
CHAPTER 1

QUALITY FACTORS OF ESA

1.1 INTRODUCTION

In a 1947 paper, Harold Wheeler defined an electrically small antenna (ESA) as an

antenna that could be enclosed within a radian sphere (Wheeler, 1947). The radian

sphere was a sphere of radius equal to l=2p, where l is the wavelength. The antennas
used by Marconi and Fessenden in the early years of wireless telegraphy were

electrically small antennas even though they were very large physical structures,

often involving wires strung as an inverted fan or cone from masts several hundred

feet tall. These antennas were electrically small antennas since in order to achieve

long-distance transmission the wavelengths used, typically greater than 3000m,

were much longer than the antenna heights. These electrically small antennas were

characterized by a very low radiation resistance and a large capacitive input

reactance. The purpose of the large inverted fans and cones was to increase the

antenna capacitance and thus reduce the capacitive reactance. Wheeler introduced

the radiation power factor (RPF) as a figure of merit for these electrically small

antennas. He considered two basic antenna types: the magnetic dipole or loop

antenna consisting of a solenoid coil with N turns, length b, and radius a; and a short

electric dipole antenna consisting of a thin wire of length b and with capacitive

loading at each end by means of circular conducting disks of radius a. The radiation

power factor was defined as the ratio of the radiation resistance to the reactance of

the antenna. For the solenoid loop antenna, the radiation resistance is given by

Rm ¼ 320N2p6ða=lÞ4. An approximate expression for the inductance of the solenoid
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coil is L ¼ m0N
2ðpa2=bÞ. For the small electric dipole, the radiation resistance

is given by Re ¼ 80p2ðb=lÞ2 and the capacitance between the two circular plates is

C ¼ «0pa2=b when the fringing effects are neglected. From these expressions,

we can calculate the radiation power factors, pm for the magnetic dipole and pe
for the electric dipole, as follows:

pm ¼ Rm

vL
¼ 4

3

p3a2b

l3
ð1:1aÞ

pe ¼ RevC ¼ 4

3

p3a2b

l3
ð1:1bÞ

Wheeler modified Equation 1.1 by magnetic and electric shape factors derived

from statics. For ESA, the radiation power factors are very small. Also see

Wheeler (1975).

Wheeler’s radiation power factors are related to the Q parameter introduced by

Kenneth S. Johnson, an authority on wire transmission at Bell Telephone Laborato-

ries. Initially, Johnson used the symbol K to represent the ratio of the inductive

reactance to the resistance of a coil, K ¼ vL=R. In 1920, while working on wave

filters, invented by G. A. Campbell, he replaced the symbol K by the symbol Q and

introduced the lowercase symbol q for the analogous quantity vC=G for a capacitor

C, where G is the parallel conductance of a capacitor (called condenser in those

days). Later on in 1927 he used Q for both in his U.S. Patent No. 1,628,983.

His introduction of this symbol was adopted by most people working with tuned

circuits in radio receivers in the early days of radio broadcasting.

It is easily shown that the response of a tuned circuit, consisting of a parallel or

series connection of an inductor and a capacitor, is reduced by the factor 1=
ffiffiffi
2

p
when

the circuit is detuned by a fractional amount Dv=v ¼ 1=2Q, provided the Q is equal

to 10 or more. Thus, 1/Q is the 3 dB bandwidth (BW) of the tuned circuit. If a resistive

load is connected across the tuned circuit such that a maximum amount of power can

be obtained from the circuit, theQ of the loaded circuit is reduced by a factor of 2 and

the 3 dB bandwidth is increased by a factor of 2. Tuned circuits with high values ofQ

were needed in order to achieve high selectivity in the tuned radio frequency radios.

This led to extensive efforts to design radio frequency coils with low loss resistance.

During the World War II years, the Q became widely used to describe the sharpness

of the resonance curve of both electric and mechanical resonators such as microwave

cavities, quartz crystal resonators, and so on. If we have a tuned circuit with a

capacitor C in parallel with an inductor L, it is known that the resonant frequency of

the circuit is given by v0 ¼ 1=
ffiffiffiffiffiffi
LC

p
and that at resonance the time-averaged

energy stored in the capacitor is equal to that in the inductor. If the inductor has

a series resistance R and the current in the inductor is I, then the average energy

stored in the magnetic field around the inductor is given by Wm ¼ I2L=4 and the

average power dissipated in the resistor is PL ¼ I2R=2.When we introduce these into

the definition of Q, as used by Johnson, we can express Q in the form
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Q ¼ vL

R
¼ 2vðI2L=4Þ

I2R=2
¼ 2vWm

PL

¼ vðWm þWeÞ
PL

Q ¼ vðaverage energy stored in resonant circuitÞ
ðaverage energy dissipated per secondÞ ð1:2aÞ

This latter definition of the quality factor or Q of a resonant circuit is the most

commonly used one.

For ESA, it is approximately

Q ’ v dX=dv

2R
ð1:2bÞ

Harrington (1965) and Rhodes (1966, 1974) extended the bandwidth relationship

for circuits, BW ¼ 1=Q, to dipole-type antennas. Dipole bandwidth and 1=Q were

compared by Hansen (2007); the match was excellent for ka � 0:3 and good for

ka � 0:5.
The Q of electrically small antennas represents a fundamental limit on the

performance of these antennas, in particular their bandwidth. If the designer of

electrically small antennas is cognizant of this fundamental limit, he (she) will not

expend excessive time designing an antenna to achieve what cannot be achieved.

Although the operational bandwidth of electrically small antennas can be increased

by the use of multiple tuned circuits in the matching network or by inclusion of

magnetic materials, this invariably introduces significant additional loss and a

reduced efficiency of the antenna. Fano’s theory of broadband matching,

which will be briefly discussed in a later section, shows that a maximum increase

in the 3 dB bandwidth is by a factor of 3.2. A realistic goal is to increase the

bandwidth by a factor of 2. The double-tuned coupled circuits used in intermediate-

frequency (IF) transformers in superheterodyne radio receivers, to increase the

audio fidelity of these amplifiers, increased the bandwidth by a factor of around 2

(see Terman, 1943). Active circuits, called non-Foster networks, can in principle

provide broadband matching. These are discussed in Chapter 2 but have their own

limitations.

Canonical types of ESA are loaded dipoles, patch antennas with uncommon

substrates, loop antennas with air or magnetic cores, dielectric resonator antennas, as

well as bent conductors of unusual shapes, and antennas incorporating metamater-

ials. Many of the latter cannot be realistically fabricated and do not work according to

the theories proposed for them. These antennas are discussed in later sections. Some

clever ideas have been found to be impractical. A long list of antenna ideas that

resemble science fiction is given in Chapter 5.

L. J. Chu (1948) applied the concept ofQ to small antennas and used the definition

given by Equation 1.2a to find a lower bound for Q of small antennas whose radiated

fields could be expressed in terms of spherical waves. The results obtained by Chu

provide a more accurate measure of the limitations of ESA than Wheeler’s power
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factors do. Since the pioneering work of Chu, many other authors have contributed to

the evaluation of antenna Q.

1.2 CHU ANTENNA Q

Chu considered a hypothetical antenna that was contained entirely within a sphere of

radius a. The electromagnetic field outside this sphere can be described in terms of

infinite series of spherical transverse electric (TE) and transverse magnetic (TM)

modes. The vector wave functions in a spherical coordinate system were derived by

W. W. Hansen (1935). These modes consist of two sets of transverse (divergence-

free) modes and a set of longitudinal modes (modes with zero curl). The former are

designated by the symbolsMnmðrÞ andNnmðrÞwhile the latter are represented by the
symbol LnmðrÞ. In regions external to the source region, only the transverse modes

are required in the expansion of an arbitrary electromagnetic field. Thus, in the region

external to a sphere of radius a that completely encloses the small antenna, the

electric and magnetic fields can be represented in the following form (Stratton, 1941;

Collin, 1990):

EðrÞ ¼
X
n;m

Ce
nmMnmðrÞþ

X
n;m

De
nmNnmðrÞ ð1:3aÞ

HðrÞ ¼
X
n;m

Ch
nmMnmðrÞþ

X
n;m

Dh
nmNnmðrÞ ð1:3bÞ

where

MnmðrÞ ¼ r � ar Pm
n ðcos uÞk0rh2nðk0rÞcossin �

� � ð1:3cÞ

NnmðrÞ ¼ r �r� ar Pm
n ðcos uÞk0rh2nðk0rÞcossin �

� � ð1:3dÞ

In these expressions, Pm
n ðcos uÞ are the associated Legendre polynomials, h2nðk0rÞ

is the spherical Hankel function of order n, and k0 ¼ 2p=l0 is the free space wave

number. Ce
nm;C

h
nm;D

e
nm; andD

h
nm are amplitude constants. For each individual mode,

the stored electric and magnetic energy divided by the radiated power is independent

of the azimuthal index m. Also, the transverse electric or TEnm and the transverse

magnetic or TMnmmodes are duals of each other with the electric and magnetic fields

interchanged, so their Q’s are the same. Thus, it is sufficient to consider only the

TMn0 mode, which is what Chu did.

