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HEAT CONDUCTION
FUNDAMENTALS

No subject has more extensive relations with the progress of industry and
the natural sciences; for the action of heat is always present, it penetrates all
bodies and spaces, it influences the processes of the arts, and occurs in all
the phenomena of the universe.

—Joseph Fourier, Théorie Analytique de la Chaleur, 1822 [1]

All matter when considered at the macroscopic level has a definite and precise
energy. Such a state of energy may be quantified in terms of a thermodynamic
energy function, which partitions energy at the atomic level among, for example,
electronic, vibrational, and rotational states. Under local equilibrium, the energy
function may be characterized by a measurable scalar quantity called tempera-
ture. The energy exchanged by the constituent particles (e.g., atoms, molecules,
or free electrons) from a region with a greater local temperature (i.e., greater
thermodynamic energy function) to a region with a lower local temperature is
called heat . The transfer of heat is classically considered to take place by conduc-
tion, convection, and radiation, and although it cannot be measured directly, the
concept has physical meaning because of the direct relationship to temperature.
Conduction is a specific mode of heat transfer in which this energy exchange
takes place in solids or quiescent fluids (i.e., no convective motion resulting from
the macroscopic displacement of the medium) from the region of high temper-
ature to the region of low temperature due to the presence of a temperature
gradient within the system. Once the temperature distribution T (r̂, t) is known
within the medium as a function of space (defined by the position vector r̂) and
time (defined by scalar t), the flow of heat is then prescribed from the gov-
erning heat transfer laws. The study of heat conduction provides an enriching
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2 HEAT CONDUCTION FUNDAMENTALS

combination of fundamental science and mathematics. As the prominent ther-
modynamicist H. Callen wrote: “The history of the concept of heat as a form
of energy transfer is unsurpassed as a case study in the tortuous development
of scientific theory, as an illustration of the almost insuperable inertia presented
by accepted physical doctrine, and as a superb tale of human ingenuity applied
to a subtle and abstract problem” [2]. The science of heat conduction is princi-
pally concerned with the determination of the temperature distribution and flow
of energy within solids. In this chapter, we present the basic laws relating the
heat flux to the temperature gradient in the medium, the governing differential
equation of heat conduction, the boundary conditions appropriate for the analysis
of heat conduction problems, the rules of coordinate transformation needed for
working in different orthogonal coordinate systems, and a general discussion of
the various solution methods applicable to the heat conduction equation.

1-1 THE HEAT FLUX

Laws of nature provide accepted descriptions of natural phenomena based on
observed behavior. Such laws are generally formulated based on a large body
of empirical evidence accepted within the scientific community, although they
usually can be neither proven nor disproven. To quote Joseph Fourier from the
opening sentence of his Analytical Theory of Heat : “Primary causes are unknown
to us; but are subject to simple and constant laws, which may be discovered by
observation” [1]. These laws are considered general laws , as their application
is independent of the medium. Well-known examples include Newton’s laws of
motion and the laws of thermodynamics. Problems that can be solved using only
general laws of nature are referred to as deterministic and include, for example,
simple projectile motion.

Other problems may require supplemental relationships in addition to the
general laws. Such problems may be referred to as nondeterministic, and their
solution requires laws that apply to the specific medium in question. These addi-
tional laws are referred to as particular laws or constitutive relations . Well-known
examples include the ideal gas law, the relationship between shear stress and the
velocity gradient for a Newtonian fluid, and the relationship between stress and
strain for a linear-elastic material (Hooke’s law).

The particular law that governs the relationship between the flow of heat and
the temperature field is named after Joseph Fourier. For a homogeneous, isotropic
solid (i.e., material in which thermal conductivity is independent of direction),
Fourier’s law may be given in the form

q ′′(r̂, t) = −k∇T (r̂, t) W/m2 (1-1)

where the temperature gradient ∇T (r̂, t) is a vector normal to the isothermal
surface, the heat flux vector q ′′(r̂, t) represents the heat flow per unit time, per unit
area of the isothermal surface in the direction of decreasing temperature gradient,
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and k is the thermal conductivity of the material. The thermal conductivity is
a positive, scalar quantity for a homogeneous, isotropic material. The minus
sign is introduced in equation (1-1) to make the heat flow a positive quantity
in the positive coordinate direction (i.e., opposite of the temperature gradient),
as described below. This text will consider the heat flux in the SI units W/m2

and the temperature gradient in K/m (equivalent to the unit oC/m), giving the
thermal conductivity the units of W/(m · K). In the Cartesian coordinate system
(i.e., rectangular system), equation (1-1) is written as

q ′′(x, y, z, t) = − îk
∂T

∂x
− ĵ k

∂T

∂y
− k̂k

∂T

∂z
(1-2)

where î,ĵ , and k̂ are the unit direction vectors along the x , y , and z directions,
respectively. One may consider the three components of the heat flux vector in
the x , y , and z directions, respectively, as given by

q ′′
x = −k

∂T

∂x
q ′′

y = −k
∂T

∂y
and q ′′

z = −k
∂T

∂z
(1-3a,b,c)

