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FUNDAMENTAL
PRINCIPLES

Convective heat transfer, or simply, convection, is the study of heat transport
processes effected by the flow of fluids. The very word convection has its roots
in the Latin verbs convecto-are and convěho-věhěre [1],∗ which mean to bring
together or to carry into one place. Convective heat transfer has grown to the
status of a contemporary science because of our need to understand and predict
how a fluid flow acts as a ‘‘carrier’’ or ‘‘conveyor belt’’ for energy and matter.

Convective heat transfer is clearly a field at the interface between two older
fields: heat transfer and fluid mechanics. To study the interdisciplinary is
valuable, but it must come after one possesses the disciplines, not the other way
around. For this reason, the study of any convective heat transfer problem must
rest on a solid understanding of basic heat transfer and fluid mechanics principles.
The objective in this chapter is to review these principles in order to establish a
common language for the more specific issues addressed in later chapters.

Before reviewing the foundation of convective heat transfer methodology, it
is worth reexamining the historic relationship between fluid mechanics and heat
transfer. Especially during the past 100 years, heat transfer and fluid mechanics
have enjoyed a symbiotic relationship in their development, a relationship where
one field was stimulated by the curiosity and advance in the other field. Examples
of this symbiosis abound in the history of boundary layer theory and natural
convection. The field of convection grew out of this symbiosis, and if we are
to learn anything from history, important advances in convection will continue
to result from this symbiosis. Thus, the student and the future researcher would
be well advised to devote equal attention to fluid mechanics and heat transfer
literature.

∗Numbers in brackets indicate references at the end of each chapter.
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2 1 FUNDAMENTAL PRINCIPLES

1.1 MASS CONSERVATION

The first principle to review is undoubtedly the oldest: It is the conservation
of mass in a closed system or the ‘‘continuity’’ of mass through a flow (open)
system. From engineering thermodynamics, we recall the mass conservation
statement for a control volume [2]:

∂Mcv

∂t
=

∑

inlet
ports

ṁ −
∑

outlet
ports

ṁ (1.1)

where Mcv is the mass that is trapped instantaneously inside the control volume
(cv), while the ṁ’s are the mass flow rates associated with flow into and out of
the control volume. In convective heat transfer, we are usually interested in the
velocity and temperature distribution in a flow region near a solid wall; hence,
the control volume to consider is the infinitesimally small �x �y box drawn
around a fixed location (x, y) in a flow field. In Fig. 1.1, as in most of the
problems analyzed in this book, the flow field is two-dimensional (i.e., the same
in any plane parallel to the plane of Fig. 1.1). In a three-dimensional flow field,
the control volume would be the parallelepiped �x �y �z. Taking u and v as the
local velocity components at point (x, y), the mass conservation equation (1.1)
requires that

∂

∂t
(ρ �x �y) = ρu �y + ρv �x −

[
ρu + ∂ (ρu)

∂x
�x

]
�y

−
[
ρv + ∂ (ρv)

∂y
�y

]
�x (1.2)

or, dividing through by the constant size of the control volume (�x �y),

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
= 0 (1.3)

In a three-dimensional flow, an analogous argument yields

∂ρ

∂t
+ ∂(ρu)

∂x
+ ∂(ρv)

∂y
+ ∂(ρw)

∂z
= 0 (1.4)

where w is the velocity component in the z direction. The local mass conserva-
tion statement (1.4) can also be written as

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
= 0 (1.5)
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Figure 1.1 Mass conservation and systems of coordinates.

or
Dρ

Dt
+ ρ∇ · v = 0 (1.6)

In expression (1.6), v is the velocity vector (u, v, w), and D/Dt represents the
‘‘material derivative’’ operator,

D

Dt
= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
(1.7)

Of particular interest to classroom and fundamental treatment of the convec-
tion problem is the wide class of flows in which temporal and spatial variations
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in density are negligible relative to the local variations in velocity. For this class,
the mass conservation statement reads

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1.8)

The equivalent forms of eq. (1.8) in cylindrical and spherical coordinates are
(Fig. 1.1)

∂vr

∂r
+ vr

r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0 (1.9)

and
1

r

∂

∂r
(r2vr) + 1

sin φ

∂

∂φ
(vφ sin φ) + 1

sin φ

∂vθ

∂θ
= 0 (1.10)

It is tempting to think that eqs. (1.8)–(1.10) are valid only for incompressible
fluids; in fact, their derivation shows that they apply to flows (not fluids) where
the density and velocity gradients are such that the Dρ/Dt terms are negligible
relative to the ρ ∇ · v terms in eq. (1.6). Most of the gas flows encountered in heat
exchangers, heated enclosures, and porous media obey the simplified version of
the mass conservation principle [eqs. (1.8)–(1.10)].

1.2 FORCE BALANCES (MOMENTUM EQUATIONS)

From the dynamics of thrust or propulsion systems, we recall that the instanta-
neous force balance on a control volume requires that (see Ref. 3, p. 15)

∂

∂t
(Mvn)cv =

∑
Fn +

∑

inlet
ports

ṁvn −
∑

outlet
ports

ṁvn (1.11)

where n is the direction chosen for analysis and vn and Fn are the projections
of fluid velocity and forces in the n direction. Equation (1.11) is recognized
in the literature as the momentum principle or momentum theorem. In essence,
eq. (1.11) is the control volume formulation of Newton’s second law of motion,
where in addition to terms accounting for forces and mass × acceleration, we
now have the impact due to the flow of momentum into the control volume, plus
the reaction associated with the flow of momentum out of the control volume. In
the two-dimensional flow situation of Fig. 1.2, we can write two force balances
of type (1.11), one for the x direction and the other for the y direction.

Consider now the special form taken by eq. (1.11) when applied to the
finitesize control volume �x �y drawn around point (x, y) in Fig. 1.2. Consider
first the balance of forces in the x direction. In Fig. 1.2a, showing the �x �y
control volume, we see the sense of the impact and reaction forces associated
with the flow of momentum through the control volume. In Fig. 1.2b, we see
the more classical forces represented by the normal stress (σx), tangential stress
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Figure 1.2 Force balance in the x direction on a control volume in two-dimensional flow.