For the TMn0 modes, the electric and magnetic fields are given by

Eu ¼ Ch
n

� k0 sin u

jv«0

dPnðcos uÞ
dðcos uÞ

d½k0rh2nðk0rÞ�
dðk0rÞ ð1:4aÞ
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Er ¼ Ch
n

nðnþ 1Þ
jv«0r2

Pnðcos uÞ k0rh
2
nðk0rÞ

� � ð1:4bÞ

H� ¼ Ch
n

sin u

r

dPnðcos uÞ
dðcos uÞ k0rh

2
nðk0rÞ

� � ð1:4cÞ

where Ch
n is an amplitude constant. The mode wave impedance at r ¼ a is given by

Zw;n ¼ Eu

H�
¼ jZ0

d k0ah
2
nðk0aÞ

� �
=dðk0aÞ

k0ah2nðk0aÞ
ð1:5Þ

Instead of evaluating the stored reactive electric and magnetic energy and the

radiated power from the electric and magnetic fields, Chu expanded the mode wave

impedance into a continued fraction that could be interpreted as a ladder network

with 2n elements consisting of alternating capacitors and inductors, and terminated

in a normalized resistance of 1W. Conventional circuit analysis could then be used to

determine the stored electric energy in the capacitors and the stored magnetic energy

in the inductors, as well as the radiated power, which equals the power dissipated in

the terminating resistor.

The mode normalized wave impedance can be expressed in the form

Zw;n

Z0
¼ j

r
þ j

h2n

dh2n
dr

� �
ð1:6Þ

where r ¼ k0a. We now use the following recurrence relation for spherical Bessel

functions fnðrÞ:

fn ¼ 2n� 1

r
fn� 1 � fn� 2

and the relation

dfn

dr
¼ fn� 1 � nþ 1

r
fn

where r ¼ k0a, to get

Zw;n

Z0
¼ j

r
þ j

h2n
h2n�1�

nþ 1

r
h2n

2
4

3
5 ¼ n

jr
þ 1

h2n
jh2n�1

¼ n

jr
þ 1

1

jh2n�1

2n�1

r
h2n�1�h2n�2

2
4

3
5

¼ n

jr
þ 1

2n�1

jr
þ 1

h2n�1

jh2n�2

¼ n

jr
þ 1

2n�1

jr
þ 1

2n�3

jr
þ

. .
. 1

3

jr
þ 1

1

jr
þ1

ð1:7Þ
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This expansion can be interpreted as the impedance of the ladder network

illustrated in Figure 1.1 for TM modes. L and C values decrease with each step.

The TMn0 modes store more electric energy than magnetic energy and hence the

mode must be tuned to resonance by adding some additional magnetic energy, that is,

by an inductive reactance. If we assume that this is done, then the total stored reactive

energy will be twice the electric energy We, which equals the energy stored in the

capacitors in the equivalent electric circuit. The stored electric energy and the power

dissipated in the 1W terminating resistance can be determined by conventional

circuit analysis, but it becomes very tedious to carry out for n > 3. For the n ¼ 1

mode, the Q was found to be given by

Q1 ¼ 2vWe

Pr

¼ 1

ðk0aÞ3
þ 1

k0a
ð1:8Þ

Note that the Q in Hansen (1981) has a typo error.

Chu evaluated the Q of the higher order modes by using an approximate

equivalent circuit that was obtained as follows. For a series RLC circuit, the input

reactance is X ¼ vL� 1=vC and dX=dv�X ¼ Lþ 1=v2C� L ¼ 1=v2C. When

the input current to the circuit is I, the power dissipated in R is jIj2R=2 and the electric
energy stored in C is jIj2=4v2C. Hence, the Q is given by

Q ¼ 2vWe

Pr

¼ v

v2CR
¼ 1

2R

dX

dv
� X

v

� �
ð1:9Þ

Chu equated X to the imaginary part of Zw;n=Z0 given by Equation 1.6. Chu also
evaluated the Q of the higher order modes using this method. In addition, Chu

also evaluated the Q of a combination of a TEn1 and a TMn1 mode. When the

amplitudes of the two modes are equal, a circularly polarized field can be

produced. By using his approximate value of the Q, it was found that the Q of

the combined modes was one-half that of a single mode.

The ratio of the directive gain to the Q for an antenna radiating a total of Nmodes

was also determined by Chu but he did not find the optimum gain for a given Q, a

problem that later authors solved. Any antenna that is contained within a sphere of

radius a will have additional energy storage within the enclosing sphere and will

consequently have a higher Q. Thus, the Q that Chu found is a lower bound on the Q

FIGURE 1.1 Chu ladder network.
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of any lossless antenna. Many ESA have a Q that is considerably larger than

Chu’s lower bound. When the antennaQ is large, one can infer that the bandwidth of

the antenna will be small but one cannot always assume that it will be equal to 1=Q
since the tuning circuit and losses may provide a larger bandwidth. Harrington (1958,

1960, 1961) expanded on the work of Chu, but followed Chu’s approximate method

to obtain the Q’s of TEn1 and TMn1 modes. Harrington showed that the maximum

gain of an antenna, obtained by using only a finite number of TEn1 and TMn1 modes,

was given by

Gmax ¼
XN
n¼1

ð2nþ 1Þ ¼ N2 þ 2N ð1:10Þ

If there was no constraint on the mode amplitudes, an arbitrarily large gain would

theoretically be possible. However, high-order modes are very difficult to excite

because their wave impedances (wave admittances for the TEn0 modes) are very

large, so in practice unusually large gains cannot be achieved. The high-order modes

also store large amounts of reactive energy, so high gain implies a large antenna Q

and a narrow bandwidth. Other investigators have considered optimizing the ratio of

gain divided by the antenna Q.

A different approach to Q was taken by Thiele et al. (2003), based on the far-field

pattern of a small source. A “pattern”Q is based on the integral of pattern over visible

space and that integral over all space, including invisible. Their Q values are higher

than those of Chu. An electrically small dipole with sinusoidal current distribution

was used to provide the fields for the integrations. These pattern Q values are eight

times larger than the Chu results. Dipole bandwidth calculations were also made by

Hujanen and Sten (2005). Kalafus (1969) calculates Q for higher modes as well,

using series expansions for the integrals of energy. Then coefficients of polynomials

representing Q are given. Another calculation of Q due to higher modes is done by

Harrington (1960).

An egregious example of claiming antennas that violate the fundamental limita-

tions on small antennas is provided by Underhill and Harper (2002, 2003). For a short

folded dipole of length L, they have reactance proportional to kL. However, it is well

known that the folded dipole reactance is four times that of the constituent dipole,

which is proportional to 1=kL. For a small loop of diameter D, they have radiation

resistance proportional to kD2, when it is widely accepted that it is proportional

to k4D4. These errors appear to be due to applying static formulations to electro-

magnetic problems.

Another paper claims that orthogonal TE and TM modes produce a gain of 3 and

a Q half that of either mode (Kwon, 2005). Both are in error; the input power

and the peak power density are both doubled, leaving the gain at 1.5 and theQ that of

one mode.

An erroneous calculation of bandwidth limitations occurred because of

confusion between total energy, stored energy, and radiated energy. This resulted in

a bandwidth of 16p times the fundamental limit for VSWR � 2 (Chaloupka, 1992).
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Geyi (2003a, 2003b) reexamines the task of maximizing the ratio D=Q, directivity
divided byQ. He corrects some inconsistencies in Fante (1969), with the result that the

maximumD=Q for a directive antenna (with both TE and TMmodes) is 3=Q, whereas
that for an omnidirectional antenna is, as expected, 3=2Q.

1.3 COLLIN AND ROTHSCHILD Q ANALYSIS

The next contribution to evaluating antenna Q was the paper by Collin and

Rothschild (1964), where the stored energy was evaluated in terms of the electro-

magnetic fields. This work provided convenient closed-form formulas for the Q of

any mode and was expanded upon by Fante (1969) and also by McLean (1996).