Clearly, the flow of heat for a given temperature gradient is directly propor-
tional to the thermal conductivity of the material. Equation (1-3a) is generally
used for one-dimensional (1-D) heat transfer in a rectangular coordinate system.
Figure 1-1 illustrates the sign convention of Fourier’s law for the 1-D Carte-
sian coordinate system. Both plots depict the heat flux (W/m2) through the plane
at x = x0 based on the local temperature gradient. In Figure 1-1(a), the gradi-
ent dT/dx is negative with regard to the Cartesian coordinate system; hence the
resulting flux is mathematically positive, and by convention is in the positive x
direction , as shown in the figure. In contrast, Figure 1-1(b) depicts a positive gra-
dient dT/dx . This yields a mathematically negative heat flux, which by convention

″ ″

(a) (b)

Figure 1-1 Fourier’s law illustrated for a (a) positive heat flux and (b) a negative heat
flux.
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is in the negative x direction, as indicated in the figure. As defined, Fourier’s law
is directly tied to the coordinate system, with positive heat flux always flowing in
the positive coordinate direction. While determining the actual direction of heat
flow is often trivial for 1-D problems, multidimensional problems, and notably
transient problems, can present considerable difficulty in determining the direc-
tion of the local heat flux terms. Adherence to the sign convention of Fourier’s
law will avoid any such difficulties of flux determination, which is useful in the
context of overall energy conservation for a given heat transfer problem.

In addition to the heat flux, which is the flow of heat per unit area normal to
the direction of flow (e.g., a plane perpendicular to the page in Fig. 1-1), one may
define the total heat flow, often called the heat rate, in the unit of watts (W). The
heat rate is calculated by multiplying the heat flux by the total cross-sectional
area through which the heat flows for a 1-D problem or by integrating over the
area of flow for a multidimensional problem. The heat rate in the x direction
for one-, two-, and three-dimensional (1-D, 2-D, and 3-D) Cartesian problems is
given by

qx = −kAx

dT

dx
W (1-4)

qx = −kH
∫ L

y=0

∂T (x, y)

∂x
dy W (1-5)

qx = −k

∫ L

y=0

∫ H

z=0

∂T (x, y, z)

∂x
dz dy W (1-6)

where Ax is the total cross-sectional area for the 1-D problem in equation (1-4).
The total cross-sectional area for the 2-D problem in equation (1-5) is defined by
the surface from y = 0 to L in the second spatial dimension and by the length H
in the z direction, for which there is no temperature dependence [i.e., T �= f (z)].
The total cross-sectional area for the 3-D problem in equation (1-6) is defined
by the surface from y = 0 to L and z = 0 to H in the second and third spatial
dimensions, noting that T = f (x, y, z).

1-2 THERMAL CONDUCTIVITY

Given the direct dependency of the heat flux on the thermal conductivity via
Fourier’s law, the thermal conductivity is an important parameter in the analysis
of heat conduction. There is a wide range in the thermal conductivities of various
engineering materials. Generally, the highest values are observed for pure metals
and the lowest value by gases and vapors, with the amorphous insulating materials
and inorganic liquids having thermal conductivities that lie in between. There are
important exceptions. For example, natural type IIa diamond (nitrogen free) has
the highest thermal conductivity of any bulk material (∼2300 W/m · K at ambient
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temperature), due to the ability of the well-ordered crystal lattice to transmit
thermal energy via vibrational quanta called phonons . In Chapter 16, we will
explore in depth the physics of energy carriers to gain further insight into this
important material property.

To give some idea of the order of magnitude of thermal conductivity for
various materials, Figure 1-2 illustrates the typical range for various material
classes. Thermal conductivity also varies with temperature and may change with
orientation for nonisotropic materials. For most pure metals the thermal conduc-
tivity decreases with increasing temperature, whereas for gases it increases with
increasing temperature. For most insulating materials it increases with increasing
temperature. Figure 1-3 provides the effect of temperature on the thermal conduc-
tivity for a range of materials. At very low temperatures, thermal conductivity
increases rapidly and then exhibits a sharp decrease as temperatures approach
absolute zero, as shown in Figure 1-4, due to the dominance of energy carrier
scattering from defects at extreme low temperatures. A comprehensive compila-
tion of thermal conductivities of materials may be found in references 3–6. We
present in Appendix I the thermal conductivity of typical engineering materials
together with the specific heat cp, density ρ, and the thermal diffusivity α. These
latter properties are discussed in more detail in the following section.

Figure 1-2 Typical range of thermal conductivity of various material classes.
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Figure 1-3 Effect of temperature on thermal conductivity.