(τxy), and the x-direction body force per unit volume (X). Projecting all these
forces on the x axis, we obtain

− ∂

∂t
(ρu �x �y) + ρu2 �y −

[
ρu2 + ∂

∂x

(
ρu2) �x

]
�y

+ ρuv �x −
[
ρuv + ∂

∂y
(ρuv)�y

]
�x

+ σx �y −
(

σx + ∂σx

∂x
�x

)
�y − τxy �x

+
(

τxy + ∂τxy

∂y
�y

)
�x + X �x �y = 0 (1.12)
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or, dividing by �x �y in the limit (�x, �y) → 0,

ρ
Du

Dt
+ u

[
Dρ

Dt
+ ρ

(
∂u

∂x
+ ∂v

∂y

)]
= −∂σx

∂x
+ ∂τxy

∂y
+ X (1.13)

According to the mass conservation equation (1.6), the quantity in brackets is
equal to zero; hence,

ρ
Du

Dt
= −∂σx

∂x
+ ∂τxy

∂y
+ X (1.14)

Next, we relate the stresses σx and τxy to the local flow field by recalling the
constitutive relations

σx = P − 2μ
∂u

∂x
+ 2

3
μ

(
∂u

∂x
+ ∂v

∂y

)
(1.15)

τxy = μ

(
∂u

∂y
+ ∂v

∂x

)
(1.16)

These relations are of empirical origin: They summarize the experimental
observation that a fluid packet offers no resistance to a change of shape but resists
the time rate of a change of shape. Equations (1.15) and (1.16) serve as definition
for the measurable coefficient of viscosity μ. Combining eqs. (1.14)–(1.16)
yields the Navier—Stokes equation,

ρ
Du

Dt
= − ∂P

∂x
+ ∂

∂x

[
2μ

∂u

∂x
− 2μ

3

(
∂u

∂x
+ ∂v

∂y

)]

+ ∂

∂y

[
μ

(
∂u

∂y
+ ∂v

∂x

)]
+ X (1.17)

Of particular interest is the case when the flow may be treated as incompressible
and the viscosity μ may be regarded as constant. Then the x momentum equation
reduces to

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂P

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2

)
+ X (1.18)

A similar equation can be derived from the force balance in the y direction. For
a three-dimensional flow in the (x, y, z), (u, v, w) Cartesian system, the three
momentum equations for (ρ, μ) ∼= constant flows are

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= −∂P

∂x
+ μ

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)
+ X (1.19a)
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ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂P

∂y
+ μ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
+ Y (1.19b)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂P

∂z
+ μ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
+ Z (1.19c)

Alternative forms of eqs. (1.19) are:

Vectorial notation:

ρ
Dv
Dt

= −∇P + μ ∇2v + F (1.20)

where F is the body force vector per unit volume (X, Y, Z).

Cylindrical coordinates (Fig. 1.1b):

ρ

(
∂vr

∂t
+ vr

∂vr

∂r
+ vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

)

= −∂P

∂r
+ μ

(
∂2vr

∂r2
+ 1

r

∂vr

∂r
− vr

r2
+ 1

r2

∂2vr

∂θ2
− 2

r2

∂vθ

∂θ
+ ∂2vr

∂z2

)
+ Fr

(1.21a)

ρ

(
∂vθ

∂t
+ vr

∂vθ

∂r
+ vθ

r

∂vθ

∂θ
+ vrvθ

r
+ vz

∂vθ

∂z

)

= −1

r

∂P

∂θ
+ μ

(
∂2vθ

∂r2
+ 1

r

∂vθ

∂r
− vθ

r2
+ 1

r2

∂2vθ

∂θ2
+ 2

r2

∂vr

∂θ
+ ∂2vθ

∂z2

)
+ Fθ

(1.21b)

ρ

(
∂vz

∂t
+ vr

∂vz

∂r
+ vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)

= −∂P

∂z
+ μ

(
∂2vz

∂r2
+ 1

r

∂vz

∂r
+ 1

r2

∂2vz

∂θ2
+ ∂2vz

∂z2

)
+ Fz (1.21c)

where (vr, vθ , vz) and (Fr, Fθ , Fz) are the velocity and body force vectors.

Spherical coordinates (Fig. 1.1c):

ρ

(
Dvr

Dt
− v2

φ + v2
θ

r

)

= −∂P

∂r
+ μ

(
∇2vr − 2vr

r2
− 2

r2

∂vφ

∂φ
− 2vφ cot φ

r2
− 2

r2 sin φ

∂vθ

∂θ

)
+ Fr

(1.22a)
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ρ

(
Dvφ

Dt
+ vrvφ

r
− v2

θ cot φ

r

)

= −1

r

∂P

∂φ
+ μ

(
∇2vφ + 2

r2

∂vr

∂φ
− vφ

r2 sin2 φ
− 2 cos φ

r2 sin2 φ

∂vθ

∂θ

)
+ Fφ

(1.22b)

ρ

(
Dvθ

Dt
+ vθvr

r
+ vφ vθ cot φ

r

)

= − 1

r sin φ

∂P

∂θ
+ μ

(
∇2vθ − vθ

r2 sin2 φ
+ 2

r2 sin φ

∂vr

∂θ

+ 2 cos φ

r2 sin2 φ

∂vφ

∂θ

)
+ Fθ (1.22c)

where (vr, vφ , vθ ) and (Fr, Fφ , Fθ ) are the velocity and body force vectors, and

D

Dt
= ∂

∂t
+ vr

∂

∂r
+ vφ

r

∂

∂φ
+ vθ

r sin φ

∂

∂θ
(1.23)

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
+ 1

r2 sin2 φ

∂2

∂θ2
(1.24)

are the material derivative and Laplacian operators in spherical coordinates.

1.3 FIRST LAW OF THERMODYNAMICS

The preceding two principles—mass conservation and force balances—are in
many cases sufficient for solving the flow part of the convective heat trans-
fer problem. Note at this juncture the availability of four equations (mass
conservation plus three force balances) for determining four unknowns (three
velocity components plus pressure). The exception to this statement is the sub-
ject of Chapter 4, where the natural flow is driven by the heat administered
to the flowing fluid. In all cases, however, the heat transfer part of the con-
vection problem requires a solution for the temperature distribution through
the flow, especially in the close vicinity of the solid walls bathed by the
heat-carrying fluid stream (Chapter 2). The additional equation for accomplish-
ing this ultimate objective is the first law of thermodynamics or the energy
equation.

