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1.1 INTRODUCTION

In the past, the traditional constant-field scaling [1] has led CMOS technology to continu-
ous improvements in the speed performances while maintaining constant power density.
However, a fundamental limit of constant-field scaling manifests due to the nonscal-
ing of subthreshold slope and the increase of gate leakage as long as the minimum
feature size scales down [2,3]. Overall, the consequent continuous increase in energy
consumption has become the major concern limiting the speed performances of VLSI
Integrated Circuits [4], insomuch as, even for high-speed systems, designs undergo a
“power limited” regime [5].

As a consequence, it is no longer possible to focus solely on optimizing the speed
of circuits regardless their energy [6]. Rather, the achievement of energy efficiency,
that is, finding the circuits designs allowing us to reach the desired speed under the
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4 DES IGN IN THE ENERGY–DELAY SPACE

minimum dissipation, has become the primary target [7]. Thus, a deep understanding of
the energy–delay (E–D) tradeoff and the related design issues is crucial.

In this chapter, energy and delay models of digital CMOS circuits are firstly pre-
sented (Section 1.2), since they constitute the base for any E–D-related optimization
technique not fully relying on simulations. The theoretical background relative to explo-
ration of the E–D space and the identification of the optimum, that is, energy efficient,
designs is then reported (Section 1.3). Practical design approaches and the optimization
of the various design knobs are discussed, together with exemplificative results relative
to various circuits (Section 1.4). Finally, we deal with the slightly higher abstraction level
of whole pipelined systems and the related energy-efficient design criteria (Section 1.5).

1.2 ENERGY AND DELAY MODELING

1.2.1 Delay: the Logical Effort as a Modeling Approach

From their basic structure, it is evident that CMOS logic gates can be simply modeled
as decoupled RC blocks [8], as shown in Fig. 1.1.

The resistance of a MOS transistor is inversely proportional to its width W . When
considering complex CMOS gates, the evaluation of the total equivalent resistance of
pull-up (PUN) and pull-down (PDN) networks can be approximately performed by sum-
ming the resistances of stacked blocks of transistors and by summing the conductances
of parallel blocks [9].

The equivalent capacitance at the input of a MOS transistor, CG, is proportional to
WL (L is the transistor channel length) and typically nearly equal to CoxWL [9]. The
self-loading in a CMOS gate is due to diffusion capacitances and can be expressed as [7]

CD = CD,AWLd + CD,P (2W + 2Ld) (1.1)

where Ld is the length of drain/source diffusions and CD,A (CD,P ) are the capacitances
per unit area (perimeter) of drain/source-bulk junctions. By neglecting the 2LdCD,P

term, CD can be considered nearly proportional to W .

RPUN

VDD

RPDN

COUT,iCIN, i

VOUT, i-1 = VIN, i VOUT, i = VIN,i

ON

ON
if VIN, i = 0

if VIN, i = 1
CIN, i+1

Figure 1.1. CMOS logic gates seen as decoupled RC blocks.
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Summarizing, by considering a CMOS gate one has that

CIN ∝ WL, COUT ∝ W, RT ∝ L/W (1.2)

where CIN is the capacitance of the input where the critical signal is applied, COUT is
the output diffusion capacitance and RT is the PUN/PDN resistance.

Usually, all the channel lengths are minimum and we can see the considered gate as
a version scaled by a factor α (in terms of channel width) of a reference gate of the same
type, called the “template” gate. Such a gate exhibits parameters CIN,ref , COUT,ref , and
RT, ref, and the following relationships hold [7]:

CIN = αCIN,ref, COUT = αCOUT,ref, RT = RT,ref/α (1.3)

Hence, any timing parameter of the gate can be expressed as [8]

tD = KRT (COUT + CL) = K

(
RT,refCIN,ref

CL

CIN

+ RT, ref COUT,ref

)
(1.4)

where CL is the external output load, and K depends on the kind of timing parameter
(delay, fall/rise times) and on the slope of the input.

The RC model in (1.4) was revisited in [10] to obtain a new one normalized to
(i.e., independent from) technology: the Logical Effort model. Basically, formula (1.4)
is divided by RINVCINV, which is the product of the resistance and input capacitance of
a symmetrical inverter. Once normalized, the timing parameter (e.g., delay or rise/fall
time) of the gate, tD, becomes

tD = τ(gh + p) = τ(f + p) = τd (1.5)

where the various quantities correspond to

τ = KRINVCINV (1.6)

g = RT, refCIN, ref

RINVCINV
(1.7)

h = CL

CIN
(1.8)

p = RT, refCOUT, ref

RINVCINV
(1.9)

The parameter τ allows to normalize tD to technology. The parameter g is called
“logical effort” and is a feature dependent on the gate’s topology and hence not affected
by its absolute sizing. The parameter h is called “electrical effort,” and it is equal to
the fanout of the gate. The parameter p is called “parasitic delay” and represents the
intrinsic delay contribution due to the self-loading. As for g, p, is a feature dependent
on the gate’s topology and hence not affected by its absolute sizing. Finally, the product
f = gh is called “stage effort.”
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Figure 1.2. Geometrical interpretation of logical effort and parasitic delay.

It is apparent that the normalized timing parameter d is a linear function of h, as
shown in Fig. 1.2. The logical effort, g, represents the slope of such a line, whereas the
parasitic delay p is the minimum achievable value of d, obtained for h = 0, that is, for
zero external load or for CIN � CL.

The Logical Effort model is valid also in the case of nonstatic CMOS gates, such
as the dynamic ones and those including pass-transistors (PTs) and transmission gates
(TGs). When considering dynamic gates, one often has to deal with keepers introducing
a current contention with the evaluation path in the gate. A multiplicative factor r>1 can
be introduced to modify both parameters g and p, whose value is [10]

r = 1

1 − reval
rkpr

(1.10)

where reval is the equivalent resistance of the evaluation path in the dynamic gate, and
rkpr is the resistance of the keeper. Also TGs and PTs can be straightforwardly introduced
in the Logical Effort framework. The only limitation is that (a chain of) TGs (or PTs)
have to be included in an initial gate with driving capability, that is, connected to VDD
and/or GND [10].

The model described so far suffers from some limitations:

(a) The evaluation of equivalent resistances requires several approximations to man-
age the various effects arising in deep-submicron technologies and influencing
the I–V behavior of MOS transistors [11].

(b) The model in (1.4)–(1.5) deals with the self-loading effect through a single
capacitance COUT. However, when the PUN and/or PDN are made up by stacked
(blocks of) transistors, the capacitances in their internal nodes give a further
contribution to the parasitic delay [12].
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The delay and rise/fall times of CMOS gates both significantly depend on the input
transition time (or slope), which is neglected in (1.5).

Starting from the basic estimation of g and p parameters [10], which can be straight-
forwardly carried out by analyzing the gates topology, several attempts have been made
to develop model extensions in order to capture the above effects, although they have
resulted in quite complex models.

Nevertheless, apart from the necessity to model the input slope impact, the general
applicability of (1.5) is still retained when referring to a specific kind of timing param-
eter (delay, rise/fall times) and to one of the inputs of a logic gate. Therefore, one can
characterize a logic gate through simulations as shown in [10,12] to extract accurate
estimations of g and p.

The input slope impact can be quite accurately modeled with a further linear term
as in the following [13]

d = gh + p + ηdin (1.11)

where η is an additional parameter to be characterized, and din is the normalized (accord-
ing to Logical Effort approach) input rise/fall time, that is, the normalized output rise/fall
time of the gate driving the considered one.

1.2.2 Delay: the Logical Effort as an Optimization Approach

So far we have discussed the modeling potentials of Logical Effort approach. Actually,
the Logical Effort theory also leads to useful equations allowing to maximize the speed
of a logic path constituted by several gates, that is, to size them in order to minimize the
overall path delay [10].

In the following, as done elsewhere, this theory is reported by focusing on the delay
model in (1.5), which does not account for input slope. Indeed, although the Logical
Effort modeling accuracy is weakened by this lack, we will show that the minimum
delay condition is achieved when the stage efforts of the various gates in the path are
equal. This means that the minimum delay condition is achieved when the input and
output slopes of the gates in the path are quite similar. Under this condition, the original
Logical Effort model in (1.5) is sufficiently accurate [10,12].