The configuration that will be analyzed consists of a spherical core of radius a

with a current sheet located on the surface. The current sheet is chosen so as to excite

only a single TEn0 mode for which the electric and magnetic fields in the region r > a

can be chosen to be

E� ¼ Ce
n

sin u

r

dPnðcos uÞ
dðcos uÞ k0rh

2
nðk0rÞ

� � ð1:11aÞ

Hu ¼ Ce
n

k0 sin u

jvm0r

dPnðcos uÞ
dðcos uÞ

d k0rh
2
nðk0rÞ

� �
dðk0rÞ ð1:11bÞ

Hr ¼ �Ce
n

nðnþ 1Þ
jvm0r

2
Pnðcos uÞ k0rh

2
nðk0rÞ

� � ð1:11cÞ

An electric current sheet proportional to a�HuðaÞ will support this mode. For

simplicity, we will assume that the amplitude constants Ce
n are equal to unity. The

TEnm modes store more magnetic energy than electric energy. The Q can be

expressed in terms of the total average stored reactive magnetic energy both inside

and outside the spherical surface r ¼ a since wewill assume that the antenna is tuned

to resonance with an additional capacitive reactance. Thus, the Q is given by

Qn ¼ 2vWm

Pr

ð1:12Þ

where Pr is the total radiated power. The total energy in the electromagnetic field is

infinite since it includes the energy associated with the far-zone radiation field, which

is energy that is being transmitted to infinity as radiated power. The radiated power is

obtained by integrating the real part of the complex Poynting vector over the surface

of a sphere with very large radius and is readily found to be given by

Pr ¼ k0p
vm0

2nðnþ 1Þ
2nþ 1

ð1:13Þ
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The power flow at infinity is equal to the energy density in the electromagnetic

field multiplied by the velocity c ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
m0«0

p
integrated over u and �. The energy

density in the radiation field is split equally between that in the electric field and that

in the magnetic field. By using the asymptotic value of the Hankel function,

the energy density for the electric and magnetic fields for very large values of r

is found to be

we ¼ wm ¼ «0 sin
2u

4r2
dPnðcos uÞ
dðcos uÞ

� �2
ð1:14Þ

After multiplying by r2sinu and integrating over u and �, we will denote these

energy densities by We;Rad and Wm;Rad. It is found that

We;Rad ¼ Wm;Rad ¼ p«0nðnþ 1Þ
2nþ 1

ð1:15Þ

It is easy to verify that cðWe;Rad þWm;RadÞ ¼ 2cWm;Rad ¼ Pr. In the original paper

by Collin and Rothschild, they made the hypothesis that the energy density we þwm

should be subtracted from the total energy density ð«0=4ÞjEj2 þðm0=4ÞjHj2 before
integrating over the total volume in order to obtain the average stored reactive energy.

After evaluating the total reactive energy, they used the integral of the complex

Poynting vector over the surface r ¼ a to obtain an expression for Wm �We, which

does not contain the energy associated with the radiation field. By this means,

they obtained separate expressions for the average stored electric and magnetic

reactive energy. McLean (1996) simplified this procedure by simply subtracting

the energy densities we and wm, respectively, from the total electric and magnetic

field energy densities. We will follow McLean’s procedure in the derivation

given below.

By using the expressions for the magnetic field given in Equations 1.11b

and 1.11c, the stored magnetic reactive energy in the volume outside the surface

r ¼ a is found to be given by

Wm ¼
ð1
a

ðp
0

m0

4
jHuj2 þ jHrj2
h i

� «0 sin
2u

4r2
dPnðcos uÞ
dðcos uÞ

� �2( )
2pr2sin udu dr ð1:16Þ

When r becomes very large, r2jHrj2 is asymptotic to 1=r2, so the integral of this

term vanishes at the upper limit r ¼ 1. The asymptotic limit of the termm0jHuj2=4 is
ð«0 sin2u=4r2Þ½dPnðcos uÞ=dðcos uÞ�2 and is cancelled by the last term in the above

integral. Hence, the integral over r converges as r tends to infinity. If the magnetic

energy density in the radiation field had not been subtracted out, the integral would

have diverged as r tended toward infinity.
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The evaluation of Wm requires the following two integrals:

ðp
0

½Pnðcos uÞ�2sin u du ¼ 2

2nþ 1
ð1:17aÞ

ðp
0

dPnðcos uÞ
du

� �2
sin u du ¼ 2nðnþ 1Þ

2nþ 1
ð1:17bÞ

After completing the integrations over u, the expression for Wm reduces to

Wm ¼ p«0nðnþ1Þ
k0ð2nþ1Þ

ð1
k0a

dr jnðrÞ
dr

� �2
þ dr ynðrÞ

dr

� �2
þnðnþ1Þ j2nðrÞþy2nðrÞ

� ��1

( )
dr

ð1:18Þ

where jn and yn are the spherical Bessel functions of the first and second kinds. In

order to carry out the integrations in Equation 1.18, the following integral is used

(Morse and Feshbach, 1953):

ð
r2½fnðrÞ�2dr¼ r2

2
ðf 2n � fn�1fnþ1Þ ð1:19aÞ

where fn can be jn or yn. In order to transform all of the integrals into this form, the

following relations are needed:

jn ¼ r

2nþ1
ðjn�1þ jnþ1Þ ð1:19bÞ

dðrjnÞ
dr

¼ r

2nþ1
ðnþ1Þjn�1�njnþ1½ � ð1:19cÞ

From Equations 1.19b and 1.19c, we can derive the relations

jnþ 1 ¼ nþ 1

r
jn � 1

r

djnðrÞ
dr

ð1:19dÞ

jn� 1 ¼ 1

r
njn þ 1

r

djnðrÞ
dr

� �
ð1:19eÞ

By using these relations, we can show that

dðrjnÞ
dr

� �2
¼ r2

2nþ 1
ðnþ 1Þj2n� 1 þ nj2nþ 1

� �� nðnþ 1Þj2n ð1:19fÞ
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The integral in Equation 1.18 now becomes

Wm ¼ p«0nðnþ1Þ
k0ð2nþ1Þ

ð1
k0a

ðnþ1Þr2
2nþ1

j2n�1ðrÞþy2n�1ðrÞ
� �þ nr2

2nþ1
j2nþ1ðrÞþy2nþ1ðrÞ
� ��1

8<
:

9=
;dr

¼ p«0nðnþ1Þ
k0ð2nþ1Þ k0a�ðk0aÞ3ðnþ1Þ

2ð2nþ1Þ j2n�1ðk0aÞ�jn�2ðk0aÞjnðk0aÞ
�8<

:

þ n

nþ1
j2nþ1ðk0aÞ�

n

nþ1
jnðk0aÞjnþ2ðk0aÞ�

)
þ corresponding terms in

yn; yn�1; yn�2; ynþ1; and ynþ2 ð1:20Þ

The quality factorQ for the nth mode, which wewill designate by the symbolQTE
n ,

is obtained by multiplying by 2v=Pr and is given by

QTE
n ¼ k0a� ðk0aÞ3ðnþ 1Þ

2ð2nþ 1Þ j2n� 1ðk0aÞ� jn� 2ðk0aÞjnðk0aÞþ n

nþ 1
j2nþ 1ðk0aÞ

2
4

� n

nþ 1
jnðk0aÞjnþ 2ðk0aÞ

#
þ corresponding terms in

yn; yn� 1; yn� 2; ynþ 1; and ynþ 2

This expression can be simplified by using the recurrence relation

(Equation 1.19b) to eliminate the Bessel functions of order n� 1, n� 2, and

nþ 2. When this is done, we obtain

QTE
n ¼k0a� ðk0aÞ2

2
þðnþ1Þk0a

2
4

3
5 j2nðk0aÞþy2nðk0aÞ
� ��ðk0aÞ3

2
j2nþ1ðk0aÞþy2nþ1ðk0aÞ
� �

þ2nþ3

2
ðk0aÞ2 jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ½ � ð1:21Þ

which is the same expression as that given in the Collin and Rothschild’s (1964)

paper. The QTE
n can be expressed as a power series in inverse powers of k0a by using

ðk0aÞ2 j2nðk0aÞþy2nðk0aÞ
� �¼C2

nþD2
n ð1:22aÞ

ðk0aÞ2½jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ�¼CnDnþ1�DnCnþ1 ð1:22bÞ
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where

Cn¼
X2m�n

m¼0

ð�1Þmðnþ2mÞ!
ð2mÞ!ðn�2mÞ!22mðk0aÞ2m

and

Dn¼
X2m�n�1

m¼0

ð�1Þmðnþ2mþ1Þ!
ð2mþ1Þ!ðn�2m�1Þ!22mþ1ðk0aÞ2mþ1

For the first three modes, the results are

Q1 ¼ 1

k0a
þ 1

ðk0aÞ3
ð1:23aÞ

Q2 ¼ 3

k0a
þ 6

ðk0aÞ3
þ 18

ðk0aÞ5
ð1:23bÞ

Q3 ¼ 6

k0a
þ 21

ðk0aÞ3
þ 135

ðk0aÞ5
þ 675

ðk0aÞ7
ð1:23cÞ

The Q of the first three modes is shown in Figure 1.2. Note that the Q rapidly

becomes very large as soon as the parameter k0a becomes less than unity, and that

Equations 1.23a–1.23c are exact.