For the control volume of finite size �x �y in Fig. 1.3, the first law of
thermodynamics requires that (see Ref. 2, p. 22)
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⎛

⎝
rate of energy
accumulation in the
control volume

⎞

⎠

1

=
(

net transfer of
energy by fluid flow

)

2
+

(
net heat transfer
by conduction

)

3

+

⎛

⎜⎝

rate of internal
heat generation (e.g.,
electrical power
dissipation)

⎞

⎟⎠

4

−

⎛

⎜⎝

net work transfer
from the control
volume to its
environment

⎞

⎟⎠

5

(1.25)

Figure 1.3 First law of thermodynamics applied to a control volume in two-dimensional flow
(for work transfer, see Fig. 1.2).
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According to the energy flows sketched in Fig. 1.3, the groups of terms above
are

{·}1 = �x �y
∂

∂t
(ρe)

{·}2 = −(�x �y)

[
∂

∂x
(ρue) + ∂

∂y
(ρve)

]

{·}3 = −(�x �y)

(
∂q′′

x

∂x
+ ∂q′′

y

∂y

)

{·}4 = (�x �y)q′′′

{·}5 = (�x �y)

(
σx

∂u

∂x
− τxy

∂u

∂y
+ σy

∂v

∂y
− τyx

∂v

∂x

)

+ (�x �y)

(
u
∂σx

∂x
− u

∂τxy

∂y
+ v

∂σy

∂y
− v

∂τyx

∂x

)

∗

(1.25′)

where e, q′′
x , q′′

y , and q′′′ are the specific internal energy, heat flux in the x
direction, heat flux in the y direction, and dissipation rate or rate of internal heat
generation.

The origin of the dissipation rate term {·}5 lies in the work transfer effected
by the normal and tangential stresses sketched in Fig. 1.2b. For example, the
work done per unit time by the normal stresses σx on the left side of the �x �y
element is negative and equal to the force acting on the boundary (σx �y) times
the boundary displacement per unit time (u), which yields −uσx �y. Similarly,
the work transfer rate associated with normal stresses acting on the right side of
the element is positive and equal to [σx + (∂σx/∂x) �x][u + (∂u/∂x) �x] �y. The
net work transfer rate due to these two contributions is [σx(∂u/∂x) + u(∂σx/∂x)]
(�x �y), as shown in the {·}5 term of eq. (1.25′).

Three more work transfer rates can be calculated in the same manner by
examining the effect of the remaining three stresses, τxy in the x direction and
σy and τyx in the y direction. In the {·}5 expression above, the eight terms have
been separated into two groups. It can be shown that the group denoted as (·)*
reduces to −ρ(D/Dt)(u2 + v2)/2, which represents the change in kinetic energy
of the fluid packet; in the present treatment, this change is considered negligible
relative to the internal energy change ∂(ρe)/∂t appearing in {·}1.

Assembling expressions (1.25′) into the energy conservation statement that
preceded them, and using constitutive relations (1.15) and (1.16), we obtain

ρ
De

Dt
+ e

(
Dρ

Dt
+ ρ ∇ · v

)
= −∇ · q′′ + q′′′ − P ∇ · v + μ	 (1.26)

where q′′ is the heat flux vector (q′′
x , q′′

y ) and 	 is the viscous dissipation function,
shown later in eq. (1.45a). The quantity between parentheses on the left-hand
side of eq. (1.26) is equal to zero [cf. eq. (1.6)]. In the special case where the flow
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can be modeled as incompressible and two-dimensional, the viscous dissipation
function reduces to

	 = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
(

∂u

∂y
+ ∂v

∂x

)2

(1.27)

To express eq. (1.26) in terms of enthalpy, we use the thermodynamics
definition h = e + (1/ρ)P; hence,

Dh

Dt
= De

Dt
+ 1

ρ

DP

Dt
− P

ρ2

Dρ

Dt
(1.28)

In addition, we can express the directional heat fluxes q′′
x and q′′

y in terms of the
local temperature gradients, by invoking the Fourier law of heat conduction,

q′′ = −k ∇T (1.29)

Then, combining eqs. (1.26), (1.28), and (1.29) we obtain

ρ
Dh

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ μ	 − P

ρ

(
Dρ

Dt
+ ρ ∇ · v

)
(1.30)

Finally, the mass conservation equation (1.6) shows that the last terms in
parentheses in eq. (1.30) add up to zero, and the first law of thermodynamics
reduces to

ρ
Dh

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ μ	 (1.31)

In order to express the energy equation (1.31) in terms of temperature, it is
tempting to replace the specific enthalpy on the left-hand side by the product
of specific heat × temperature. This move is correct only in cases where the
fluid behaves like an ideal gas (see the ideal gas model, Table 1.1). In general,
the change in specific enthalpy for a single-phase substance is expressed by the
canonical relation for enthalpy [2],

dh = T ds + 1

ρ
dP (1.32)

where T is the absolute temperature and ds the specific entropy change,

ds =
(

∂s

∂T

)

P
dT +

(
∂s

∂P

)

T
dP (1.33)

From the last of Maxwell’s relations (see Ref. 2, p. 172), we have
(

∂s

∂P

)

T
= −

[
∂ (1/ρ)

∂T

]

P
= 1

ρ2

(
∂ρ

∂T

)

P
= −β

ρ
(1.34)
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Table 1.1 Summary of thermodynamic relationsa and models

Internal Energy
du = T ds − P dv

Enthalpy
dh = T ds + v dP

Entropy

ds = 1

T
du + P

T
dv

Pure substance du = cv dT dh = cp dT ds = cp

T
dT −

(
∂v

∂T

)

P
dP

+
[

T

(
∂P

∂T

)

v

− P

]
dv +

[
−T

(
∂v

∂T

)

p
+ v

]
dP = cv

T
dT +

(
∂P

∂T

)

v

dv

Ideal gas du = cv dT dh = cP dT ds = cp

dT

T
− R

dP

P

= cv

dT

T
+ R

dv

v

= cv

dP

P
+ cP

dv

v

Incompressible
liquid

du = c dT dh = c dT + v dP ds = c
dT

T

Source: Ref. 2.
aAccording to the classical thermodynamics notation, v is the specific volume, v = 1/ρ, and u is
the internal energy (e in the text).

where β is the coefficient of thermal expansion,

β = − 1

ρ

(
∂ρ

∂T

)

P
(1.35)

Table 1.1 also shows that (
∂s

∂T

)

P
= cP

T
(1.36)

Together, eqs. (1.32)–(1.36) state that

dh = cP dT + 1

ρ
(1 − βT) dP (1.37)

in other words, the left-hand side of the energy equation (1.31) is

ρ
Dh

Dt
= ρcP

DT

Dt
+ (1 − βT)

DP

Dt
(1.38)

The ‘‘temperature’’ formulation of the first law of thermodynamics is therefore

ρcP
DT

Dt
= ∇ · (k ∇T) + q′′′ + βT

DP

Dt
+ μ	 (1.39)
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with the following special forms:

Ideal gas (β = 1/T):

ρcP
DT

Dt
= ∇ · (k ∇T) + q′′′ + DP

Dt
+ μ	 (1.40)

Incompressible liquid (β = 0):

ρc
DT

Dt
= ∇ · (k ∇T) + q′′′ + μ	 (1.41)

