(mmm)
[1] 0.000277767
> var(mmm)
[1] 0.0002398835
> stdev(mmm) % standard deviation
[1] 0.01548817
% Simple tests
> t.test(mmm) % Testing mean return = 0

One Sample t-test
data: mmm
t = 0.9326, df = 2703, p-value = 0.3511
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.0003062688 0.0008618028 % See prior summary statistics.

% p-value > 0.05; one cannot reject the null hypothesis.

> s3=skewness(mmm)
> T=length(mmm) % Sample size
> T
[1] 2704
> t3=s3/sqrt(6/T) % Skewness test
> t3
[1] 0.593333
> pp=2*(1-pnorm(t3)) % Compute p-value
> pp
[1] 0.5529583 % Cannot reject the null of symmetry.
> s4=kurtosis(mmm)
> t4=s4/sqrt(24/T) % Kurtosis test
> t4
[1] 49.15475 % Value is huge; reject the null. Has heavy tails.

> normalTest(mmm,method=‘jb’) % JB-test
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Title: Jarque - Bera Normalality Test
Test Results:

STATISTIC: X-squared: 2422.4384
P VALUE: Asymptotic p Value: < 2.2e-16 % Reject normality

1.7 VISUALIZATION OF FINANCIAL DATA

Graphs are useful tools in analyzing financial data. Besides the time series plot shown
before, we discuss some additional plots to display financial data in this section. To
gain a better visualization of the distribution of asset returns, we can exam either the
histogram or empirical density function of the data. Consider, for instance, the daily
simple returns of 3M stock from January 2, 2001 to September 30, 2011 for 2704
observations. The summary statistics of the data are given before. Figure 1.11 shows
a histogram of the data. This is obtained by dividing the data range into 30 bins.
The plot confirms that the returns appear to be symmetric with respect to its mean
zero. The solid line of Figure 1.12 shows the empirical density function of the 3M
returns. This is obtained by a nonparametric smoothing method. The empirical density
function can be regarded as a refined version of the histogram. The dashed line of
Figure 1.12 shows the density function of a normal distribution that has the same mean
and standard deviation as those of the 3M data. The plot provides a visual inspection
of the normality assumption for the daily 3M simple returns. The empirical density
function has a higher peak and longer tails than the normal density. This phenomenon
is common for daily stock returns. In general, the deviation between the solid and
dashed line indicates that the daily simple returns of 3M stock are not normally
distributed. This, again, is consistent with the result of normality test shown before.

To study the price variability of a stock, we consider the daily open, high, low,
and close prices of the stock. Figure 1.13 shows a time plot of these statistics for
Apple stock from January 3 to June 30, 2011. This plot is referred to as a Bar Chart
in the literature. We use a R script ohlc.R to obtain the plot. This script is a modified
version of that given in Klemelä (2009). In the plot, the vertical bar shows the daily
range of the stock price, the horizontal line points to the left gives the opening price,
and the horizontal line points to the right denotes the closing price. For this graph
to be informative, one cannot show too many days in the plot. Figure 1.14 shows
the daily closing price of Apple stock along with a moving-average price of the past
21 trading days from January 2, 2010 to December 8, 2011. This is referred to as a
moving-average chart . The use of 21 days is arbitrary; it is roughly the number of
trading days in a month. The moving-average chart provides information about stock
price relative to its recent history. In statistics, averaging is a simple way to reduce
the random variability.

Turn to multiple asset returns. Figure 1.15 shows the time plots of monthly log
returns of IBM stock and the S&P composite index from January 1926 to September
2011. These returns are obtained from CRSP. Except for the Great Depression period,
returns of individual stock are in general more volatile than the market index. The
time plots exhibit certain simultaneous drops or jumps between IBM stock and the
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Figure 1.11. Histogram of daily simple returns of 3M stock from January 2, 2001 to September

30, 2011.
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(inclusive).
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market returns. Figure 1.16 shows the scatter plot of the two log returns. The plot
also shows a least squares linear regression line between the two returns. From the
plot, it is clear that, as expected, IBM and market returns have a positive relationship.
This linear relationship can be measured by the correlation between the two returns.
In this particular instance, the correlation is 0.64. Alternatively, one can consider the
Market Model

rt = α + βmt + εt ,

where rt and mt are the individual and market return, respectively, and εt is the
error term. The parameters α and β denote the excess return, with respect to the
market, and β coefficient, respectively. For monthly log returns of IBM stock, we have
rt = 0.008 + 0.807mt + εt . These two parameters are significantly different from zero
at the usual 5% level. For more information on Market model, see the capital asset
pricing model (CAPM) of Sharpe (1964).