Let us consider a multistage network comprising a path made up of N-cascaded
logic gates, the ith of which featured by parameters gi, pi, and

hi = CL,i

CIN,i

= CIN,i+1 + Coff,i

CIN,i

(1.12)

where CIN,i and CIN,i+1 are the input capacitances of the ith and (i + 1)th gate in the
path, respectively, while Coff,i is the overall capacitance of other gates loading stage i but
not belonging to the path under analysis, as shown in Fig. 1.3. The “path logical effort,”
G, and “path parasitic delay,” P , can be defined as

G =
∏N

i=1
gi (1.13)
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Stage 1

0

1

Stage 2

Stage 3

stage i

stage i+1

stage N-1

stage N

CIN,1 CIN,2 CIN,3 CIN,i CIN, i+1 CIN,N–1 CIN,N CL,N

Coff,i

Figure 1.3. Multistage path.

P =
∑N

i=1
pi (1.14)

and, by defining the “branching effort” bi of the ith stage as the proportion between the
total load of gate i and the fraction lying on the considered path,

bi = CIN,i+1 + Coff,i

CIN,i+1
≥ 1 (1.15)

we can also introduce the “path electrical effort,” H , and the “path branching effort,” B,
of the entire path through the following formulas:

HB =
∏N

i=1
hi (1.16)

H = CL,N

CIN,1
(1.17)

B =
∏N

i=1
bi (1.18)

being CL,N and CIN,1 the final load and the first stage input capacitance, respectively.
Finally, the overall “path effort” F is equal to

F =
∏N

i=1
gihi =

∏N

i=1
fi = GBH. (1.19)

The total normalized delay of the considered path is

D =
∑N

i=1
(gihi + pi) (1.20)

and, assuming for the moment that not only gi and pi, but also bi, are constant parameters
(although this is not true in general), one has that D is a function only of the capacitive
gains of the various stages on the path.
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As previously anticipated, the Logical Effort approach can serve also as an opti-
mization method to minimize delay. In particular, considering that

h1 = H

h2h3 . . . hN

(1.21)

the condition for minimum path delay can be written as

∂D

∂hi

=
∂
(
g1

H
h2h3···hN

+ ∑N
i=2(gihi + pi)

)
∂hi

= gi − g1H

h1(h2h3 · · · hN )
= 0 (1.22)

which leads to

g1h1 = gihi ∀i (1.23)

that is, the stage effort has to be the same for all stages in the path. Moreover, according
to (1.19) and (1.23), the optimum stage effort is equal to

fopt = N
√

GBH. (1.24)

According to the previous considerations, parasitic delays do not enter in the opti-
mization and, considering that the final load and the first stage input capacitance are
known, the minimum achievable delay of the path with fixed topology and stages number
N is known a priori, and it is equal to

Dopt = N
√

GBH + P (1.25)

where G, B, and H have fixed value independently from the absolute sizing of the various
stages (true only if gi, bi, and pi can be assumed as constant).

The Logical Effort can be used as a method to size gates in order to minimize delay
given that, according to (1.23) and (1.24), it is sufficient to set

fi = N
√

GHB ∀i (1.26)

leading to

CIN, i = gibiCIN, i+1
N
√

GHB
∀i (1.27)

which are a set of relationships that can be applied by starting from the Nth gate (CL,N

is known) and proceeding backward along the path or starting from the first gate (CIN,1
is known) and proceeding onward along the path.

In practical cases, this condition of constants gi, bi, and pi cannot be satisfied for
several reasons, which are listed in the following.

1. The factor r in (1.10) is a function of the gate and keeper absolute sizes when a
constant ratio between their driving capabilities is not maintained.

2. The branching effect in (1.15) due to gate and/or diffusion capacitances of tran-
sistors outside the path can often be a function of the absolute size of the ith gate
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itself. This happens when a constant proportion between the absolute values of
CIN,i+1 and Coff,i is not maintained.

3. Global interconnections can be modeled as equivalent RC ladder blocks and
hence handled as done for stacked transistors and TGs/PTs. However, their length
is normally fixed and hence the resistive and capacitive contributions they intro-
duce lead to g and b values that are functions of the absolute size of the gates
driving such interconnections.

4. Lumped capacitances associated with local interconnections in each of the
internal nodes in a circuit lead to additional delay contributions. They can be sub-
divided in a contribution given by the gate driving the considered node (affecting
parasitic delay), in a contribution given by the gates loading the considered node
(affecting electrical effort) and in a constant contribution (affecting branching
effort). The latter contribution is gate-size dependent, while the first two ones lead
to complex nonlinear dependencies, and a linearization is not always feasible.

It is apparent that in all these cases several nonlinearities emerge and do not allow
the optimization described in (1.23)–(1.27) to be straightforwardly applied. Therefore,
in order to minimize the delay of paths including complex branching effects and the
impact of interconnections, a need for iterative procedures arises, thereby weakening the
logical effort handiness.

1.2.3 Energy: A Comprehensive Model

Being the optimization of circuits from the joint speed-consumption perspective the
focus of this chapter, it is necessary to clarify the metrics that will be used to quantify the
consumption at the abstraction level this chapter deals with, that is, the transistor-level
one. In particular, two metrics are available: power and energy [14].

Both metrics are actually interchangeable and choosing one or another is simply a
matter of convention as long as transient (i.e., dynamic and short-circuit) and static (i.e.,
leakage) dissipative contributions are properly weighed [15]. In the following, energy is
chosen as the metric for circuits consumption. This implies that transient contributions
relative to a generic circuit operation have to be simply summed, whereas static leakage-
related power has to be multiplied by the time between successive operations (e.g., the
duration of a clock cycle in a pipelined system) and summed to the previous transient
contribution to obtain the overall energy dissipation.

In the following, a model accounting for the above contributions [16] is reported.
This model aims at the extraction of a factor n featuring a logic gate and such that the
overall gate energy, E, can be simply expressed as linearly proportional to the input
capacitance, CIN, that is, to the gate size

E = χCIN. (1.28)

Such a model intentionally excludes the energy dissipated in charging/discharging
the load CL, but includes that dissipated in charging/discharging CIN. Again, it is simply
a matter of convention.
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Figure 1.4. Capacitive contributions determining dynamic energy in a gate.

Let us consider a static CMOS gate such as the 2-inputs NAND shown in Fig. 1.4,
where also the various capacitive contributions determining the dynamic dissipation are
depicted. One can distinguish among capacitances lying in the input nodes and switching
according to the transition probability of the inputs, and capacitances lying in the output
node (or in the internal ones featuring stacked structures) and switching according to the
transition probability of the output (internal) node. Moreover, each of these capacitances
is made up by transistors related contributions (gate capacitances for the input nodes and
diffusions capacitances for the output and/or internal nodes) and parasitic capacitances
due to local wires.

Accordingly, the average dynamic energy (in a clock cycle) of a CMOS gate can be
expressed as

EDYN = [
(1 + s + zin) αsw, in + (1 + s + zout) αsw, out

]
wCT mV 2

DD (1.29)

where (see Fig. 1.4 for exemplification):

• w is the normalized width (with respect to the minimum feasible value Wmin
imposed by the technology) of each NMOS transistor inside the gate (assuming
that all NMOS have the same width and minimum lengths);

• CT is the gate capacitive contribution relative to a minimum sized transistor. It
can be defined as CINV/3, where CINV is the input capacitance of a symmetrical
minimum inverter (i.e., with WPMOS = 2WNMOS = 2Wmin);

• s is a multiplicative factor that defines the widths of PMOS (again all equal and
with minimum lengths) with respect to the NMOS ones, thus leading to a certain
skew in the speed of PUN and PDN [10];

• m is the number of inputs of the gate;
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• αsw,in and αsw,out are the activity factors weighing the static probabilities of a
full 0 → 1 → 0 transition in a clock cycle [17] for the input and output/internal
nodes of the gate (for the moment we assume a unique αsw,in value for all the
inputs and a unique αsw,out value for output and internal nodes);

• we assumed that gate and diffusion (drain-bulk and source-bulk) capacitances are
nearly equal [12];

• zin and zout weigh those local parasitic capacitive contributions at the input and at
the output of the gate that are dependent on the size w of the gate itself. Although
the dependence of such parasitics on w is formally complex and nonlinear, linear
fittings can be extracted without seriously compromising the estimation of lumped
local wires capacitances. Hence, the overall local wires capacitance in a generic
node j, Cpar,j , can be expressed as [16]

Cpar,j = zout,i−1,jWi−1CT + zin,i,jwiCT (1.30)

being j the node at the output and the input of the (i − 1)th and the ith stage,
respectively.

