
 Chapter 1

Introduction

 1.1 INTRODUCTION

 The idea of a single - processor computer is fast becoming archaic and quaint. We
now have to adjust our strategies when it comes to computing:

 • It is impossible to improve computer performance using a single processor.
Such processor would consume unacceptable power. It is more practical to
use many simple processors to attain the desired performance using perhaps
thousands of such simple computers [1] .

 • As a result of the above observation, if an application is not running fast on
a single - processor machine, it will run even slower on new machines unless
it takes advantage of parallel processing.

 • Programming tools that can detect parallelism in a given algorithm have
to be developed. An algorithm can show regular dependence among its vari-
ables or that dependence could be irregular. In either case, there is room
for speeding up the algorithm execution provided that some subtasks can
run concurrently while maintaining the correctness of execution can be
assured.

 • Optimizing future computer performance will hinge on good parallel pro-
gramming at all levels: algorithms, program development, operating system,
compiler, and hardware.

 • The benefi ts of parallel computing need to take into consideration the number
of processors being deployed as well as the communication overhead of
processor - to - processor and processor - to - memory. Compute - bound problems
are ones wherein potential speedup depends on the speed of execution of the
algorithm by the processors. Communication - bound problems are ones
wherein potential speedup depends on the speed of supplying the data to and
extracting the data from the processors.

 • Memory systems are still much slower than processors and their bandwidth
is limited also to one word per read/write cycle.

Algorithms and Parallel Computing, by Fayez Gebali
Copyright © 2011 John Wiley & Sons, Inc.

1

c01.indd 1c01.indd 1 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 Introduction

 • Scientists and engineers will no longer adapt their computing requirements
to the available machines. Instead, there will be the practical possibility
that they will adapt the computing hardware to solve their computing
requirements.

 This book is concerned with algorithms and the special - purpose hardware structures
that execute them since software and hardware issues impact each other. Any soft-
ware program ultimately runs and relies upon the underlying hardware support
provided by the processor and the operating system. Therefore, we start this chapter
with some defi nitions then move on to discuss some relevant design approaches and
design constraints associated with this topic.

 1.2 TOWARD AUTOMATING
PARALLEL PROGRAMMING

 We are all familiar with the process of algorithm implementation in software. When
we write a code, we do not need to know the details of the target computer system
since the compiler will take care of the details. However, we are steeped in think-
ing in terms of a single central processing unit (CPU) and sequential processing
when we start writing the code or debugging the output. On the other hand, the
processes of implementing algorithms in hardware or in software for parallel
machines are more related than we might think. Figure 1.1 shows the main phases
or layers of implementing an application in software or hardware using parallel
computers. Starting at the top, layer 5 is the application layer where the application
or problem to be implemented on a parallel computing platform is defi ned. The
specifi cations of inputs and outputs of the application being studied are also defi ned.
Some input/output (I/O) specifi cations might be concerned with where data is stored
and the desired timing relations of data. The results of this layer are fed to the lower
layer to guide the algorithm development.

 Layer 4 is algorithm development to implement the application in question. The
computations required to implement the application defi ne the tasks of the algorithm
and their interdependences. The algorithm we develop for the application might or
might not display parallelism at this state since we are traditionally used to linear
execution of tasks. At this stage, we should not be concerned with task timing or
task allocation to processors. It might be tempting to decide these issues, but this is
counterproductive since it might preclude some potential parallelism. The result of
this layer is a dependence graph, a directed graph (DG), or an adjacency matrix that
summarize the task dependences.

 Layer 3 is the parallelization layer where we attempt to extract latent parallelism
in the algorithm. This layer accepts the algorithm description from layer 4 and pro-
duces thread timing and assignment to processors for software implementation.
Alternatively, this layer produces task scheduling and assignment to processors for
custom hardware very large - scale integration (VLSI) implementation. The book
concentrates on this layer, which is shown within the gray rounded rectangle in the
fi gure.

c01.indd 2c01.indd 2 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.2 Toward Automating Parallel Programming 3

 Layer 2 is the coding layer where the parallel algorithm is coded using a
high - level language. The language used depends on the target parallel computing
platform. The right branch in Fig. 1.1 is the case of mapping the algorithm on a
general - purpose parallel computing platform. This option is really what we mean by
 parallel programming . Programming parallel computers is facilitated by what is
called concurrency platforms , which are tools that help the programmer manage the
threads and the timing of task execution on the processors. Examples of concurrency
platforms include Cilk + + , openMP, or compute unifi ed device architecture (CUDA),
as will be discussed in Chapter 6 .

 The left branch in Fig. 1.1 is the case of mapping the algorithm on a custom
parallel computer such as systolic arrays. The programmer uses hardware description
language (HDL) such as Verilog or very high - speed integrated circuit hardware
(VHDL).

 Figure 1.1 The phases or layers of implementing an application in software or hardware using
parallel computers.

Layer 5

Parallelization and Scheduling

VLSI Tools Concurrency Platforms

Application

Algorithm DesignLayer 4

Layer 3

Layer 2

I/O Data

Task-Directed Graph (DG)

Thread Assignment
and Scheduling

Processor Assignment
and Scheduling

Hardware Design Multithreading

Custom Hardware Implementation Software Implementation

Layer 1

Processing Tasks

Task Dependence Graph

HDL Code C/FORTRAN Code

c01.indd 3c01.indd 3 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

4 Chapter 1 Introduction

 Layer 1 is the realization of the algorithm or the application on a parallel com-
puter platform. The realization could be using multithreading on a parallel computer
platform or it could be on an application - specifi c parallel processor system using
application - specifi c integrated circuits (ASICs) or fi eld - programmable gate array
(FPGA).

 So what do we mean by automatic programming of parallel computers? At the
moment, we have automatic serial computer programming. The programmer writes
a code in a high - level language such as C, Java, or FORTRAN, and the code is
compiled without further input from the programmer. More signifi cantly, the pro-
grammer does not need to know the hardware details of the computing platform.
Fast code could result even if the programmer is unaware of the memory hierarchy,
CPU details, and so on.

 Does this apply to parallel computers? We have parallelizing compilers that look
for simple loops and spread them among the processors. Such compilers could easily
tackle what is termed embarrassingly parallel algorithms [2, 3] . Beyond that, the
programmer must have intimate knowledge of how the processors interact among
each and when the algorithm tasks are to be executed.