Collin and Rothschild (1964) applied the same method to calculate the Q of

cylindrical modes excited outside the surface of a cylinder with radius a. The Q

of cylindrical modes was found to have a similar dependence on the radius of the

cylinder as the spherical modes have on the radius of the circumscribing sphere.

The TMn1 modes are the dual of the TEn1 modes and have the same value for the

Qn. The expressions for the electric and magnetic reactive energies are interchanged,

so We > Wm. If the TE10 and TM10 modes are excited with equal amplitude from a

one-port input network, then the electromagnetic field outside the sphere with radius

a will contain equal amounts of reactive electric and magnetic energies. Since the

TEn1 and TMn1 modes are orthogonal for energy storage and radiated power, these

quantities can be summed when both sets of modes are excited. In general, there will

also be some energy stored within the circumscribing sphere. We will let these

be represented by W
0
e and W

0
m. For the purpose of discussion, we will assume that

Wm > We. The following situations can occur:

Wm þW
0
m > We þW

0
e

Wm þW
0
m < We þW

0
e

For the first case, we would need to add some stored electric energy DWe in order

to tune the system to resonance, that is,

12 QUALITY FACTORS OF ESA



Wm þW
0
m ¼ We þW

0
e þDWe

Clearly, if the Q is calculated using Wm for the time-averaged stored magnetic

energy, this will give a lower bound on the antenna Q since the total stored magnetic

energy is larger because it includes the internal stored magnetic energy W
0
m. For the

second case, we would need to add additional magnetic energy DWm such that

Wm þW
0
m þDWm ¼ We þW

0
e

Again it is clear that using only the external stored magnetic energy will give a

lower bound on the antenna Q.

If the TE10 mode is excited with a phase angle p=2 relative to that for the TM10

mode but with an equal amplitude, then the radiated field everywhere will be

circularly polarized. The power across any spherical surface will be independent

of time. If the internal stored electric and magnetic energies are also balanced, then

the system will be resonant at all frequencies. The radiated power will be twice that

of a single mode. The stored energy will be the sum ofWm from the TE10 mode and

that from the TM10 mode, which is proportional to 1=k0a and thus leads to the

following lower bound on the Q (McLean, 1996; Collin, 1998):
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FIGURE 1.2 The quality factors (or the first three TEn0 and TMn0 modes. Only the stored

reactive energy outside the circumscribing sphere of radius a is included.

COLLIN AND ROTHSCHILD Q ANALYSIS 13



QTEþTM ¼ 1

2

1

ðk0aÞ3
þ 1

k0a

" #
þ 1

k0a

( )
¼ 1

2ðk0aÞ3
þ 1

k0a
ð1:24Þ

1.4 THAL ANTENNA Q

Any antenna that is contained within a sphere of radius a will have additional energy

storage within the enclosing sphere and will consequently have a higherQ. Thus, the

Q that Chu found is a lower bound on theQ of any lossless antenna. Many ESA have a

Q that is considerably larger than Chu’s lower bound. When the antenna Q is large,

one can infer that the bandwidth of the antenna will be small but one cannot always

assume that it will be equal to 1=Q since the tuning circuit and losses may provide for

a larger bandwidth.

In order to complete the derivation of the new lower bound on antennaQ, we need

to consider the effects of energy stored within the sphere of radius a. In two recent

papers, Thal (1978, 2006) reevaluated the Q of TEn1 and TMn1 modes by assuming

that the antenna consisted of a suitable current sheet on the surface of the sphere of

radius a. This allowed the modes excited in the interior of the sphere to be included in

the energy storage and hence led to larger values for the minimum achievableQ. This

work was based on the use of continued fraction expansions for the mode impedances

in both the internal and external regions. This current sheet can be chosen so as to

excite a single TEn0 or TMn0 mode. The only boundary condition that needs to be

applied is the continuity of the tangential electric field across the current sheet. Thal

extended the circuit analysis of Chu by developing a ladder network that included the

energy inside the enclosing sphere.

Hansen and Collin (2009) extended the exact formulation in terms of spherical

modes to include the energy stored inside the sphere. The result is a quotient of

spherical Bessel and Hankel functions. Numerical values are shown in Table 1.1, and

as expected these agreewith those published by Thal. Figure 1.3 shows the Chu-Q for

TE1 and TM1, and the Thal-Q for TE1 and Thal-Q for TM1. Exact formulas are those

in Section 1.5 for m ¼ 1 and « ¼ 1.

TABLE 1.1 New Q Values

ka Chu-Q (TM or TE) Thal-Q (TM) Thal-Q (TE)

0.1 1010.0 1506.0 3030.0

0.15 302.96 448.51 908.90

0.2 130.00 190.58 390.00

0.25 68.000 98.506 204.00

0.30 40.370 57.684 121.11

0.35 26.181 36.850 78.540

0.40 18.125 25.111 54.380

0.45 13.196 17.991 39.590

0.50 10.000 13.421 30.004
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The increase in Q due to the energy stored inside the sphere is (Hansen and

Collin, 2009)

DQ ¼ SF
ðkaÞ3
2

jn
2 � jn� 1 jnþ 1

� �þ ðkaÞ2
2nþ 1

ðnþ 1Þ jn jn� 1 � njn jnþ 1½ �
* +

ð1:25Þ

The scale factors are

SFTM ¼ 1þ ½ðnþ 1Þyn� 1 � nynþ 1�2
½ðnþ 1Þjn� 1 � njnþ 1�2

SFTE ¼ ½jnðkaÞ�2 þ ½ynðkaÞ�2
½jnðkaÞ�2

ð1:26Þ

Unlike the Chu-Q case, the new formulas do not have Q expressed as a two- or

three-term formula. This was remedied by Hansen and Collin (2009) who performed

a least pth fit to the exact values for both the TM1 and TE1 modes for two terms.

Least-squares fitting has a limitation in that the errors at the interval ends are different

from those in the middle of the interval. This was corrected by Bandler and

Charalambous (1972) with the least pth fit. It takes the pth root of the sum of the

200

Q

100

TM,  TE

TM

TE

0
0 0.1 0.2 0.3

ka

0.4 0.5

QChu

QTha1

QTha1

0.6

FIGURE 1.3 Q for lowest order modes.
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function values each raised to the pth power. For p � 10, the errors are evenly

distributed. The calculated values were fitted with p ¼ 20, for both TM1 and TE1

modes. The TM coefficients were close to 0.707 and 1.5, so these were used; TE

coefficients were close to 3.

TM1 : Q ¼ 1ffiffiffi
2

p
ka

þ 1:5

ðkaÞ3

TE1 : Q ¼ 3

ka
þ 3

ðkaÞ3
ð1:27Þ

Table 1.2 shows the errors versus ka for the TM1 case; the maximum error is

0.43% over the important range of ka � 0:5; for the TE1 formula, the errors are even

smaller. These useful formulas will be easy to remember!

1.5 RADIAN SPHERE WITH MU AND/OR EPSILON: TE MODES

One could assume that the spherical core was a material with permittivity and

permeability greater (or less) than those of free space. Indeed, Wheeler (1958)

did evaluate a spherical antenna consisting of a coil wound on the surface of a

sphere, with a permeability greater than that of free space. Two recent papers by

Kim et al. (2010) and Kim and Breinbjerg (2011) also address this problem. See also

McLean, Foltz, and Sutton, 2011. The analysis starts with the Collin and

Rothschild’s (1964) and Hansen and Collin’s (2009) papers, modifying the analysis

to allow a dielectric–magnetic core. The papers by Kim’s group show that for TE

modes and a magnetic core, a Q approaching the Chu lower bound can be realized

when the radius of the core tends toward zero.