R Demonstration

> library(fBasics)
> da=read.table("d-mmm-0111.txt",header=T) % Load data
> mmm=da[,2] % Locate 3M simple returns
> hist(mmm,nclass=30) % Histogram
> d1=density(mmm) % Obtain density estimate
> range(mmm) % Range of 3M returns
[1] -0.089569 0.098784
> x=seq(-.1,.1,.001) % Create a sequence of x with increment 0.001.

% The next command creates normal density
> y1=dnorm(x,mean(mmm),stdev(mmm))
> plot(d1$x,d1$y,xlab=‘rtn’,ylab=‘density’,type=‘l’)
> lines(x,y1,lty=2)
% ohlc plot
> library(quantmod)
> getSymbols("AAPL",from="2011-01-03",to="2011-06-30")
> X=AAPL[,1:4] % Locate open, high, low, and close prices
> xx=cbind(as.numeric(X[,1]),as.numeric(X[,2]),as.numeric(X[,3]),

as.numeric(X[,4]))
> source("ohlc.R") % Compile the R script
> ohlc(xx,xl="days",yl="price",title="Apple Stock")
% Moving average plot
> source("ma.R") % Compile R script
> getSymbols("AAPL",from="2010-01-02",to="2011-12-08")
> x1=as.numeric(AAPL$AAPL.Close) % Locate close price
> ma(x1,21)
% Bivariate and Scatter plots
> da=read.table("m-ibmsp-2611.txt",header=T)
> head(da)

data ibm sp
1 19260130 -0.010381 0.022472
.....
6 19260630 0.068493 0.043184
> ibm=log(da$ibm+1) % Transform to log returns
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Figure 1.15. Time pots of monthly log returns of IBM stock and the S&P composite index

from January 1926 to September 2011. (a) The IBM returns.
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Figure 1.16. Scatter plot of monthly log returns between IBM stock (Y-axis) and S&P composite

index from January 1926 to September 2011. The solid line denotes the least squares fit.
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> sp=log(da$sp+1)
> tdx=c(1:nrow(da))/12+1926 % Create time index
> par(mfcol=c(2,1))
> plot(tdx,ibm,xlab=‘year’,ylab=‘lrtn’,type=‘l’)
> title(main=‘(a) IBM returns’)
> plot(tdx,sp,xlab=‘year’,ylab=‘lrtn’,type=‘l’) % X-axis first.
> title(main=‘(b) SP index’)
> cor(ibm,sp) % Obtain sample correlation
[1] 0.6409642
> m1=lm(ibm∼ sp) % Fit the Market Model (linear model)
> summary(m1)
Call: lm(formula = ibm ∼ sp)
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.007768 0.001672 4.645 3.84e-06 ***
sp 0.806685 0.030144 26.761 < 2e-16 ***
---
Residual standard error: 0.05348 on 1027 degrees of freedom
Multiple R-squared: 0.4108, Adjusted R-squared: 0.4103
> plot(sp,ibm,cex=0.8) % Obtain scatter plot
> abline(0.008,.807) % Add the linear regression line

1.8 SOME STATISTICAL DISTRIBUTIONS

Several statistical distributions have been proposed in the literature for the marginal
distributions of asset returns, including normal distribution, lognormal distribution,
stable distribution, and scale mixture of normal distributions. We briefly discuss these
distributions.

1.8.1 Normal Distribution

A traditional assumption made in financial study is that the simple returns {Rit |t =
1, · · · , T } are independently and identically distributed (iid) as normal with fixed mean
and variance. This assumption makes statistical properties of asset returns tractable.
But it encounters several difficulties. First, the lower bound of a simple return is −1.
Yet the normal distribution may assume any value in the real line and, hence, has no
lower bound. Second, if Rit is normally distributed, then the multiperiod simple return
Rit [k ] is not normally distributed because it is a product of one-period returns. Third,
the normality assumption is not supported by many empirical asset returns, which
tend to have a positive excess kurtosis.