 1.3 ALGORITHMS

 The IEEE Standard Dictionary of Electrical and Electronics Terms defi nes an
algorithm as “ A prescribed set of well - defi ned rules or processes for the solution of
a problem in a fi nite number of steps ” [4] . The tasks or processes of an algorithm
are interdependent in general. Some tasks can run concurrently in parallel and some
must run serially or sequentially one after the other. According to the above defi ni-
tion, any algorithm is composed of a serial part and a parallel part. In fact, it is very
hard to say that one algorithm is serial while the other is parallel except in extreme
trivial cases. Later, we will be able to be more quantitative about this. If the number
of tasks of the algorithm is W , then we say that the work associated with the algo-
rithm is W .

 The basic components defi ning an algorithm are

 1. the different tasks,

 2. the dependencies among the tasks where a task output is used as another
task ’ s input,

 3. the set of primary inputs needed by the algorithm, and

 4. the set of primary outputs produced by the algorithm.

 1.3.1 Algorithm DG

 Usually, an algorithm is graphically represented as a DG to illustrate the data depen-
dencies among the algorithm tasks. We use the DG to describe our algorithm in
preference to the term “ dependence graph ” to highlight the fact that the algorithm

c01.indd 4c01.indd 4 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.3 Algorithms 5

variables fl ow as data between the tasks as indicated by the arrows of the DG. On
the other hand, a dependence graph is a graph that has no arrows at its edges, and
it becomes hard to fi gure out the data dependencies.

 Defi nition 1.1 A dependence graph is a set of nodes and edges. The nodes repre-
sent the tasks to be done by the algorithm and the edges represent the data used by
the tasks. This data could be input, output, or internal results.

 Note that the edges in a dependence graph are undirected since an edge con-
necting two nodes does not indicate any input or output data dependency. An edge
merely shows all the nodes that share a certain instance of the algorithm variable.
This variable could be input, output, or I/O representing intermediate results.

 Defi nition 1.2 A DG is a set of nodes and directed edges. The nodes represent the
tasks to be done by the algorithm, and the directed edges represent the data depen-
dencies among the tasks. The start of an edge is the output of a task and the end of
an edge the input to the task.

 Defi nition 1.3 A directed acyclic graph (DAG) is a DG that has no cycles or loops.

 Figure 1.2 shows an example of representing an algorithm by a DAG. A DG
or DAG has three types of edges depending on the sources and destinations of the
edges.

 Defi nition 1.4 An input edge in a DG is one that terminates on one or more nodes
but does not start from any node. It represents one of the algorithm inputs.

 Referring to Fig. 1.2 , we note that the algorithm has three input edges that
represent the inputs in 0 , in 1 , and in 2 .

 Defi nition 1.5 An output edge in a DG is one that starts from a node but does not
terminate on any other node. It represents one of the algorithm outputs.

 Figure 1.2 Example of a directed acyclic graph (DAG) for
an algorithm.

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

c01.indd 5c01.indd 5 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

6 Chapter 1 Introduction

 Referring to Fig. 1.2 , we note that the algorithm has three output edges that
represent the outputs out 0 , out 1 , and out 2 .

 Defi nition 1.6 An internal edge in a DG is one that starts from a node and terminate
one or more nodes. It represents one of the algorithm internal variables.

 Defi nition 1.7 An input node in a DG is one whose incoming edges are all input
edges.

 Referring to Fig. 1.2 , we note that nodes 0, 1, and 2 represent input nodes. The
tasks associated with these nodes can start immediately after the inputs are
available.

 Defi nition 1.8 An output node in a DG is whose outgoing edges are all output
edges.

 Referring to Fig. 1.2 , we note that nodes 7 and 9 represent output nodes. Node
3 in the graph of Fig. 1.2 is not an output node since one of its outgoing edges is
an internal edge terminating on node 7.

 Defi nition 1.9 An internal node in a DG is one that has at least one incoming
internal edge and at least one outgoing internal edge.

 1.3.2 Algorithm Adjacency Matrix A

 An algorithm could also be represented algebraically as an adjacency matrix A .
Given W nodes/tasks, we defi ne the 0 – 1 adjacency matrix A , which is a square
 W × W matrix defi ned so that element a (i , j) = 1 indicates that node i depends on
the output from node j . The source node is j and the destination node is i . Of course,
we must have a (i , i) = 0 for all values of 0 ≤ i < W since node i does not depend on
its own output (self - loop), and we assumed that we do not have any loops. The defi -
nition of the adjacency matrix above implies that this matrix is asymmetric. This is
because if node i depends on node j , then the reverse is not true when loops are not
allowed.

 As an example, the adjacency matrix for the algorithm in Fig. 1.2 is given by

 A

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0

0 0
=

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 00 0

0 0 1 0 0 0 0 0

0 0 0 1 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 1

0 0

0 0

0 0

0 0

0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

. (1.1)

c01.indd 6c01.indd 6 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.3 Algorithms 7

 Matrix A has some interesting properties related to our topic. An input node i
is associated with row i , whose elements are all zeros. An output node j is associated
with column j , whose elements are all zeros. We can write

 Input node i a i j
j

W

⇒ =
=

−

∑ (,)
0

1

0 (1.2)

 Output node j a i j
i

W

⇒ =
=

−

∑ (,) .
0

1

0 (1.3)

 All other nodes are internal nodes. Note that all the elements in rows 0, 1, and 2 are
all zeros since nodes 0, 1, and 2 are input nodes. This is indicated by the bold entries
in these three rows. Note also that all elements in columns 7 and 9 are all zeros since
nodes 7 and 9 are output nodes. This is indicated by the bold entries in these two
columns. All other rows and columns have one or more nonzero elements to indicate
internal nodes. If node i has element a (i , j) = 1, then we say that node j is a parent
of node i .

 1.3.3 Classifying Algorithms Based On
Task Dependences

 Algorithms can be broadly classifi ed based on task dependences:

 1. Serial algorithms

 2. Parallel algorithms

 3. Serial – parallel algorithms (SPAs)

 4. Nonserial – parallel algorithms (NSPAs)

 5. Regular iterative algorithms (RIAs)

 The last category could be thought of as a generalization of SPAs. It should be
mentioned that the level of data or task granularity can change the algorithm from
one class to another. For example, adding two matrices could be an example of a
serial algorithm if our basic operation is adding two matrix elements at a time.
However, if we add corresponding rows on different computers, then we have a
row - based parallel algorithm.

