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1
MODEL EQUATIONS

In this chapter, we examine several model equations to introduce some basic
properties of differential equations and difference approximations by example.
Generalizations of these ideas are discussed throughout the remainder of this
book.

1.1. PERIODIC GRIDFUNCTIONS AND DIFFERENCE OPERATORS

Let h = 2π/(N + 1), where N is a natural number, denote a grid interval. A
grid on the x-axis is defined to be the set of gridpoints

xj = jh, j = 0, ±1, ±2, . . .

A discrete, possibly complex valued, function u defined on the grid is called
a gridfunction (see Figure 1.1.1). Here, we are only interested in 2π-periodic
gridfunctions, that is,

uj = u(xj ) = u(xj + 2π) = uj+N+1.

Clearly, the product and sum of gridfunctions are again gridfunctions. Their
gridvalues are

(uv)j = ujvj , (u + v)j = uj + vj .

We denote the set of all 2π-periodic gridfunctions by Ph. If u, v ∈ Ph, then uv,
u + v ∈ Ph.

We now introduce difference operators. They play a fundamental role through-
out the book. We start with the translation operator E. It is defined by

(Ev)j = vj+1.
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Figure 1.1.1. A gridfunction.

If v ∈ Ph, then Ev ∈ Ph. Powers of E are defined recursively,

Epv = Ep−1(Ev).

Thus,

(Epv)j = vj+p. (1.1.1)

The inverse also exists and

(E−1v)j = vj−1.

If we define E0 by E0v = v, then Eq. (1.1.1) holds for all integers p. E is a
linear operator and

(aEp + bEq)v = aEpv + bEqv.

The forward, backward, and central difference operators are defined by

D+ = (E − E0)/h,

D− = (E0 − E−1)/h = E−1D+, (1.1.2)

D0 = (E − E−1)/(2h) = 1
2 (D+ + D−),
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respectively. In particular, consider these operators acting on the functions eiωx .
Then, we have for all x = xj

hD+eiωx = (eiωh − 1)eiωx = (
iωh + O (ω2h2)

)
eiωx,

hD−eiωx = (1 − e−iωh)eiωx = (
iωh + O (ω2h2)

)
eiωx, (1.1.3)

hD0e
iωx = i sin(ωh)eiωx = (

iωh + O (ω3h3)
)
eiωx.

Thus,

∣∣∣∣
(

D+ − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω2h),

∣∣∣∣
(

D− − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω2h), (1.1.4)

∣∣∣∣
(

D0 − ∂

∂x

)
eiωx

∣∣∣∣ = O (ω3h2).

Consequently, one says that D+ and D− are first-order accurate approximations
of ∂/∂x because the error is proportional to h. D0 is second-order accurate.

Higher derivatives are approximated by products of the above operators. For
example,

(D+D−v)j = (D−D+v)j = h−2 (
(E − 2E0 + E−1)v

)
j

= h−2(vj+1 − 2vj + vj−1).

In particular,

h2D+D−eiωx = (eiωh − 2 + e−iωh)eiωx = −4 sin2
(

ωh

2

)
eiωx

= (−ω2h2 + O (ω4h4)
)
eiωx.

(1.1.5)

Therefore, ∣∣∣∣
(

D+D− − ∂2

∂x2

)
eiωx

∣∣∣∣ = O (ω4h2),

and D+D− is a second-order accurate approximation of ∂2/∂x2. Note that all of
the above operators commute, because they are all defined in terms of powers
of E.

We need to define norms for finite-dimensional vector spaces and discuss some
of their properties. We begin with the usual Euclidean inner product and norm.
Consider the m-dimensional vector space consisting of all u = (u(1), . . . , u(m))T
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where u(j), j = 1, . . . , m, are complex numbers. We denote the conjugate trans-
pose of u by u∗ (u∗ = uT if u is real). The inner product and norm are defined by

〈u, v〉 = u ∗ v =
m∑

j=1

u(j)v(j), and |u| = 〈u, u〉1/2, (1.1.6)

respectively. The inner product is a bilinear form that satisfies the following
equalities:

〈u, v〉 = 〈v, u〉,
〈u + w, v〉 = 〈u, v〉 + 〈w, v〉,

〈u, λv〉 = λ〈u, v〉, λ a complex number,

〈λu, v〉 = λ〈u, v〉.

(1.1.7)

The following inequalities hold:

|〈u, v〉| ≤ |u| |v|,
|u + v| ≤ |u| + |v|,

‖u| − |v‖ ≤ |u − v|,

〈u, v〉 ≤ |u| · |v| ≤ δ|u|2 + 1

4δ
|v|2 for any δ > 0.

(1.1.8)

Let A = (aij ) be a complex m × m matrix. Then, its transpose is denoted by
AT = (aji) and its conjugate transpose by A∗ = (aji). The Euclidean norm of
the matrix A is defined by

|A| = max
|u|=1

|Au|,

where the norm on the right-hand side is the vector norm defined above. If A

and B are matrices, then

|Au| ≤ |A| |u|,
|A + B| ≤ |A| + |B|,

|AB| ≤ |A| |B|.
(1.1.9)

If the scalar λ and vector u �= 0 satisfy Au = λu, then λ is an eigenvalue of A

and u is the corresponding eigenvector. The spectral radius, ρ(A), of a matrix A

is defined by
ρ(A) = max

j
|λj |,

where the λj are the eigenvalues of A. The spectral radius satisfies the inequality

ρ(A) ≤ |A|. (1.1.10)
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We next define a scalar product and norm for our periodic gridfunctions of length
N + 1. For fixed h and N + 1, these functions form a vector space. However, we
are interested in these functions as h → 0 and N(h) + 1 → ∞. The Euclidean
inner product and norm defined above would not necessarily be finite in this
limit, so we must use a different definition.

We define a discrete scalar product and norm for periodic gridfunctions by

(u, v)h =
N∑

j=0

ujvjh and ‖u‖h =
√

(u, u)h, (1.1.11)

respectively.
The scalar product is also a bilinear form and satisfies the same equalities as

the Euclidean inner product for vectors in Eq. (1.1.7):

(u, v)h = (v, u)h,

(u + w, v)h = (u, v)h + (w, v)h,

(u, λv)h = λ(u, v)h, λ a complex number,

(λu, v)h = λ(u, v)h.

(1.1.12)

The following inequalities also hold in analogy with Eq. (1.1.8):

|(u, v)h| ≤ ‖u‖h‖v‖h,

|(u, av)h| ≤ ‖a‖∞‖u‖h‖v‖h, ‖a‖∞ = max
j

|aj |,

‖u + v‖h ≤ ‖u‖h + ‖v‖h,

|‖u‖h − ‖v‖h| ≤ ‖u − v‖h.

(1.1.13)

For periodic functions f (x), g(x) defined everywhere, the L2 scalar product and
norm are defined by

(f, g) =
∫ 2π

0
u(x)v(x) dx , ||f || =

√
(f, f ).

A function f (x) with finite norm ||f || is called an L2 function.
If u, v are the projections of continuous functions onto the grid, then

lim
h→0

(u, v)h = (u, v), lim
h→0

‖u‖2
h = ‖u‖2,

converge to the L2 scalar product and norm. Therefore, the above-mentioned
inequalities are also valid for the L2 scalar product and norm applied to C1

functions. Because any function ∈ L2 can be approximated arbitrarily well by a
C1 function, they are valid for all L2 functions as well.
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The norm of an operator is defined in the usual way,

‖Q‖h = sup
u �=0

‖Qu‖h

‖u‖h

= sup
‖u‖h=1

‖Qu‖h.

From this definition, it follows that ‖Qu‖h ≤ ‖Q‖h‖u‖h. Thus,

‖Epu‖2
h =

N∑
j=0

|uj+p|2h =
N∑

j=0

|uj |2h = ‖u‖2
h

implies
‖Ep‖h = 1, p = 0, ±1, ±2, . . . (1.1.14)

Also,

‖D+u‖h = 1

h
‖(E − E0)u‖h ≤ 2

h
‖u‖h,

that is,
‖D+‖h ≤ 2/h.

The general inequalities

‖P + Q‖h ≤ ‖P ‖h + ‖Q‖h, ‖PQ‖h ≤ ‖P ‖h‖Q‖h (1.1.15)

give us

‖D−‖h = ‖E−1D+‖h ≤ 2

h
, ‖D0‖h = 1

2h
‖E − E−1‖h ≤ 1

h
.

Actually, these inequalities for the norms of D+, D−, and D0 can be replaced
by equalities. For D+, we define uj = (−1)j and obtain

‖u‖2
h = (N + 1)h,

‖D+u‖2
h =

N∑
j=0

(
(−1)j+1 − (−1)j

)2
h−1 = 4(N + 1)h−1 = 4

h2
‖u‖2

h,

which yields
‖D+‖h = 2/h. (1.1.16)

Using the same gridfunction uj again, we get

‖D−‖h = 2/h. (1.1.17)
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For D0, we choose uj = ij (where i = √−1) and obtain

‖u‖2
h = (N + 1)h,

‖D0u‖2
h =

N∑
j=0

1

4h

(
(−1)j+1 − (−i)j−1) (ij+1 − ij−1) = N + 1

h
= 1

h2
‖u‖2

h,

so

‖D0‖h = 1/h. (1.1.18)

We now consider systems of partial differential equations and consequently
need to define a norm and scalar product for vector-valued gridfunctions u =
(u(1), . . . , u(m))T . Let u and v be two such vector-valued gridfunctions, then we
define

(u, v)h =
N∑

j=0

〈uj , vj 〉h, ‖u‖h =
√

(u, u)h. (1.1.19)

The properties shown in Eqs. (1.1.12) and (1.1.13) are still valid. We can also
generalize the second inequality in Eq. (1.1.13) when a is replaced by an (m × m)

matrix A. If A is a constant matrix, we have

|(Au, v)h| ≤ |A| ‖u‖h‖v‖h, (1.1.20)

If A = Aj is a matrix-valued gridfunction, then

|(Au, v)h| ≤ max
j

|Aj | ‖u‖h‖v‖h. (1.1.21)

EXERCISES

1.1.1. Derive estimates for ∣∣∣∣
(

D − ∂3

∂x3

)
eiωx

∣∣∣∣ ,
where D = D3+, D−D2+, D2−D+, D3−, D0D+D−.