• we have inherently assumed that each transistor contributes to energy consump-
tion with a single gate and a single parasitic capacitance (the approximation of
considering a single intermodal capacitance for each stacked transistor is simple
but reasonably accurate).

A similar analysis concerning the static dissipation of a CMOS gate can be
carried out and the average energy (in a clock cycle) due to subthreshold and gate
leakage can be expressed as

ESTAT = w

(
βsub,n

ρsub,n

Tsub,n

+ sβsub,p

ρsub,p

Tsub,p

+ ρgate,n

Tgate,n
+ s

ρgate,p

Tgate,p

)
VDDTCKθ

(1.31)
where

• ρsub,n and ρsub,p (ρgate,n and ρgate,p) are parameters depending on technology
and approximately constant for any gate. They include the dependences of the
subthreshold (gate) leakage current of a single transistor on threshold voltage, on
the applied biases (assuming VGS = 0 and VDS = VDD), on the temperature and
on technology parameters for a NMOS and PMOS, respectively;

• Tsub,n and Tsub,p (Tgate,n and Tgate,p) are factors that include the effect of the PDN
and PUN topologies on their subthreshold (gate) leakage currents, respectively
(by averaging out the various currents for each inputs combination).

• βsub,n and βsub,p average the subthreshold leakage currents of PDN and PUN
according to static probabilities of logic values at input and output nodes of the
gate (obviously βsub,n + βsub,p = 1);

• TCK is the clock period duration;
• θ is a factor to include the relation between the durations of active and inactive

modes (or standby) for the part of the system where the considered gate lies.
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Basically, it is a correction factor leading to an effective clock period, TCKθ,
which properly weighs the impact of static dissipation compared to dynamic one.

The above expressions (1.29) and (1.31) can be further complicated to more accu-
rately model some effects while still remaining proportional to the parameter identifying
the gate size, that is, w. For instance, (1.29) and (1.31) can be easily generalized to deal
with gates with nonminimum channel lengths, with nonstatic (e.g., dynamic) gates, to
more accurately weigh the impact of internodal capacitances on dynamic energy and of
stacking effect on leakage, to consider the cases where some NMOS (PMOS) transistor
within the PDN (PUN) has a width proportional but not equal to w, and so on. Hence,
such models do not lead to any loss of generality. Furthermore, as already discussed
for the Logical Effort model, many of the parameters in (1.29)–(1.31) can be accurately
characterized through simulations.

Once EDYN and ESTAT have been found, the overall energy dissipation of the
gate is

E = EDYN + ESTAT. (1.32)

According to the previous definitions, CIN can be expressed as

CIN = (1 + s + zin)wCT . (1.33)

It is worth noting that this is the same value entering in the definition of Logical
Effort parameters g and h, that is, it is the input capacitance seen at one of the gate inputs.

Finally, the parameter χ = E/CIN can be expressed as

χ =
(

αsw,in + αsw,out
(1 + s + zout)

(1 + s + zin)

)
mV 2

DD

+
(
βsub,n

ρsub,n

Tsub,n
+ sβsub,p

ρsub,p

Tsub,p
+ ρgate,n

Tgate,n
+ s

ρgate,p
Tgate,p

)
(1 + s + zin)CT

VDDTCKθ. (1.34)

The above model neglects short-circuit dissipation. Given the increasing VTH/VDD
ratios, this contribution tends to relatively decrease with technology scaling [9]. Never-
theless, when the input rise/fall times are quite large, the impact of short-circuit energy
can be nonnegligible.

Differently from the dynamic and leakage ones, short-circuit contribution cannot be
approximated as linearly dependent on the gate size. Indeed, it increases with gate size
for three reasons:

• for the linear dependence of the PDN and PUN currents on w;
• for the approximately proportional dependence on the input rise/fall time, that is,

on the output rise/fall time of the preceding gate [9];
• for the approximately inverse dependence on the output rise/fall time of the gate

itself [9].
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The last two terms can be assumed (by neglecting the parasitic delays in the com-
putation of input rise/fall times) as nearly linearly dependent on w.

Overall, the short-circuit dissipation can be equaled to

ESC = din

dout
ρsc[(Tsc,n + sTsc,p)αsw,out]w (1.35)

where din and dout are input and output rise/fall times according to Logical Effort model,
while parameters Tsc,n and Tsc,p average the various possible output transition cases
according to PDN and PUN topologies. Finally ρsc is a further parameter accounting for
the impact of technology and VDD.

1.3 ENERGY–DELAY SPACE ANALYSIS AND HARDWARE-INTENSITY

1.3.1 The Energy-Efficient Curve

For a digital circuit under a fixed supply voltage VDD and whose last stage is loaded
with a capacitance CL, the “energy-efficient curve” (EEC) is made up by the design
points exhibiting the minimum delay for a fixed energy dissipation or, equivalently, the
minimum energy consumption for a fixed delay [18,19]. By definition, other design points
above the EEC lead to a needlessly higher energy under the same speed performances,
as shown in Fig. 1.5.

As previously stated, we adopt the convention of considering the input capacitance
of (the first stage of) the circuit, CIN, as a further design variable to be optimized,
and including (excluding) the energy dissipated in charging/discharging CIN (CL).

Figure 1.5. Energy-efficient curve and designs optimizing the metrics EiD j .
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This assumption is different from that adopted in [7,20–22] and, while it was a
simple matter of convention when referring to the modeling of the energy of a circuit,
we will show that it becomes a necessary care when the target is the full exploration of
the E–D potentials of a topology.

In [19] it was predicted that the EEC of any circuit has a hyperbolic shape

(E − E0)(D − D0) = E0D0 (1.36)

being E0 and D0 the minimum energy and minimum delay asymptotes, respectively, as
shown in Fig. 1.5. Actually, substantial deviation from (1.36) are found when analyzing
real circuits and hence a correction factor γ (typically 0 < γ < 1) can be introduced
to fit real data [20,21]

(E − E0)(D − D0) = γE0D0 (1.37)

Despite our assumptions of including the dissipation related to a fully optimizable
CIN and excluding that relative to the load CL differ from those in [20,21], the general
character of (1.37) is retained. In particular, looking at the generic EEC depicted in Fig.
1.5, one has that:

1. There is a minimum energy value, Emin, that is achievable with the minimum
transistors sizes allowing correct operation. This implies that in an extrapolated
EEC, the points between E0 and Emin have not a physical correspondence, as
shown in Fig. 1.5.

2. Regarding delay, the value D0 can be approached only asymptotically through
transistor sizing, and measures the maximum speed potential of a specific topol-
ogy. More specifically, one can indefinitely trade energy for delay by increasing
CIN. On the contrary, if CIN is fixed [7,20–22], a minimum delay for a given load
is actually reachable and corresponds to the Logical Effort sizing. Nevertheless,
also the asymptotic value D0 under a varying CIN can be estimated through
Logical Effort, and it is the parasitic delay P .

As concerns parameter γ in (1.37) and the actual analytical expression of the EEC
under our assumption, analytical calculations can be carried out only for a single logic
gate [16].

Indeed, according to Logical Effort model, one has

D − D0

D0
= gh

p
= g

p

CL

CIN
. (1.38)

As concerns the energy, by adopting the approximation in (1.28) one has

E − E0

E0
= χCIN − χCIN, min

χCIN, min
= CIN − CIN, min

CIN, min
(1.39)

being CIN,min the minimum input capacitance of the gate (i.e., when its transistors are
all minimum sized).
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By referring to (1.37) and using (1.38), (1.39), the resulting expression for γ is

γ = gCL

pCIN, min
− D − P

P
= gCL

D0E0
− D − D0

D0
(1.40)

The above formula indicates that, under our assumptions, formula (1.37) can be
applied with a value of γ that is dependent on the variable D, that is to say the EEC is
not a pure hyperbole. However, γ can be approximated in a sufficiently accurate way by
its first term, gCL/pCIN,min as long as the delay is not much higher than D0 = p.