 We should also mention that some algorithms can contain other types of algo-
rithms within their tasks. The simple matrix addition example serves here as well.
Our parallel matrix addition algorithm adds pairs of rows at the same time on dif-
ferent processors. However, each processor might add the rows one element at a
time, and thus, the tasks of the parallel algorithm represent serial row add algorithms.
We discuss these categories in the following subsections.

 1.3.4 Serial Algorithms

 A serial algorithm is one where the tasks must be performed in series one after the
other due to their data dependencies. The DG associated with such an algorithm looks

c01.indd 7c01.indd 7 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

8 Chapter 1 Introduction

like a long string or queue of dependent tasks. Figure 1.3 a shows an example of a
serial algorithm. The algorithm shown is for calculating Fibonnaci numbers. To cal-
culate Fibonacci number n 10 , task T 10 performs the following simple calculation:

 n n n10 8 9= + , (1.4)

 with n 0 = 0 and n 1 = 1 given as initial conditions. Clearly, we can fi nd a Fibonacci
number only after the preceding two Fibonacci numbers have been calculated.

 1.3.5 Parallel Algorithms

 A parallel algorithm is one where the tasks could all be performed in parallel at the
same time due to their data independence. The DG associated with such an algorithm
looks like a wide row of independent tasks. Figure 1.3 b shows an example of a
parallel algorithm. A simple example of such a purely parallel algorithm is a web
server where each incoming request can be processed independently from other
requests. Another simple example of parallel algorithms is multitasking in operating
systems where the operating system deals with several applications like a web
browser, a word processor, and so on.

 1.3.6 SPA s

 An SPA is one where tasks are grouped in stages such that the tasks in each stage
can be executed concurrently in parallel and the stages are executed sequentially.
An SPA becomes a parallel algorithm when the number of stages is one. A serial -
 parallel algorithm also becomes a serial algorithm when the number of tasks in each
stage is one. Figure 1.3 c shows an example of an SPA. An example of an SPA is the
CORDIC algorithm [5 – 8] . The algorithm requires n iterations and at iteration i , three
operations are performed:

 Figure 1.3 Example of serial, parallel, and serial – parallel algorithms. (a) Serial algorithm. (b)
Parallel algorithm. (c) Serial – parallel algorithm.

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Out

In

(a)

T0 T1 T2 T3 T4 T5

(b)

in0

out0

in1

out1

in2

out2

in3

out3

in4

out4

in5

out5

In

(c)

Out

c01.indd 8c01.indd 8 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.3 Algorithms 9

x x my

y y x

z z

i i i i

i i i i

i i i

+

+

+

= +
= −
= +

1

1

1

δ
δ

θ ,

 (1.5)

where x , y , and z are the data to be updated at each iteration. δ i and θ i are iteration
constants that are stored in lookup tables. The parameter m is a control parameter
that determines the type of calculations required. The variable θ i is determined before
the start of each iteration. The algorithm performs other operations during each
iteration, but we are not concerned about this here. More details can be found in
Chapter 7 and in the cited references.

 1.3.7 NSPA s

 An NSPA does not conform to any of the above classifi cations. The DG for such an
algorithm has no pattern. We can further classify NSPA into two main categories
based on whether their DG contains cycles or not. Therefore, we can have two types
of graphs for NSPA:

 1. DAG

 2. Directed cyclic graph (DCG)

 Figure 1.4 a is an example of a DAG algorithm and Fig. 1.4 b is an example of a
DCG algorithm. The DCG is most commonly encountered in discrete time feedback
control systems. The input is supplied to task T 0 for prefi ltering or input signal
conditioning. Task T 1 accepts the conditioned input signal and the conditioned feed-
back output signal. The output of task T 1 is usually referred to as the error signal,
and this signal is fed to task T 2 to produce the output signal.

 Figure 1.4 Example directed graphs for nonserial – parallel algorithms. (a) Directed acyclic graph
(DAG). (b) Directed cyclic graph (DCG).

T0

In

Feedback

OutError
T1 T2

T3

1

0
2

4

3

65

7

8

9

in0
in1 in2

out0 out2out1

)b()a(

c01.indd 9c01.indd 9 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

10 Chapter 1 Introduction

 The NSPA graph is characterized by two types of constructs: the nodes , which
describe the tasks comprising the algorithm, and the directed edges , which describe
the direction of data fl ow among the tasks. The lines exiting a node represent an
output, and when they enter a node, they represent an input. If task T i produces an
output that is used by task T j , then we say that T j depends on T i . On the graph, we
have an arrow from node i to node j .

 The DG of an algorithm gives us three important properties:

 1. Work (W) , which describes the amount of processing work to be done to
complete the algorithm

 2. Depth (D) , which is also known as the critical path . Depth is defi ned as the
maximum path length between any input node and any output node.

 3. Parallelism (P) , which is also known as the degree of parallelism of the
algorithm. Parallelism is defi ned as the maximum number of nodes that can
be processed in parallel. The maximum number of parallel processors that
could be active at any given time will not exceed B since anymore processors
will not fi nd any tasks to execute.

 A more detailed discussion of these properties and how an algorithm can be
mapped onto a parallel computer is found in Chapter 8 .

 1.3.8 RIA s

 Karp et al. [9, 10] introduced the concept of RIA. This class of algorithms deserves
special attention because they are found in algorithms from diverse fi elds such as
signal, image and video processing, linear algebra applications, and numerical simu-
lation applications that can be implemented in grid structures. Figure 1.5 shows the
 dependence graph of a RIA. The example is for pattern matching algorithm. Notice
that for a RIA, we do not draw a DAG; instead, we use the dependence graph
concept.

 Figure 1.5 Dependence graph of a
RIA for the pattern matching algorithm.

y0 y1 y2 y3 y4 y5 y6

t0 t1 t2 t3 t4 t5 t6

t7

t8

t9

p0

p1

p2

p3

j

i

c01.indd 10c01.indd 10 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.3 Algorithms 11

 A dependence graph is like a DAG except that the links are not directed
and the graph is obtained according to the methodology explained in Chapters 9 ,
 10 , and 11 .

 In a RIA, the dependencies among the tasks show a fi xed pattern. It is a
trivial problem to parallelize a serial algorithm, a parallel algorithm, or even an SPA.
It is not trivial to explore the possible parallelization options of a RIA. In fact,
Chapters 9 – 11 are dedicated to just exploring the parallelization of this class of
algorithms.