1.1.2. Both the difference operators D+ and D0 approximate ∂/∂x, but they have
different norms. Explain why this is not a contradiction.

1.1.3. Compute ‖D+D−‖h.



10 MODEL EQUATIONS

1.2. FIRST-ORDER WAVE EQUATION, CONVERGENCE,
AND STABILITY

The equation ut = ux is the simplest hyperbolic equation; the general definition
of the class of hyperbolic equations is given in Section 3.3. We consider the
initial value problem

ut = ux, −∞ < x < ∞, t ≥ 0,

u(x, 0) = f (x), −∞ < x < ∞,
(1.2.1)

where f (x) = f (x + 2π) is a smooth 2π-periodic function. To begin, we assume
that the initial function

f (x) = 1√
2π

eiωxf̂ (ω)

consists of one wave. The integer ω is called the wave number or the frequency.
We try to find a solution of the same type

u(x, t) = 1√
2π

eiωxû(ω, t) (1.2.2)

with û(ω, 0) = f̂ (ω). Substituting Eq. (1.2.2) into Eq. (1.2.1) yields an initial
value problem for the ordinary differential equation

dû

dt
= iωû,

û(ω, 0) = f̂ (ω),

which is called the Fourier transform of Eq. (1.2.1). Therefore,

û(ω, t) = eiωt û(ω, 0) = eiωt f̂ (ω).

It follows that

u(x, t) = 1√
2π

eiω(x+t)f̂ (ω) = f (x + t) (1.2.3)

is a solution to our problem.
Now consider the general case

f (x) = 1√
2π

∞∑
ω=−∞

eiωxf̂ (ω), (1.2.4)
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which is the Fourier series representation as described in Section A.1. By the
superposition principle,

u(x, t) = 1√
2π

∞∑
ω=−∞

eiω(x+t)f̂ (ω) = f (x + t) (1.2.5)

is a solution to our problem. For every fixed t , Parseval’s relation (A.1.9) yields

‖u(·, t)‖2 =
∞∑

ω=−∞
|eiωt f̂ (ω)|2 =

∞∑
ω=−∞

|f̂ (ω)|2 = ‖f (·)‖2. (1.2.6)

The squared norm ‖u‖2 is often called the energy of u. Therefore, the differential
equation in Eq. (1.2.1) is said to be energy conserving; the obvious phrase norm
conserving is often used in this context as well. Clearly, any method of approxi-
mation must be nearly norm conserving to be useful. We also note that there is a
finite speed of propagation associated with this problem. The expression (1.2.5)
shows that the solution is constant along the lines x + t = const, which are called
characteristics (see Figure 1.2.1).

Any particular feature of the initial data, such as a wave crest, is propagated
along these characteristics. In our case, the speed of propagation (or wave speed)
is dx/dt = −1. For general hyperbolic systems, there may be many families of
characteristics corresponding to different wave speeds of different components.
The important thing is that these speeds are always finite.

Figure 1.2.1. Characteristics.
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We now solve the problem using a difference approximation. We introduce a
space step h = 2π/(N + 1), with N a natural number, and a time step k > 0. The
space and time steps h, k define a grid in x, t space, consisting of the gridpoints
(xj , tn) := (jh, nk). Gridfunctions will be denoted by un

j = u(xj , tn). A simple
approximation based on forward differences in time and centered differences in
space is

vn+1
j = (I + kD0)v

n
j =: Qvn

j , j = 0, ±1, ±2, . . .

v0
j = fj .

(1.2.7)

If vn is known at time tn = nk, then we can use Eq. (1.2.7) to calculate vn+1
j for

all j . Thus, the initial data determine a unique solution, and we call such a method
a one-step method. Also, if vn is 2π-periodic, then vn+1 is too. Therefore, we
can restrict the calculation to j = 0, 1, 2, . . . , N and use periodicity conditions
to extend the solution and provide the extra needed values for Eq. (1.2.7) at
j = 0, N , that is, vn

−1 = vn
N, vn

N+1 = vn
0 .

We will now calculate the solution analytically. First, consider the case where
f consists of one single wave, that is,

fj = 1√
2π

eiωxj f̂ (ω), j = 0, 1, 2, . . . , N.

As in the continuous case, we make the ansatz

vn
j = 1√

2π
v̂n(ω)eiωxj , (1.2.8)

that is, we assume that the solution can also be expressed in terms of one single
Fourier component. Substituting Eq. (1.2.8) into Eq. (1.2.7) yields

eiωxj v̂n+1(ω) =
(

eiωxj + λ

2
(eiωxj+1 − eiωxj−1)

)
v̂n(ω),

where λ = k/h. This equation can be rewritten as

eiωxj v̂n+1(ω) = (1 + iλ sin ξ)eiωxj v̂n(ω),

where ξ = ωh, and we get

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = 1 + iλ sin ξ. (1.2.9)

The complex number Q̂ is the Fourier transform of (I + kD0), and Eq. (1.2.9)
is the Fourier transform of Eq. (1.2.7). We also call Q̂ the symbol , or the ampli-
fication factor . Actually, it is the discrete Fourier transform which is further
discussed in Appendix A. The solution of Eq. (1.2.9) is

v̂n(ω) = Q̂nv̂0(ω) = Q̂nf̂ (ω),
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and it is clear that

vn
j = 1√

2π
Q̂neiωxj f̂ (ω) = 1√

2π

(
1 + i

k

h
sin(ωh)

)n

eiωxj f̂ (ω)

solves our problem.
Now, we consider a sequence of grid intervals k, h → 0. We want to show

that vn
j converges to the corresponding solution of the differential equation. We

have(
1 + i

k

h
sin(ωh)

)n

= (
1 + iωk + O (kh2ω3)

)n = (
eiωk + O (k2ω2 + kh2ω3)

)n

= (
1 + O

(
(kω2 + h2ω3)tn

))
eiωtn .

Therefore,

vn
j = 1√

2π

(
1 + O

(
(kω2 + h2ω3)tn

))
eiω(xj +tn)f̂ (ω).

Thus, for every fixed ω, we obtain

lim
k,h→0

vn
j = u(xj , tn)

in any finite interval 0 ≤ t ≤ T .
Now assume that the initial data are represented by a trigonometric polynomial

u(x, 0) = 1√
2π

M∑
ω=−M

eiωxf̂ (ω).

By the superposition principle, the above result implies that the solution of the
difference approximation will converge to the solution of the differential equation
as k, h → 0. Thus, one might think that the approximation could be useful in
practice. However, consider the problem (1.2.1) with initial data f (x) ≡ 0 which
has the trivial solution u(x, t) ≡ 0. Now consider the problem with perturbed data

f̂ (ω) =
{

ε, for ω = N/4,

0, otherwise.

The corresponding solution of the transformed difference approximation is

v̂n(N/4) =
(

1 + i
k

h
sin

(
2π

N + 1

N

4

))n

ε ∼
(

1 + i
k

h

)n

ε,
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that is,

|v̂tn/k(N/4)|2 ∼
(

1 + k2

h2

)tn/k

ε2.

For tn = 1, that is, n = 1/k

|v̂1/k(N/4)|2 ∼
(

1 + k2

h2

)1/k

ε2.

Now consider any sequence k, h → 0 with k/h = λ > 0 fixed. Then,

lim
k→0

|v̂1/k(N/4)| = ∞.

This “explosion,” or growth, can be arbitrarily fast. For example, if we consider
λ = 10, k = 10−5, then

|v̂1/k(N/4)|2 ∼ 100105
ε2.

The numerical calculation is therefore worthless. In Figure 1.2.2, we have
calculated the maximum of the solutions of the difference approximation (1.2.7)
with initial data

fj =
{
xj , for 0 ≤ xj ≤ π,

2π − xj , for π ≤ xj ≤ 2π,

and stepsizes h = 0.01, k = 0.01 and h = 0.01, k = 0.1, respectively.
The analytic results lead us to expect that the solutions will grow like 2n/2

and 101n/2, respectively. The numerical results confirm that prediction.
In realistic computations, one must always expect perturbations, either from

measurement errors in the data or from rounding errors due to the finite repre-
sentation of numbers in the computer. Therefore, we must require that |Q̂n| is
bounded independently of h and k, and we call such methods stable. (We make
the formal definition of this concept later.)
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Figure 1.2.2. maxj |vn
j |, vn

j solution of Eq. (1.2.7). (a) h = 0.01; k = 0.01 and (b) h = 0.01;
k = 0.1.
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Next, we modify our previous difference approximation by adding artificial
viscosity , that is, we consider

vn+1
j = (I + kD0)v

n
j + σkhD+D−vn

j , v0
j = fj . (1.2.10)

Here, σ > 0 is a constant, which we will choose later. We can write Eq. (1.2.10)
in the form

vn+1
j − vn

j

k
= D0v

n
j + σhD+D−vn

j , (1.2.11)

which approximates the differential equation

ut = ux + σhuxx.