Most of the convection problems addressed in this book obey an even simpler
model: namely, constant fluid conductivity k, zero internal heat generation q′′′,
negligible viscous dissipation μ	, and negligible compressibility effect βT
DP/Dt. The energy equation for this model is

ρcP
DT

Dt
= k ∇2T (1.42)

or, in terms of specific coordinate systems (Fig. 1.1):

Cartesian (x, y, z):

ρcP

(
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

)
= k

(
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

)
(1.43a)

Cylindrical (r, θ , z):

ρcP

(
∂T

∂t
+ vr

∂T

∂r
+ vθ

r

∂T

∂θ
+ vz

∂T

∂z

)

= k

[
1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂θ2
+ ∂2T

∂z2

]
(1.43b)

Spherical (r, φ, θ):

ρcP

(
∂T

∂t
+ vr

∂T

∂r
+ vφ

r

∂T

∂φ
+ vθ

r sin φ

∂T

∂θ

)

= k

[
1

r2

∂

∂r

(
r2 ∂T

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂T

∂φ

)
+ 1

r2 sin2φ

∂2T

∂θ2

]

(1.43c)

If the fluid can be modeled as an incompressible liquid, then, as in eq. (1.41), the
specific heat at constant pressure cP is replaced by the lone specific heat of the
incompressible liquid, c (Table 1.1).
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When dealing with extremely viscous flows of the type encountered in
lubrication problems or the piping of crude oil, the model above is improved by
taking into account the internal heating due to viscous dissipation,

ρcP
DT

Dt
= k ∇2T + μ	 (1.44)

In three dimensions, the viscous dissipation function is expressed as follows:

Cartesian (x, y, z):

	 = 2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2

+
(

∂w

∂z

)2
]

+
[(

∂u

∂y
+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2
]

− 2

3

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)2

(1.45a)

Cylindrical (r, θ , z):

	 = 2

[(
∂vr

∂r

)2

+
(

1

r

∂vθ

∂θ
+ vr

r

)2

+
(

∂vz

∂z

)2

+ 1

2

(
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

)2

+ 1

2

(
1

r

∂vz

∂θ
+ ∂vθ

∂z

)2

+1

2

(
∂vr

∂z
+ ∂vz

∂r

)2

− 1

3
(∇ · v)2

]
(1.45b)

Spherical (r, φ, θ):

	 = 2

{[(
∂vr

∂r

)2

+
(

1

r

∂vφ

∂φ
+ vr

r

)2

+
(

1

r sin φ

∂vθ

∂θ
+ vr

r
+ vφ cot φ

r

)2
]

+ 1

2

[
r

∂

∂r

(vφ

r

)
+ 1

r

∂vr

∂φ

]2

+ 1

2

[
sin φ

r

∂

∂φ

(
vθ

r sin φ

)
+ 1

r sin φ

∂vθ

∂θ

]2

+1

2

[
1

r sin φ

∂vr

∂θ
+ r

∂

∂r

(vθ

r

)]2
}

− 2

3
(∇ · v)2 (1.45c)

If the density does not vary significantly through the flow field, ∇·v = 0 [eq. (1.6)]
and the last term in each of expressions (1.45) vanishes.



1.4 SECOND LAW OF THERMODYNAMICS 15

It is worth reviewing the constant-ρ approximation that led to eq. (1.8) and rec-
ognizing that it differs conceptually from the ‘‘incompressible substance model’’
of thermodynamics. The latter is considerably more restrictive than the ‘‘nearly
constant’’ density model, eq. (1.8). For example, a compressible substance such
as air can flow in such a way that eq. (1.8) is a very good approximation of
eq. (1.6).

For the restrictive class of fluids that are ‘‘incompressible’’ from the thermo-
dynamic point of view, the specific heat at constant pressure cP can be replaced
by the lone specific heat of the fluid, c, on the left side of eq. (1.39). Water,
liquid mercury, and engine oil are examples of fluids for which this substitution
is justified. There are even convection problems in which the moving materials
are actually solid (e.g., a roller and its substrate, in the zone of elastic contact).
In such cases the cP = c substitution is permissible also.

Note that the specific heat at constant volume cν does not belong on the left
side of eq. (1.39). This observation is important because Fourier [4, 5], and later
Poisson [6], who were the first to derive the energy equation for a convective
flow, wrote c on the left side of eq. (1.39). They made this choice because their
analyses were aimed specifically at incompressible fluids (liquids), for which c
happens to have nearly the same value as cP. Because of this choice, they did not
have to account for the P dV type of work done by the fluid packet as it expands
or contracts in the flow field. In the modern era, however, the use of cν instead
of cP is an error.

The prethermodynamics (caloric conservation) origins of the science of
convection are also responsible for the ‘‘thermal energy equation’’ label that
some prefer to attach to eq. (1.39) without the βT DP/Dt term. This terminology
is sometimes used to stress (incorrectly) the conservation of ‘‘thermal’’ energy
as something distinct from ‘‘mechanical and thermal’’ energy. In classical
thermodynamics, however, this distinction disappeared when the first law of
thermodynamics was enunciated, that is, when the thermodynamic property
‘‘energy’’ was defined, which happened in the years 1850–1851 (see Ref. 2,
pp. 28–29).

Equation (1.39) represents the first law of thermodynamics. This law pro-
claims the conservation of the sum of energy change (the property) and energy
interactions (heat transfer and work transfer). The suggestion that mechanical
effects (e.g., work transfer) are absent from eq. (1.39) when the βT DP/Dt term
is absent is wrong. The presence of cP on the left side of the equation is the sign
that each fluid packet expands or contracts (i.e., it does P dV-type work) as it
rides on the flow. The terms q′′′ and μ	 are work transfer rate terms also.

1.4 SECOND LAW OF THERMODYNAMICS

Any discussion of the basic principles of convective heat transfer must include
the second law of thermodynamics, not because the second law is necessary
for determining the flow and temperature field (it is not, because it is not an
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equation), but because the second law is the basis for much of the engineering
motive (objective, purpose) for formulating and solving convection problems.
For example, in the development of knowhow for the heat exchanger industry,
we strive for improved thermal contact (enhanced heat transfer) and reduced
pump power loss in order to improve the thermodynamic efficiency of the
heat exchanger. Good heat exchanger design means, ultimately, efficient ther-
modynamic performance, that is, minimum generation of entropy or minimum
destruction of exergy in the power/refrigeration system incorporating the heat
exchanger [7, 8].