 A simple example of a RIA is the matrix – matrix multiplication algorithm given
by Algorithm 1.1.

 Algorithm 1.1 Matrix – matrix multiplication algorithm.

 Require: Input: matrices A and B

 1: for i = 0 : I − 1 do

 2: for j = 0 : J − 1 do

 3: temp = 0

 4: for k = 0 : K − 1 do

 5: temp = temp + A (i , k) × B (k , j)

 6: end for

 7: C (i , j) = temp

 8: end for

 9: end for

 10: RETURN C

 The variables in the RIA described by Algorithm 1.1 show regular dependence
on the algorithm indices i , j , and k . Traditionally, such algorithms are studied
using the dependence graph technique, which shows the links between the different
tasks to be performed [10 – 12] . The dependence graph is attractive when the number
of algorithm indices is 1 or 2. We have three indices in our matrix – matrix multipli-
cation algorithm. It would be hard to visualize such an algorithm using a three -
 dimensional (3 - D) graph. For higher dimensionality algorithms, we use more formal
techniques as will be discussed in this book. Chapters 9 – 11 are dedicated to studying
such algorithms.

 1.3.9 Implementing Algorithms on Parallel Computing

 The previous subsections explained different classes of algorithms based on the
dependences among the algorithm tasks. We ask in this section how to implement
these different algorithms on parallel computing platforms either in hardware or in
software. This is referred to as parallelizing an algorithm. The parallelization strat-
egy depends on the type of algorithm we are dealing with.

c01.indd 11c01.indd 11 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

12 Chapter 1 Introduction

 Serial Algorithms

 Serial algorithms, as exemplifi ed by Fig. 1.3 a, cannot be parallelized since the tasks
must be executed sequentially. The only parallelization possible is when each task
is broken down into parallelizable subtasks. An example is to perform bit - parallel
add/multiply operations.

 Parallel Algorithms

 Parallel algorithms, as exemplifi ed by Fig. 1.3 b, are easily parallelized since all the
tasks can be executed in parallel, provided there are enough computing resources.

 SPA s

 SPAs, as exemplifi ed by Fig. 1.3 c, are parallelized by assigning each task in a stage
to a software thread or hardware processing element. The stages themselves cannot
be parallelized since they are serial in nature.

 NSPA s

 Techniques for parallelizing NSPAs will be discussed in Chapter 8 .

 RIA s

 Techniques for parallelizing RIAs will be discussed in Chapters 9 – 11 .

 1.4 PARALLEL COMPUTING DESIGN CONSIDERATIONS

 This section discusses some of the important aspects of the design of parallel com-
puting systems. The design of a parallel computing system requires considering
many design options. The designer must choose a basic processor architecture that
is capable of performing the contemplated tasks. The processor could be a simple
element or it could involve a superscalar processor running a multithreaded operat-
ing system.

 The processors must communicate among themselves using some form of an
 interconnection network . This network might prove to be a bottleneck if it cannot
support simultaneous communication between arbitrary pairs of processors.
Providing the links between processors is like providing physical channels in tele-
communications. How data are exchanged must be specifi ed. A bus is the simplest
form of interconnection network. Data are exchanged in the form of words, and a
system clock informs the processors when data are valid. Nowadays, buses are being
replaced by networks - on - chips (NoC) [13] . In this architecture, data are exchanged
on the chip in the form of packets and are routed among the chip modules using
 routers .

 Data and programs must be stored in some form of memory system , and the
designer will then have the option of having several memory modules shared among

c01.indd 12c01.indd 12 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.5 Parallel Algorithms and Parallel Architectures 13

the processors or of dedicating a memory module to each processor. When proces-
sors need to share data, mechanisms have to be devised to allow reading and writing
data in the different memory modules. The order of reading and writing will be
important to ensure data integrity. When a shared data item is updated by one pro-
cessor, all other processors must be somehow informed of the change so they use
the appropriate data value.

 Implementing the tasks or programs on a parallel computer involves several
design options also. Task partitioning breaks up the original program or application
into several segments to be allocated to the processors. The level of partitioning
determines the workload allocated to each processor. Coarse grain partitioning
allocates large segments to each processor. Fine grain partitioning allocates smaller
segments to each processor. These segments could be in the form of separate soft-
ware processes or threads . The programmer or the compiler might be the two entities
that decide on this partitioning. The programmer or the operating system must ensure
proper synchronization among the executing tasks so as to ensure program correct-
ness and data integrity.

 1.5 PARALLEL ALGORITHMS AND
PARALLEL ARCHITECTURES

 Parallel algorithms and parallel architectures are closely tied together. We
cannot think of a parallel algorithm without thinking of the parallel hardware
that will support it. Conversely, we cannot think of parallel hardware without
thinking of the parallel software that will drive it. Parallelism can be imple-
mented at different levels in a computing system using hardware and software
techniques:

 1. Data - level parallelism , where we simultaneously operate on multiple bits of
a datum or on multiple data. Examples of this are bit - parallel addition mul-
tiplication and division of binary numbers, vector processor arrays and sys-
tolic arrays for dealing with several data samples. This is the subject of this
book.

 2. Instruction - level parallelism (ILP) , where we simultaneously execute more
than one instruction by the processor. An example of this is use of instruction
pipelining.

 3. Thread - level parallelism (TLP). A thread is a portion of a program that shares
processor resources with other threads. A thread is sometimes called a light-
weight process. In TLP, multiple software threads are executed simultane-
ously on one processor or on several processors.

 4. Process - level parallelism. A process is a program that is running on the
computer. A process reserves its own computer resources such as memory
space and registers. This is, of course, the classic multitasking and time -
 sharing computing where several programs are running simultaneously on
one machine or on several machines.

c01.indd 13c01.indd 13 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

14 Chapter 1 Introduction

 1.6 RELATING PARALLEL ALGORITHM AND
PARALLEL ARCHITECTURE

 The IEEE Standard Dictionary of Electrical and Electronics Terms [4] defi nes “ par-
allel ” for software as “ simultaneous transfer, occurrence, or processing of the indi-
vidual parts of a whole, such as the bits of a character and the characters of a word
using separate facilities for the various parts. ” So in that sense, we say an algorithm
is parallel when two or more parts of the algorithms can be executed independently
on hardware. Thus, the defi nition of a parallel algorithm presupposes availability of
supporting hardware. This gives a hint that parallelism in software is closely tied to
the hardware that will be executing the software code. Execution of the parts can be
done using different threads or processes in the software or on different processors
in the hardware. We can quickly identify a potentially parallel algorithm when we
see the occurrence of “ FOR ” or “ WHILE ” loops in the code.