As h → 0, we obtain Eq. (1.2.1). Thus, Eq. (1.2.10) is a consistent difference
approximation of (1.2.1), that is, the difference approximation converges formally
to the differential equation as k, h → 0.

We will now choose σ, k and h so that

|Q̂| ≤ 1. (1.2.12)

In this case, all powers |Q̂n| are certainly bounded as required for stability.
From Eqs. (1.1.3) and (1.1.5), Q̂ is of the form

Q̂ = 1 + iλ sin ξ − 4σλ sin2 ξ

2
, ξ = ωh, λ = k/h.

Therefore,

|Q̂|2 =
(

1 − 4σλ sin2 ξ

2

)2

+ λ2 sin2 ξ

= 1 − 8σλ sin2 ξ

2
+ 16σ 2λ2 sin4 ξ

2
+ 4λ2 sin2 ξ

2

(
1 − sin2 ξ

2

)

= 1 − (8σλ − 4λ2) sin2 ξ

2
+ (16σ 2 − 4)λ2 sin4 ξ

2
.

There are two ways to satisfy Eq. (1.2.12):

1. Suppose 2σ ≤ 1. If 0 ≤ 8σλ − 4λ2, that is,

0 < λ ≤ 2σ ≤ 1, (1.2.13)

then |Q̂| ≤ 1. By letting |ξ | be small, we see that these conditions are also
necessary.
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2. Suppose 1 ≤ 2σ . If we replace sin4(ξ/2) by sin2(ξ/2), it follows that
|Q̂| ≤ 1 if

0 ≤ 8σλ − 4λ2 − 16σ 2λ2 + 4λ2,

that is,
1 ≤ 2σ, 2σλ ≤ 1. (1.2.14)

By letting sin(ξ/2) = 1, we see that these conditions are also necessary.

There are two particular schemes of the above-mentioned type that have been
used extensively:

1. The Lax–Friedrichs method (σ = h/2k = 1/(2λ)).

vn+1
j = 1

2 (vn
j+1 + vn

j−1) + kD0v
n
j = (I + kD0)v

n
j + 1

2h2D+D−vn
j .

(1.2.15)
In this case, Eq. (1.2.14) is satisfied if k/h ≤ 1, that is, |Q̂| ≤ 1. It is
remarkable that the simple change vn

j → 1
2 (vn

j+1 + vn
j−1) has such an effect

on the solution.
2. The Lax–Wendroff method (σ = k/2h = λ/2).

vn+1
j = vn

j + kD0v
n
j + k2

2
D+D−vn

j . (1.2.16)

Now Eq. (1.2.13) is satisfied if k/h ≤ 1.

In Figure 1.2.3, we have used the Lax–Friedrichs method and the Lax–
Wendroff method to calculate the solution of Eq. (1.2.1) with initial data

f (x) =
{
x, for 0 ≤ x ≤ π,

2π − x, for π ≤ x ≤ 2π,

and k/h = 1/2, h = 2π/10, 2π/100, respectively.
We show here the absolute maximum error plotted against time. The accuracy

is not impressive, but there is no explosion.
We now consider a rather general difference approximation of the problem

(1.2.1):

vn+1
j = Qvn

j , Q =
s∑

ν=−r

Aν(k, h)Eν,

v0
j = fj .

(1.2.17)

Here, the Aν are rational functions of k and h, and r, s ≥ 0 are integers. Thus,
we use the s + r + 1 values vn

j−r , . . . , v
n
j+s to calculate vn+1

j . We again consider
simple wave solutions

vn
j = 1√

2π
eiωxj v̂n(ω).
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(a) (b)

Figure 1.2.3. (a) The Lax–Friedrichs and (b) the Lax–Wendroff methods for Eq. (1.2.1).

By observing that Eeiωx = eiξ eiωx , we obtain

v̂n+1(ω) = Q̂(ξ)v̂n(ω), Q̂ =
s∑

ν=−r

Aνe
iνξ ,

that is,
v̂n(ω) = Q̂n(ξ)v̂0(ω), (1.2.18)

where Q̂ is the symbol of Q.
We assume that the initial data belongs to L2, that is, f (x) can be expanded

as a Fourier series

f (x) = 1√
2π

∞∑
ω=−∞

f̂ (ω)eiωx,
∑
ω

|f̂ (ω)|2 < ∞. (1.2.19)

For the difference approximation, we use the restriction of f (x) to the grid. We
denote by

IntNf = 1√
2π

N/2∑
ω=−N/2

f̃ (ω)eiωx (1.2.20)

the trigonometric interpolant of the gridfunction (see Section A.2). We assume
that

lim
N→∞

‖IntNf − f ‖ = 0. (1.2.21)

From Theorem A.2.4, this convergence condition is satisfied if f is a smooth
function.

If the differential equation is modified to

ut = ux + au,
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the corresponding Fourier transform is

dû

dt
= iωû + aû,

which has the solution

û(ω, t) = e(iω+a)t û(ω, 0).

In such a case, we must allow an exponential growth of the approximate solution
as well. Therefore, we define stability in the following way:

Definition 1.2.1. The approximation (1.2.1) is called stable if there are constants
K, α independent of k, h such that the symbol satisfies

|Q̂n| ≤ Keαtn . (1.2.22)

We now want to prove the following theorem:

Theorem 1.2.1. Consider the difference approximation shown in Eq. (1.2.17) on
a finite interval 0 ≤ t ≤ T for a sequence h, k → 0. Assume that

1. The initial data satisfy Eqs. (1.2.19) and (1.2.21).
2. The approximation is stable, and

sup
0≤tn≤T

|Q̂n| ≤ KS.

3. The approximation is consistent, that is, for every fixed ω,

lim
k,h→0

sup
0≤tn≤T

|Q̂n(ξ) − eiωtn | = 0.

Then, the trigonometric interpolant IntNv of the solution of the difference approx-
imation converges to the solution of the differential equation,

lim
k,h→0

sup
0≤tn≤T

‖u(·, tn) − IntN(vn
j )‖ = 0.

Proof. For every fixed tn, we can represent the solution of the difference approxi-
mation by its trigonometric interpolant and, therefore, we can think of the solution
as being represented in terms of simple waves. From Eq. (1.2.18), we obtain

IntN(vn
j ) = 1√

2π

N/2∑
ω=−N/2

Q̂n(ξ)f̃ (ω)eiωx.
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Let 0 < M < N/2 be a fixed integer. From Eq. (1.2.5) and Parseval’s relation,
we obtain

‖u(·, tn) − IntN(vn
j )‖2 =

N/2∑
ω=−N/2

|eiωtn f̂ (ω) − Q̂n(ξ)f̃ (ω)|2

+
∑

|ω|>N/2

|f̂ (ω)|2 ≤ I + II + III,

where

I =
M∑

ω=−M

|Q̂n(ξ)f̃ (ω) − eiωtn f̂ (ω)|2,

II = 2
∑

|ω|>M

|f̂ (ω)|2,

III = 2
∑

|ω|>M

|f̃ (ω)|2|Q̂n(ξ)|2.

By Eq. (1.2.19),
lim

M→∞
II = 0.

From Eq. (1.2.21) and the second assumption,

lim
M→∞

III ≤ 4K2
s lim

M→∞

∑
|ω|>M

(
|f̃ (ω) − f̂ (ω)|2 + |f̂ (ω)|2

)
= 0.

Finally, for every fixed M , the second and third assumptions together with
Eq. (1.2.21) imply that

lim
N→∞

I ≤ 2 lim
N→∞

M∑
ω=−M

(
|Q̂n(ξ)

(
f̃ (ω) − f̂ (ω)

)
|2 + |

(
Q̂n(ξ) − eiωtn

)
f̂ (ω)|2

)
= 0.

Now convergence follows easily. Let ε > 0 be an arbitrarily small constant.
Choose M so large that II + III < ε/2. For sufficiently large N , we also have
I ≤ ε/2 and, therefore, convergence follows. This proves the theorem.

This theorem tells us that the solution of the difference approximation con-
verges to the solution of the differential equation if the approximation is stable
and consistent. In actual calculations, one uses fixed values of k and h. Conver-
gence of the solution should therefore be considered as a guarantee that a certain
approximation becomes more accurate if we choose a smaller stepsize.
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EXERCISES

1.2.1. The convergence of the solutions in Figure 1.2.3 is rather slow. Explain
why that is so and find which one of the terms I, II, or III is large for this
example in the proof of Theorem 1.2.1.

1.2.2. Modify the scheme (1.2.10) such that it approximates ut = −ux . Prove
that the conditions (1.2.13) and (1.2.14) are also necessary for stability in
this case.