1-3 DIFFERENTIAL EQUATION OF HEAT CONDUCTION

We now derive the differential equation of heat conduction, often called the heat
equation , for a stationary, homogeneous, isotropic solid with heat generation
within the body. Internal heat generation may be due to nuclear or chemical
reactivity, electrical current (i.e., Joule heating), absorption of laser light, or
other sources that may in general be a function of time and/or position. The heat
equation may be derived using either a differential control volume approach or
an integral approach. The former is perhaps more intuitive and will be presented
first, while the latter approach is more general and readily extends the derivation
to moving solids.
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Figure 1-4 Thermal conductivity of metals at low temperatures.

The differential control volume is defined in Figure 1-5 for the Cartesian
coordinate system. The corresponding volume and mass of the differential control
volume are defined, respectively, as

dv = dx dy dz and dm = ρdx dy dz (1-7)

where ρ is the mass density (kg/m3) of the control volume. The differential
approach will assume a continuum such that all properties do not vary
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Figure 1-5 Differential control volume for derivation of the heat equation in Cartesian
coordinates.

microscopically. The continuum assumption may be considered in terms of ε, a
volume much larger than individual atoms. If we let Lc be the smallest length
scale of interest for the heat transfer problem, then the continuum assumption is
considered justified for the condition

ε � L3
c (1-8)

Limitations on the continuum approach for the heat equation and Fourier’s law
are discussed in Chapter 16.

We begin with a general statement of conservation of energy based on the first
law of thermodynamics, namely,

(
h + 1

2
V

2 + gz

)
in

δṁin −
(

h + 1

2
V

2 + gz

)
out

δṁout

+ δQ̇ + δĖgen − δẆ = dEcv

dt
(1-9)

where δṁin and δṁout represent the mass flow rates in and out of the differential
control volume, respectively. We will derive the heat equation for a quiescent
medium , hence the mass flow rates are zero, and assume that the rate of work
done by the control volume is zero (δẆ = 0). The rate of change of energy
within the control volume may be expanded as

dEcv

dt
= d

dt

[(
u + 1

2
V

2 + gz

)
cv

dm

]
(1-10)

where u is the internal energy (J/kg), an intensive, scalar property associated with
the thermodynamic state of the system. Neglecting any changes in the kinetic
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and potential energy of the control volume, and applying the above assumptions,
conservation of energy becomes

δQ̇ + δĖgen = d(u dm)

dt
(1-11)

where δĖgen (W) represents the rate at which energy is generated within the
control volume due to internal energy generation as described above, and δQ̇ (W)
represents the net rate of heat transfer into the control volume, with positive δQ̇

representing heat transfer into the system. We may now consider equation (1-11)
term by term.

The net rate of heat transfer is given in terms of the heat rate in and out of
the control volume, namely,

δQ̇ = (
qx − qx+dx

) + (
qy − qy+dy

) + (
qz − qz+dz

)
(1-12)

where the individual, entering heat rate terms may be defined using Fourier’s
law and the respective cross-sectional areas, as given by equation (1-4) for the
x direction:

qx = −kAx

∂T

∂x
where Ax = dy dz (1-13)

qy = −kAy

∂T

∂y
where Ay = dx dz (1-14)

qz = −kAz

∂T

∂z
where Az = dx dy (1-15)

The individual, exiting heat rate terms may be defined using a Taylor series
expansion of the entering terms. Neglecting higher-order terms, for the x direction
this term becomes

qx+dx = qx + ∂qx

∂x
dx = −kAx

∂T

∂x
+ ∂

∂x

(
−kAx

∂T

∂x

)
dx (1-16)

Using equations (1-13) and (1-16), the net heat rate entering the differential
control volume from the x direction becomes

qx − qx+dx = ∂

∂x

(
k
∂T

∂x

)
dx dy dz (1-17)

Similarly, the net heat rate in the y and z directions becomes

qy − qy+dy = ∂

∂y

(
k
∂T

∂y

)
dx dy dz (1-18)

qz − qz+dz = ∂

∂z

(
k
∂T

∂z

)
dx dy dz (1-19)

Equations (1-17)–(1-19) may now be substituted in equation (1-12).
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The rate of internal energy generation (W) may be directly calculated from
the volumetric rate of internal energy generation g (W/m3), noting that in general
g = g(r̂, t), and the control volume, namely,

δĖgen = g dx dy dz (1-20)

Finally, the rate of change of energy within the control volume may be defined
by introducing the constant volume specific heat cv (J/ kg · K), namely,

cv ≡ ∂u

∂T

∣∣∣∣
v

→ u = cvT + uref (1-21)

noting that for an incompressible solid or fluid, cv = cp = c, with the middle
quantity defined as the constant pressure specific heat. Equation (1-21) may be
substituted into the right-hand side of equation (1-11), which along with the
assumption of constant properties ρ and c yields the net rate of change of energy
within the control volume as

d(u dm)

dt
= ρc

∂T

∂t
dx dy dx (1-22)

The above expressions may now be introduced into equation (1-11) to pro-
vide the general heat equation for the Cartesian coordinate system, which after
cancelation of the dx dy dz terms yields

∂

∂x

(
k
∂T

∂x

)
+ ∂

∂y

(
k
∂T

∂y

)
+ ∂

∂z

(
k
∂T

∂z

)
+ g = ρc

∂T

∂t
(1-23)

where each term has the units W/m3. In simple terms, the heat equation expresses
that the net rate of heat conducted per differential volume plus the rate of energy
generated internally per volume is equal to the net rate of energy stored per
differential volume. The heat equation may be expressed in several additional
forms, including using vector notation:

∇ · (k∇T ) + g = ρc
∂T

∂t
(1-24)

where ∇ is the vector differential operator [∇ = î(∂/∂x) + ĵ (∂
/
∂y) + k̂(∂/∂z)].