Now consider the case of the excitation of TEn0 modes and assume that the interior

of the sphere is filled with lossless material having a relative permittivity «r and a

relative permeability mr. The only case that can be analyzed without having to

specify the details of the system of currents used to excite the electromagnetic field is

TABLE 1.2 TM Q Formula Errors

ka Qnew Qapprox % Error

0.10 1506.0 1507.1 0.07

0.15 448.51 449.20 0.15

0.20 190.58 191.00 0.22

0.25 98.506 98.830 0.33

0.30 57.684 57.910 0.39

0.35 36.850 37.010 0.43

0.40 25.111 25.210 0.39

0.45 17.991 18.030 0.22

0.50 13.421 13.410 � 0.08
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the use of a current sheet located on the surface r ¼ a. This current sheet can be

chosen so as to excite a single TEn0 or TMn0 mode. The only boundary condition that

needs to be applied is the continuity of the tangential electric field across the current

sheet. For the case of TEn0 modes, the fields are given by Equations 1.11a–1.11c but

with the Hankel functions replaced by the spherical Bessel functions jnðkaÞ and k0
replaced by k ¼ ffiffiffiffiffiffiffiffiffi

«rmr

p
k0, thus

E� ¼ Ce
n

sin u

r

dPnðcos uÞ
dðcos uÞ krjnðkrÞ½ � ð1:28aÞ

Hu ¼ Ce
n

ksin u

jvmrm0r

dPnðcos uÞ
dðcos uÞ

d½krjnðkrÞ�
dðkrÞ ð1:28bÞ

Hr ¼ �Ce
n

nðnþ 1Þ
jvmrm0r

2
Pnðcos uÞ krjnðkrÞ½ � ð1:28cÞ

The stored magnetic energy within the sphere is given by an integral similar to

Equation 1.18 but with the terms involving yn dropped, changing k0 to k, and «0 to
«r«0, which gives

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

ðka
0

drjnðrÞ
dr

� �2
þ nðnþ 1Þj2nðrÞ

( )
dr ð1:29aÞ

Note that r ¼ ffiffiffiffiffiffiffiffiffi
«rmr

p
k0a and there is no propagating energy density subtracted at

infinity. In addition, the limits on the integral are now from 0 to ka. The evaluation of

this integral is similar to that for Equation 1.18 and can be inferred to be

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

ðkaÞ3ðnþ 1Þ
2ð2nþ 1Þ

�
j2n� 1ðkaÞ� jn� 2ðkaÞjnðkaÞ

(

þ n

nþ 1
j2nþ 1ðkaÞ�

n

nþ 1
jnðkaÞjnþ 2ðkaÞ

�)
ð1:29bÞ

We can simplify this expression by using the Bessel function recurrence relations

to eliminate the Bessel functions of order n� 2 and nþ 2. This gives the result

Wm ¼ jCe
nj2

p«r«0nðnþ 1Þ
kð2nþ 1Þ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:29cÞ

Whenwemultiply by 2v and divide by the radiated power given by Equation 1.13,

we obtain the change in the antenna Q due to the energy stored internal to the sphere.

We will denote this change by DQTE
n , which is given by
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DQTE
n ¼ jCe

nj2
ffiffiffiffiffi
«r
mr

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:30Þ

The last step is to find the value of jCe
nj2, which is the scale factor that the interior

field must be multiplied by, from the condition that the tangential electric field must

be continuous across the current sheet. This condition gives

Ce
n

		 		2 ¼ SFTE ¼ k20 j2nðk0aÞþ y2nðk0aÞ
� �

k2j2nðkaÞ
ð1:31Þ

The final result for the change in the Q for the TEn0 mode due to energy stored

within the circumscribing sphere is

DQTE
n ¼ k0

mrk

j2nðk0aÞþ y2nðk0aÞ
j2nðkaÞ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:32aÞ

When «r ¼ mr ¼ 1, the above result agrees with that given by Hansen and

Collin (2009).

For the TE10 mode, a simplified expression is easily derived by using the sine and

cosine expressions for the spherical Bessel functions, thus

DQTE
1 ¼

ffiffiffiffiffi
«r
mr

r ðkaÞ2
ðk0aÞ2

1þðk0aÞ2

ðkaÞ2cos2 ka�ðkaÞsin 2kaþ sin2 ka
h i

� ka

2
� sin 2ka

4
� cos2 ka

ka
þ sin 2ka

ðkaÞ2 � sin2 ka

ðkaÞ3
" #

ð1:32bÞ

We can obtain an alternative expression by using

1þðk0aÞ2 ¼ ðk0aÞ3 1

ðk0aÞ3
þ 1

k0a

" #
¼ ðk0aÞ3Q1;Chu

where Q1;Chu is given by Equation 1.23a and is the contribution to the Q due to

the external stored energy. We now find that the new lower bound on the total Q for

the TE10 mode can be expressed in the form
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QTE
1 ¼ Q1;Chu þDQTE

1

¼ 1þ 2

mr

ðkaÞ4=4� ðkaÞ3sin 2ka

 �

=8� ðkaÞ2cos2ðkaÞ

 �

=2þðka sin 2kaÞ=2� sin2ðkaÞ� 

=2

h i
ðkaÞ2cos2ðkaÞ� ka sin 2kaþ sin2ðkaÞ
h i

8<
:

9=
;Q1;Chu

ð1:33Þ

This result is the same as that given by Kim et al. (2010). However, the above

authors do not give any formulas for the Q for the higher order TEn0 modes. The

above results also support the result Q1 ¼ ð1þ 2=mrÞðk0aÞ� 3
given many years ago

by Wheeler (1958).

From Equation 1.33, it can be seen that the new lower bound for the total Q

depends only on the permeability parameter mr and the size of the core through the

parameter ka ¼ ffiffiffiffiffiffiffiffiffi
«rmr

p ðk0aÞ. For very small values of ka, the contribution DQTE
n to

the total Q of the antenna is very small provided that the permeability is very

large. Hence, for a core with a small value of ka, the lower bound is very close to

the value of Q1;Chu. As ka increases in value, the DQTE
n increases but the total Q

decreases because Q1;Chu is decreasing at a rapid rate. After Q reaches a minimum

value, it begins to increase without limit as the resonant frequency of the internal

spherical core is approached. The resonant frequency occurs when the denominator

term jnðkaÞ in Equation 1.31 equals zero. At the resonant frequency, the tangential

electric field equals zero on the interior side of the surface of the circumscribing

sphere. Since the tangential electric field is continuous across the current sheet, it

must also be zero on the exterior side of the current sheet and consequently there is no

external radiation at the resonant frequencies. This is a manifestation of the

nonuniqueness of the external scattering problem for a sphere at the internal

resonances.

When «r andmr are equal to unity, DQTE
1 for the TE10 mode is very close to 2Q1;Chu

for k0a < 0:7, which makes the new lower bound on the antenna Q for this mode

approximately three times as large as that obtained by considering only the energy

stored outside of the circumscribing sphere. In Figure 1.4a, we show some typical

results for the new lower bound on the Q as a function of k0a for mr ¼ 4, 16, and 64

and «r ¼ 4. The curve for mr ¼ 64 shows a large increase in Q when the frequency

approaches the resonance value. These resonances are also encountered for the lower

values of mr, and also for the case of an air core, but at larger values of k0a. For mr

equal to 16 and larger, the curves of Q versus k0a are almost identical except in the

near vicinity of the resonances, which are different for each case because these occur

when ka ¼ tan ka for the k0a mode and thus depend on both core permittivity

and permeability. From Equation 1.33, we can see that the new lower bound QTE
1 for

the TM10 mode depends only on ka and the relative permeability mr. For this reason,

the same results shown in Figure 1.4a are shown in Figure 1.4b plotted as a function

of ka. These curves show additional resonance points and illustrate the minimum

values of QTE
1 that can be achieved. Note that when QTE

1 is plotted as a factor of

kaQTE
1 decreases with an increase in mr, but when plotted as a function of ka the

quality factor increases with an increase in mr.
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In the paper by Kim and Breinbjerg (2011), the ratio of the total stored magnetic

field energy to the total stored electric field energy is plotted as a function of k0a for

mr equal to 1, 2, 8, and 100, with «r ¼ 1. It was found that the stored electric field

energy became equal to the stored magnetic field energy at the cavity resonant
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FIGURE 1.4 (a) A plot of lower bound QTE
1 for TF10 mode as a function of ka for various

electrical parameters for the spherical core. (b) Comparison of the new lower bound for QTE
1

for the TE10 mode with the new lower bound taking into account internal energy stored in a

core with relative permittivity of 16. Also shown is theQ for an air core and the originalQ1,Chu

that is based only on the external stored energy.
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frequencies, but never exceeded the stored magnetic field energy. We have verified

these calculations for ka up to 100 and also included «r values of 2, 4, 16, 64, and 100.
The same property that the total stored electric field energy did not exceed the total

stored magnetic field energy continued to hold. Thus, the formula given by

Equation 1.33 for the Q of the TE10 will hold for all values of k0a, which is contrary

to a conclusion given by Kim and Breinbjerg (2011).