1.2.3. Choose σ in Eq. (1.2.10) such that Q uses only two gridpoints. What is
the stability condition?

1.3. LEAP-FROG SCHEME

The difference approximations that we discussed Section 1.2 were all one-step
methods, that is, vn+1

j could be expressed as a linear combination of neighboring
values vn

j−r , . . . , v
n
j+s at the previous time level. The leap-frog scheme

vn+1
j = vn−1

j + λ(vn
j+1 − vn

j−1), λ = k/h, (1.3.1)

is a two-step method, which is a special case of multistep methods. To determine
the new values vn+1

j , we need values at two previous time levels. To start the
calculation, we have to specify v0

j and v1
j . The initial data yields v0

j = fj , whereas
v1

j can be determined by a one-step method. It does not need to be stable because
we use it only once. The simplest one is Eq. (1.2.7), that is,

v1
j = (I + kD0)v

0
j = (I + kD0)fj . (1.3.2)

We again seek simple wave solutions

vn
j = 1√

2π
eiωxj v̂n(ω)

and obtain
v̂n+1(ω) = v̂n−1(ω) + 2iλ(sin ξ)v̂n(ω). (1.3.3)

To solve Eq. (1.3.3), we make the ansatz

v̂n(ω) = zn, (1.3.4)

where z is a complex number. Substituting Eq. (1.3.4) into Eq. (1.3.3) gives us

zn+1 = zn−1 + 2iλ(sin ξ)zn,
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and, therefore, Eq. (1.3.4) is a solution of Eq. (1.3.3) if, and only if, z satisfies
the so-called characteristic equation

z2 = 1 + 2iλz sin ξ. (1.3.5)

For 0 < λ < 1, Eq. (1.3.5) has two distinct solutions with

|zj | = 1,

given by

z1,2 = iλ sin ξ ±
√

1 − λ2 sin2 ξ . (1.3.6)

The general solution of Eq. (1.3.3) is

v̂n = σ1z
n
1 + σ2z

n
2 . (1.3.7)

The parameters σ1 and σ2 are determined by the initial data. If v̂0(ω) = f̂ (ω),
then by Eq. (1.3.2)

v̂1(ω) = (1 + iλ sin ξ)f̂ (ω),

and we obtain the linear system of equations

σ1 + σ2 = f̂ (ω),

σ1z1 + σ2z2 = (1 + iλ sin ξ)f̂ (ω).
(1.3.8)

As in the one-step case, we consider the low frequencies with |ωh| � 1. Then,
if λ = k/h = const,

z1 = 1 + iωk − 1
2ω2k2 + O (ω3k3) = e

iωk
(

1+O (ω2k2)
)
,

z2 = − (
1 − iωk − 1

2ω2k2 + O (ω3k3)
) = −e

−iωk
(

1+O (ω2k2)
)
.

After a simple calculation, Eq. (1.3.8) gives us

σ1 = f̂ (ω)
(
1 + O (ω2k2)

)
, σ2 = O (ω2k2)f̂ (ω),

and, therefore,

v̂n(ω) = f̂ (ω)
(
1 + O (ω2k2)

)
e
iωtn

(
1+O (ω2k2)

)

+ O (ω2k2)f̂ (ω)(−1)ne
−iωtn

(
1+O (ω2k2)

)
.

Thus, the solution consists of two parts. The first part approximates the corre-
sponding solution û(ω, tn) = f̂ (ω)eiωtn , and the error in the exponent (called the
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phase error) is O (ω3k2tn). The second part oscillates rapidly and is independent
of the differential equation. It is often called a parasitic solution. Luckily, the
amplitude is small for ω2k2 � 1 and does not grow with time.

Because the leap-frog scheme uses three time levels, Theorem 1.2.1 does not
apply as formulated. However, using the form of v̂n(ω) derived above, we can
again use trigonometric interpolation to prove convergence to the solution of the
differential equation. Smoothness of the initial data and the stability condition

λ = k/h ≤ 1 − δ, δ > 0 (1.3.9)

for any sequence k, h → 0 are required for convergence (see Exercise 1.3.1).
We now discuss a property of the leap-frog scheme that can cause practical

difficulties. Let a > 0 be a constant, and consider the differential equation

ut = ux − au.

The simple wave solutions are now of the form

u = 1√
2π

eiω(x+t)e−at f̂ (ω),

which clearly decay exponentially with time. We use the approximation

vn+1
j = vn−1

j + 2kD0v
n
j − 2kavn

j . (1.3.10)

The simple wave solutions again have the form

vn
j = (σ1z

n
1 + σ2z

n
2)e

iωxj ,

where now z1,2 are the solutions of

z2 = 1 + (2iλ sin ξ − 2ka)z,

that is,
z1,2 = iλ sin ξ − ka ±

√
1 + (iλ sin ξ − ka)2.

Consider the special case ω = 0. For ka � 1, we have

z1 = 1 − ka + k2a2

2
+ O (k3a3) = e−ka+O (k3a3),

z2 = −eka+O (k3a3),

and, as before,

v̂n(0) = f̂ (0)
(
1 + O (k2a2)

)
e
−atn

(
1+O (k2a2)

)
+ O (k2a2)f̂ (ω)(−1)ne

atn

(
1+O (k2a2)

)
.
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Now the parasitic solution grows exponentially and can obliterate the exponen-
tially decaying solution. Therefore, the (unmodified) leap-frog scheme cannot be
used for long time intervals. It is easy to modify the scheme and suppress this
behavior. Instead of Eq. (1.3.10), we use

(1 + ka)vn+1
j = (1 − ka)vn−1

j + 2kD0v
n
j . (1.3.11)

Now, z1,2 are the solutions of

(1 + ka)z2 = 1 − ka + 2iλz sin ξ,

and

z1,2 = iλ sin ξ

1 + ka
±

√
1 − λ2 sin2 ξ − k2a2

(1 + ka)2
.

Therefore,

|z1,2| = (1 − k2a2)1/2

1 + ka
� e−ka for λ2 < 1 − k2a2,

and both zn
1,2 decay like e−atn , that is, the solutions have the same decay rates

as the solution of the differential equation.
We close this section by noting that the condition k ≤ h, found necessary for

the explicit schemes (1.2.10) and (1.3.1), is very natural. Recall that the solution
u(x, t) of the problem (1.2.1) at any point (x̃, t̃) is determined by the value of f (x)
at the point x̃ + t̃ on the x-axis, because u(x, t) is constant along the characteristic
x + t = x̃ + t̃ going through (x̃, t̃) and (x̃ + t̃ , 0). Now assume that (x̃, t̃) is a
gridpoint. Then, the solution of the difference approximation at (x̃, t̃) depends
on the initial data in the interval x̃ − t̃/λ ≤ x ≤ x̃ + t̃/λ (see Figure 1.3.1).

t

xx + t

(x, t )

Figure 1.3.1. Domain of dependence for an explicit difference scheme.
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If x̃ + t̃ does not belong to this interval, that is, if λ > 1, then we cannot
hope to obtain an accurate approximation. The condition that the domain of
dependence of the difference approximation include the domain of dependence
of the differential equation is known as the Courant–Friedrichs–Lewy condition,
usually called the CFL condition .

In our case, the domain of dependence for the differential equation consists
of one single point. This is not the case for a general hyperbolic differential
equation, where the domain of dependence at a certain point (x̃, t̃) consists of a
set of points or a whole interval.

EXERCISES

1.3.1. Prove that the solution of the leap-frog scheme converges to the solution
of the differential equation, if λ ≤ 1 − δ, δ > 0.

1.3.2. Derive the explicit form of the leap-frog approximation (1.3.1) for λ = 1.
Is the scheme suitable for computation?

1.3.3. Let a = 10. Estimate the time interval [0, T ], where the approximation
(1.3.10) can be used. Does T depend on ω and/or k?

1.4. IMPLICIT METHODS

There is another way to stabilize the approximation (1.2.7). If we replace the
forward difference in time by a backward difference, we get the backward Euler
method

(I − kD0)v
n+1
j = vn

j , j = 0, 1, . . . , N. (1.4.1)

If we introduce the vector v = (v0, . . . , vN)T , then we can write Eq. (1.4.1) in
matrix-vector form

Avn+1 = vn,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −k/2h 0 · · · 0 k/2h

k/2h 1 −k/2h 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

0 k/2h 1 −k/2h

−k/2h 0 · · · 0 k/2h 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(1.4.2)

This is called an implicit scheme because it couples the solution values of all
points at the new time level. This means that the solution on the new time level
depends on all values on the previous level. A linear system of N + 1 equations
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must be solved to advance the scheme at each time step, and it, therefore, may
seem to be an inefficient method. However, as we will see later, these schemes
are often efficient and, in fact, the only realistic choice.

The now familiar way of introducing a Fourier component yields, for
Eq. (1.4.1),

(1 − iλ sin ξ)v̂n+1(ω) = v̂n(ω),

that is,

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = 1

1 − iλ sin ξ
.

Obviously, |Q̂| ≤ 1, and, again, there is damping of all frequencies except for
ω = 0, π/h. Note the important difference between Eq. (1.4.1) and the explicit
scheme in Eq. (1.2.10). The stability condition |Q̂| ≤ 1 is satisfied for all values
of λ for the implicit method. In other words, the scheme is stable for an arbitrary
time step. Such schemes are called unconditionally stable. This is typical for
implicit schemes.

This approximation is only first-order accurate because the time differencing
is not centered. Instead, we can use the trapezoidal rule for time differencing
and obtain the Crank–Nicholson method

(
I − k

2
D0

)
vn+1

j =
(

I + k

2
D0

)
vn

j , j = 0, 1, . . . , N. (1.4.3)

The amplification factor is

Q̂ = 2 + iλ sin ξ

2 − iλ sin ξ
. (1.4.4)

Thus, |Q̂| = 1 for all values of λ, that is, the scheme is unconditionally stable
and, as with the leap-frog scheme, there is no damping.