Nevertheless, when dealing with circuits made up by more than one gate, no ana-
lytical expression can be determined for γ , and, in such a case, it is consistent to assume
γ as a constant parameter in (1.37).

1.3.2 Energy–Delay Metrics and Hardware Intensity

In the last two decades digital circuit designers have become familiar with the use of
composite energy–delay metrics to effectively translate the more and more stringent
constraints on the speed performances while not disregarding the energy dissipation.

The first (and at first glance the most appropriate) composite metric to be intro-
duced is the simple ED product, which equally weighs the two quantities. Another
popular metric is the ED2 product where speed has priority over energy. The latter met-
ric is claimed to have useful properties such as a nearly zero sensitivity on the supply
voltage [23].

However, although designs optimizing (i.e., minimizing) the above metrics are max-
imally efficient for a given delay (or energy), it is clear that a generalization is required
when analyzing and/or designing a circuit over the entire spectrum of the delay (energy)
values it can achieve.

Hence, the general class of metrics EiDj , or equivalently EDη (being η equal
to j/i) as originally presented in [19], are introduced. By varying the exponents
i ≥ 0 and j ≥ 0 (η ≥ 0), any tradeoff between energy and delay can be explored. The
extreme cases are obtained when j/i = 0 (η = 0) and when j/i = ∞ (η = ∞), which,
once optimized, represent the designs having the minimum possible energy and delay,
respectively.

Turning back to the EEC introduced before, one has that a design solution minimiz-
ing a metric EiDj (EDη), lies in the EEC [19], that is, this curve is made up of all points
that minimize EiDj (EDη), for some i and j (η), as shown in Fig. 1.5.

The demonstration of this assertion is quite simple and intuitive. Indeed, considering
a circuit under a fixed load and supply voltage, both its delay and energy are functions
of its sizing W (W is an array containing the sizes of transistors in all circuit gates). A
design minimizing an EiDj metric for some (i, j) has a delay D∗ which is obtained with
a certain size W∗ (i.e., D∗ = D(W∗)). Since the size W∗ minimizes a product EiDj , in
which the energy is taken into account with i ≥ 0, the value E∗ = E(W∗) of this design
will be the minimum among all the designs exhibiting a delay D = D∗ and thus it lies
on the EEC. More rigorous analytical proofs can be found in [19].
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From the above considerations, the indexes i and j(η) identify cost functions for
optimizing hardware under a fixed load and supply voltage, and, according to [20,21,24],
the value j/i (η) is defined “hardware intensity.” Basically, j/i(η) quantifies the effort
to be spent in sizing a circuit to optimize the speed of the circuit at the expense of
its energy consumption. The higher j/i(η), the higher the effort to further optimize
speed. The region of the E–D design space where metrics with j>i(η>1) are mini-
mized is hence called the high-performance one, while the region where metrics with
j<i(η<1) are minimized is called the low energy one. The former is featured by lower
and lower delay gains achieved at the cost of larger and larger increments in energy
as long as the delay itself diminishes. Analogous considerations are valid for the low
energy region.

The graphical interpretation of hardware intensity is shown in Fig. 1.6 [21,24].
The solid line plots a typical EEC for a generic circuit. Dotted curves show several
contours of the cost function EiDj for three values of the hardware intensity. The point
in the E–D space at which the EEC tangents the lowest of the contours corresponds to
the energy-efficient implementation of the circuit for that specific hardware intensity
value [20,21].

Accordingly, the analytical interpretation of hardware intensity is related to the
energy-to-delay sensitivity evaluated in correspondence of the design points optimizing
the EiDj(EDη) metrics [16,20,21].

Figure 1.6. Typical energy-efficient curve and constant cost function contours for j/ i = 1.0,

j/ i = 0.5, and j/ i = 2.0.
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Indeed, by referring to the former ones, the design point minimizing EiDj for a
given (i, j) leads to a zero derivative of EiDj with respect to D and E [16,19]

∂
(
EiDj

)
∂D EiDi

min

=
(

iEi−1Dj ∂E

∂D
+ jEiDj−1

)
EiD

j

min

= 0 (1.41)
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∂E EiD
j
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)
EiD

j

min

= 0. (1.42)

Solving the set of Eqs. (1.41) and (1.42), one finds

SE
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j
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=
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∂D
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E
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EiD

j

min

= −j

i
. (1.43)

When carrying out analogous calculations by referring to the EDη metrics, the result
is simply −η. Anyhow, the adoption of the two indexes i and j allows for better clarifying
the E–D tradeoff when the generic EiDj FOM is minimized. Indeed, in the neighborhood
of the optimum EiDj design, a j% speed increase is traded for a i% energy increment
and vice versa. Finally, from (1.43) it is apparent that metrics leading to the same j/i

ratio are not distinguishable.

1.3.3 Voltage Intensity and Generalization of the
Sensitivity Criterion

So far we have focused on hardware, that is, transistors sizing, optimization. However,
other tuning variables, such as the supply voltage VDD and the transistors threshold
voltages, are available in the circuital level design.

As concerns supply voltage, by introducing the dimensionless derivatives of energy
and delay with respect to VDD, henceforth referred as v,

Ev = v

E

∂E

∂v
(1.44)

Dv = − v

D

∂D

∂v
(1.45)

and taking their ratio, one can define “voltage intensity,” θ, as the energy-to-delay sen-
sitivity relative to the variation of v at a fixed hardware intensity η (i.e., j/i) [20,21].
Hence, just like η represents the negative energy (delay) relative gain at the cost of a
relative increase in delay (energy), achievable by restructuring hardware, that is, sizing
w, under a fixed v [20,21,26]

η = − ∂E

∂D

D

E

]
w variable−v fixed

(1.46)
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analogously, θ represents the energy (delay) relative increase (decrease), achievable by
increasing v under a fixed w [20,21,26]

θ = − ∂E

∂D

D

E

]
v variable−W fixed

(1.47)

The Ev and Dv values cannot be simply determined through classical E ∝ V 2
DD and

D ∝ 1/(VDD − VTH)2, given the impact of leakage and short-circuit currents on energy
and the complexity of ID = f (VGS, VDS) relationship featuring nanometer transistors.
Therefore, it is necessary to develop comprehensive models of energy and delay as
functions of the VDD value [25] (similarly to those relative to transistors sizing that
were discussed in the previous section) or extract Ev and Dv for the various gates in a
circuit through simulations. To have an idea of the main trend, according to experimental
results [21], the voltage intensity θ almost linearly increases with VDD for typical CMOS
circuits.

The most important aspect of this discussion is that hardware and voltage intensities
are related when optimizing a circuit in the E–D space.

If we consider a circuit (like a pipeline stage) that has to satisfy a given maximum
delay constraint, such a requirement can be achieved at different combinations of the
η and θ values. However, the energy-efficient implementation, that is, that with the
minimum energy, is the one featured by

η = θ. (1.48)

Indeed, energy and delay are functions of the variables (w, v), and, by solving
the problem of minimizing E(w, v) under the constraint D(w, v) = D∗, one finds
[16,20,21,26]

∂D

∂w

∂E

∂v
= ∂D

∂v

∂E

∂w
(1.49)

which means η = θ. Hence, for an optimal balance between the supply voltage and the
transistors sizing, the relative speed gain achieved at the cost of a given relative energy
increase due to an increment in the supply voltage must equal the relative speed gain
achieved at the cost of a given relative energy increase due to a larger transistors sizing
[21]. This result disproves the common misconception that the lowest energy can be
achieved by designing circuit for the highest speed and then reducing the power supply
up to the lowest value that satisfies the delay requirement [21].