The second law of thermodynamics states that all real-life processes are
irreversible: In the case of a control volume, as in Fig. 1.1, this statement is

∂Scv

∂t
≥

∑ qi

Ti
+

∑

inlet
ports

ṁs −
∑

outlet
ports

ṁs (1.46)

where Scv is the instantaneous entropy inventory of the control volume, ṁs
represents the entropy flows (streams) into and out of the control volume, and Ti
is the absolute temperature of the boundary crossed by the heat transfer qi.

∗ The
irreversibility of the process is measured by the strength of the inequality sign in
eq. (1.46), or by the entropy generation rate Sgen, defined as

Sgen = ∂Scv

∂t
−

∑ qi

Ti
−

∑

inlet
ports

ṁs +
∑

outlet
ports

ṁs ≥ 0 (1.47)

One can show that the rate of destruction of useful work in an engineering
system, Wlost, is directly proportional to the rate of entropy generation [2, 3, 7],

Wlost = T0Sgen (1.48)

where T0 is the absolute temperature of the ambient temperature reservoir
(T0 = constant). Equation (1.48) stresses the engineering importance of esti-
mating the irreversibility or entropy generation rate of convective heat transfer
processes: If not used wisely, these processes contribute to the waste of precious
fuel resources.

Based on an analysis similar to the analyses presented for mass conservation,
force balances, and the first law of thermodynamics, the second law (1.47) may
be applied to a finite-size control volume �x �y �z at an arbitrary point (x, y, z)
in a flow field. Thus, the rate of entropy generation per unit time and per unit
volume S′′′

gen is [2, 3, 7]

S′′′
gen = k

T2
(∇T)2

︸ ︷︷ ︸
≥0

+ μ

T
	

︸︷︷︸
≥0

≥ 0 (1.49)

∗Defined as positive into the control volume.
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where k and μ are assumed constant. In a two-dimensional convection situation
such as in Figs. 1.1–1.3, the local entropy generation rate (1.49) yields

S′′′
gen = k

T2

[(
∂T

∂x

)2

+
(

∂T

∂y

)2
]

+ μ

T

{
2

[(
∂u

∂x

)2

+
(

∂v

∂y

)2
]

+
(

∂u

∂y
+ ∂v

∂x

)2
}

≥ 0 (1.50)

In the last two equations, T represents the absolute temperature of the point
where S′′′

gen is being evaluated. The two-dimensional expression (1.50) illustrates
the competition between viscous dissipation and imperfect thermal contact
(finite-temperature gradients) in the generation of entropy via convective heat
transfer.

Equations (1.48) and (1.50) constitute the bridge between two research
activities: fundamental convection heat transfer and thermodynamics (entropy
generation minimization). Beginning with Chapter 2, we focus on the funda-
mental problems of determining the flow and temperature fields in a given
convection heat transfer configuration. However, through eq. (1.50), we are
invited to keep in mind that these fields contribute hand-in-hand to downgrading
the thermodynamic merit of the engineering device that ultimately employs the
convection process under consideration. The science of adjusting the convection
process so that it destroys the least exergy (subject to various system constraints)
is the focus of entropy generation minimization; this activity has been reviewed
in Refs. 2, 3, and 7. The generation of flow configuration (geometry, archi-
tecture) for maximal performance under constraints is constructal theory and
design [2, 9–14].

1.5 RULES OF SCALE ANALYSIS

This section is designed to introduce the student to the problem-solving method
of scale analysis or scaling. This is necessary because scale analysis is used
extensively throughout the book; in fact, scale analysis is recommended as the
premier method for obtaining the most information per unit of intellectual effort.
This section is also necessary because scale analysis is not discussed in the heat
transfer and fluid mechanics textbooks of our time, despite the fact that it is a
precondition for good analysis in dimensionless form. Scale analysis is often
confused with dimensional analysis or the often arbitrary nondimensionalization
of the governing equations before performing a perturbation analysis or a
numerical simulation on the computer.

The object of scale analysis is to use the basic principles of convective heat
transfer to produce order-of-magnitude estimates for the quantities of interest.
This means that if one of the quantities of interest is the thickness of the boundary
layer in forced convection, the object of scale analysis is to determine whether
the boundary layer thickness is measured in millimeters or meters. Note that scale
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analysis goes beyond dimensional analysis (whose objective is to determine the
dimension of boundary layer thickness, namely, length). When done properly,
scale analysis anticipates within a factor of order one (or within percentage
points) the expensive results produced by ‘‘exact’’ analyses. The value of scale
analysis is remarkable, particularly when we realize that the notion of ‘‘exact
analysis’’ is as false and ephemeral as the notion of ‘‘experimental fact.’’

As the first example of scale analysis, consider a problem from the field of
conduction heat transfer [15]. In Fig. 1.4 we see a plate plunged at t = 0 into
a highly conducting fluid, such that the surfaces of the plate instantaneously
assume the fluid temperature T∞ = T0 + �T. Suppose that we are interested in
estimating the time needed by the thermal front to penetrate the plate, that is, the
time until the center plane of the plate ‘‘feels’’ the heating imposed on the outer
surfaces.

To answer the question above, we focus on a half-plate of thickness D/2 and
the energy equation for pure conduction in one direction:

ρcP
∂T

∂t
= k

∂2T

∂x2
(1.51)

Next, we estimate the order of magnitude of each of the terms appearing in
eq. (1.51). On the left-hand side we have

ρcP
∂T

∂t
∼ ρcP

�T

t
(1.52)

Figure 1.4 Transient heat conduction in a slab with sudden temperature change on the
boundaries.
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In other words, the scale of the temperature change (in the chosen space and in a
time of order t) is �T. On the right-hand side we obtain

k
∂2T

∂x2
= k

∂

∂x

(
∂T

∂x

)
∼ k

D/2

�T

D/2
= k �T

(D/2)2
(1.53)

Equating the two orders of magnitude (1.52) and (1.53), as required by the energy
equation (1.51), we find the answer

t ∼ (D/2)2

α
(1.54)

where α is the thermal diffusivity of the medium, k/ρcP. The penetration time
(1.54) compares well with any order-of-magnitude interpretation of the exact
solution to this classical problem [15]. However, the time and effort associated
with deriving eq. (1.54) do not compare with the labor required by Fourier
analysis and the graphical presentation of Fourier series.

Based on this introductory example, the following rules of scale analysis are
worth teaching:

• Rule 1. Always define the spatial extent of the region in which you perform
the scale analysis. In the example of Fig. 1.4, the size of the region of
interest is D/2. In other problems, such as boundary layer flow, the size of
the region of interest is unknown; as shown in Chapter 2, the scale analysis
begins by selecting the region and by labeling the unknown thickness of this
region δ. Any scale analysis of a flow or a flow region that is not uniquely
defined is nonsense.