 On the other hand, the defi nition of parallel architecture, according to The IEEE
Standard Dictionary of Electrical and Electronics Terms [4] , is “ a multi - processor
architecture in which parallel processing can be performed. ” It is the job of the
programmer, compiler, or operating system to supply the multiprocessor with tasks
to keep the processors busy. We fi nd ready examples of parallel algorithms in fi elds
such as

 • scientifi c computing, such as physical simulations, differential equations
solvers, wind tunnel simulations, and weather simulation;

 • computer graphics, such as image processing, video compression; and ray
tracing; and,

 • medical imaging, such as in magnetic resonance imaging (MRI) and comput-
erized tomography (CT).

 There are, however, equally large numbers of algorithms that are not recogniz-
ably parallel especially in the area of information technology such as online medical
data, online banking, data mining, data warehousing, and database retrieval systems.
The challenge is to develop computer architectures and software to speed up the
different information technology applications.

 1.7 IMPLEMENTATION OF ALGORITHMS:
A TWO - SIDED PROBLEM

 Figure 1.6 shows the issues we would like to deal with in this book. On the left is
the space of algorithms and on the right is the space of parallel architectures that
will execute the algorithms. Route A represents the case when we are given an
algorithm and we are exploring possible parallel hardware or processor arrays
that would correctly implement the algorithm according to some performance
requirements and certain system constraints. In other words, the problem is given a
parallel algorithm, what are the possible parallel processor architectures that are
possible?

c01.indd 14c01.indd 14 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.8 Measuring Benefi ts of Parallel Computing 15

 Route B represents the classic case when we are given a parallel architecture
or a multicore system and we explore the best way to implement a given algorithm
on the system subject again to some performance requirements and certain system
constraints. In other words, the problem is given a parallel architecture, how can we
allocate the different tasks of the parallel algorithm to the different processors? This
is the realm of parallel programming using the multithreading design technique. It
is done by the application programmer, the software compiler, and the operating
system.

 Moving along routes A or B requires dealing with

 1. mapping the tasks to different processors,

 2. scheduling the execution of the tasks to conform to algorithm data depen-
dency and data I/O requirements, and

 3. identifying the data communication between the processors and the I/O.

 1.8 MEASURING BENEFITS OF PARALLEL COMPUTING

 We review in this section some of the important results and benefi ts of using parallel
computing. But fi rst, we identify some of the key parameters that we will be study-
ing in this section.

 1.8.1 Speedup Factor

 The potential benefi t of parallel computing is typically measured by the time it takes
to complete a task on a single processor versus the time it takes to complete the
same task on N parallel processors. The speedup S (N) due to the use of N parallel
processors is defi ned by

 S N
T

T N
p

p

()
()

()
,=

1
 (1.6)

where T p (1) is the algorithm processing time on a single processor and T p (N) is
the processing time on the parallel processors. In an ideal situation, for a fully

 Figure 1.6 The two paths relating
parallel algorithms and parallel
architectures.

Algorithm
Space

Parallel Computer
Space

Route A

Route B

c01.indd 15c01.indd 15 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

16 Chapter 1 Introduction

parallelizable algorithm, and when the communication time between processors and
memory is neglected , we have T p (N) = T p (1)/ N , and the above equation gives

 S N N() .= (1.7)

 It is rare indeed to get this linear increase in computation domain due to several
factors, as we shall see in the book.

 1.8.2 Communication Overhead

 For single and parallel computing systems, there is always the need to read data
from memory and to write back the results of the computations. Communication
with the memory takes time due to the speed mismatch between the processor and
the memory [14] . Moreover, for parallel computing systems, there is the need for
communication between the processors to exchange data. Such exchange of data
involves transferring data or messages across the interconnection network.

 Communication between processors is fraught with several problems:

 1. Interconnection network delay. Transmitting data across the interconnection
network suffers from bit propagation delay, message/data transmission delay,
and queuing delay within the network. These factors depend on the network
topology, the size of the data being sent, the speed of operation of the
network, and so on.

 2. Memory bandwidth. No matter how large the memory capacity is, access to
memory contents is done using a single port that moves one word in or out
of the memory at any give memory access cycle.

 3. Memory collisions , where two or more processors attempt to access the same
memory module. Arbitration must be provided to allow one processor to
access the memory at any given time.

 4. Memory wall. The speed of data transfer to and from the memory is much
slower than processing speed. This problem is being solved using memory
hierarchy such as

 register cache RAM electronic disk magnetic disk optic disk↔ ↔ ↔ ↔ ↔

 To process an algorithm on a parallel processor system, we have several delays as
explained in Table 1.1 .

 1.8.3 Estimating Speedup Factor and
Communication Overhead

 Let us assume we have a parallel algorithm consisting of N independent tasks that
can be executed either on a single processor or on N processors. Under these ideal
circumstances, data travel between the processors and the memory, and there is no

c01.indd 16c01.indd 16 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.8 Measuring Benefi ts of Parallel Computing 17

interprocessor communication due to the task independence. We can write under
ideal circumstances

 T Np p()1 = τ (1.8)

 T Np p() .= τ (1.9)

 The time needed to read the algorithm input data by a single processor is given by

 T Nr m() ,1 = τ (1.10)

where τ m is memory access time to read one block of data. We assumed in the above
equation that each task requires one block of input data and N tasks require to read
 N blocks. The time needed by the parallel processors to read data from memory is
estimated as

 T N T Nr r m() () ,= =α α τ1 (1.11)

where α is a factor that takes into account limitations of accessing the shared
memory. α = 1/ N when each processor maintains its own copy of the required data.
 α = 1 when data are distributed to each task in order from a central memory. In the
worst case, we could have α > N when all processors request data and collide with
each other. We could write the above observations as

 T N Nr

m

m()

=
=

τ
τ

when Distributed memory

when Shared memory and no colliisions

when Shared memory with collisions>

⎧
⎨
⎪

⎩⎪ N mτ .

 (1.12)

 Writing back the results to the memory, also, might involve memory collisions when
the processor attempts to access the same memory module .