The explicit and implicit approximations can be combined into the so-called
θ scheme

(I − θkD0)v
n+1
j = (I + (1 − θ)kD0) vn

j , j = 0, 1, . . . , N. (1.4.5)

It is unconditionally stable for θ ≥ 1/2. The parameter θ is usually chosen to be
in the interval 1/2 ≤ θ ≤ 1. The reason for introducing such an approximation
is that the damping can be controlled by adjusting θ .

The system (1.4.2) is most efficiently solved by a direct method. Let the
nonzero elements of the matrix A be denoted by aij , where i = 0, 1, . . . , N and
j = 0, 1, . . . , N . We make a factorization A = LR, where L and R have the
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form

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
× 1 0

× 1
. . .

. . .

0
. . .

. . .

× 1
× × . . . . . . . . . × 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × 0 ×

× × ×
. . .

. . .
...

0
. . .

. . .
...

× ×
×

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The nonzero elements lij and rij of L and R, respectively, are given by the
recursive formulas

r00 = a00,

r01 = a01,

...

r0N = a0N,

lj,j−1 = aj,j−1

rj−1,j−1
rjj = ajj − lj,j−1rj−1,j

⎫⎬
⎭ , j = 1, . . . , N − 1,

rj,j+1 = aj,j+1

...

rjN = −lj,j−1rj−1,N

⎫⎪⎪⎬
⎪⎪⎭ , j = 1, . . . , N − 2,

rN−1,N = aN−1,N − lN−1,N−2rN−2,N ,

lN0 = a00

r00

lNj = − lN,j−1rj−1,j

rjj

⎫⎪⎪⎬
⎪⎪⎭ , j = 1, . . . , N − 2,

lN,N−1 = 1

rN−1,N−1
(aN,N−1 − lN,N−2rN−2,N−1),

rNN = aNN −
N−1∑
j=0

lNj rjN .

The system (1.4.2) is rewritten as

LRvn+1 = vn. (1.4.6)
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The solution is obtained by backward and forward substitution

Lw = vn,

Rvn+1 = w.
(1.4.7)

The number of arithmetic operations for the whole procedure is proportional to N .
Hence, for problems in one space dimension, the work required for the implicit
method is of the same order as that for an explicit method. Note, however, that
on parallel computers the simpler algorithmic structure of an explicit scheme
may be an advantage.

The nonzero corner elements a0N and aN0 in the matrix A are an effect of
the periodicity conditions. For other types of boundary conditions, where A is
tridiagonal without the corner elements, the formulas for computing the elements
of L and R still hold, and we get

riN = 0, i = 0, 1, . . . , N − 2,

lNj = 0, j = 0, 1, . . . , N − 2.

For methods with more than three points on time level tn+1 coupled to each other,
the bandwidth ν becomes larger. The same type of solution procedure can still be
applied. The matrices L and R have the same number of nonzero subdiagonals
and superdiagonals, respectively, as A has, and it can be shown that O (ν2N)

arithmetic operations are required for the solution.
For problems in two space dimensions on an N × N grid, the bandwidth

is ν = O (N), and a direct generalization of the above-mentioned method leads
to an operation count of the order of N4. In this case, iterative methods can be
considerably more efficient, and they are the only realistic methods in three space
dimensions.

EXERCISES

1.4.1. Prove that Eq. (1.4.5) is unconditionally stable for θ ≥ 1
2 .

1.4.2. Calculate the exact number of arithmetic operations required to advance
by one step the implicit scheme (1.4.3). Compare it with the work required
to advance by one step the explicit scheme (1.2.10).

1.4.3. Derive the direct solution algorithm for a system Av = b, where A has ν

nonzero diagonals. Prove that the operation count is O (ν2N).

1.5. TRUNCATION ERROR

In the previous sections, we have derived several difference schemes to calculate
the solution u of Eq. (1.2.1). In every case, we could write their solutions v in
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closed form and, therefore, we could calculate the error u − v explicitly. In this
section, we discuss the truncation error, which is a measure of the accuracy of
a given scheme. Instead of estimating the error u − v, we calculate how well u

satisfies the difference approximation. We can then use the truncation error to
estimate u − v. The advantage of this procedure is that it can be used when u

and v are not known explicitly. It can also be used for equations with variable
coefficients.

Let u be a smooth function. Using a Taylor series expansion around any point
(x, t), we obtain

D0u(x, t) = u(x + h, t) − u(x − h, t)

2h

= ux(x, t) + h2

3!
uxxx(x, t) + h4

5!
ϕ0(x, t), (1.5.1)

|ϕ0(x, t)| ≤ max
x−h≤ξ≤x+h

∣∣∣∣∂5u(ξ, t)

∂x5

∣∣∣∣ ,
D+D−u(x, t) = u(x + h, t) − 2u(x, t) + u(x − h, t)

h2

= uxx(x, t) + 2h2

4!
uxxxx(x, t) + 2h4

6!
ϕ1(x, t),

(1.5.2)

|ϕ1(x, t)| ≤ max
x−h≤ξ≤x+h

∣∣∣∣∂6u(ξ, t)

∂x6

∣∣∣∣ ,
u(x, t + k) − u(x, t)

k
= ut (x, t) + k

2
utt (x, t) + k2

3!
ψ0(x, t),

|ψ0(x, t)| ≤ max
t≤ξ≤t+k

∣∣∣∣∂3u(x, ξ)

∂t3

∣∣∣∣ , (1.5.3)

u(x, t + k) − u(x, t − k)

2k
= ut (x, t) + k2

3!
uttt (x, t) + k4

5!
ψ1(x, t),

|ψ1(x, t)| ≤ max
t−k≤ξ≤t+k

∣∣∣∣∂5u(x, ξ)

∂t5

∣∣∣∣ , (1.5.4)

u(x, t + k) − 2u(x, t) + u(x, t − k)

k2

= utt (x, t) + 2k2

4!
utttt (x, t) + 2k4

6!
ψ2(x, t), (1.5.5)

|ψ2(x, t)| ≤ max
t−k≤ξ≤t+k

∣∣∣∣∂6u(x, ξ)

∂t6

∣∣∣∣ .
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Now assume that u is a smooth solution of the problem (1.2.1) and substitute
it into the difference scheme (1.2.10). Then, we obtain from Eq. (1.5.1) to Eq.
(1.5.4) and ut = ux, utt = uxt = uxx ,

un+1
j − un

j

k
− D0u

n
j − σhD+D−un

j = ut (xj , tn) − ux(xj , tn) + k

2
utt (xj , tn)

− σhuxx(xj , tn) + O (h2 + k2)

=
(
k

2
− σh

)
uxx(xj , tn) + O (h2 + k2) = : τn

j .

(1.5.6)

We call τn
j the truncation error and say that the method is accurate of order (p, q)

if τ = O (hp + kq). For σ �= k/(2h), the above-mentioned method is accurate of
order (1, 1). For σ = k/(2h), the Lax–Wendroff method, the order of accuracy
is (2, 2).

Equation (1.5.6) implies that u satisfies

un+1
j = (I + kD0)u

n
j + σkhD+D−un

j + kτn
j ,

u0
j = fj .

(1.5.7)

Subtracting Eq. (1.2.10) from Eq. (1.5.7), we obtain, for the error e = u − v,

en+1
j = (I + kD0)e

n
j + σkhD+D−en

j + kτn
j ,

e0
j = 0.

We will later show that e is of the same order as τ if the approximation is stable.
One can also easily derive expressions for τ for the other methods. The leap-

frog and the Crank–Nicholson methods are accurate of order (2, 2), whereas the
backward Euler method is accurate of order (2, 1). Thus, we expect that the error
in time will dominate when using the backward Euler method unless the solution
varies much slower in time than in space (in the truncation error the time step k

is multiplied by time derivatives).

EXERCISES

1.5.1. When deriving the order of accuracy, Taylor expansion around some point
(x∗, t∗) is used. Prove that (x∗, t∗) can be chosen arbitrarily and, in par-
ticular, that it does not have to be a gridpoint.

1.5.2. Prove that the leap-frog scheme (1.3.1) and the Crank–Nicholson scheme
(1.4.3) are accurate of order (2, 2). Despite the same order of accuracy,
one can expect that one scheme is more accurate than the other. Why is
that so?
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1.6. HEAT EQUATION

In this section, we consider the simplest parabolic model problem for heat con-
duction,

ut = uxx, −∞ < x < ∞, 0 ≤ t

u(x, 0) = f (x), −∞ < x < ∞,
(1.6.1)

with 2π-periodic initial data. We again use the Fourier technique to obtain the
solution. The differential operator ∂2/∂x2 corresponds to the multiplication oper-
ator −ω2 in Fourier space, and we obtain

∂û(ω, t)

∂t
= −ω2û(ω, t),

û(ω, 0) = f̂ (ω).

(1.6.2)

The solution of the problem (1.6.2) is

û(ω, t) = e−ω2t f̂ (ω), (1.6.3)

which yields

u(x, t) = 1√
2π

∞∑
ω=−∞

e−ω2t eiωxf̂ (ω), f (x) = 1√
2π

∞∑
ω=−∞

eiωxf̂ (ω).