The next issue we wish to explore is whether or not the frequency dependence of

the tuned antenna admittance will result in a 3 dB bandwidth that is equal to 2=QTE
1 ,

where QTE
1 is the Q of the TE10 mode with the dielectric–magnetic core and no

external conductive loading; that is, QTE
1 is the unloaded antenna Q. The

antenna configuration analyzed above consists of a dielectric–magnetic core of

radius a and wound with a current sheet in the � direction. The admittance presented

to the current sheet source is the parallel combination of the wave admittance Ye
looking in the outward direction with the wave admittance Yi looking inward from

the surface at r ¼ a. These wave admittances can be obtained from the expressions

for the fields of the TE10 mode given in Equations 1.11a, 1.11b, 1.28a, and 1.28b

and are, after normalization with respect to the characteristic admittance

Y0 ¼ ð«0=m0Þ1=2 of free space,

Ye ¼ � Hu

E�
¼ j

d ðk0aÞh21ðk0aÞ
� �

=ðdk0aÞ
ðk0aÞh21ðk0aÞ

ð1:34aÞ

Yi ¼ � j

ffiffiffiffiffi
«r
mr

r
d ðkaÞj1ðkaÞ½ �=dðkaÞ

ðkaÞj1ðkaÞ ð1:34bÞ

We now use

xj1ðxÞ ¼ sinðxÞ
x

� cosðxÞ

and

xh21ðxÞ ¼
sinðxÞ
x

� cosðxÞþ j
cosðxÞ

x
þ sinðxÞ

� �

to obtain

Ye ¼
j k0a cosðk0aÞ� sinðk0aÞþ ðk0aÞ2sinðk0aÞþ j ðk0aÞ2cosðk0aÞ� cosðk0aÞ� k0a sinðk0aÞ

h in o
k0a sinðk0aÞ� ðk0aÞ2cosðk0aÞþ j k0a cosðk0aÞþ ðk0aÞ2sinðk0aÞ

h i

¼ ðk0aÞ3 � j

k0a 1þðk0aÞ2
h i ð1:35aÞ
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Yi ¼ j

ffiffiffiffiffi
«r
mr

r
sinðkaÞ� ka cosðkaÞ� ðkaÞ2sinðkaÞ

ka sinðkaÞ� ðkaÞ2cosðkaÞ

" #
ð1:35bÞ

The external admittance Ye is that of a lumped element circuit consisting of an

inductive reactance jk0a in parallel with the reactance of a series capacitor and resistor

1þ 1=jk0a (Harrington, 1961). The internal admittance cannot be represented by a

lumped element circuit, except when ka is small so that a first-order power series

expansion of Yi can be used. In the low-frequency range, Yi can be approximated as an

inductive reactance jka ¼ jvmrm0a
ffiffiffiffiffiffiffiffiffi
«=m

p
, which is connected in parallel with

jk0a ¼ jvm0

ffiffiffiffiffiffiffiffiffiffiffiffi
«0=m0

p
. It canbe seen that theparallel combinationof these two inductive

reactances will be dominated by the jk0a one whenmr and «r are large. The admittance

seen by the current source is Ye þ Yi. This admittance is inductive. The antenna can

be tuned to resonance by connecting a capacitive admittance jBc ¼ j ImðYe þ YiÞ in
parallel.Wewill assume thatBðvÞ ¼ BðvcÞv=vc so that at the center frequencyvc the

input admittance is a pure conductance equal to the radiation conductance of the

antenna. Away from the center frequency, the antenna input admittance will no longer

be a pure conductance. The issue we wish to explore is whether or not the frequency

dependence of the tuned antenna admittancewill result in a 3 dBbandwidth that is equal

to 2=QTE
1 ,whereQTE

1 is theQof theTE10 modewith thedielectric–magnetic core andno

external conductive loading; that is,QTE
1 is the unloaded antennaQ.Asample evaluation

of theVSWRas a function ofk0a for the loaded antenna has been calculated for the case

of an antenna with k0a ¼ 0:25 at the center frequency, with a core having «r ¼ 4 and

mr ¼ 16, and having a load conductance equal to that of the conductance of Ye at the

center frequency. For this antenna, theQ is very nearly equal to ð1þ 2=mrÞQ1;Chu,which

equals 76.5. TheVSWRis shown inFigure1.5. From thefigure, itwas estimated that the

3 dB bandwidth was 0.0065 in units of k0a, which gives a fractional bandwidth of

0.0065/0.25¼ 0.026. From this bandwidth, we can determine the circuit loaded Q,

which is given by 1/0.026¼ 38.45. The unloaded antennaQ is equal to twice this value

and is 76.9, which is slightly greater than the theoretical lower bound given by

Equation 1.33. This exmple suggests that an antenna using a core with a large value

of permeability andwith the excitation in the form of a surfacewinding in the azimuthal

direction is an optimum design.

1.6 RADIAN SPHERE WITH MU AND/OR EPSILON: TM MODES

We will now analyze an antenna consisting of a dielectric–magnetic core that is

excited by a current sheet in the u direction so as to radiate only TMn1 modes. The

external fields are given by Equations 1.4a–1.4c. The internal fields have the same

form but with the Hankel functions replaced by Bessel functions, thus

Eu ¼ Dh
n

� k sin u

jv«r«0r

dPnðcos uÞ
dðcos uÞ

d½krjnðkrÞ�
dðkrÞ ð1:36aÞ
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Er ¼ Dh
n

nðnþ 1Þ
jv«r«0r2

Pnðcos uÞ krjnðkrÞ½ � ð1:36bÞ

H� ¼ Dh
n

sin u

r

dPnðcos uÞ
dðcos uÞ krjnðkrÞ½ � ð1:36cÞ

For these modes, the stored electric energy is greater than the stored magnetic

energy. For the external fields, the stored electric energy is given by an expression

similar to that in Equation 1.20 since the TMn1 modes are the dual of the TEn0 modes.

Thus, the external stored energy leads to the same contribution to the antenna Q that

is given by Equation 1.21. Consequently, we need to evaluate only the additional

contribution to the antennaQ arising from the internal stored energy. The integral for

the stored electric energy will be similar to that for the stored magnetic energy as

given by Equation 1.29a. By using the expressions from Equations 1.36a and 1.36c,

we obtain
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FIGURE 1.5 VSWR as a function of k0a for an antenna tuned to resonance at the frequency

corresponding to k0a¼ 0.25. The core has a relative permittivity of 4 and a relative

permeability of 16. The 3 dB loaded antenna Q is equal to 38.45. The unloaded antenna Q

equals 76.9.
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We ¼
ða
0

ðp
0

«r«0
4

Euj j2 þ Erj j2
h i

2pr2sin u du dr

¼
ða
0

ðp
0

Dh
n

		 		2 mrm0

4

dPnðcos uÞ
dðcos uÞ

d krjnðkrÞ½ �
dðkrÞ

8<
:

9=
;

28<
:

þ nðnþ 1ÞPnðcos uÞjnðkrÞ½ �2
)
2psin3u du dr

¼ mrm0p
k

nðnþ 1Þ
2nþ 1

ðka
0

Dh
n

		 		2 drjnðrÞ
dr

2
4

3
5
2

þ nðnþ 1Þj2nðrÞ
8<
:

9=
;dr ð1:37aÞ

where r ¼ ka. This integral is the same as that in Equation 1.26 and the result will be

the same as that given by Equation 1.27. Thus, we have

We ¼ Dh
n

		 		2 pmrm0nðnþ 1Þ
kð2nþ 1Þ

ðkaÞ3ðnþ 1Þ
2ð2nþ 1Þ

h
j2n� 1ðkaÞ� jn� 2ðkaÞjnðkaÞ

(

þ n

nþ 1
j2nþ 1ðkaÞ�

n

nþ 1
jnðkaÞjnþ 2ðkaÞ

i)
ð1:37bÞ

The total radiated power is given by Equation 1.13 multiplied by m0=«0 and is

2nðnþ 1Þ=ð2nþ 1Þ½ �p ffiffiffiffiffiffiffiffiffiffiffiffi
m0=«0

p
, so the contribution DQTM

n to the antenna Q from the

internal stored energy will be similar to that in Equation 1.29:

DQTM
n ¼ 2vWe

Pr

¼ Dh
n

		 		2 ffiffiffiffiffi
mr

«r

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ

� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:38Þ

We must also choose the scale factor SFTM ¼ Dh
n

		 		2 so that the tangential

electric field is continuous across the current sheet. This requires the constant Dh
n

to be given by

Dh
n ¼

ffiffiffiffiffi
«r
mr

r
d r0h

2
nðr0Þ=dr0

� �
d rjnðrÞ=dr½ �

which gives

SFTM ¼ Dh
n

		 		2 ¼ «r
mr

dr0jnðr0Þ=dr0½ �2 þ dr0ynðr0Þ=dr0½ �2
drjnðrÞ=dr½ �2 ð1:39Þ
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The final expression obtained for DQTM
n is

DQTM
n ¼ SFTM

ffiffiffiffiffi
mr

«r

r
r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� �þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ½