 T Nw m()1 = τ (1.13)

 T N T Nw w m() () .= =α α τ1 (1.14)

 For a single processor, the total time to complete a task, including memory access
overhead, is given by

 Table 1.1 Delays Involved in Evaluating an Algorithm on a Parallel Processor System

 Operation Symbol Comment

 Memory read T r (N) Read data from memory shared by N processors
 Memory write T w (N) Write data from memory shared by N processors
 Communicate T c (N) Communication delay between a pair of processors when

there are N processors in the system
 Process data T p (N) Delay to process the algorithm using N parallel processors

c01.indd 17c01.indd 17 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

18 Chapter 1 Introduction

T T T T

N
r p w

m p

total () () () ()
.

1 1 1 1

2

= + +
= +()τ τ

 (1.15)

 Now let us consider the speedup factor when communication overhead is
considered:

T N T N T N T N

N
r p w

m p

total () () () ()
.

= + +
= +2 ατ τ

 (1.16)

 The speedup factor is given by

S N
T

T N

N N

N
m p

m p

()
()

()

.

=

=
+
+

total

total

1

2

2

α τ τ
ατ τ

 (1.17)

 Defi ne the memory mismatch ratio (R) as

 R m

p

=
τ
τ

, (1.18)

 which is the ratio of the delay for accessing one data block from the memory relative
to the delay for processing one block of data. In that sense, τ p is expected to be
orders of magnitude smaller than τ m depending on the granularity of the subtask
being processed and the speed of the memory.

 We can write Eq. 1.17 as a function of N and R in the form

 S N R
RN N

RN
(,) .=

+
+

2

2 1

α
α

 (1.19)

 Figure 1.7 shows the effect of the two parameters, N and R , on the speedup when
 α = 1. Numerical simulations indicated that changes in α are not as signifi cant as
the values of R and N . From the above equation, we get full speedup when the
product RN << 1. This speedup is similar to Eq. 1.7 where communication overhead
was neglected.

 This situation occurs in the case of trivially parallel algorithms as will be dis-
cussed in Chapter 7 .

 Notice from the fi gure that speedup quickly decreases when RN > 0.1. When
 R = 1, we get a communication - bound problem and the benefi ts of parallelism
quickly vanish. This reinforces the point that memory design and communication
between processors or threads are very important factors. We will also see that
multicore processors, discussed in Chapter 3 , contain all the processors on the same
chip. This has the advantage that communication occurs at a much higher speed
compared with multiprocessors, where communication takes place across chips.
Therefore, T m is reduced by orders of magnitude for multicore systems, and this
should give them the added advantage of small R values.

c01.indd 18c01.indd 18 12/14/2010 1:39:37 PM12/14/2010 1:39:37 PM

1.9 Amdahl’s Law for Multiprocessor Systems 19

 The interprocessor communication overhead involves reading and writing data
into memory:

 T N Nc m() ,= β τ (1.20)

where β ≥ 0 and depends on the algorithm and how the memory is organized. β = 0
for a single processor, where there is no data exchange or when the processors in a
multiprocessor system do not communicate while evaluating the algorithm. In other
algorithms, β could be equal to log 2 N or even N . This could be the case when the
parallel algorithm programmer or hardware designer did not consider fully the cost
of interprocessor or interthread communications.

 1.9 AMDAHL ’ S LAW FOR MULTIPROCESSOR SYSTEMS

 Assume an algorithm or a task is composed of parallizable fraction f and a serial
fraction 1 − f . Assume the time needed to process this task on one single processor
is given by

 T N f Nf Np p p p() () ,1 1= − + =τ τ τ (1.21)

where the fi rst term on the right-hand side (RHS) is the time the processor needs to
process the serial part. The second term on RHS is the time the processor needs to
process the parallel part. When this task is executed on N parallel processors, the
time taken will be given by

 T N N f fp p p() () ,= − +1 τ τ (1.22)

where the only speedup is because the parallel part now is distributed over N
processors. Amdahl ’ s law for speedup S (N), achieved by using N processors, is
given by

 Figure 1.7 Effect of the two
parameters, N and R , on the
speedup when α = 1.

10
−4

10
−3

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

Memory Mismatch Ratio (R)

S
pe

ed
up

N = 2

N = 64

N = 256

N = 1,024

c01.indd 19c01.indd 19 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

20 Chapter 1 Introduction

S N
T

T N

N

f N f

f f N

p

p

()
()

()

()

() /
.

=

=
− +

=
− +

1

1

1

1

(1.23)

 To get any speedup, we must have

 1− <<f f N/ . (1.24)

 This inequality dictates that the parallel portion f must be very close to unity espe-
cially when N is large.

 Figure 1.8 shows the speedup versus f for different values of N . The solid line
is for f = 0.99; the dashed line is for f = 0.9; and the dotted line is for f = 0.5. We
note from the fi gure that speedup is affected by the value of f . As expected, larger
 f results in more speedup. However, note that the speedup is most pronounced when
 f > 0.5. Another observation is that speedup saturates to a given value when N
becomes large.

 For large values of N , the speedup in Eq. 1.23 is approximated by

 S N
f

N() .≈
−
1

1
1when � (1.25)

 This result indicates that if we are using a system with more than 10 processors,
then any speedup advantage is dictated mainly by how clever we are at discovering
the parallel parts of the program and how much we are able to execute those parallel
parts simultaneously. The fi gure confi rms these expectations.

 Figure 1.8 Speedup
according to Amdahl ’ s law. The
solid line is for f = 0.99; the
dashed line is for f = 0.9; and
the dotted line is for f = 0.5.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Number of Processors (N)

S
pe

ed
up

c01.indd 20c01.indd 20 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

1.10 Gustafson–Barsis’s Law 21

 For extreme values of f , Eq. 1.23 becomes

 S N f() = =1 0when completely serial code (1.26)

 S N N f() .= =when completely parallel code1 (1.27)

 The above equation is obvious. When the program is fully parallel, speedup will
be equal to the number of parallel processors we use.

 What do we conclude from this? Well, we must know or estimate the value of
the fraction f for a given algorithm at the start. Knowing f will give us an idea on
what system speedup could be expected on a multiprocessor system. This alone
should enable us to judge how much effort to spend trying to improve speedup by
mapping the algorithm to a multiprocessor system.

 1.10 GUSTAFSON – BARSIS ’ S LAW

 The predictions of speedup according to Amdahl ’ s law are pessimistic. Gustafson
 [15] made the observation that parallelism increases in an application when the
problem size increases. Remember that Amdahl ’ s law assumed that the fraction of
parallelizable code is fi xed and does not depend on problem size.