(1.6.4)
From Parseval’s relation (A.1.9), we obtain

‖u(·, t)‖2 =
∞∑

ω=−∞
|e−ω2t f̂ (ω)|2 ≤ ‖f (·)‖2. (1.6.5)

Equation (1.6.3) illustrates typical parabolic behavior; each Fourier component
is damped with time, and the damping is very strong for high frequencies. Even if
the initial data are very rough, the solution is an analytic function for t > 0, that
is, the Fourier coefficients decay exponentially. In Figure 1.6.1, we have plotted
the solution of the problem (1.6.1) with initial data f (x) = 1 + sin x + sin(10x)

for t = 0, 0.01, 1.
One can also show that, unlike the hyperbolic case, the speed of propagation

is infinite. We now consider simple difference approximations of Eq. (1.6.1) and
begin with

vn+1
j = (I + kD+D−)vn

j , j = 0, 1, . . . , N. (1.6.6)

The scheme is based on forward differencing in time and is often called the Euler
method . We recall that the corresponding approximation (1.2.7) for ut = ux was
useless because it was unstable for any sequence k, h → 0 with k/h ≥ c > 0.
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(a) (b)

(c)

Figure 1.6.1. Solution of the problem (1.6.1). (a) t = 0, (b) t = 0.01, and (c) t = 1.

To compute the symbol Q̂, we use the basic trigonometric formulas of
Section 1.1. From Eq. (1.1.5),

kD+D−eiωxj = −4σ sin2 ξ

2
eiωxj , (1.6.7)

where σ = k/h2and ξ = ωh.
The transformed difference scheme is then

v̂n+1(ω) = Q̂v̂n(ω), Q̂ = 1 − 4σ sin2 ξ

2
. (1.6.8)

The condition |Q̂| ≤ 1 is equivalent to

σ ≤ 1

2
. (1.6.9)

We have calculated approximations of the solution shown in Figure 1.6.1 using
Eq. (1.6.6) with σ = 1/2, N = 100. In Figure 1.6.2, we have plotted the error
u − v, for t = 0.01, 1.

The condition given in Eq. (1.6.9) implies that the time step k must be chosen
proportional to h2. This is often too restrictive. On the other hand, it is natural for
an explicit scheme. As noted earlier, there is no finite speed of propagation for
parabolic problems. This means that the domain of dependence of the difference
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(a) (b)

Figure 1.6.2. Error when solving the problem (1.6.1) by the method (1.6.6). (a) t = 0.01 and
(b) t = 1.

t

x

h

h/2
h/4

Figure 1.6.3. Domain of dependence for decreasing h and k = σh2.

scheme must cover the whole interval in the limit k → 0, h → 0, even for points
(x̃, t̃) arbitrarily close to the x-axis; otherwise, the approximation cannot converge
to the true solution. Figure 1.6.3 shows the expanding domain of dependence for
fixed t , decreasing h and k = σh2.

The leap-frog scheme approximating Eq. (1.6.1) is

vn+1
j = 2kD+D−vn

j + vn−1
j , j = 0, 1, . . . , N. (1.6.10)

The solution in Fourier space is of the form shown in Eq. (1.3.7), where z1 and
z2 are the roots of the characteristic equation

z2 + 8σ

(
sin2 ξ

2

)
z − 1 = 0, (1.6.11)

that is,

z1,2 = −4σ sin2 ξ

2
±

√
1 +

(
4σ sin2 ξ

2

)2

.
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For ξ �= 0, one of z1,2 is larger than 1 in magnitude for all values of σ > 0.
The scheme is useless because it is unstable for any sequence k, h → 0 with
k/h2 ≥ c > 0.

A small modification can be made to stabilize the scheme. Equation (1.6.10)
can be written as

vn+1
j = 2σ(vn

j+1 − 2vn
j + vn

j−1) + vn−1
j ,

and if we replace vn
j by (vn+1

j + vn−1
j )/2, then we obtain

vn+1
j = 2σ(vn

j+1 − vn+1
j − vn−1

j + vn
j−1) + vn−1

j , j = 0, 1, . . . , N. (1.6.12)

This is known as the DuFort–Frankel method . It is still explicit because we can
solve for vn+1

j and write it as

vn+1
j = 1

1 + 2σ

(
2σ(vn

j+1 + vn
j−1) + (1 − 2σ)vn−1

j

)
.

Now the characteristic equation is

z2 − 4σ

1 + 2σ
(cos ξ)z − 1 − 2σ

1 + 2σ
= 0,

that is,

z1,2 = 2σ

1 + 2σ
cos ξ ± 1

1 + 2σ

√
A, (1.6.13)

where A = 4σ 2 cos2 ξ + 1 − 4σ 2. If A ≥ 0, then A ≤ 1, and

|z1,2| ≤ 2σ

1 + 2σ
+ 1

1 + 2σ
= 1.

If A < 0, then we write

z1,2 = 1

1 + 2σ

(
2σ cos ξ ± i

√
4σ 2(1 − cos2 ξ) − 1

)
(1.6.14)

and get

|z1,2|2 = 4σ 2 − 1

(1 + 2σ)2
= 2σ − 1

2σ + 1
< 1.

We shall come back to general stability conditions for multistep methods in
Chapter 4. For the DuFort–Frankel approximation, it is easily seen that one of
the roots zj is always strictly inside the unit circle, and it turns out that this leads
to stability as long as σ > 0 is a constant (see Corem and Ditkowski (2012) for
the case where σ is not a constant). This is somewhat surprising because the
scheme is explicit. The time step can be chosen independent of the space step.
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This seems to contradict the conclusion that the domain of dependence must
expand as h decreases. However, this apparently contradictory behavior is an
illustration of the fact that stability is only a necessary condition for conver-
gence. It does not guarantee that solutions are accurate approximations. It only
guarantees that solutions remain bounded.

To investigate the order of accuracy, we calculate the truncation error. From
Eq. (1.5.1) to Eq. (1.5.6),

τ = un+1
j − un−1

j

2k
− D+D−un

j + k2

h2

un+1
j − 2un

j + un−1
j

k2

= ut − uxx + k2

h2
utt + O

(
k2 + h2 + k4

h2

)
= k2

h2
utt + O

(
k2 + h2 + k4

h2

)
.

(1.6.15)

Thus, limk,h→0 τ = 0 only if limk,h→0 k/h = 0. Typically, one chooses

k = ch1+δ, δ > 0. (1.6.16)

Then, the truncation error is O (h2δ), and the method is only accurate of order
(2,2) if δ = 1, that is, k = O(h2), which is essentially the same restriction as that
required for the Euler method.

We now examine analogs of the implicit schemes introduced in Section 1.5.
The backward Euler approximation is

(I − kD+D−)vn+1
j = vn

j , j = 0, 1, . . . , N, (1.6.17)

with the amplification factor

Q̂ = 1

1 + 4σ sin2 ξ

2

, σ = k

h2
. (1.6.18)

The magnitude of Q̂ is never greater than 1 independent of σ , and all nonzero
frequencies are damped. Note that, as for the differential equation, the damping
is stronger for larger ω.

In Figure 1.6.4, we show the error of backward Euler calculations with k = h

and N = 100 for t = 0.01, 1, respectively. The initial data are the same as in
Figure 1.6.1.

The Crank–Nicholson scheme(
I − k

2
D+D−

)
vn+1

j =
(

I + k

2
D+D−

)
vn

j , j = 0, 1, . . . , N (1.6.19)

has the amplification factor

Q̂ = 1 − 2σ sin2 ξ

2

1 + 2σ sin2 ξ

2

, σ = k

h2
, (1.6.20)
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(a)
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(b)

Figure 1.6.4. Error when solving the problem (1.6.1) by the backward Euler method. (a) t = 0.01
and (b) t = 1.

(a) (b)
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Figure 1.6.5. Error when solving the problem (1.6.1) by the Crank–Nicholson method. (a) t = 0.01
and (b) t = 1.

and, like the backward Euler method, it is unconditionally stable. However, when
σ is large, Q̂ is near −1 for ξ �= 0, and there is very little damping. This is a
serious drawback because one would like to use time steps of the same order as
the space step. With that choice, we get σ = O (1/h) and Q̂ → −1 as h → 0
for every fixed ξ (i.e., as ω → ∞).

We have calculated the approximate solution of the problem (1.6.1) with the
same initial data as before using the Crank–Nicholson method with k = h and
N = 100 for t = 0.01, 1. The error is plotted in Figure 1.6.5. There is now an
oscillating error (see Exercise 1.6.3).

We can also combine the two implicit schemes for parabolic equations obtain-
ing the θ scheme

(I − θkD+D−)vn+1
j = (I + (1 − θ)kD+D−) vn

j ,

j = 0, 1, . . . , N, 0 ≤ θ ≤ 1,
(1.6.21)

which is unconditionally stable for θ ≥ 1
2 (see Exercise 1.6.2). As in the hyper-

bolic case, the damping increases with θ up to θ = 1 (backward Euler) but the
accuracy decreases.
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EXERCISES

1.6.1. Assume that the initial data for the problem (1.6.1) is a simple wave
f (x) = eiωx . Determine the time t1, where ‖u(·, t1)‖ = 10−6. Apply the
Euler method (1.6.6), and calculate the corresponding time t2. Determine
the optimal time step for a given h.

1.6.2. Prove that the θ scheme (1.6.21) is unconditionally stable for θ ≥ 1
2 .

1.6.3. Derive the truncation error for the backward Euler and the Crank–
Nicholson methods applied to ut = uxx . Prove that it is O (h2 + k) and
O (h2 + k2), respectively. Despite this fact, the backward Euler method is
more accurate at certain times for the example computed in this section.
Explain this paradox.