�

� njnðrÞjnþ 1ðrÞ�
�

ð1:40Þ

Hence, for the TMn0 modes excited by a current sheet on a dielectric–magnetic

spherical core, the new lower bound for the Q is

QTM
n ¼DQTM

n þ k0a� ðk0aÞ2
2

þðnþ1Þk0a
" #

j2nðk0aÞþy2nðk0aÞ
� ��ðk0aÞ3

2
j2nþ1ðk0aÞ
�(

þy2nþ1ðk0aÞ�þ
2nþ3

2
ðk0aÞ2 jnðk0aÞjnþ1ðk0aÞþynðk0aÞynþ1ðk0aÞ½ �

)
ð1:41Þ

For n ¼ 1, this expression can be simplified to the form

QTM
1 ¼ DQTM

1 þ 1

ðk0aÞ3
þ 1

k0a

" #
ð1:42Þ

where

DQTM
1 ¼

ffiffiffiffiffi
«r
mr

s
r4ð1þ r40 � r20Þ

r40 r2cos2ðrÞþ ð1� r2Þ2sin2ðrÞ� rð1� r2Þsinð2rÞ
h i

2
64

3
75

� r

2
� sin2ðrÞ

r3
þ ð4r� r3Þsinð2rÞ

4r3
� cos2ðrÞ

r

2
4

3
5

ð1:43Þ

Typical values of QTM
1 are shown in Figure 1.6a for representative values of «r

andmr. For an air core, the above formula shows that for small values of k0a ¼ r0 the
new lower bound on QTM

1 is very nearly equal to 1.5 Q1;Chu and decreasing to 1.34

Q1;Chu for k0a ¼ 0:5, where Q1;Chu is given by the term appearing after the term

DQTM
1 in the above equation. For the case of a relative permeability greater than 1, or

a relative permittivity greater than 1, or when both are greater than 1, the Q is

increased.

Overall, the relative permeability has very little effect on theQ as long as it does not

result in a value for ka that is close to the resonant frequency for the core. Thus, an air

core is the best choice for TMn1 modes. Resonanceswill occurwhen «r andmr are large

enough tomake d rjnðrÞ½ �=dr ¼ 0 and thesewill occur for smaller values ofk0a. At the
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resonant frequencies, the external radiation vanishes and since the core has been

assumed to be lossless QTM
1 becomes infinite. In Figure 1.6b, the value of QTM

1 as a

function of ka for «r equal to 16 and 64, with mr ¼ 1, is shown in order to illustrate the

multiple resonances that occur.
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FIGURE 1.6 (a)QTM
1 for TM10 mode as a function of k0a for various electrical parameters of

the spherical core. For an air core, theQTM
1 is approximately 1.5 times theQChu value. (b)Q

TM
1

plotted as a function of ka for «r equal to 1, 16, and 64 with mr equal to 1.
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The final topic we will examine is the evaluation of the Q of the antenna system,

consisting of the dielectric–magnetic core wound with a current sheet in the u
direction, in terms of the frequency behavior of its equivalent circuit. It will be shown

that the loaded 6 dB fractional bandwidth calculated from the equivalent circuit,

when tuned to resonance by a shunt inductive reactance, is equal to twice theQ given

by Equation 1.42, to a high degree of accuracy. This result is similar to that found for

the TE10 mode driven by a current sheet. It is a verification of the generally held

assumption that for simple antennas the fractional bandwidth is inversely propor-

tional to the antenna Q.

For the TM10 mode, the wave admittance seen looking outward from the current

sheet at r ¼ a may be found using Equations 1.4a and 1.4c and is given by

Ye ¼ H�

Eu
¼ � jðk0aÞh21ðk0aÞ

d k0ah
2
1ðk0aÞ

� �
=dðk0aÞ

¼ r0 cosðr0Þþ r20 sinðr0Þ� jr0 sinðr0Þþ jr20 cosðr0Þ
� �

r0 cosðr0Þþ r20 sinðr0Þ� sinðr0Þ
� �þ j r20 cosðr0Þ� cosðr0Þ� r0 sinðr0Þ

� �
¼ r40 þ jr0

1þ r40 � r20

ð1:44Þ

after normalization with respect to the characteristic admittance of free space. Note

that r0 ¼ k0a. The equivalent circuit for the external admittance consists of a

capacitive admittance jk0a connected in series to an inductive reactance jk0a in

parallel with a 1W resistance (Harrington, 1961).

The normalized admittance seen looking inward from the current sheet can be

found by using Equations 1.36a and 1.36c and is given by

Yi ¼ j

ffiffiffiffiffi
«r
mr

r
rj1ðrÞ

d½rj1ðrÞ�=dr ¼ j

ffiffiffiffiffi
«r
mr

r
rsinðrÞ� r2cosðrÞ

r2 sinðrÞ� sinðrÞþ rcosðrÞ ð1:45Þ

where r ¼ ka. Both Ye and Yi are capacitive for TMmodes. The antenna can be tuned

to resonance by connecting a parallel inductive admittance in parallel with Ye þ Yi
such that � jBL þ jImðYe þ YiÞ ¼ 0 at the center frequency, where we have assumed

that at the center frequency (resonant frequency) the net susceptance of the tuned

circuit is zero. Away from the resonant frequency, we will assume that BL is given by

BLðvÞ ¼ BLðvcÞvc=v, where vc is the resonant frequency of the circuit. The last

assumption will be that the circuit is loaded by a conductance equal to the radiation

conductance ReðYe þ YiÞ at the resonant frequency. We can now evaluate the input

reflection coefficient seen by the current source and the resultant VSWR. From the

fractional 6 dB bandwidth, the QTM
1 for the antenna system described can be found

from the relationship QTM
1 ¼ 2=BW, where BW is the 6 dB fractional bandwidth of
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the loaded tuned circuit. In Figure 1.7, we show the VSWR curve for the case

where «r ¼ 16 and the center frequency corresponds to k0a equal to 0.4. From

the VSWR curve, the estimate of the quality factor QTM
1 is 231. The calculated value

from Equation 1.42 is 230.2. Several other cases were also checked and gave similar

very close agreements between the circuit-based Q and the value based on stored

energy.

The preceding work assumed a spherical core of permeability material. Stuart and

Yaghjian (2010) have shown that a solid core is not necessary. They used a monopole

with a circular plate top hat; a high-m cylindrical shell of diameter equal to that of the

top hat, and height equal to that of the monopole, was added to the antenna. Results

using m > 100 were close to the Chu limit. Figure 1.8 shows the decrease of Q as m
increases; also shown is the importance of an « close to unity. See also Kim and

Breinbjerg (2011).

1.7 EFFECTS OF CORE LOSSES

The results derived above showed that for TEn0 and TMn0 modes excited by means of

current sheets located on the surface of a sphere of solid dielectric or magnetic

material, the resultant Q would be dependent on the constituent parameters of the

core material. The use of dielectric material with a relative permittivity greater than

unity increased the quality factor of TMn0 modes and thus would not be a useful way

to increase the bandwidth of the antenna. On the other hand, the use of magnetic

material with a relative permittivity greater than unity had the effect of significantly

reducing the Q of excited TEn0 modes. Since physical materials will have some loss,
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FIGURE 1.7 VSWR as a function of k0a for the TM10 mode with a dielectric core

with a relative permittivity of 16. The quality factor QTM
1 is equal to 231 for the unloaded

antenna.
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an inevitable penalty to be paid by the use of a solid core is the increase in the loss and

a decrease in the efficiency of the antenna. The reduction in the Q results in an

increase in the bandwidth, which is normally a desirable effect, but it is offset by the

decrease in efficiency.

For isotropic lossy material, the power loss is related to the average stored electric

and magnetic energy within the core through the imaginary parts of the constitutive

parameters. Consider the integral of the inward directed complex Poynting vector

over the surface of the core at r ¼ a,

� 1

2

ð2p
0

ðp
0

E�H* � ar sin u du d� ¼ jv

2

ða
0

ð2p
0

ðp
0

m0ðm
0
r � jm

00
rÞH �H*

h

� «0ð«0
r þ j«

00
rÞ�sin u du d� dr

The real part of the right-hand side represents the average power loss within the

core. The imaginary part represents 2jvðWm �WeÞ, where Wm andWe are the time-

averaged stored magnetic and electric energies in the core material, respectively.

When the core losses are small, the stored energy may be evaluated by assuming that

the losses are zero. In terms of the stored energy, we can express the power loss in the

following form:

PL ¼ 2vm
00
r

m
0
r

Wm þ 2v«
00
r

«
0
r

We ð1:46Þ
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FIGURE 1.8 Top hat monopole with cylindrical permeable shell. Courtesy of Stuart and

Yaghjian (2010).
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The new reduced Q of the system is given by Q
0
, where

Q
0 ¼ Pr

Pr þPL

Q ð1:47Þ

andQ is the quality factor in the absence of core losses.Pr is the average radiated power

from the excited TEn0 or TMn0 mode. The reduced efficiency of the antenna is given by

the factor Pr=ðPr þPLÞ. For the TEn0 and TMn0 modes, we have already obtained

expressions for Wm and We, respectively. The other stored energy function can be

obtained by direct evaluation of thevolume integral of the corresponding energy density.