 To derive Gustafson – Barsis formula for speedup, we start with the N
parallel processors fi rst. The time taken to process the task on N processors is
given by

 T N f fp p p p() () .= − + =1 τ τ τ (1.28)

 When this task is executed on a single processor, the serial part is unchanged,
but the parallel part will increase as given by

 T f Nfp p p() () .1 1= − +τ τ (1.29)

 The speedup is given now by

S N

T

T N

f Nf

N f

p

p

()
()

()

()

() .

=

= − +
= + −

1

1

1 1

(1.30)

 Figure 1.9 shows the speedup versus f for different values of N . The solid line
is for f = 0.99; the dashed line is for f = 0.9; and the dotted line is for f = 0.5. Notice
that there is speedup even for very small values of f and the situation improves as
 N gets larger.

 To get any speedup, we must have

 f N() .−1 1� (1.31)

 Notice that we can get very decent speedup even for small values of f especially
when N gets large. Compared with inequality 1.24 , we note that the speedup con-
straints are very much relaxed according to Gustafson – Barsis ’ s law.

c01.indd 21c01.indd 21 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

22 Chapter 1 Introduction

 1.11 APPLICATIONS OF PARALLEL COMPUTING

 The availability of inexpensive yet really powerful parallel computers is expected
to make a hitherto unforeseeable impact on our lives. We are used now to parallel
computers helping us access any information through web search engines. In fact,
the search progresses as we are typing our search key words. However, there is room
for improvement and, more importantly, for innovation, as the following sections
illustrate.

 1.11.1 Climate Modeling

 Climate simulations are used for weather forecasting as well as for predicting global
climate changes based on different phenomena or human activities. As Reference 1
points out, the resolution of today ’ s climate models is 200 km. This is considered
low resolution given the fact that some climate systems exist completely within such
resolution scale.

 Assume a high - resolution model for climate simulation partitions the globe
using 3 - D cells 1 km in size in each direction. Assume also that the total surface of
the earth to be 510 × 10 6 km 2 and the thickness of the atmospheric layer to be
approximately 1,000 km. Then, we need to simulate approximately 5 × 10 11 weather
cells. Assume further that each cell needs to do 200 fl oating point operations for
each iteration of the simulation. Thus, we have to perform a total of 10 14 fl oating
point operations per iteration.

 Let us now assume that we need to run the simulation 10 6 times to simulate the
climate over some long duration of the weather cycle. Thus, we have the following
performance requirements for our computing system:

 Figure 1.9 Speedup
according to Gustafson – Barsis ’ s
law. The solid line is for
 f = 0.99; the dashed line is for
 f = 0.9; and the dotted line is
for f = 0.5.

10
0

10
1

10
2

10
3

10
0

10
1

10
2

Number of Processors (N)

S
pe

ed
up

 S
(N

)

c01.indd 22c01.indd 22 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

1.11 Applications of Parallel Computing 23

Total number of operations operations/iteration iterat= ×10 1014 6 iions

floating point operations= 1020
.

(1.32)

 A computer operating at a rate of 10 9 fl oating point operations per second
(FLOPS) would complete the operations in 10 11 seconds, which comes to about 31
centuries. Assuming that all these simulations should be completed in one workday,
then our system should operate at a rate of approximately 2.8 × 10 15 FLOPS. It is
obvious that such performance cannot be attained by any single - processor computer.
We must divide this computational task among many processors. Modeling the
atmosphere using a mesh or a grid of nodes lends itself to computational paralleliza-
tion since calculations performed by each node depend only on its immediate six
neighboring nodes. Distributing the calculations among several processors is rela-
tively simple, but care must be given to the exchange of data among the processors.
Table 1.2 compares building a parallel processor system needed to give us a perfor-
mance of 2.8 × 10 15 FLOPS. We assume using desktop microprocessors versus using
a simple embedded microprocessor [1] .

 The power advantage of using low - power, low - performance processors is
obvious from the table. Of course, we need to fi gure out how to interconnect such
a huge system irrespective of the type of processor used. The interconnection
network becomes a major design issue here since it would be impossible to think of
a system that uses buses and single global system clock.

 1.11.2 CT

 CT and magnetic resonance imaging (MRI) are techniques to obtain a high - resolution
map of the internals of the body for medical diagnosis. Figure 1.10 shows a simpli-
fi ed view of a CT system. Figure 1.10 a shows the placement of the patient on a
gurney at the center of a very strong magnet and a strong X - ray source. The gurney
is on a movable table in a direction perpendicular to the page. The X - ray source or
emitter is placed at the top and emits a collimated beam that travels to the other side
of the circle through the patient. An X - ray detector is placed diametrically opposite
to where the X - ray source is. When the machine is in operation, the source/detector
pair is rotated as shown in Fig. 1.10 b. After completing a complete rotation and
storing the detector samples, the table is moved and the process is repeated for a
different section or slice of the body. The output of a certain detector at a given time

 Table 1.2 Parallel Multicore Computer Implementation Using Two Types of
Microprocessors Needed to Perform 2.8 × 10 15 FLOPS

 Processor Clock speed GFLOPS/core Cores needed Power (MW)

 AMD Opteron 2.8 GHz 5.6 4.9 × 10 5 52.0
 Tensilica XTensa
LX2

 500.0 MHz 1.0 2.8 × 10 6 0.8

c01.indd 23c01.indd 23 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

24 Chapter 1 Introduction

is affected by all the patient tissue that a certain X - ray beam encounters in its passage
from the source to the detector. As things stand at the time of writing, the patient
needs to be in this position for several minutes if not hours (personal experience).

 Assume the image we are trying to generate is composed of N × N pixels, where
 N could be approximately equal to 4,000. Thus, we have approximately 10 7 pixels
to generate per image, or slice, of the body scan. As the table moves, more slices
should be generated. This allows for 3 - D viewing of the body area of concern. For
a system that generates S = 1,000 successive slices, SN 2 = 10 10 pixels will have to
be processed. A slice will require approximately N 2 (log 2 N) 3 calculations [16] . For
our case, we need approximately

Total number of operations operations/slice slices= ×

=
10 10

10

10 3

133 floating point operations
.

(1.33)

 Assume we need to generate these images in 1 second to allow for a real - time
examination of the patient. In that case, the system should operate at a rate of
approximately 10 13 FLOPS. For an even more accurate medical diagnosis, high -
 resolution computerized tomography (HRCT) scans are required even at the
nanoscale level where blood vessels need to be examined. Needless to say, parallel
processing of massive data will be required for a timely patient treatment.