1.7. CONVECTION–DIFFUSION EQUATION

In many applications, the differential equations have both first- and second-
order derivatives in space. We now consider the model problem for convection–
diffusion

ut + aux = ηuxx, −∞ < x < ∞ , 0 ≤ t, η = const > 0,

u(x, 0) = f (x), −∞ < x < ∞,
(1.7.1)

with 2π-periodic initial data. In Fourier space, the corresponding problem is

∂û(ω, t)

∂t
+ iaωû(ω, t) = −ηω2û(ω, t),

û(ω, 0) = f̂ (ω),

(1.7.2)

with solutions
û(ω, t) = e−(iaω+ηω2)t f̂ (ω). (1.7.3)

Consider the difference approximation

vn+1
j = vn

j + k(ηD+D− − aD0)v
n
j , j = 0, 1, . . . , N. (1.7.4)

The amplification factor is

Q̂ = 1 − 2α sin2 ξ

2
− iλ sin ξ, α = 2ηk

h2
, λ = ak

h
. (1.7.5)

The “parabolic” stability condition for the case a = 0 is

kη

h2
≤ 1

2
, that is, α ≤ 1. (1.7.6)
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For a �= 0, we have

|Q̂|2 = 1 − 4α sin2 ξ

2
+ 4α2 sin4 ξ

2
+ 4λ2 sin2 ξ

2

(
1 − sin2 ξ

2

)

= 1 − 4(λ2 − α2)s2 + 4(λ2 − α)s, (1.7.7)

where s = sin2(ξ/2). Thus, |Q̂| ≤ 1 for all ξ if, and only if,

φ(s) := −(λ2 − α2)s + λ2 − α ≤ 0, 0 ≤ s ≤ 1. (1.7.8)

φ(s) is a linear function of s and, therefore, Eq. (1.7.8) holds if and only if

φ(0) = λ2 − α ≤ 0, φ(1) = α2 − α ≤ 0,

that is,
λ2 ≤ α ≤ 1 or a2k ≤ 2η ≤ h2/k. (1.7.9)

The conditions in Eq. (1.7.9) can be interpreted in this way: The parabolic term
makes it possible to stabilize the approximation of the hyperbolic part. However,
the coefficient η must be large enough compared to a (or k small enough) in
order to provide enough damping. Furthermore, the damping of the method is
always less than that of the differential equation. The true parabolic decay rate
for Eq. (1.7.1) is not preserved by the approximation. Part of it is required to
stabilize the hyperbolic part. As η becomes small, this becomes more severe.

In Section 1.6, it was noted that, for parabolic problems, the stability restriction
on the time step for explicit schemes (except the DuFort–Frankel method) is often
too severe, and implicit approximations should be used. Implicit methods can
also be used when first-order derivatives are present. For example, the Crank–
Nicholson method(

I + k

2
(aD0 − ηD+D−)

)
vn+1

j

=
(

I − k

2
(aD0 − ηD+D−)

)
vn

j , j = 0, 1, . . . , N

(1.7.10)

is unconditionally stable. In applications, however, the hyperbolic part is often
nonlinear, that is, a = a(u), and a nonlinear system of equations must be solved at
each step. In this case, it is convenient to use the so-called semi-implicit method.
The simplest approximation of this kind for our problem is

(I − kηD+D−)vn+1
j = −2kaD0v

n
j + (I + kηD+D−)vn−1

j , j = 0, 1, . . . , N,

(1.7.11)
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which is a combination of the leap-frog approximation and the Crank–Nicholson
approximation. v1

j must be computed by some other one-step method. In Fourier
space, Eq. (1.7.11) yields(

1 + 4σ sin2 ξ

2

)
v̂n+1(ω) = −i2λ (sin ξ)v̂n(ω) +

(
1 − 4σ sin2 ξ

2

)
v̂n−1(ω),

σ = kη

h2
, λ = ak

h
. (1.7.12)

The corresponding characteristic equation is

z2 + i2λ sin ξ

1 + β
z − 1 − β

1 + β
= 0, β = 4σ sin2 ξ

2
, (1.7.13)

with solutions

z1,2 = −iλ sin ξ ±
√

1 − β2 − λ2 sin2 ξ

1 + β
. (1.7.14)

First, assume that the square root is real, that is,

β2 + λ2 sin2 ξ ≤ 1. (1.7.15)

Then,

|z1,2|2 = 1 − β2

(1 + β)2
= 1 − β

1 + β
≤ 1.

Next, assume that
β2 + λ2 sin2 ξ > 1. (1.7.16)

Then, the roots are purely imaginary, and we have, for |λ| < 1,

|z1,2| =
∣∣∣∣∣λ sin ξ ±

√
β2 + λ2 sin2 ξ − 1

1 + β

∣∣∣∣∣ ≤ |λ| + β

1 + β
< 1. (1.7.17)

Thus, |z1,2| ≤ 1 for |λ| ≤ 1, which is the same stability condition we obtained
for the leap-frog approximation (1.3.1) of ut = ux . Note, however, that z1 = z2

for β2 + λ2 sin2 ξ = 1. Then, the representation v̂n(ω) = σ1z
n
1 + σ2z

n
2 becomes

v̂n(ω) = (σ1 + σ2n)zn
1. Because |z1| ≤ |λ| < 1 in this case, we have

n|z1|n ≤ const

independent of n. Thus, |v̂n(ω)| is bounded independent of ω, n, and it is stable.
We shall consider the approximation in Eq. (1.7.11) in a more general setting in
Chapter 4.

The time step can be chosen to be of the same order as the space step with the
semi-implicit scheme (1.7.11), which is a substantial gain in efficiency compared
to an explicit scheme. This was achieved without involving the whole difference
operator at the new time level.
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EXERCISES

1.7.1. Write a program that computes the solutions to Eq. (1.7.4) for
N = 10, 20, 40, . . .. Choose the time step such that
(a) α, defined in Eq. (1.7.5), is a constant with α ≤ 1,
(b) λ, defined in Eq. (1.7.5), is a constant with |λ| ≤ 1.
Compare the solutions and explain the difference in their behavior.

1.7.2. Newton’s method for a nonlinear system F(v) = 0 is defined by

v(n+1) = v(n) − F′(v(n))−1F(v(n)), n = 0, 1, . . . ,

where F′ is the Jacobian matrix of F with respect to v. Assume that
the coefficients a and η in Eq. (1.7.1) depend on u. Prove that Newton’s
method applied to each step of the Crank–Nicholson scheme (1.7.10) leads
to linear systems of the same structure as discussed in Section 1.4.

1.8. HIGHER ORDER EQUATIONS

In this section, we briefly discuss differential equations of the form

∂u

∂t
= a

∂pu

∂xp
, −∞ < x < ∞, t ≥ 0,

u(x, 0) = f (x), −∞ < x < ∞,

(1.8.1)

where a is a complex number and p ≥ 1. In Fourier space, Eq. (1.8.1) becomes

∂û(ω, t)

∂t
= a(iω)pû(ω, t),

û(ω, 0) = f̂ (ω),

(1.8.2)

that is,
û(ω, t) = ea(iω)pt f̂ (ω),

with
|û(ω, t)| = |eRe [a(iω)p]t f̂ (ω)|. (1.8.3)

For the problem to be well-posed, it is sufficient that the condition

Re [a(iω)p] ≤ 0 (1.8.4)

be fulfilled for all ω. This ensures that the solution will satisfy the estimate

‖u(·, t)‖ ≤ ‖f (·)‖. (1.8.5)
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Because ω is real and can be positive or negative, we obtain the condition

sign (Re a) = (−1)p/2+1, if Re a �= 0 and p is even,

Im a = 0, if p is odd.
(1.8.6)

A special case is
∂u

∂t
= iα

∂2u

∂x2
, (1.8.7)

where α is real. This is the principal part of the Schrödinger equation governing
the fundamentals of quantum mechanics. In Fourier space, we have

û(ω, t) = e−iαω2t f̂ (ω),

leading to norm conservation

‖u(·, t)‖ = ‖f (·)‖.

The most natural centered difference approximation for the general equation of
order p is given by

∂p

∂xp
→ Qp =

{
(D+D−)p/2, p even,

D0(D+D−)(p−1)/2, p odd,
(1.8.8)

which, in Fourier space, yields

(iω)p → Q̂p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
− 4

h2
sin2 ωh

2

)p/2

, p even,

i
h

sin(ωh)

(
− 4

h2
sin2 ωh

2

)(p−1)/2

, p odd.

(1.8.9)

If a is real, the Euler method can always be used if p is even. The leap-frog
scheme can always be used if p is odd. This follows directly from the calculations
made in Sections 1.3 and 1.6. For the Euler method, we have

Q̂ = 1 + kaQ̂p, (1.8.10)

where Q̂p is defined in Eq. (1.8.9). If a is real, stability requires that the condition

(−1)p/2−1 · 4p/2ak

hp
≤ 2, p even, (1.8.11)
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be satisfied. For p ≥ 4, the time step restriction is so severe that the method
cannot be used in any realistic computation. Similarly, for the leap-frog scheme,
we obtain a condition of the form

k

hp
≤ const, p odd. (1.8.12)

[This is easily seen if we follow the calculations leading to Eq. (1.3.9).] p = 1
is the practical limit in several space dimensions, and we conclude that implicit
methods are necessary for higher order equations. (In one space dimension, one
could possibly use explicit methods for p = 2, 3.)