When the thermal conductivity is a constant, equation (1-23) may be written in
the form

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
+ g

k
= 1

α

∂T

∂t
(1-25)

where each term now has the units K/m2. The thermal diffusivity (m2/s), which
appears on the right-hand side, is defined as

α = k

ρc
(1-26)
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and represents a thermal-physical property of the medium. The physical signifi-
cance of thermal diffusivity is associated with the speed of propagation of heat
into the solid during changes of temperature. In other words, the thermal diffusiv-
ity represents the flow of heat (i.e., conduction of heat) compared to the storage
of energy (i.e., heat capacity). The higher the thermal diffusivity, the faster is
the response of a medium to thermal perturbations, and the faster such changes
propagate throughout the medium. This statement is better understood by refer-
ring to the following heat conduction problem: Consider a semi-infinite medium,
x ≥ 0, initially at a uniform temperature T0. For times t > 0, the boundary surface
at x = 0 is suddenly reduced to and kept at zero temperature. Clearly, the tem-
perature within the medium will now vary with position and time. Suppose we
are interested in the time required for the temperature to decrease from its initial
value T0 to half of this value, 1

2T0, at a position, say, 30 cm from the boundary
surface. Table 1-1 gives the time required for this change for several different
materials. It is apparent from these results that the greater the thermal diffusivity,
the shorter is the time required for the boundary perturbation to penetrate into the
depth of the solid. It is important to note, therefore, that the thermal response of
a material depends not only on the thermal conductivity but also on the density
and specific heat.

For a medium with constant thermal conductivity, no internal heat generation,
and under steady-state conditions (i.e., ∂T /∂t = 0), the heat equation takes the
form

∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2
= 0 or ∇2T = 0 (1-27)

which is known as Laplace’s equation , after the French mathematician Pierre-
Simon Laplace.

We now present the integral formulation of the heat equation by considering
the energy balance for a small control volume V , as illustrated in Figure 1-6.
Conversation of energy may be stated as

[
Rate of heat entering through

the bounding surface of V

]
+

[
Rate of energy

generation in V

]
=

[
Rate of energy

storage in V

]

(1-28)
Each term in equation (1-28) may now be evaluated individually, beginning
with the rate of heat entering through the boundary. This can be calculated by

TABLE 1-1 Effect of Thermal Diffusivity on Rate of Heat Propagation

Material Silver Copper Steel Glass Cork

α × 106 m2/s 170 103 12.9 0.59 0.16
Time 9.5 min 16.5 min 2.2 h 2.0 days 7.7 days
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′′

Figure 1-6 Control volume for integral formulation of the heat equation.

integrating the surface heat flux normal to the surface over the entire surface area
of the control volume, as given by

[
Rate of heat entering through

the bounding surface of V

]
= −

∫
A

q ′′ · n̂dA = −
∫

V

∇ · q ′′dv (1-29)

where A is the surface area of the control volume V , n̂ is the outward-drawn
normal vector to the surface element dA, and q ′′(r̂, t) is the heat flux vector at
the surface element dA. The minus sign is introduced to ensure that the heat
flow is positive into the control volume in consideration of the negative sign in
Fourier’s law per equation (1-1). The divergence theorem , also known as Gauss’
theorem, is then used to transform the surface integral into a volume integral,
yielding the final form above.

We next consider the rate of energy generation within the control volume,
which is readily evaluated by integrating the volumetric energy generation, as
defined above, over the control volume

[
Rate of energy

generation in V

]
=

∫
V

g(r̂, t)dv (1-30)

For the rate of storage within the control volume, it is first useful to define the
material or total derivative in terms of Eulerian derivatives for a generic property
λ(r̂, t), namely,

Dλ

Dt
≡ ∂λ

∂t
+ u

∂λ

∂x
+ v

∂λ

∂y
+ w

∂λ

∂z
(1-31)

where the velocity vector û has the components

û = uî + vĵ + wk̂ (1-32)

We now introduce Reynolds transport theorem , which allows one to readily calcu-
late the material derivative of a volume integral. Again using our generic property
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λ, Reynolds transport theorem may be expressed as

D

Dt

∫
V

λ(r̂, t)dv =
∫

V

[
∂λ

∂t
+ ∇ · (λû)

]
dv (1-33)