Further generalizing the above analysis to any kind of design variable, for example,
like threshold voltages [27,28], and to the sensitivity of energy to delay with respect to a
change in that variable, as in (1.46) and (1.47), the minimum energy under a given delay
constraint is achieved when [22]

Sx (X) = ∂E

∂D

D

E

]
x variable

= Sy (Y ) = ∂E

∂D

D

E

]
y variable

∀x, y (1.50)

being x and y design variables, that is, the energy-efficient corresponds to the design
with x = X, y = Y , and so on.
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1.4 ENERGY-EFFICIENT DESIGN OF DIGITAL CIRCUITS

In this section we discuss practical optimization techniques to achieve the energy-efficient
design of digital circuits at the circuit level, by considering various levels of complexity.
In particular, we first provide some preliminary remarks concerning the role played by the
input capacitance of the circuit and the definition of design space bounds, both essential
regardless of the actually employed optimization technique. Then, we consider the case
of simple basic blocks whose complexity allows a simulations-based optimization and
end with large designs that can be dealt with by resorting to convex optimization and
exploiting simple E–D models.

1.4.1 The Role of the Input Capacitance

As shown in recent works [7,26], when dealing with the issue of energy-efficient design,
the input capacitance, CIN, of a logic circuit cannot be simply assumed as fixed. Granted
that the adopted CIN value is also related with the architectural-level design strategies
[26], differently from [7,20–22], here we consider CIN (i.e., the transistors sizes deter-
mining its value) as an additional design variable to be fully optimized like all the other
transistors sizes. Indeed, an effective exploration of the E–D space to achieve the required
E–D tradeoff strongly depends on CIN.

A second assumption, differently to [7,20–22,26] is that of including the energy
dissipated in the charge and discharge of the CIN and to exclude the energy dissipated in
the charge/discharge of the external output load, CL. Indeed, the first term is inherently
related to the adopted circuit sizing (here CIN is a further design knob), whereas the latter
term does not depend on the features of the topology [29,30].

It is worth opportunely addressing the consequences of the CIN optimization within
a wide range of exploration [18]:

• In general, a throughput increment can be achieved by means of an increase in
the degree of parallelism and/or a more critical sizing of all the gates in the logic
paths (e.g., when the serial part of code is dominant and parallelization is not so
effective). In the latter case, if CIN is increased with respect to medium values,
it means that the topology is being sized to achieve a high speed (increasing the
energy consumption). Even if the circuit imposes a larger load on the preceding
logic stage (e.g., in a pipeline), in high-speed applications the speed penalty of
the preceding logic stages could be exceeded by the speed improvement in the
considered topology. This tradeoff cannot be explored if one does not assume a
fully variable CIN.

• Conversely, when sizing to achieve low-power, low-speed operation, CIN can
be strongly reduced. Indeed, granted that the above tradeoff is still valid, the
low-power applications are typically featured by long cycle times and hence can
easily tolerate slower stages and high logic depths (e.g., when no parallelization
is adopted and the processing is actually done serially through single deep paths).
In such a context, a slower topology can be tolerated in favor of its smaller energy
dissipation.
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Obviously, there always exist practical limits on the adoptable CIN values. Nev-
ertheless, once the full EEC is extracted, the designer can easily select the portion of
interest according to practical constraints in terms of maximum allowed CIN.

Finally, it is worth highlighting that, when referring to the “first stage,” we mean
the first gate in the path of the circuit whose sizing is assumed as a reference in terms of
timing criticality. Indeed, several input-to-output paths coexist in a circuit composed by
more than a single gate and, being the delay of the circuit identified with the maximum
among the delays in its various input-to-output paths, the target must obviously be that
of equaling these delays. Among the various paths, it is then possible to identify one
(typically the longest) that can be used as the reference to identify the CIN of the circuit.
Note that, since CIN is fully varied and the optimization targets the equality of the various
concurrent delays, the input capacitances of the first stages of all the other paths will be
optimized and fully explored as well.

1.4.2 Definition of Design Space Bounds

Regardless of the methodology actually employed for EEC extraction, one first needs to
define practical design space bounds allowing one to limit the space of solutions. As will
be shown successively, this issue is particularly important in the case of simulations-based
procedures and nonlinear optimizations. In these cases, a larger and larger computational
effort is required if the design space bounds are not properly defined. On the contrary,
this issue becomes less relevant when one adopts simple E–D models leading to a convex
optimization problem.

At the same time, one must be sure to catch the optimum sizings actually leading to
the desired energy–delay tradeoffs, that is, one must guarantee that the selected bounds
strictly contain the searched optimum sizings.

In [26] it is shown that Logical Effort designs lie above the EEC, that is, they are
not the most efficient possible designs. Even if, unlike [26], the CIN-related dissipation
is here included and CIN is assumed as a design variable, the same result still holds1.
Nevertheless, the energy-to-delay sensitivity of Logical Effort designs can be exploited
to determine design space bounds.

More specifically, one can be interested in the portion of the EEC up to a certain
minimum-EiDj design point with j/i = X, that is, the portion of the EEC made up by
energy-efficient designs that minimize FOMs with j/i less or equal than X2. In such
a case, the design bounds can be defined through the “limiting” Logical Effort sizing

1Indeed, as explained in the previous paragraph, the minimum energy under a given speed constraint is reached
when the sensitivity with respect to “all” the tuning variables is the same. Logical Effort designs are featured
by an infinite energy-to-delay sensitivity with respect to the sizes of internal transistors (since delay cannot
be further reduced given a fixed CIN), but not with respect to the size of transistors defining CIN. Hence,
the condition in (1.50) is not satisfied for Logical Effort designs, which thus are not energy-efficient [26].
Only when CIN approaches infinity, the Logical Effort design will be featured by an equal (and infinite)
energy-to-delay sensitivity with respect to all the tuning variables.
2It is worth noting that if the searched X is not large enough (say, smaller than 3), the bounds determined
through Logical Effort will not be much close to the minimum-EiDj design with j/i = X.
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exhibiting an energy-to-delay sensitivity with respect to CIN equal to X., that is, the
upper bound of CIN, CIN,max, is the value which satisfies [16]

SE
D

]
CIN

= SE
CIN

SD
CIN

= −j

i
= −X. (1.51)

The definition of CIN,max also leads to the definition of the upper bounds for the
other design variables (i.e., transistors sizes) that are determined by the Logical Effort
sizing with CIN = CIN,max.

The sensitivity in (1.51) can be analytically evaluated thanks to the property of
Logical Effort designs. In particular, as discussed in Section 1.2, given CIN and CL, the
optimized delay DTOT of a circuit simply made up by a path of N cascaded gates is

DTOT = N
N
√

GBH + P = N
N
√

F + P (1.52)

which can be rewritten as

DTOT = p (1 + k) (1.53)

where

k = N
N
√

GB N
√

CL

p N
√

CIN
(1.54)

is the relative delay increment with respect to the ideal and practically inaccessible
minimum path delay (i.e., the path parasitic delay P).

From (1.53) and (1.54), the sensitivity of the optimized path delay, DTOT to CIN, is
given by

S
DTOT
CIN

= ∂DTOT

∂CIN

CIN

DTOT
= − 1

N

k

k + 1
(1.55)

which is a function of the only CIN.
As for the delay DTOT, it is possible to univocally determine the energy ETOT of a

single path circuit sized through Logical Effort for a given CIN and CL. According to
(1.27) and (1.28), the input capacitance, CN , and the energy, EN , of the Nth gate are
respectively given by

CN = gNbN
N
√

CIN
N
√

GBCL

CL (1.56)

EN = χNCN. (1.57)

By iterating the above reasoning and going backward through the path, one finds
that the input capacitance and energy of the ith gate (for the Logical Effort design) are

Ci =
(∏N

j=igi

) (∏N
j=ibi

)
(CIN)

N−i+1
N

(GBCL)
N−i+1

N

CL (1.58)

Ei = χiCi (1.59)

and C1 = CIN.
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Therefore, the overall dissipation of the reference path is
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Although one cannot attain to a simple expression like (1.55), also the sensitivity of
the overall energy ETOT to CIN can be again expressed as a function of the only CIN
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Finally, (1.55) and (1.61) can be combined to evaluate (1.51) and determine CIN,max.
Unfortunately, formula (1.51) cannot be always applied straightforwardly given

that gi, hi, bi, and pi are often not available in a closed-form as functions of CIN.3

Rather, gi, hi, bi, and pi themselves can be found only by numerically solving a set of
complex nonlinear equations when applying the Logical Effort method for a given CIN
(see footnote 3).