1.8.2 Lognormal Distribution

Another commonly used assumption is that the log returns rt of an asset are iid as
normal with mean μ and variance σ 2. The simple returns are then iid lognormal
random variables with mean and variance given by

E (Rt ) = exp

(
μ + σ 2

2

)
− 1, Var(Rt ) = exp

(
2μ + σ 2) [exp

(
σ 2) − 1]. (1.14)



SOME STATISTICAL DISTRIBUTIONS 33

These two equations are useful in studying asset returns (e.g., in forecasting using
models built for log returns). Alternatively, let m1 and m2 be the mean and variance,
respectively, of the simple return Rt , which is distributed as lognormal. Then, the
mean and variance of the corresponding log return rt are

E (rt ) = ln

⎛
⎜⎜⎝ m1 + 1√

1 + m2

(1 + m1)
2

⎞
⎟⎟⎠ , Var(rt ) = ln

(
1 + m2

(1 + m1)
2

)
.

Because the sum of a finite number of iid normal random variables is normal,
rt [k ] is also normally distributed under the normal assumption for {rt }. In addition,
there is no lower bound for rt , and the lower bound for Rt is satisfied using 1 + Rt =
exp(rt ). However, the lognormal assumption is not consistent with all the properties
of historical stock returns. In particular, many stock returns exhibit a positive excess
kurtosis.

1.8.3 Stable Distribution

The stable distributions are a natural generalization of normal in that they are stable
under addition, which meets the need of continuously compounded returns rt . Further-
more, stable distributions are capable of capturing excess kurtosis shown by historical
stock returns. However, nonnormal stable distributions do not have a finite variance,
which is in conflict with most finance theories. In addition, statistical modeling using
nonnormal stable distributions is difficult. An example of nonnormal stable distribu-
tions is the Cauchy distribution, which is symmetric with respect to its median but
has infinite variance.

1.8.4 Scale Mixture of Normal Distributions

Recent studies of stock returns tend to use scale mixture or finite mixture of normal
distributions. Under the assumption of scale mixture of normal distributions, the log
return rt is normally distributed with mean μ and variance σ 2 [i.e., rt ∼ N (μ, σ 2)].
However, σ 2 is a random variable that follows a positive distribution (e.g., σ−2 follows
a gamma distribution). An example of finite mixture of normal distributions is

rt ∼ (1 − X )N (μ, σ 2
1 ) + XN (μ, σ 2

2 ),

where X is a Bernoulli random variable such that P(X = 1) = α and P(X = 0) =
1 − α with 0 < α < 1, σ 2

1 is small, and σ 2
2 is relatively large. For instance, with

α = 0.05, the finite mixture says that 95% of the returns follow N (μ, σ 2
1 ) and 5%

follow N (μ, σ 2
2 ). The large value of σ 2

2 enables the mixture to put more mass at the
tails of its distribution. The low percentage of returns that are from N (μ, σ 2

2 ) says
that the majority of the returns follow a simple normal distribution. Advantages of
mixtures of normal include that they maintain the tractability of normal, have finite
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Figure 1.17. Comparison of finite mixture, stable, and standard normal density functions.

higher order moments, and can capture the excess kurtosis. Yet it is hard to estimate
the mixture parameters (e.g., the α in the finite mixture case).

Figure 1.17 shows the probability density functions of a finite mixture of normal,
Cauchy, and standard normal random variable. The finite mixture of normal is
(1 − X )N (0, 1) + X × N (0, 16) with X being Bernoulli such that P(X = 1) = 0.05,
and the density function of Cauchy is

f (x) = 1

π(1 + x2)
, −∞ < x < ∞.

It is seen that the Cauchy distribution has fatter tails than the finite mixture of
normal, which, in turn, has fatter tails than the standard normal.

1.8.5 Multivariate Returns

Let r t = (r1t , . . . , rNt )
′ be the log returns of N assets at time t . The multivariate

analyses are concerned with the joint distribution of {r t }T
t=1. In the presence of serial

dependence, statistical analysis is then focused on the specification of the conditional
distribution function F (r t |r t−1, . . . , r1, θ). In particular, how the conditional expecta-
tion and conditional covariance matrix of r t evolve over time are of special interest
in portfolio selection and risk management.
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The mean vector and covariance matrix of a random vector X = (X1, . . . , Xp) are
defined as

E (x) = μx = [E (X1), . . . , E (Xp)]
′,

Cov(x) = Σx = E [(x − μx )(x − μx )
′],

provided that the expectations involved exist. When the data {x1, . . . , x T } of X are
available, the sample mean and covariance matrix are defined as

μ̂x = 1

T

T∑
t=1

x t , Σ̂x = 1

T − 1

T∑
t=1

(x t − μ̂x )(x t − μ̂x )
′.

These sample statistics are consistent estimates of their theoretical counterparts pro-
vided that the covariance matrix of X exists. In the finance literature, multivariate
normal distribution is often used for the log return r t .