For the TEn0 modes, the stored energy in the magnetic field in the core is given by

Equation 1.29c, which is repeted below:

Wm ¼ Ce
n

		 		2 p«0
r«0nðnþ 1Þ
kð2nþ 1Þ

r3

2
j2nðrÞ� jn� 1ðrÞjnþ 1ðrÞ
� ��

þ r2

2nþ 1
ðnþ 1ÞjnðrÞjn� 1ðrÞ� njnðrÞjnþ 1ðrÞ½ �

�
ð1:48Þ

The stored electric field energy is given by (see Equations 1.17b and 1.19a)

We ¼ «
0
r«0
4

ðp
0

ða
0

E�

		 		22pr2sin u du dr

¼ «
0
r«0
4k

ðp
0

ða
0

Cnej j2 dPnðcos uÞ
du

2
4

3
5
2

k2r2j2nðkrÞ2p sin u du dðkrÞ

¼ «
0
r«0
2k

p Cnej j2 nðnþ 1Þ
2nþ 1

ðkrÞ3 j2nðkrÞ� jn� 1ðkrÞjnþ 1ðkrÞ
� �

ð1:49Þ

The loss arising from themagneticmaterial is obtainedbymultiplyingWm givenby

Equation 1.48 by the factor 2vm
00
r=m

0
r. Similarly, the power loss in the core due to the

lossy dielectric material is given by multiplying Equation 1.49 by the factor 2v«
00
r=«

0
r.

For the TE10 mode, the expressions for the power loss in the core are given by

PLm ¼ 4p
3

ffiffiffiffiffiffiffiffiffiffi
«

0
r«0

m
0
rm0

s
m

00
r

m
0
r

Cnej j2 r3

2
ðj21 � j0j2Þþ r2

3
ð2j1j0 � j1j2Þ

� �
ð1:50Þ

PLe ¼ 4p
3

ffiffiffiffiffiffiffiffiffiffi
«

0
r«0

m
0
rm0

s
«

00
r

«
0
r

Cnej j2 r3

2
ðj21 � j0j2Þ

� �
ð1:51Þ

where r ¼ ka is the argument for the Bessel functions.
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A useful parameter is the ratio of power loss to power radiated

hTE ¼ PLm þPLe

Pr

ð1:52Þ

in terms of which the new lower Q of the antenna with a lossy core is given by

Q
0 ¼ Q

0
TE

1þhTE

ð1:53Þ

For the special case of the TE10 mode when n ¼ 1, we obtain

hTE ¼ PL

Pr

¼ Ce
1

		 		2
ffiffiffiffiffi
«

0
r

m
0
r

s
m

00
r

m
0
r

r

2
� sinð2rÞ

4
� sin2ðrÞ

r3
þ sinð2rÞ

r2
� cos2ðrÞ

r
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þ «
00
r

«
0
r

r

2
þ sinð2rÞ

4
� sin2ðrÞ

r

� ��
ð1:54Þ

where

Ce
1

		 		2 ¼ r2

r20

ð1þ r20Þ
sin2rþ r2 cos2 r� r sinð2rÞ� �

A similar derivation may be carried out to obtain an expression for the total core

loss for the TE10 mode. The factor hTM for the TE10 mode is given by

hTM ¼ PL

Pr

¼ Dh
1

		 		2
ffiffiffiffiffi
m

0
r

«
0
r

s
«

00
r

«
0
r

r

2
� sinð2rÞ

4
� sin2ðrÞ
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þ sinð2rÞ

r2
� cos2ðrÞ
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þ m
00
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m
0
r
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2
þ sinð2rÞ

4
� sin2ðrÞ
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� ��
ð1:55Þ

where

Dh
1

		 		2 ¼
ffiffiffiffiffi
«

0
r

m
0
r

s
r4

r40

r40 � r20 þ 1
� 


r2 cos2 rþð1� r2Þ2sin2rþðr3 � rÞsinð2rÞ
h i

Representative values of QTM
1 and QTE

1 are plotted in Figure 1.9a and b as a

function of k0a for a core with relative permittivity of 4 and a relative permeability of

16, and with loss tangents «
0
r=«

00
r ¼ m

0
r=m

00
r equal to 0.01, 0.001, and 0.0001. For the

TE10 mode, the Q is about 5–10 times larger than that for the TE10 mode with the

same core parameters.
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FIGURE 1.9 (a) The Q of the TMio mode for a core with relative permittivity of 4 and

relative permeability of 16, for loss tangents «
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(b) The Q of the TE10 mode for a core with relative permittivity of 4 and relative permeability
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32 QUALITY FACTORS OF ESA



b

a

o

o

FIGURE 1.10 Prolate spheroid.

Prolate

100

10

Prolate

Oblate

1

1 10 100

Oblate

Minimum radiation Q for spheroids

TM with polarization in direction of rotation axis

β = kd/2 = 0.001 (kb <<1 prolate, ka <<1 oblate)
  

Axial ratio (b/a prolate, a/b oblate)

  

Q
 (
k
b
)
3
 (
p
r
o
l
a
t
e
)
, 
Q
 (
k
a
)
3
 (
o
b
l
a
t
e
)

  

d

d

b

b

a

a

FIGURE 1.11 Q of spheroid in sphere. Courtesy of Peder Hansen, SPAWAR, San

Diego, CA.
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1.8 Q FOR SPHEROIDAL ENCLOSURES

A rigorous Chu-type fundamental limitation-type formulation for nonspherical

volumes would require that a low-order mode exists in the enclosure, and that

stored and radiated energy can be calculated. The prolate spheroid, which approx-

imates a cylinder, and the oblate spheroid, which approximates a flat disk, are

candidates. The first effort was made by Foltz and McLean (1999) who attempted a

numerical partial fraction expansion (ala Chu) of the prolate spheroid modal

impedance. A Herculean spheroidal mode approach has been underway by Adams

and Hansen (2004, 2008) of SPAWAR. Spheroidal functions were described by

Hobson (1931), Stratton (1941), and Morse and Feshbach (1953). EM applications

have been discussed by Li et al. (2002). Tables of functions are provided by Stratton

et al. (1956), Flammer (1957), and Chang and Yeh (1966).

The spherical mode theory developed by Collin utilized closed-form integrals and

recursion relationships (Equations 1.17 and 1.19) to develop the energy formulas.

The spheroidal mathematical toolbox is much more sparse, so that numerical

methods were used by Adams and Hansen to supplement the few available functional

relationships. Figure 1.10 shows the prolate spheroid geometry, where the spheroid

height is 2b and the diameter is 2a. Because the Q of a spheroid depends upon both

the dimensions in wavelengths and the prolateness, data in only two dimensions can

be provided by comparing the spheroid with a sphere. Figure 1.11 shows the ratio of

spheroid Q to Q of the sphere that just encloses the spheroid. It can be observed that

the relative Q increases as the prolate spheroid becomes thinner, or as the oblate

spheroid becomes fatter. Figure 1.12 shows the Q ratio for a sphere and a spheroid of

equal volume. As shown, theQ peaks slowly at b=a ¼ 0:55, with aQ ratio of 1.1251.

Maximum
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Spheriod aspect ratio (b/a)
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FIGURE 1.12 Q ratio: equal-volume sphere and spheroid. Courtesy of Hansen and

Adams (2010).
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TheQ=Qsphere ratio versus cylinder aspect ratio for a cylinder enclosed in a prolate

spheroid is shown in Figure 1.13. Data are shown for three cases: maximum Q, Q for

maximum volume, and Q for the cylinder enclosed in a hemisphere.

All these data are summed up in Figure 1.14, which shows normalized Q versus

aspect ratio, when sphere and spheroid have equal Q, for several dimensional

equivalences.

Wheeler (1975), as mentioned earlier, used electrostatics and magnetostatics to

develop Q boundaries for cylindrical boundaries. This work was continued by

Gustafsson and colleagues (Gustafsson and Nordebo, 2006; Gustafsson et al.,
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FIGURE 1.13 Q ratio: cylinder in prolate spheroid. Courtesy of Adams and Hansen (2008).
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FIGURE 1.14 Sphere and spheroid of equal Q. Courtesy of Hansen and Adams (2010).
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2007, 2009). Figure 1.15 shows Q=QChu as a function of cylinder height/diameter.

See also Yaghjian and Stuart (2010). These data, based on static fields, are accurate

only for ka � 1.
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