Furthermore, when the circuit is not simply made up by a single path, also the energy
of the circuit is not simply that in (1.60) (see footnote 3), and it is not always possible
to find closed form relationships describing the energy of the other gates as functions of
CIN. Nevertheless, one has to keep in mind that, when sizing for maximum speed, the
energy still depends on the only variable CIN.

Therefore, the need for iterative procedures arises. For instance, one can adopt the
following cycle for increasing CIN [16,18]:

3There are three main reasons for this issue.

1. The various sources of nonlinearities listed in the second paragraph, which implies the need for
iterative procedures to be solved to determine the Logical Effort sizing.

2. The fact that not all the transistors in the circuit have to be considered as variables to be optimized.
Actually, only transistors lying in input-to-output paths should represent variables to be optimized
in the E–D space, since they affect both consumption and speed. On the contrary, there can exist
some parts of the circuit whose size must be simply the minimum one guaranteeing a correct operation,
since they affect only energy. This is the case for instance of keepers, pulse generators, and so on.
However, these gates have a size dependent on the design variables to be optimized (to guarantee the
correct operation) and hence affect bi in a nonlinear way.

3. The possible presence of reconvergent paths or multiple outputs. Indeed, transistors in the paths that
lie nearby to the path assumed as the reference one will affect speed too, since, as previously explained,
they must be sized so that all concurrent paths exhibit the same delay (for this reason, their sizes must
be considered as design variables to be optimized in the E–D space exploration successive to the
definition of design space bounds). When formulating the Logical Effort equations, besides satisfying
(1.26) for stages in the reference path, additional equations arise that are relative to the equality of the
various concurrent paths delays. This makes the problem of finding the minimum delay design even
more complex and nonlinear.
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(a) under the current CIN (re)apply the Logical Effort method to find the transistor
sizes leading to the minimum delay of all the concurrent paths in the circuit (a
nonlinear set of equations must be solved, see note 3);

(b) (re)simulate energy and delay;

(c) (re)extrapolate the ETOT versus CIN and DTOT versus CIN fitted curves and
(re)compute the sensitivity (1.51) around the current CIN value;

(re)compare such sensitivity with the desired one −j/i. If
∣∣SETOT

DTOT

]
CIN

∣∣ |< ∣∣ j
i

∣∣, CIN is

increased and cycle comes back to (a). Otherwise, cycle stops and CIN,max, together with
the overall design space bounds, is found.

To exemplify the above procedure, we consider a 4-bit Ripple–Carry Adder in a 65-
nm technology, whose schematic is shown in Fig. 1.7, under a load equal to 16 minimum
inverters and VDD = 1V . In Fig. 1.8, we show the energy-to-delay sensitivity relative
to the variation of CIN. The x-axis corresponds to the value of the transistor width w1
(normalized to the minimum Wmin) determining the size of the first stage of the circuit,
that is, CIN, while other four transistors widths are selected as further tuning variables,
w2 − w5 (see Fig. 1.7 and [16] for details).

By inspection of Fig. 1.8, according to the above-discussed procedure, one has
that the minimization of the ED3 metric requires w1>15, while the minimization
of the ED4 metric requires w1>31. The corresponding bounds on the other vari-
ables [w2, w3, w4, w5] are [17,18,17,7] for the ED3 metric and [31,30,25,9] for
the ED4 metric [16]. These bounds are very close to the transistors sizes actu-
ally optimizing the two metrics, which are equal to [15,17,16,6] and [29,30,18,10],
respectively [16].

Summarizing, these results confirm the effectiveness of such a procedure, which
aims at practically bounding the design space through the analysis of the energy-to-
delay sensitivity relative to the variation of CIN in minimum delay (i.e., Logical Effort
based) designs.

1.4.3 Simulations-Based Optimization of Small Size Circuits

When dealing with small circuits featured by few design variables (i.e., simple basic
circuit blocks), the energy-efficient optimization can be carried out by employing a
simulations-based procedure, allowing to evaluate both energy and delay with the max-
imum possible degree of accuracy [16,18,31,32]. Obviously, given that simulations are
time consuming, the accuracy in E–D estimation is traded for a nonextensive exploration
of all the possible design solutions and hence some sort of algorithm have to be applied
to reduce the computational effort but still allowing to reach the optimum points.

As a useful consequence of the properties of the EiDj metrics discussed in the
previous section, from a practical perspective the EEC of a circuit can be extracted
by simply minimizing EiDj for a limited number of pairs (i, j) and interpolating such
optimum points. In particular:
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Figure 1.7. Four-bit RCA: carry block (a), sum block (b), whole structure (c).

1. A binary search can be employed to identify minimum-EiDj designs because in
a simulations-based framework it is worth assuming that EiDj functionals are
nearly convex in the design space [18]. Anyhow, more complex search criteria
can be adopted as well.

2. The design space to be explored can be progressively reduced. Indeed, assuming
j1/i1<j2/i2, a design optimizing Ei1Dj1 will be always featured by a sizing
smaller than that optimizing Ei2Dj2 . Therefore, one can start from the metric with
an highest j/i ratio, and, once it is optimized with a sizing W ′, the optimization
of the successive (in terms of decreasing j/i value) FOM will be constrained by
bounding the design space with the sizing W ′, and so on [18].
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Figure 1.8. Four-bit RCA: energy-to-delay sensitivity of Logical Effort designs as a function

of the first stage size.

To exemplify the above search algorithm, we report the results relative to the
simulations-based extraction of the EEC for the 4-bit adder previously mentioned. In
Fig. 1.9, the design points explored in the search space are depicted with small circles,
while the energy-efficient ones minimizing some EiDj metrics are highlighted. It is

Figure 1.9. Energy-delay space exploration for the 4-bit RCA.
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T A B L E 1.1. 4-Bit RCA: Minimum EiD j Designs

Sizing ↓ D [FO4] E (Emin) SD
E −j/i

Min ED4 6.79 490.89 −4.24 −4.00
Min ED3 7.62 345.12 −2.78 −3.00
Min ED2 7.99 310.12 −1.85 −2.00
Min ED 10.32 238.00 −0.92 −1.00
Min E2D 16.11 188.62 −0.37 −0.50
Min E3D 16.11 188.62 −0.37 −0.33
Min E 34.59 173.43 −0.08 −0.00

apparent that the explored designs crowd near the EEC, thus highlighting the search
algorithm effectiveness.

As a further validation, we also evaluate the energy-to-delay sensitivity in the mini-
mum EiDj points and compare with the theoretically expected −j/i value, as shown in
Table 1.1. Results again confirm that the described search algorithm allows one to fairly
well identify the minimum EiDj points.

1.4.4 Nonlinear and Convex Optimization of Large Size Circuits

When dealing with circuits of large size, that is to say featured by several tens to sev-
eral thousands design variables, a simulations-based optimization becomes infeasible
because of its prohibitive computational effort and a design space exploration based on
compact E–D models is required.

To give an idea, the full E–D space exploration of a simple buffered 2:1 multiplexer,
featured by five design variables (transistors widths swept with a Wmin step), takes nearly
a minute on a current desktop computer when using the E–D models in Section 1.2 and
the previous procedure to determine the design space bounds. The tens of millions
designs explored are shown in Fig. 1.10. Considering larger circuits, the complexity
grows exponentially and a full exploration soon becomes infeasible.

If the objective function to be minimized (e.g., energy) and constraints functions
to be satisfied (e.g., delay related) have not any special feature (e.g., convexity), the
optimization problem is said a “nonlinear optimization” or a “nonlinear programming”
[33]. This is actually the case when both energy and delay are very accurately modeled by
accounting for several effects even in complex ways (e.g., short-circuit currents, impact
of input slope on the delay, dependence of leakage on the threshold voltages, etc.).