For the rate of change of energy within the control volume, we want our generic
property λ to specifically equal the energy per unit volume (J/m3). Using our def-
inition of constant volume specific heat, this is accomplished by letting λ(r̂, t) =
ρcT (r̂, t). Substituting into equation (1-33) yields

[
Rate of energy

storage in V

]
= D

Dt

∫
V

ρcT (r̂, t)dv =
∫

V

ρc

[
∂T

∂t
+ ∇ · (T û)

]
dv (1-34)

Now all three rate terms of equation (1-28) are expressed as volume inte-
grals, namely equations (1-29), (1-30), and (1-34), which may be brought into a
common integral, yielding

∫
V

{
−∇ · q ′′ + g − ρc

[
∂T

∂t
+ ∇ · (T û)

]}
dv = 0 (1-35)

Because equation (1-35) is derived for an arbitrary control volume V, the only
way it is satisfied for all choices of V is if the integrand itself is zero. With this
condition, equation (1-35) becomes

−∇ · q ′′ + g = ρc

[
∂T

∂t
+ ∇ · (T û)

]
(1-36)

This equation can now be simplified further by expanding the rightmost term,

∇ · (T û) = T (∇ · û) + û · ∇T (1-37)

and noting that ∇ · û = 0 per continuity for an incompressible medium. We then
insert equation (1-1) for the heat flux vector in the left-hand side (LHS). Making
these substitutions yields the desired final form of the conduction heat equation,

∇ · (k∇T ) + g = ρc

[
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z

]
(1-38)

Equation (1-38) is valid for an incompressible, moving solid , assuming con-
stant ρc. Overall, the bulk motion of the solid is regarded to give rise to con-
vective or enthalpy fluxes, namely, in the x, y , and z directions, in addition to
the conduction fluxes in these same directions. With these considerations, the
components of the heat flux vector q ′′(r̂, t) are taken as

q ′′
x = −k

∂T

∂x
+ ρcT u (1-39a)
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q ′′
y = −k

∂T

∂y
+ ρcT v (1-39b)

q ′′
z = −k

∂T

∂z
+ ρcT w (1-39c)

Clearly, on the right-hand sides (RHS) of the above three equations, the first term
is the conduction heat flux and the second term is the convective heat flux due to
the bulk motion of the solid. For the case of no motion (i.e., quiescent medium),
the terms u = v = w = 0 and equation (1-38) reduces exactly to equation (1-24).

1-4 FOURIER’S LAW AND THE HEAT EQUATION IN CYLINDRICAL
AND SPHERICAL COORDINATE SYSTEMS

Here we present Fourier’s law and the heat conduction equation for other orthogo-
nal curvilinear coordinate systems , namely, cylindrical and spherical coordinates.
The heat equations may be directly derived using a differential control volume
in the respective coordinate systems, following the approach of Section 1-3, or
they may be obtained using the appropriate coordinate transformation into cylin-
drical or spherical coordinates. The results are presented here without derivation,
although the respective differential control volumes are defined.

The expression for the heat flux vector (i.e., Fourier’s law) in each new coor-
dinate system may be given by the three principal components

q ′′
i = −k

1

ai

∂T

∂ui

for i = 1, 2, 3, . . . (1-40)

where u1, u2, and u3 are the curvilinear coordinates, and the coefficients a1, a2,
and a3 are the coordinate scale factors , which may be constants or functions of
the coordinates. The expressions for the scale factors are derived for a general
orthogonal curvilinear system by Özisik [7].

We will first consider the cylindrical coordinate system , as shown in Figure 1-7
along with a representative differential control volume. Using the appropriate
scale factors, the three components of heat flux in the r , φ and z directions,
respectively, become

q ′′
r = −k

∂T

∂r
q ′′

φ = −k

r

∂T

∂φ
and q ′′

z = −k
∂T

∂z
(1-41a,b,c)

By inspection, it is seen that the scale factors ar and az are unity, while the
scale factor aφ = r. This scale factor also provides the correct units for flux,
as the gradient term, ∂T

/
∂φ, in the φ direction (K/rad) is missing the spatial

dimension. In the cylindrical coordinate system, the heat equations (1-23) and
(1-25) become, respectively,
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Figure 1-7 Cylindrical coordinate system and representative differential control volume.