EXERCISES

1.8.1. What explicit method could be used for the Schrödinger type equation

ut = iuxx? (1.8.13)

Derive the stability condition.
1.8.2. Define the Crank–Nicholson approximation for the Korteweg de Vries type

equation
ut = uxxx + aux. (1.8.14)

Prove unconditional stability.
1.8.3. Define a semi-implicit approximation suitable for the efficient solution of

Eq. (1.8.14) with a = a(u). Derive the stability condition (for a = const).

1.9. SECOND-ORDER WAVE EQUATION

In Section 1.2, we discussed the simplest possible partial differential equation
describing a wave propagating in one direction. In this section, we consider the
second order wave equation describing the real case, where waves are propagated
in two directions:

utt = c2uxx, −∞ < x < ∞, t ≥ 0.

Here, c is the wave propagation speed. Because we have a second derivative in
time, two initial conditions are needed, and we prescribe

u(x, 0) = f (x),

ut (x, 0) = g(x).



42 MODEL EQUATIONS

In Fourier space, the wave equation takes the form

ûtt = −c2ω2û, (1.9.1)

which has the solution

û(ω, t) = αeicωt + βe−icωt .

There are two constants to be determined by the initial data f̂ (ω) and ĝ(ω).
The standard difference scheme is

vn+1
j − 2vn

j + vn−1
j = k2c2D+D−vn

j , n = 1, 2, . . . ,

which requires data at two time levels t0 and t1 to get started. One possibility is
to use

v0
j = fj ,

v1
j = fj + kgj .

The second condition is a low order approximation of the second initial condition
for the differential equation. We shall further discuss the accuracy of this type of
approximations in Chapter 4.

The Fourier transform of the difference scheme is

v̂n+1(ω) − 2v̂n(ω) + v̂n−1(ω) = −4λ2 sin2 ξ

2
v̂n(ω), (1.9.2)

where λ = kc/h. The characteristic equation is

z2 − 2(1 − 2λ2 sin2 ξ

2
)z + 1 = 0,

which has the solutions

z1,2 = 1 − 2λ2 sin2 ξ

2
± 2λ sin

ξ

2

√
λ2 sin2 ξ

2
− 1. (1.9.3)

If λ ≤ 1, we have

z1,2 = 1 − 2λ2 sin2 ξ

2
± 2λ sin

ξ

2
i

√
1 − λ2 sin2 ξ

2
, (1.9.4)

with |z1,2| = 1. If λ > 1, one of the roots will exceed 1 in magnitude leading
to an unstable scheme. This restriction on the time step is quite natural here
as well as for the leap-frog scheme in Section 1.3. The domain of dependence
for the difference approximation must include the domain of dependence for the
differential equation.

We shall come back to the wave equation and its generalizations in Chapter 10.



GENERALIZATION TO SEVERAL SPACE DIMENSIONS 43

1.10. GENERALIZATION TO SEVERAL SPACE DIMENSIONS

In two space dimensions, the hyperbolic model problem becomes

∂u

∂t
= ∂u

∂x1
+ ∂u

∂x2
, −∞ < x1, x2 < ∞, t ≥ 0, (1.10.1)

with initial data

u(x, 0) = f (x), −∞ < x1, x2 < ∞,

where x = (x1, x2). Here, we assume that f (x) is 2π-periodic in x1 and x2. If

f (x) = 1

2π
ei〈ω,x〉f̂ (ω), ω = (ω1, ω2),

we make the ansatz

u = 1

2π
ei〈ω,x〉û(ω, t), û(ω, 0) = f̂ (ω),

and obtain
ût (ω, t) = i(ω1 + ω2)û(ω, t).

Thus,

u(x, t) = 1

2π
ei(ω1+ω2)t ei〈ω,x〉f̂ (ω)

is the solution to our problem. For general f , we obtain, by the principle of
superposition,

u = 1

2π

∑
ω

ei(ω1+ω2)t ei〈ω,x〉f̂ (ω) = f (x1 + t, x2 + t). (1.10.2)

Thus, we can solve the problem as we did in the one-dimensional case. Also, the
solution is constant along the characteristics, which are the lines x1 + t = const
and x2 + t = const.

We now discuss difference approximations. We introduce a time step, k > 0,
and a two-dimensional grid by

xj = (j1h, j2h), jν = 0, ±1, ±2, . . . , h = 2π/(N + 1),

and gridfunctions by
vn

j = v(xj , tn), tn = nk.

Corresponding to Eq. (1.2.7), we now have

vn+1
j = (

I + k(D0x1 + D0x2)
)
vn

j . (1.10.3)
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Its Fourier transform is

v̂n+1(ω) = (1 + iλ(sin ξ1 + sin ξ2)) v̂n(ω). (1.10.4)

It is of the same form as Eq. (1.2.9). Therefore, the approximation is not useful.
We add artificial viscosity, that is, we consider

vn+1
j = (

I + k(D0x1 + D0x2) + σkh(D+x1D−x1 + D+x2D−x2)
)
vn

j . (1.10.5)

As before, we can choose λ = k/h, σ > 0 such that |Q̂| ≤ 1, that is, the approx-
imation is stable.

The leap-frog and the Crank–Nicholson approximations are also easily gener-
alized. They are

vn+1
j = vn−1

j + 2k(D0x1 + D0x2)v
n
j (1.10.6)

and

(
I − k

2
(D0x1 + D0x2)

)
vn+1

j =
(

I + k

2
(D0x1 + D0x2)

)
vn

j (1.10.7)

respectively. The approximation (1.10.6) is stable for k/h < 1/2, whereas
(1.10.7) is stable for all values of λ = k/h. Both methods are second-order
accurate.

The parabolic model problem is

ut = ux1x1 + ux2x2,

u(x, 0) = f (x).

Like the one-dimensional problem, its solution

u = 1

2π

∑
ω

e−|ω|2t ei〈ω,x〉f̂ (ω)

becomes “smoother” with time because the highly oscillatory waves (|ω| � 1)

are rapidly damped. We can easily construct difference approximations analogous
to those used for the one-dimensional problem. We need only to replace D+D−
in Section 1.6 by D+x1D−x1 + D+x2D−x2 . The analysis proceeds as before. The
explicit Euler method in Eq. (1.6.6) is stable for σ = k/h2 ≤ 1

4 , whereas the back-
ward Euler, Crank–Nicholson, and DuFort–Frankel methods are unconditionally
stable.
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EXERCISES

1.10.1. Derive the stability condition for the leap-frog approximation to ut =
ux + uy + uz, where the stepsizes �x, �y, and �z may be different.

1.10.2. Derive the stability condition for the Euler approximation to ut = uxx +
uyy + uzz. Prove that the DuFort–Frankel method is unconditionally sta-
ble for the same equation.

BIBLIOGRAPHIC NOTES

Most of the difference schemes introduced in this chapter were developed very
early, in several cases, before the electronic computer was invented. The leap-frog
scheme was discussed in a classical paper by Courant–Friedrichs–Levy (Courant
et al., 1928). In the same paper, the so-called CFL condition was introduced, that
is, the domain of dependence of the difference scheme must include the domain
of dependence of the differential equation. Today, one often uses the term “CFL
number” which, for the model equation ut = aux , means λ = ka/h.

The Lax–Friedrichs scheme was introduced for conservation laws ut = F(u)x
by Lax (1954), and the Lax–Wendroff method was presented in its original form
by Lax and Wendroff (1960). Various versions have been presented later, but for
the simple model equations we have been considering so far, they are identical.
Any approximation of a hyperbolic equation that is a one-step explicit scheme
with a centered second-order accurate approximation complemented with a damp-
ing term of second order, is usually called a Lax–Wendroff type approximation.

The Crank–Nicholson approximation was initially constructed for parabolic
heat conduction problems by Crank and Nicholson (1947). The same name has
later been used for other types of equations, where centered difference operators
are used in space and the trapezoidal rule is used for discretization in time. The
DuFort–Frankel method for parabolic problems was introduced by DuFort and
Frankel (1953).

Stability analysis based on Fourier modes as presented here goes back to von
Neumann, who used it at Los Alamos National Laboratory during World War II.
It was first published by Crank and Nicholson (1947) and later by Charney et al.
(1950), von Neumann and Richtmyer (1950), and O’Brien et al. (1951).

In this book, we use Fourier series representations of periodic functions, but
one could use Fourier integral representations of general L2 functions as well:

f (x) = 1√
2π

∫ ∞

−∞
f̂ (ω)eiωx dω,

f̂ (x) = 1√
2π

∫ ∞

−∞
f (x)e−iωx dx,

see, for example, Richtmyer and Morton (1967). The gridfunctions can be
extended such that they are defined everywhere if the initial function is defined
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everywhere. In that way, the Fourier integrals are also defined for the solutions
to the difference approximations. The Fourier transformed equations are exactly
the same as they are for Fourier series and, accordingly, the stability conditions
derived in Fourier space will be identical.

The stability definition 1.2.1 allows for an exponential growth, and it is sat-
isfied if |Q̂| ≤ 1 + O (k). We notice that the condition |Q̂| ≤ 1 used in all our
examples is stronger. However, if k/h is kept constant, our approximations are
not explicitly dependent on k for the hyperbolic model equation. The same con-
clusion holds for the parabolic model problem if k/h2 is constant. Therefore,
|Q̂| ≤ 1 is the only possibility for a stable scheme in these cases.