As long as the design variables are no more than several tens, global optimization
algorithms, ensuring that the true global optimum solution is found, can be applied while
still maintaining the computational effort feasible, that is, from hours to no more than
few days [33]. Obviously, the accuracy in E–D estimation is not maximum as in the
simulations-based case, but, on the other hand, a much broader exploration of the design
space can be performed in a comparable time [34]. Note that in such a case, the definition
of proper design space bounds, which can be accomplished by resorting to the previously
described method, has still a great importance as in the simulations-based case.
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Figure 1.10. Full E–D space exploration for a buffered 2:1 multiplexer.

When dealing with circuits featured by more than 100 design variables, a nonlinear
programming does no longer allow to reliably determine the optimum solution of the
optimization problem. Therefore, the focus must be on the adoption of the most accurate
possible E–D models leading to optimization problems that can be reliably solved (i.e.,
assuring the global optimum is found) in a feasible time.

A class of problems that can be reliably and fast solved is the “convex optimization,”
where both the objective and constraint functions are convex [33]. There is in general
no analytical formula for the solution of convex optimization problems, but there are
very effective methods for solving them like interior-point methods [33] or other custom
methods. For instance, the method proposed in [35] is claimed to size circuit with a
million gates in nearly 1 h. Furthermore, thanks to the properties of the above solving
methods, the definition of practical design space bounds as well as that of the initial point
from which start the optimization, become irrelevant.

Hence, it is apparent that as long as the optimization problem can be formulated
in a convex form, the required computational effort is incomparably lower than that
required in the previous cases. The other side of the coin is that the formulation itself
requires a simplification of the E–D models that lowers the accuracy in their estima-
tion. Nevertheless, this is the only feasible approach when the circuit size is large
enough.

A class of convex optimization problems that really well suits the problem of digital
gate sizing (e.g., to determine the energy-efficient designs as in our case) is that called
“generalized geometric programming (GGP),” where the objective and constraint func-
tions take the special form of “generalized posynomials” (“monomials” for the equality
constraints). Details and a full mathematical treatment of convex optimization and GGP
problems can be found in [33,36].
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A comprehensive list concerning the applicability of GGPs to the design of digital
circuits can be found in [37]. It includes the following:

• the minimization of energy/power (or area) of logic circuits under speed (e.g.,
delay, clock frequency) constraints, that is, the energy-efficient design;

• wires sizing in RC tree networks;
• statistical optimization under PVT variations.

As previously discussed, energy and delay have to be modeled as most accurately as
possible through generalized posynomials. As concerns delay, RC-based models linearly
including the impact of input slope, as that shown in Section 1.2, are typically adopted
[38–40], while energy is typically modeled as proportional to gates sizes, as in (1.28).

1.5 DESIGN OF ENERGY-EFFICIENT PIPELINED SYSTEMS

When dealing with custom datapaths, the design of energy-efficient pipelined systems is
essential to achieve the desired throughput (or clock frequency) while paying the lowest
possible energy consumption.

Convex optimization methods allow to deal with any kind of digital circuit featured
by several concurrent constraints, as in the case of pipelined systems. However, simply
formulating the problem as (for instance) a GGP and solving it by relying upon the related
mathematics, makes one lose sight of the relevant aspects pertinent to the design of an
energy-efficient pipeline. In such sense, the state of the art is represented by the papers
from Zyuban and Strenski’s [20,21] and a subsequent work [26] drawing inspiration
from the former ones and attempting to solve the related issues.

In this section, we refer to pipelines that are made up of pipeline stages (e.g., fetch,
decode, execute stages in a processor). In turn, pipeline stages are made up of circuit
blocks of different complexity (e.g., a flip–flop, an adder, a multiplier, etc.). Finally, a
block is constituted by a number of basic logic gates (e.g., inverters, NAND gates, NOR
gates, etc.).

1.5.1 Zyuban and Strenski’s Hardware-Voltage Intensity Criteria

According to (1.48), the minimum energy of a single circuit under a given delay constraint
is achieved when hardware, η, and voltage, θ, intensities are equal. The analysis can be
extended to the cases of:

(a) A composite pipeline stage made up of several blocks (see Fig. 1.11a). The
speed constraint is expressed in terms of the overall stage delay, as in the case
of a single circuit. However, here we are separately targeting the energy and
delay contributions from the various underlying blocks.

(b) A multistage pipeline with composite stages (see Fig. 1.11b), that is, various
pipeline stages subject to the same delay constraint.
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Figure 1.11. Composite pipeline stage (a) and multistage pipeline (b).

(c) A multistage pipeline with composite stages, that is, various pipeline stages
subject to the same delay constraint, where the energy and delay contributions
from the various underlying blocks are separately targeted.

1.5.1.1 A Composite Pipeline Stage. In any conventional pipeline, at least
two independent blocks (latches and logic) can be distinguished, and these are usually
designed and tuned independently of each other. Consequently, different blocks in the
same pipeline stage may have different values for the optimal hardware intensity.

Assuming the pipeline stage is made up of M blocks, we have to minimize the
overall energy

E (w1, w2, . . . , wM, v) =
∑M

i=1
Ei (wi, v) (1.62)

being wi the sizes of the various blocks and v the supply voltage, under the constraint
that the overall delay is equal to a given value

D (w1, w2, . . . , wM, v) =
∑M

i=1
Di (wi, v) = Dr. (1.63)

The solution of the problem can be easily found by using Lagrange multipliers [26],
and corresponds to the condition

ei

di

ηi = θ, ∀i = 1, . . . , M (1.64)

where ei = Ei/E and di = Di/D are the energy and delay percentages of the ith block
relative to the entire pipeline stage, ηi is the hardware intensity of the ith block, and θ is
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the stage voltage intensity, that is,

ηi = − ∂Ei

∂Di

Di

Ei

]
wi variable/(w1,w2,...,wi−1,wi+1,...,wM,v)fixed

(1.65)

θ = − ∂E

∂D

D

E

]
v variable/(w1,w2,...,wM )fixed

. (1.66)

Thus, in a pipeline stage with multiple blocks designed independently, blocks that
have lower energy weight and higher delay weight should be designed more aggressively
than blocks with lower delay weight and higher energy weight.

The aggregate hardware intensity of the whole pipeline stage cannot be in general
related to the hardware intensities of the underlying blocks, given that one has [21]

∂E

E
= −

∑M

i=1

[
ei

di

ηi

∂Di

D

]
. (1.67)

However, when condition (1.64) is satisfied, from (1.67) one finds that the aggregate
hardware intensity of the whole pipeline stage is equal to those of the various blocks,
that is,

η = − ∂E

∂D

D

E

]
(w1,w2,...,wM )variable/v fixed

= ei

di

ηi = θ, ∀i = 1, . . . , M (1.68)

1.5.1.2 A Multistage Pipeline. Practically, different stages of the pipeline usu-
ally have different amounts of complexity, and it would be incorrect to tune all of them
for the same value of hardware intensity.

Assuming the pipeline is made up of N stages, we have to minimize the overall
energy

E (w1, w2, . . . , wN, v) =
∑N

i=1
Ei (wi, v) (1.69)

being Wi the sizes of the various stages, under the constraint that the delays of the various
stages are all equal to a given value

Di (wi, v) = Dr, ∀i = 1, . . . , N. (1.70)

Note that each ith stage is in turn made up of Mi blocks and hence the sizing Wi

should be more properly expressed as

Wi = (wi,1, wi,2, . . . , wi,Mi ). (1.71)

The solution of the problem can be again easily found by using Lagrange multipliers
[26], and corresponds to the conditions

∑N

i=1
eiηi = θ, ∀i = 1, . . . , N. (1.72)
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The above relationship can be used to reevaluate the choice of the power-supply
voltage and the clock-cycle target, and possibly the partitioning of the pipeline into
stages.