1

r

∂

∂r

(
kr

∂T

∂r

)
+ 1

r2

∂

∂φ

(
k
∂T

∂φ

)
+ ∂

∂z

(
k
∂T

∂z

)
+ g = ρc

∂T

∂t
(1-42)

1

r

∂

∂r

(
r
∂T

∂r

)
+ 1

r2

∂2T

∂φ2
+ ∂2T

∂z2
+ g

k
= 1

α

∂T

∂t
(1-43)

We now consider the spherical coordinate system , as shown in Figure 1-8
along with a representative differential control volume. Using the appropriate
scale factors, the three components of heat flux in the r , φ and θ directions
become, respectively,

q ′′
r = −k

∂T

∂r
q ′′

φ = − k

r sin θ

∂T

∂φ
and q ′′

θ = −k ∂T

r ∂θ
(1-44a,b,c)

By inspection, it is seen now that only the scale factor ar is unity, while the
scale factors aφ = r sin θ and aθ = r. As before, these scale factors also provide
the correct units for flux, as the gradient terms in both the φ and θ directions
(K/rad) are missing the spatial dimension. In the spherical coordinate system, the
heat equations (1-23) and (1-25) become, respectively,

1

r2

∂

∂r

(
kr2 ∂T

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
k sin θ

∂T

∂θ

)
+ 1

r2 sin2 θ

∂

∂φ

(
k
∂T

∂φ

)
+ g=ρc

∂T

∂t

(1-45)
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Figure 1-8 Spherical coordinate system and representative differential control volume.
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sin θ

∂T

∂θ
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+ 1

r2 sin2 θ

∂2T

∂φ2
+ g

k
= 1

α

∂T

∂t

(1-46)

1-5 GENERAL BOUNDARY CONDITIONS AND INITIAL CONDITION
FOR THE HEAT EQUATION

The differential equation of heat conduction, see, for example, equation (1-25),
will require two boundary conditions for each spatial dimension, as well as one
initial condition for the non–steady-state problem. The initial condition specifies
the temperature distribution in the medium at the origin of the time coordinate,
that is, T (r̂, t = 0), and the boundary conditions specify the temperature or the
heat flux at the boundaries of the region. For example, at a given boundary sur-
face, the temperature distribution may be prescribed, or the heat flux distribution
may be prescribed, or there may be heat exchange by convection and/or radiation
with an environment at a prescribed temperature. The boundary condition can
be derived by writing an energy balance equation at the surface of the solid.
Prior to considering formal boundary conditions, it is useful to define two addi-
tional particular laws for heat transfer, namely, for radiation and convection heat
transfer.

The Stefan–Boltzmann law [8, 9] describes the heat flux emitted from a surface
by radiation heat transfer

q ′′
rad = εσT 4 W/m2 (1-47)
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where ε is the total, hemispherical emissivity of the surface, and σ is the
Stefan–Boltzmann constant, given as σ = 5.670 × 10−8 W/(m2 · K4). As
presented, equation (1-47) represents energy radiated into all directions and over
all wavelengths. The total, hemispherical emissivity represents an integration of
the spectral, directional emissivity over all directions and wavelengths. Because
the weighting of the spectral emissivity is by the Planck distribution, ε is in
general a function of the surface temperature for a nongray surface (i.e., a
surface for which the properties vary with wavelength).

A commonly used approximation for the net radiation heat flux between a
surface and a surrounding medium is given as

q ′′
rad = εσ (T 4 − T 4

∞) W/m2 (1-48)

where T∞ is the temperature of the ambient, surrounding medium. Equation
(1-48) assumes that the ambient surroundings form an ideal enclosure, which is
satisfied if the surroundings are isothermal and of a much larger surface area,
and assumes that the emitting surface is a gray body (i.e., neglect the wavelength
dependency of the surface’s emissivity and absorptivity).

Newton’s law of cooling describes the heat flux to or from a surface by con-
vection heat transfer

q ′′
conv = h(T − T∞) W/m2 (1-49)

where T∞ is the reference temperature of the surrounding ambient fluid (e.g.,
liquid or gas) and h is the convection heat transfer coefficient of units W/(m2 · K).
Equation (1-49) is not tied to the overall coordinate system; hence positive heat
flux is considered in the direction of the surface normal (i.e., away from the
surface). Unlike Fourier’s law and the Stefan–Boltzmann law, Newton’s law is
not so much a particular law as it is the definition of the heat transfer coefficient,
namely,

h = q ′′
conv

T − T∞
W/(m2 · K) (1-50)

which reflects the dependency of h on the actual heat flux, and the difference
between the surface temperature and a suitable reference temperature. Here the
heat transfer coefficient h varies with the type of flow (laminar, turbulent, etc.),
the geometry of the body and flow passage area, the physical properties of the
fluid, the average surface and fluid temperatures, and many other parameters. As
a result, there is a wide difference in the range of values of the heat transfer
coefficient for various applications. Table 1-2 lists the typical values of h , in our
units W/(m2 · K), encountered in some applications.

To now develop the general boundary conditions, we consider conservation
of energy at the surface, assumed to be stationary, noting that no energy can
be accumulated (i.e., stored) at an infinitely thin surface. Figure 1-9 depicts a
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TABLE 1-2 Typical Values of Convective Heat Transfer Coefficient

Type of Flowa h , W/(m2 · K)

Free Convection , �T = 25 K
0.25-m vertical plate in:

Atmospheric air 5
Engine oil 40
Water 440

0.02-m (OD) horizontal cylinder in:
Atmospheric air 10
Engine oil 60
Water 740

Forced Convection
Atmospheric air at 25 K with U ∞ = 10 m/s over L = 0.1-m

flat plate
40

Flow at 5 m/s across 1-cm (OD) cylinder of:
Atmospheric air 90
Engine oil 1,800

Water flow at 1 kg/s inside 2.5-cm (ID) tube 10,500
Boiling of Water at 1 atm

Pool boiling in a container 3,000
Pool boiling at peak heat flux 35,000
Film boiling 300

Condensation of Steam at 1 atm
Film condensation on horizontal tubes 9,000–25,000
Film condensation on vertical surfaces 4,000–11,000
Dropwise condensation 60,000–120,000

aOD = outer diameter and ID = inner diameter.