• Rule 2. One equation constitutes an equivalence between the scales of
two dominant terms appearing in the equation. In the transient conduction
example of Fig. 1.4, the left-hand side of eq. (1.51) could only be of the
same order of magnitude as the right-hand side. The two terms appearing in
eq. (1.51) are the dominant terms (considering that the discussion referred
to pure conduction); in general, the energy equation can contain many more
terms [eq. (1.39)], not all of them important. The reasoning for selecting
the dominant scales from many scales is condensed in rules 3–5.

• Rule 3. If in the sum of two terms,

c = a + b (1.55)

the order of magnitude of one term is greater than the order of magnitude
of the other term,

O(a) > O(b) (1.56)

then the order of magnitude of the sum is dictated by the dominant term:

O(c) = O(a) (1.57)
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The same conclusion holds if instead of eq. (1.55), we have the difference
c = a − b or c = − a + b.

• Rule 4. If in the sum of two terms, eq. (1.55), the two terms are of the same
order of magnitude,

O(a) = O(b) (1.58)

then the sum is also of the same order of magnitude:

O(c) ∼ O(a) ∼ O(b) (1.59)

• Rule 5. In any product
p = ab (1.60)

the order of magnitude of the product is equal to the product of the orders
of magnitude of the two factors

O(p) = O(a)O(b) (1.61)

If, instead of eq. (1.60), we have the ratio

r = a

b
(1.62)

then

O(r) = O(a)

O(b)
(1.63)

In addition to having its own set of rules, scale analysis requires special care
with regard to notation. In rules 1–5, we used the following symbols:

∼ is of the same order of magnitude as

O(a) the order of magnitude of a

> greater than, in an order-of-magnitude sense

For brevity, the scale analyses included in this book employ the language of
expressions (1.56), (1.57), (1.61), and (1.63) without the repetitive potentially
confusing notation O(·) for ‘‘order of magnitude.’’

Scale analysis is now employed widely in heat transfer, and the fundamental
scaling results that have been developed go beyond the first steps presented in
this book. For example, Bhattacharjee and Grosshandler [16] have reported the
scale analysis of a pressure-driven wall jet. Li and Djilali [17] have used scale
analysis to describe the behavior of separating flows behind backward-facing
steps (separation bubbles). Li [18] has reported the scaling results for jet diffusion
flames. Dowell [19] applied the method of scale analysis to the study of linear
and nonlinear dynamics and aerodynamics.
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1.6 HEATLINES FOR VISUALIZING CONVECTION

The opportunity to actually ‘‘see’’ the solution to a problem is essential to a
problem solver’s ability to learn from experience and in this way to improve his
or her technique. In convection problems it is important to visualize the flow of
fluid and, riding on this, the flow of energy. For example, in the two-dimensional
Cartesian configuration of Fig. 1.1, it has been common practice to define a
streamfunction ψ(x, y) as

u = ∂ψ

∂y
, v = −∂ψ

∂x
(1.64)

such that the mass continuity equation for incompressible flow,

∂u

∂x
+ ∂v

∂y
= 0 (1.65)

is satisfied identically. It is easy to verify that the actual flow is locally parallel to
the ψ = constant line passing through the point of interest. Therefore, although
there are no substitutes for u and v as bearers of information regarding the local
flow, the family of ψ = constant streamlines provides a bird’s-eye view of the
entire flow field and its main characteristics.

In convection, the transport of energy through the flow field is a combination
of both thermal diffusion and enthalpy flow [cf. eq. (1.42)]. For any such
field, Kimura and Bejan [20] and the 1984 edition of this book defined a new
function H(x, y) such that the net flow of energy (thermal diffusion and enthalpy
flow) is zero across each H = constant line. The mathematical definition of the
heatfunction H follows in the steps of eqs. (1.64) with the aim of satisfying
the energy equation. For steady-state two-dimensional convection through a
constant-property homogeneous fluid, eq. (1.42) becomes

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂x2
+ ∂2T

∂y2

)
(1.66)

or
∂

∂x

(
ρcPuT − k

∂T

∂x

)
+ ∂

∂y

(
ρcPvT − k

∂T

∂y

)
= 0 (1.67)

The heatfunction is defined as follows:

Net energy flow in the x direction:

∂H

∂y
= ρcPu(T − Tref) − k

∂T

∂x
(1.68)

Net energy flow in the y direction:

−∂H

∂x
= ρcPv(T − Tref) − k

∂T

∂y
(1.69)
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so that the heatfunction H(x, y) satisfies eq. (1.66) identically. Note that the
definition above also applies to convection through a fluid-saturated porous
medium, where eq. (1.66) accounts for energy conservation (Chapter 12).

The reference temperature Tref is, in principle, an arbitrary constant that
can be selected based on convention. Patterns of H = constant heatlines are
instructive when Tref is the lowest temperature that occurs in the heat transfer
configuration. For example, if the wall shown in Fig. 2.1 is warmer than the
free stream, T0 > T∞, the choice of reference temperature is Tref = T∞. For a
meaningful comparison of the heatlines of one flow with the heatlines of another
flow, I proposed that Tref always be set equal to the lowest temperature of
the flow field.

If the fluid flow subsides (u = v = 0), the heatlines become identical to
the heat flux lines employed frequently in the study of conduction phenomena.
Therefore, as a heat transfer visualization technique, the use of heatlines is the
convection counterpart or generalization of a standard technique (heat flux lines)
used in conduction. Note that the contemporary use of T = constant lines is not
a proper way to visualize heat transfer in the field of convection; isotherms are
a proper heat transfer visualization tool only in the field of conduction (where,
in fact, they have been invented) because only there are they locally orthogonal
to the true direction of energy flow. The use of T = constant lines to visualize
convection heat transfer makes as much sense as using P = constant lines to
visualize fluid flow.

The heatline method for the visualization of convective heat transfer was
proposed in the first edition of this book (1984), along with a first application
to natural convection in an enclosure heated from the side [20]. The method has
since been adopted and extended in many ways in the post-1984 heat transfer
literature [21–55].
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4. J. B. J. Fourier, Mémoire d’analyse sur le mouvement de la chaleur dans les fluides,
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1989, pp. 211–224.

30. C. J. Ho and Y. H. Lin, Natural convection of cold water in a vertical annulus with
constant heat flux on the inner wall, J. Heat Transfer, Vol. 112, 1990, pp. 117–123.

31. A. M. Morega and A. Bejan, Heatline visualization of forced convection boundary
layers, Int. J. Heat Mass Transfer, Vol. 36, 1993, pp. 3957–3966.

32. A. M. Morega and A. Bejan, Heatline visualization of forced convection in porous
media, Int. J. Heat Fluid Flow, Vol. 15, 1994, pp. 42–47.