This time the aggregate hardware intensity of the whole multistage pipeline can be
computed from the hardware intensities of the various stages and corresponds to the left
side of (1.72) Eq. [21], that is,

η = − ∂E

∂D

D

E

]
(w1,w2,...,wN )variable/v fixed

=
∑N

i=1
eiηi (1.73)

1.5.1.3 A Multistage Pipeline with Composite Stages. Assuming the
pipeline is made up of N composite stages and the ith stage is made up of Mi blocks,
we have to minimize the overall energy

E
(
w1,1, w1,2, . . ., w1,M1 , w2,1, w2,2, . . . , w2,M2 , wN,1, wN,2, . . ., wN,MN v

)
=

∑N

i=1

{∑Mi

j=1

[
Ei, j

(
wi, j, v

)]}
(1.74)

where the subscripts i and j refer to the ith pipeline stage and to the jth block within it,
under the constraint that the overall delays of the various stages are all equal to a given
value

Di(wi,1, wi,2, . . . , wi,Mi, v) =
∑Mi

j=1
[Di,j(wi,j, v)] = Dr. (1.75)

The solution of the problem, as in the previous cases, can be found by using Lagrange
multipliers and corresponds to the conditions

ei,j

di,j

ηi,j = ei,k

di,k

ηi,k, ∀j, k = 1, . . . , Mi (1.76)

∑N

i=1

ei,j

di,j

ηi,j = θ, ∀j = 1, . . . , Mi. (1.77)

Again, the aggregate hardware intensity of the whole pipeline stage cannot be in
general related to the hardware intensities of the underlying blocks, given that one
has [21]

∂E

E
= −

∑N

i=1

{∑Mi

j=1

[
ei,j

di,j

ηi,j

∂Di,j

D

]}
. (1.78)

However, when condition (1.76) is satisfied, from (1.78) one finds that the aggregate
hardware intensity of the whole multistage pipeline is equal to

η =
∑N

i=1

ei,j

di,j

ηi,j, ∀j = 1, . . . , Mi. (1.79)
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1.5.2 Practical Guidelines to Design Energy-Efficient Pipelines

The optimal criteria given by Zyuban and Strenski have two primary limitations: their
hard-to-use coarse-tuning approach and the restricted assumption of energy and delay
dependency among blocks/stages [26].

Indeed, the optimal criteria are difficult to apply, and their application is mainly
suited for the verification of design optimality, since, given a design solution, these
criteria can be used to determine if the design is optimal. However, if the design is not
optimal, the criteria may suggest modifications to energy, delay, hardware intensity, or
supply voltage, but it is not immediately clear how to change each of these quantities [26].

The other limitation arises since these optimal criteria are derived assuming that
changes in a particular block/stage do not affect the energy and delay of neighboring
ones. While this assumption can be justified in coarse tuning of circuits, it is generally
not true for a pipeline stage where the input (output) capacitances of each stage/block
affect the performance of the preceding stage/block (of the stage/block itself). Therefore,
the energy and delay dependencies between adjacent blocks/stages should be added to
the previous derivations. However, due to the nonanalytical form of these dependencies,
their inclusion does not lead to an analytical solution [26].

To partially overcome the above issues, a thorough methodology consisting of sev-
eral iterative steps has been proposed in [26]. This methodology targets the minimization
of the energy of a multistage pipeline under a given delay constraint and without neglect-
ing the mutual influence between the design of the various stages. In this case, the stages
are treated as unique blocks, that is, the previous analysis relative to the energy-efficient
design of a stage considered as the composition of several blocks is not considered.

The convention adopted in [26] is to exclude the energy dissipation related with the
charge/discharge of the input capacitance of a stage and to include that related with the
charge/discharge of the output load capacitance.

The iterative procedure leading to the optimum designs of all the combined pipeline
stages is based on the optimization of the stages themselves under various input/output
capacitances conditions. Indeed, three different optimizations can be performed on a
single stage:

1. The stage can be designed to achieve the minimum energy under a given delay
constraint and with a fixed input and load capacitances. This is the problem dis-
cussed in the rest of this chapter and can be dealt with by resorting to simulations-
or models-based optimizations (e.g., with generalized geometric programming).
When exploring different delay constraints, an energy-efficient curve can be
extracted and it reaches a well-defined minimum delay point corresponding
to the Logical Effort design. This case is exemplified in the case of a 64-bit
Kogge–Stone adder in Fig. 1.12 [26].

2. Given the convention adopted on input capacitance related dissipation, the delay
of the stage can be improved without worsening energy by simply increasing the
input capacitance as shown in the case of the 64-bit Kogge–Stone adder in Fig.
1.13 [26]. Obviously, such an increase negatively affects the delay of the stage
preceding the considered one given that its load increases.
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Figure 1.12. 64-bit Kogge–Stone adder: energy–delay optimization under fixed input capac-

itance and output load (Copyright © IEEE 2006).

3. Given the convention adopted on input capacitance related dissipation, the energy
of the stage can be improved without worsening delay by simply increasing the
input capacitance as shown in Fig. 1.13 [26]. Indeed, a larger input capacitance
allows to reach the same delay with a smaller sizing (and hence a smaller dissipa-
tion) of the other gates within the stage. Obviously, such an increase negatively
affects the energy of the stage preceding the considered one given that its load
increases.

According to (2) and (3), for a fixed output load and a variable input capacitance
an energy-efficient design region comes out and, as shown in Fig. 1.13, it is located
between the minimum energy and minimum delay points [26]. Given a delay constraint,
the maximum and minimum values for the input capacitance are found and correspond
to the minimum energy and minimum delay point in Fig. 1.13.

The key for overall energy optimization is the analysis for each stage of the sensi-
tivities of the optimized energy to the input capacitance, CIN, under a fixed output load,
CL, and to the output load under a fixed input capacitance

σE, CIN = − ∂E

∂CIN

]
CIN variable/Cz fixed

(1.80)

σE, CL = − ∂E

∂CL

]
CL variable/CIN fixed

. (1.81)
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Figure 1.13. 64-bit Kogge–Stone adder: design region for possible energy–delay reduction

under varying input capacitance and fixed output load (Copyright © IEEE 2006).

Indeed, in this way one can deal with the improvement of the performance of a
stage when increasing its input capacitance and decreasing its output load, and the
corresponding decrease in the performance of the preceding and succeeding stages.

The general trends are shown in Fig. 1.14, where it is shown that [26]:

Figure 1.14. Optimized energy of a pipeline stage versus input capacitance under fixed load

and versus load under fixed input capacitance (Copyright © IEEE 2006).
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• The sensitivity of the optimized energy of the stage to CIN under a fixed CL

asymptotically decreases for larger values of CIN itself. The maximum value of
CINCIN leading to the lowest stage energy corresponds to the minimum energy
point in Fig. 1.13 and increases for larger CL. On the contrary, the sensitivity
increases when moving towards the minimum delay point (Logical Effort design)
by decreasing the CIN value. Again, the minimum delay point is achieved with a
larger CINCIN when CL increases.

• The optimized energy of the stage under a fixed CINCIN is a nearly linear increas-
ing function of CL both when considering the minimum energy and minimum
delay points.

It is easy to show that, when considering a multistage pipeline, the overall mini-
mum energy is reached when the sensitivities of the energy of all stages to their input
capacitances and output loads are all equal [26].

Basing on the above considerations, an iterative procedure to determine the energy-
efficient sizing of a multistage pipeline comes out [26]:

(a) A set of initial values for the capacitances at the boundaries between the various
stages is chosen.

(b) The various stages are optimized for minimum energy given the delay constraint
under a fixed input capacitance and output load (the capacitances at the boundary
are fixed). This optimization can be performed with any of the methods discussed
in this chapter.

(c) The sensitivities in (1.80) and (1.81) are computed for each stage.

(d) If the sensitivities are not equal for all the stages, the values of the capacitances
at the boundaries between the various stages are properly updated and the proce-
dure comes back to (b). Otherwise the energy-efficient design for the multistage
pipeline is found and procedure ends.

1.6 CONCLUSION

Scaling trends have driven CMOS technology into a so-called power limited regime,
where power/energy dissipation has become a prominent aspect and it is no longer
possible to focus solely on the optimization of circuit speed. This chapter dealt with the
design of energy-efficient digital circuits, that is, with the achievement of the desired
speed performances under the minimum energy consumption. Energy-delay models of
logic gates and the theoretical background relative to the analysis of circuits in the energy-
delay space were discussed, in order to identify the energy-efficient design criteria.
Practical guidelines concerning the simulations based optimization of small-size circuits
were provided, as well as remarks on the convex optimization of large size circuits.
Finally, considerations on the energy-efficient design of pipelined systems were reported.
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