 1.11.3 Computational Fluid Dynamics (CFD)

 CFD is a fi eld that is closely tied to parallel computers and parallel algorithms. It is
viewed as a cost - effective way to investigate and design systems that involve fl ow
of gas or fl uids. Some examples of CFD are:

 • ocean currents,

 • our atmosphere and global weather,

 Figure 1.10 Computerized tomography (CT) system. (a) Setup of X - ray sources and detectors.
(b) Schematic of the output of each sensor when a single X - ray source is active.

(a) (b)

Patient

X-Ray Sources

X-Ray Detectors

c01.indd 24c01.indd 24 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

1.12 Problems 25

 • blood fl ow in the arteries,

 • heart deformation during high - G maneuvers of a fi ghter jet,

 • air fl ow in the lungs,

 • design of airplane wings and winglets,

 • seat ejection in a fi ghter jet,

 • combustion of gases inside a car cylinder,

 • jet engine air intake and combustion chamber,

 • shape of a car body to reduce air drag, and

 • spray from nozzles such as paint guns and rocket exhaust .

 Typically, the region where the fl ow of interest is being studied is divided into
a grid or mesh of points using the fi nite element method. The number of grid points
depends on the size of the region or the desired resolution. A system of linear equa-
tions or a set differential equations is solved at each grid point for the problem
unknowns. The number of unknown might be around 10 3 , and each variable might
require around 10 3 fl oating point operations at each grid point.

 The targeted region of the CFD applications ranges from 10 12 to 10 18 FLOPS
 [17] . If the computer system operates at a speed of 10 9 (giga) FLOPS, then CFD
applications would complete a simulation in the time period that ranges between 15
minutes and 30 years. On the other hand, a parallel computer system operating at
10 12 (tera) FLOPS would complete the application in a time period between 1 second
and 12 days. Currently, there are few supercomputer systems that operate at the rate
of 10 15 (peta) FLOPS. On such a system, the larger problem would take about 3
minutes to complete.

 1.12 PROBLEMS

 1.1. Assume you are given the task of adding eight numbers together. Draw the DG and the
adjacency matrix for each of the following number adding algorithms:

 (1) Add the numbers serially, which would take seven steps.

 (2) Add the numbers in a binary fashion by adding each adjacent pair of numbers
in parallel and then by adding pairs of the results in parallel, and continue this
process.

 1.2. Derive general expressions for the number of tasks required to do the number adding
algorithms in Problem 1.1 when we have N = 2 n numbers to be added. What conclusion
do you make?

 1.3. Now assume that you have a parallel computer that can add the numbers in
Problem 1.1. The time required to add a pair of numbers is assumed 1. What would be
the time required to perform the two algoritnms for the case N = 2 n ? How much is the
speedup?

 1.4. Consider Problem 1.3. Now the parallel computers require a time C to obtain data from
memory and to communicate the add results between the add stages. How much
speedup is accomplished?

c01.indd 25c01.indd 25 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

26 Chapter 1 Introduction

 1.5. Which class of algorithms would the fast Fourier transform (FFT) algorithm belong to?

 1.6. Which class of algorithms would the quicksort algorithm belong to?

 1.7. The binary number multiplication problem in Chapter 2 could be considered as a RIA
algorithm. Draw the dependence graph of such an algorithm.

 1.8. The binary restoring division algorithm is based on the recurrence equation

 r r q D j nj j n j+ − −= − ≥ <1 12 ,

where r j is the partial remainder at the j th iteration; q k is the k th quotient bit; and D is
the denominator. It is assumed that the number of bits in the quotient is n and q n − 1 is
the quotient most signifi cant bit (MSB). What type of algorithm is this division
algorithm?

 1.9. A processor has clock frequency f , and it requires c clock cycles to execute a single
instruction. Assume a program contains I instructions. How long will the program take
before it completes ?

 1.10. Repeat Problem 1.9 when a new processor is introduced whose clock frequency is
 f ′ = 2 f and c ′ = 1.5 c .

 1.11. Give some examples of serial algorithms.

 1.12. Give some examples of parallel algorithms.

 1.13. Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of α .

 1.14. Consider the speedup factor for a fully parallel algorithm when communication over-
head is assumed. Comment on speedup for possible values of R .

 1.15. Write down the speedup formula when communication overhead is included and
the algorithm requires interprocessor communications Assume that each task in the
parallel algorithm requires communication between a pair of processors. Assume that
the processors need to communicate with each other m times to complete the
algorithm.

 1.16. Consider an SPA with the following specifi cations:

 Number of serial tasks per stage N s
 Number of serial tasks per stage N p
 Number of stages n

 Now assume that we have a single processor that requires τ to complete a task and it
consumes W watts while in operation. We are also given N = N p parallel but very slow
processors. Each processor requires r τ to complete a task and consumes W / r watts while
in operation, where r > 1 is a performance derating factor.

 (1) How long will the single processor need to fi nish the algorithm?

 (2) How much energy will the single processor consume to fi nish the algorithm?

 (3) How long will the multiprocessor need to fi nish the algorithm?

 (4) How much energy will the multiprocessor system consume to fi nish the
algorithm?

 (5) Write down a formula for the speedup.

 (6) Write down a formula for the energy ratio of the multiprocessor relative to the
single processor.

c01.indd 26c01.indd 26 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

1.12 Problems 27

 1.17. The algorithm for fl oating point addition can be summarized as follows:

 (1) Compare the exponents and choose the larger exponent.

 (2) Right shift the mantissa of the number with the smaller exponent by the amount of
exponent difference.

 (3) Add the mantissas.

 (4) Normalize the results.

 Draw a dependence graph of the algorithm and state what type of algorithm this is.

 1.18. The algorithm for fl oating point multiplication can be summarized as follows:

 (1) Multiply the mantissas.

 (2) Add the two exponents.

 (3) Round the multiplication result.

 (4) Normalize the result.

 Draw a dependence graph of the algorithm and state what type of algorithm this is.

 1.19. Discuss the algorithm for synthetic apperture radar (SAR).

 1.20. Discuss the Radon transform algorithm in two dimensions.

c01.indd 27c01.indd 27 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

c01.indd 28c01.indd 28 12/14/2010 1:39:38 PM12/14/2010 1:39:38 PM