33. V. A. F. Costa, Double diffusive natural convection in a square enclosure with heat
and mass diffusive walls, Int. J. Heat Mass Transfer, Vol. 40, 1997, pp. 4061–4071.

34. V. A. F. Costa, Double diffusive natural convection in enclosures with heat and
mass diffusive walls, in G. De Vahl Davis and E. Leonardi., eds., Proceedings of the
International Symposium on Advances in Computational Heat Transfer (CHT’97),
Begell House, New York, 1998, pp. 338–344.

35. H. Y. Wang, F. Penot, and J. B. Saulnier, Numerical study of a buoyancy-induced
flow along a vertical plate with discretely heated integrated circuit packages, Int. J.
Heat Mass Transfer, Vol. 40, 1997, pp. 1509–1520.

36. V. A. F. Costa, Unification of the streamline, heatline and massline methods for the
visualization of two-dimensional transport phenomena, Int. J. Heat Mass Transfer,
Vol. 42, 1999, pp. 27–33.

37. S. J. Kim and S. P. Jang, Experimental and numerical analysis of heat transfer
phenomena in a sensor tube of a mass flow controller, Int. J. Heat Mass Transfer,
Vol. 44, 2001, pp. 1711–1724.

38. Q.-H. Deng and G.-F. Tang, Numerical visualization of mass and heat transport for
conjugate natural convection/heat conduction by streamline and heatline, Int. J. Heat
Mass Transfer, Vol. 45, 2002, pp. 2375–2385.

39. Q.-H. Deng and G.-F. Tang, Numerical visualization of mass and heat transport
for mixed convective heat transfer by streamline and heatline, Int. J. Heat Mass
Transfer, Vol. 45, 2002, pp. 2387–2396.

40. A. Mukhopadhyay, X. Qin, S. K. Aggarwal, and I. K. Puri, On extension of
‘‘heatline’’ and ‘‘massline’’ concepts to reacting flows through the use of conserved
scalars, J. Heat Transfer, Vol. 124, 2002, pp. 791–799.

41. V. A. F. Costa, Comment on the paper by Qi-Hong Deng and Guang-Fa Tang,
Numerical visualization of mass and heat transport for conjugate natural convection/
heat conduction by streamline and heatline, Int. J. Heat Mass Transfer, Vol. 46,
2003, pp. 185–187.

42. V. A. F. Costa, Unified streamline, heatline and massline methods for the visualization
of two-dimensional heat and mass transfer in anisotropic media, Int. J. Heat Mass
Transfer, Vol. 46, 2003, pp. 1309–1320.

43. A. Mukhopadhyay, X. Qin, I. K. Puri, and S. K. Aggarwal, Visualization of
scalar transport in nonreacting and reacting jets through a unified ‘‘heatline’’
and ‘‘massline’’ formulation, Numerical Heat Transfer, Part A, Vol. 44, 2003,
pp. 683–704.

44. A. Dalal and M. K. Das, Heatline method for the visualization of natural convection
in a complicated cavity, Int. J. Heat Mass Transfer, Vol. 51, 2008, pp. 263–272.



PROBLEMS 25

45. F.-Y. Zhao, D. Liu, and G.-F. Tang, Application issues of the streamline, heatline and
massline for conjugate heat and mass transfer, Int. J. Heat Mass Transfer, Vol. 50,
2007, pp. 320–334.

46. T. Basak and S. Roy, Role of ‘‘Bejan’s heatlines’’ in heat flow visualization and
optimal thermal mixing for differentially heated square enclosures, Int. J. Heat Mass
Transfer, Vol. 51, 2008, pp. 3486–3503.

47. E. Hakyemez, M. Mobedi, and H. F. Oztop, Effects of wall-located heat barrier on
conjugate conduction/natural-convection heat transfer and fluid flow in enclosures,
Numer. Heat Transfer Part A, Vol. 54, 2008, pp. 197–220.

48. S. Mahmud and R. A. Fraser, Visualizing energy flows through energy streamlines
and pathlines, Int. J. Heat Mass Transfer, Vol. 50, 2007, pp. 3990–4002.

49. T. Basak, S. Roy, and I. Pop, Heat flow analysis for natural convection within
trapezoidal enclosures based on heatline concept, Int. J. Heat Mass Transfer,
Vol. 52, 2009, pp. 2471–2483.

50. T. Basak, G. Aravind, and S. Roy, Visualization of heat flow due to natural convection
within triangular cavities using Bejan’s heatline concept, Int. J. Heat Mass Transfer,
Vol. 52, 2009, pp. 2824–2833.

51. R. S. Kaluri, T. Basak, and S. Roy, Bejan’s heatlines and numerical visualization of
heat flow and thermal mixing in various differentially heated porous square cavities,
Numer. Heat Transfer Part A, Vol. 55, 2009, pp. 487–516.

52. M. A. Waheed, Heatfunction formulation of thermal convection in rectangular
enclosures filled with porous media, Numer. Heat Transfer Part A, Vol. 55, 2009,
pp. 185–204.

53. Y. Varol, H. F. Oztop, M. Mobedi, and I. Pop, Visualization of natural convection
heat transport using heatline method in porous non-isothermally heated triangular
cavity, Int. J. Heat Mass Transfer, Vol. 51, 2008, pp. 5040–5051.

54. T. Basak, S. Roy, and G. Aravind, Analysis of heat recovery and thermal transport
within entrapped fluid based on heatline approach, Chem. Eng. Sci., Vol. 64, 2009,
pp. 1673–1686.

55. R. S. Kaluri, T. Basak, and S. Roy, Heatline approach for visualization of heat flow
and efficient thermal mixing with discrete heat sources, Int. J. Heat Mass Transfer,
Vol. 53, 2010, pp. 3241–3261.

PROBLEMS

1.1. Consider the unsteady mass conservation equation (1.5) as it might
describe the flow accelerating through a duct with a variable cross section.
If the largest velocity gradient measured locally is du/dx and the largest
density gradient is dρ/dx, what order-of-magnitude relationship must
exist between du/dx and dρ/dx for the simplified equation (1.8) to be
applicable?

1.2. Derive the mass conservation equation in cylindrical coordinates [eq. (1.9)]
by applying the general principle (1.1) to an elementary control volume of
size �r(r �θ) �z in Fig. 1.1b (assume that ρ = constant).
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1.3. Derive the mass conservation statement for spherical coordinates [eq.
(1.10)] by writing eq. (1.1) for the elementary control volume (�r)(r sin φ

�θ)(r �φ) around point (r, θ , φ) in Fig. 1.1c (assume that ρ = constant).