To demonstrate, consider again the monthly log returns of IBM stock and S&P
500 composite index from January 1926 to September 2011 shown in Figure 1.16.
Let r t = (r1t , r2t )

′ with r1t and r2t being the monthly log return of IBM stock and
S&P index, respectively. Then, we have 1029 observations for r t . The sample mean
and covariance matrix of r t are

μ̂ =
[

0.0113
0.0044

]
, Σ̂ =

[
4849 2470
2470 3062

]
× 10−6.

To check the validity of the bivariate normality assumption, we can use statistical
simulation. Specifically, we can generate 1029 data points from a bivariate normal
distribution with mean μ̂ and covariance matrix Σ̂ . In R, this can be done using the
command rmnorm of the package mnormt. Figure 1.18 shows the scatter plot of such
a simulation. By comparing this scatter plot with Figure 1.16, we see that significant
differences exist between the two plots, indicating that the normality assumption is
questionable.

R Demonstration

> da=read.table("m-ibmsp-2611.txt",header=T) % Load data
> dim(da)
[1] 1029 3
> ibm=log(da$ibm+1) % Compute log returns
> sp=log(da$sp+1)
> rt=cbind(ibm,sp) % Obtain bivariate returns
> m1=apply(rt,2,mean) % Obtain sample means
> v1=cov(rt) % Obtain sample covariance matrix
> m1

ibm sp
0.011303024 0.004381644
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Figure 1.18. Scatterplot of 1029 data points simulated from a bivariate normal distribution

based on the sample mean and covariance of monthly log returns of IBM stock and S&P index.

> v1
ibm sp

ibm 0.004849390 0.002469738
sp 0.002469738 0.003061590
> library(mnormt) % Load package
> x=rmnorm(1029,mean=m1,varcov=v1) % Simulation
> dim(x)
[1] 1029 2
> plot(x[,2],x[,1],xlab=‘sim-sp’,ylab=‘sim-ibm’,cex=0.8)

EXERCISES

1. Consider the daily simple returns of American Express (AXP), CRSP value-
weighted index (VW), CRSP equal-weighted index (EW), and the S&P com-
posite index (SP) from September 01, 2001 to September 30, 2011. Returns
of indices include dividends. The data are in the file d-axp3dx-0111.txt
(date, axp, vw, ew, sp).

(a) Compute the sample mean, standard deviation, skewness, excess kurtosis,
minimum, and maximum of each simple return series.
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(b) Transform the simple returns to log returns. Compute the sample mean,
standard deviation, skewness, excess kurtosis, minimum, and maximum of
each log return series.

(c) Test the null hypothesis that the mean of the log returns of AXP stock is
zero. Use 5% significance level to draw your conclusion.

2. Answer the same questions as Problem 1 but using monthly returns for Gen-
eral Electric (GE), CRSP value-weighted index (VW), CRSP equal-weighted
index (EW), and S&P composite index from January 1940 to September 2011.
The returns include dividend distributions. Data file is m-ge3dx-4011.txt
(date, ge, vw, ew, sp).

3. Consider the monthly stock returns of S&P composite index from January
1940 to September 2011 in Problem 2. Perform the following tests and draw
conclusions using the 5% significance level.

(a) Test H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean return.

(b) Test H0 : m3 = 0 versus Ha : m3 �= 0, where m3 denotes the skewness.

(c) Test H0 : K = 3 versus Ha : K �= 3, where K denotes the kurtosis.

4. Consider the daily log returns of American Express stock from September 1,
2001 to September 30, 2011 as in Problem 1. Use the 5% significance level
to perform the following tests: (i) Test the null hypothesis that the skewness
measure of the returns is zero and (ii) test the null hypothesis that the excess
kurtosis of the returns is zero.

5. Daily foreign exchange rates (spot rates) can be obtained from the Federal
Reserve Bank in Chicago. The data are the noon buying rates in New York City
certified by the Federal Reserve Bank of New York. Consider the exchange
rates between the U.S. dollar and the British pound and Japanese yen from
January 2, 2007 to November 30, 2011. The data are also available on the
web. (i) Compute the daily log return of each exchange rate. (ii) Compute
the sample mean, standard deviation, skewness, excess kurtosis, minimum,
and maximum of the log returns of each exchange rate. (iii) Obtain a den-
sity plot of the daily log returns of Dollar–Yen exchange rate. (iv) Test
H0 : μ = 0 versus Ha : μ �= 0, where μ denotes the mean of the daily log
return of Dollar–Yen exchange rate. Use the 5% significance level to draw the
conclusion.
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