T∞2

T∞1

q ′′rad

q ′′cond

q ′′conv

Tsurface

n

h

^

Figure 1-9 Energy balance at surface of a solid.



GENERAL BOUNDARY CONDITIONS AND INITIAL CONDITION 19

surface having an outward-drawn unit normal vector, n̂, that is in the positive
coordinate direction, subjected to convection heat transfer with some fluid, and
to radiation heat transfer with an ideal surrounding. Conservation of energy at
the surface boundary takes the form

q ′′
in = q ′′

out (1-51)
or

−k
∂T

∂n

∣∣∣∣
surface

= h(T |surface − T∞1
) + εσ (T 4

∣∣
surface − T 4

∞2
) (1-52)

In equation (1-52), Fourier’s law follows our sign convention of positive flux
in the positive coordinate direction, while Newton’s law follows our convention
of positive flux in the direction of the surface normal. The Stefan–Boltzmann
law yields a positive flux away from the surface when the surface temperature
is greater than the surrounding medium. Note also that the dependent variable T
on the right-hand side is considered the value of T at the surface.

It is also useful to classify a given boundary or initial condition as either
homogeneous or nonhomogeneous . A homogeneous condition is one in which
all nonzero terms in the expression contain the dependent variable, T (r̂, t) in
our case, or its derivative. The concept of homogeneous and nonhomogeneous
boundary and initial conditions lies at the very core of the method of separation
of variables that will be considered in the following chapters. In our treatment,
for the analytic solution of linear heat conduction problems, we shall consider
the following three types of linear boundary conditions.

1. Boundary Condition of the First Type (Prescribed Temperature). This is
the situation when the temperature is prescribed at the boundary surface, that is,

T |surface = T0 (1-53a)
or

T |surface = f (r̂, t) (1-53b)

where T 0 is a prescribed constant temperature, and where f (r̂, t) is the prescribed
surface temperature distribution that is, in general, a function of position and time.
The special case of zero temperature on the boundary

T |surface = 0 (1-54)

is called the homogeneous boundary condition of the first type. In mathematics,
boundary conditions of the first type are called Dirichlet boundary conditions .

2. Boundary Condition of the Second Type (Prescribed Heat Flux). This is
the situation in which the heat flux is prescribed at the boundary surface, that is,

−k
∂T

∂n

∣∣∣∣
surface

= q ′′
0 (1-55a)
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or

−k
∂T

∂n

∣∣∣∣
surface

= f (r̂, t) (1-55b)

where ∂T /∂n is the derivative along the outward-drawn normal to the surface, q ′′
0

is a prescribed constant heat flux (W/m2), and f (r̂, t) is the prescribed surface
heat flux distribution that is, in general, a function of position and time. The
special case of zero heat flux at the boundary

∂T

∂n

∣∣∣∣
surface

= 0 (perfectly insulated or adiabatic) (1-56)

is called the homogeneous boundary condition of the second type. In mathematics,
boundary conditions of the second type (i.e., prescribed derivative values) are
called Neumann boundary conditions .

3. Boundary Condition of the Third Type (Convection). This is the pure
convection boundary condition, which is readily obtained from equation (1-52)
by setting the radiation term to zero, that is,

−k
∂T

∂n

∣∣∣∣
surface

= h
[
T |surface − T∞

]
(1-57a)

For generality, the ambient fluid temperature T∞ may assumed to be a function
of position and time, yielding

−k
∂T

∂n

∣∣∣∣
surface

= h
[
T |surface − T∞(r̂, t)

]
(1-57b)

The special case of zero fluid temperature (T∞ = 0), as given by

−k
∂T

∂n

∣∣∣∣
surface

= h T |surface (1-58)

is called the homogeneous boundary condition of the third type, since the depen-
dent variable or its derivative now appears in all nonzero terms. This represents
convection into a fluid medium at zero temperature, noting that a common prac-
tice is to redefine or shift the temperature scale such that the fluid temperature
is now zero, as discussed in more detail in Section 1-8. A convection bound-
ary condition is physically different than type 1 (prescribed temperature) or
type 2 (prescribed flux) boundary conditions in that the temperature gradient
within the solid at the surface is now coupled to the convective flux at the
solid–fluid interface. Neither the flux nor the temperature are prescribed, but
rather, a balance between conduction and convection is forced, see equation (1-
51), with the exact surface temperature and surface heat flux determined by the
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combination of convection coefficient, thermal conductivity, and ambient fluid
temperature. Clearly, the boundary conditions of the first and second type can
be obtained from the type 3 boundary condition as special cases if k and h are
treated as coefficients. For example, by setting hT∞(r̂, t) ≡ f (r̂, t) and then let-
ting h = 0 in the first term of the right-hand side, equation (1-57b) reduces to
equation (1-55b).