1.4. Consider a flow in which ρ and μ may be regarded as constant. Show that
the x momentum equation (1.18) follows from eq. (1.17) through proper
use of the mass conservation principle.

1.5. Imagine a flow described by eqs. (1.9) and (1.21) in cylindrical coordinates.
If the flow is situated on one side of and infinitely far from the r = 0
origin of the coordinate system, the local three-directional increments �r,
r �θ , �z become analogous to three Cartesian increments �x, �y, �z
measured away from the local point (r, θ , z) in the flow field. Show that in
the limit r → ∞, the transformation �r → �x, r �θ → �y, �z → �z
leads to the collapse of eqs. (1.9) and (1.21) into their (x, y, z) Cartesian
equivalents [eqs. (1.8) and (1.19)].

1.6. Consider the conservation of mass and the three force balances in spherical
coordinates [eqs. (1.10) and (1.22)]. If the flow described by these equations
is situated infinitely far from the r = 0 origin of the spherical system, the
following transformation is applicable (Fig. 1.1): �r → �x, r sin φ �θ

→ �y, r �φ → �z. Show that through this transformation, in the limit
r → ∞, eqs. (1.10) and (1.22) become the same as eqs. (1.8) and (1.19).

1.7. Implicit in the derivation of the energy equation (1.39) is the assumption
that changes in kinetic energy V2/2 are negligible relative to changes in
internal energy e [see expressions (1.25), where e should, in general, be
replaced by e + V2/2]. Retrace the path leading to eq. (1.39) by taking
into account changes in kinetic energy; show that the result of this more
rigorous analysis is identical to eq. (1.39).

1.8. Demonstrate that lost work is always proportional to entropy generation
[eq. (1.48)], where Wlost = Wmaximum − Wactual, and where Wmaximum
corresponds to the reversible limit (Sgen = 0). Write the first law of
thermodynamics for a control volume, first for the actual (real) process
and then for the reversible process. Then use the definition of Wlost and
Sgen to prove eq. (1.48).

1.9. Derive the formula for the local rate of entropy generation [eq. (1.49)].
Begin with translating the general statement (1.47) into the language
of the two-dimensional control volume �x �y. Combine the resulting
expression with the first law of thermodynamics as given by eq. (1.26),
plus the canonical relation for internal energy (Table 1.1).

1.10. Consider the Couette flow between two parallel plates separated by a
gap of width D and moving relative to one another with a speed U. The
temperature difference �T is imposed between the two plates. Estimate the
rate of entropy generation per unit volume in this flow. What relationship
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must exist between D, U, �T and the fluid properties μ and k for S′′′
gen to

be dominated by the irreversibility due to fluid friction?

1.11. According to the one-dimensional (longitudinal) conduction model of a
fin, the temperature distribution along the fin, T(x), obeys the energy
equation [15]

kA
d2T

dx2︸ ︷︷ ︸
Longitudinal
conduction

− hP(T − T0)
︸ ︷︷ ︸

Lateral
convection

+ q′′′A
︸︷︷︸

Internal
heat

generation

= 0

where A, h, P, and q′′′ are the fin cross-sectional area, fin-fluid heat transfer
coefficient, perimeter of the fin cross section (called the wetted perimeter),
and volumetric rate of heat generation. Consider the semi-infinite fin that,
as shown in Fig. P1.11, is bathed by a fluid of temperature T0 and is
attached to a solid wall of temperature T0. The heat generated by the fin is
absorbed by either the fluid or the solid wall.

Figure P1.11

(a) As a system for scale analysis, select the fin section of length x,
where x is measured away from the wall. Let T∞ be the fin temper-
ature sufficiently far from the wall. Show that if x is large enough,
the longitudinal conduction term becomes negligible in the energy
equation.

(b) Invoking the balance between lateral convection and internal heat
generation, determine the fin temperature sufficiently far from the
wall, T∞.



28 1 FUNDAMENTAL PRINCIPLES

(c) Determine the fin section of length δ near the wall where the heat
transfer is ruled by the balance between longitudinal conduction and
internal heat generation.

(d) Determine the heat transfer rate into the wall through the base of
the fin.

1.12. Consider the laminar flow near a flat, solid wall, as illustrated in Fig. 2.1.
The momentum equation for this flow involves the competition among
three effects: inertia, pressure gradient, and friction [see eq. (2.26)]. For
the purpose of scale analysis, consider a flow region of length L and
thickness L. Show that in this region, the ratio of inertia to friction is
of order ReL, where ReL is the Reynolds number based on wall length.
Note that the region selected for analysis is not the boundary layer region
discussed in Chapter 2. In a certain flow, the value of ReL is 103. What
force balance rules the L × L region: inertia ∼ pressure, inertia ∼ friction,
or pressure ∼ friction?

1.13. The hot components of a power plant must be fitted with thermal insulation
so that they do not leak heat excessively to the ambient (T0). The thermal
conductivity of the insulation is known (k). The total volume of the
insulation (V) is fixed.

A simple model of the hot components is the two-chamber model shown
in Fig. P1.13. The hottest is the furnace, which is enclosed by a surface of
area AH and high temperature TH. The thickness of the insulation mounted
on AH is tH. This thickness is sufficiently small so that the volume of the
insulation on AH is AHtH.

AH, TH
AL, TL

tH

tL

qH

qL

T0

Figure P1.13

The rest of the hot components (pipes, feed water heaters, turbines)
are not as hot as the furnace. They are inside an enclosure with area AL,
temperature TL, insulation thickness tL, and insulation volume ALtL.

The heat leaks qH and qL are by pure conduction and are driven by the
temperature differences �TH = TH − T0 and �TL = TL − T0, respectively.
These temperature differences are known. The problem is to determine
tH/tL, that is, how to distribute the available insulation on AH and AL.
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1. Minimize the total heat leak from AH and AL to the ambient, namely
qH + qL, and determine the optimal ratio tH/tL as a function of other
parameters of the two-chamber model. Does tH/tL depend on AH/AL?

2. Explain why 1 W of heat leak from TH is not the same as 1 W of heat
leak from TL. Which do you think is more damaging to the performance
of the power plant?

3. Imagine that qH can be intercepted outside AH and used to run a Carnot
engine between TH and T0. The power producible in this way (WH)
is lost because qH is dumped straight into the ambient. Imagine the
equivalent scenario for qL, and derive a formula for the Carnot power
WL that is lost because of this second heat leak.

4. Minimize the total loss of power (WH + WL) and determine the optimal
ratio tH/tL.

5. Compare the tH/tL results obtained at sections 1 and 4. Which ratio is
larger? Which is more relevant for actual implementation?