A few final words are offered with regard to these three important boundary
conditions. Mathematically speaking, convection boundary conditions provide the
greatest complexity; however, from a physical point of view they are the simplest
to realize in that many actual systems are governed by a natural energy balance
between conduction and convection; hence no active control is necessary. In con-
trast, prescribed temperature boundary conditions, while mathematically simple,
are actually rather difficult to realize in practice in that they are nearly always
associated with surface heat flux. Therefore, for a transient problem, a constant
temperature boundary condition necessitates a controlled, time-dependent surface
heat flux to maintain the prescribed temperature. This is often difficult to achieve
in practice. A prescribed temperature boundary condition is perhaps best realized
when a physical phase change (e.g., evaporation/boiling) occurs on the surface.
Such is the case of spray cooling with phase change heat transfer in which the
surface will remain constant at the boiling point (i.e., saturation temperature) of
the coolant fluid provided that sufficient coolant is applied to maintain a wetted
surface and sufficient heat flux is present. Alternatively, the constant temperature
boundary condition may be thought of as the limiting case of a convective bound-
ary condition as h → ∞, yielding Tsurface = T∞= constant. Boundary conditions
of the second type may physically correspond to heaters (e.g., thin electric strip
heaters) attached to the surface, which with low contact resistance and proper
control can provide a prescribed heat flux condition.

In addition to the three linear boundary conditions discussed above, other
boundary conditions are now considered here.

4. Interface Boundary Conditions . When two materials having different ther-
mal conductivities k1 and k2 are in imperfect thermal contact and have a common
boundary as illustrated in Figure 1-10, the temperature profile through the solids
experiences a sudden drop across the interface between the two materials. The
physical significance of this temperature drop is envisioned better if we consider
an enlarged view of the interface as shown in this figure, and note that actual
solid-to-solid contact takes place at a limited number of spots, and that the void
between them is filled with air (or other interfacial fluid), which is the surround-
ing fluid. As the thermal conductivity of air is much smaller than that of many
solids (e.g., metals), a steep temperature drop occurs across the gap.

To develop the boundary condition for such an interface, we write the energy
balance as

(
Heat conduction

in solid 1

)
=

(
Heat transfer

across the gap

)
=

(
Heat conduction

in solid 2

)
(1-59a)
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Figure 1-10 Boundary conditions at interface of two contacting solid surfaces.

q ′′
i = −k1

∂T1

∂x

∣∣∣∣
i

= hc(T1 − T2)i = −k2
∂T2

∂x

∣∣∣∣
i

(1-59b)

where subscript i denotes the interface, and hc, in units W/(m2 · K), is called
the contact conductance for the interface. Equation (1-59b) provides two expres-
sions for the boundary condition at the interface of two contacting solids, which
together are generally called the interface boundary conditions . It is also com-
mon to consider the reciprocal of the contact conductance as the thermal contact
resistance, R′′

c , in units of (m2 · K)/W.
For the special case of perfect thermal contact between the surfaces, we have

hc → ∞, and equation (1-59b) is replaced with the following:

T1

∣∣
i
= T2

∣∣
i

at the surface interface (1-60a)

− k1
∂T1

∂x

∣∣∣∣
i

= −k2
∂T2

∂x

∣∣∣∣
i

at the surface interface (1-60b)

where equation (1-60a) is the continuity of temperature, and equation (1-60b) is
the continuity of heat flux at the interface (i.e., conservation of energy).

Overall, the surface roughness, the interface contact pressure and tempera-
ture, thermal conductivities of the contacting solids, and the type of fluid in the
gap are the principal factors that affect contact conductance. The experimentally
determined values of contact conductance for typical materials in contact can be
found in references 10–12.

To illustrate the effects of various parameters such as the surface roughness,
the interface temperature, the interface pressure, and the type of material, we
present in Table 1-3 the interface thermal contact conductance hc for various
material combinations. The results show that interface conductance increases with
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TABLE 1-3 Interface Contact Conductance for Representative Solid–Solid
Interfaces

Contact Interfacial
Interface Pressure, atm Fluid hc, W/(m2 · K)

Stainless steel to stainless steel
[10] (0.76 μm roughness)

10 Air 9,000–11,500
20 Air 10,000–12,000

Stainless steel to stainless steel
[10] (2.5 μm roughness)

10 Air 2,800–4,000
20 Air 3,100–4,200

Aluminum to aluminum [10]
(3 μm roughness)

10 Air 6,000–15,000
20 Air 10,500–28,000

Stainless steel to stainless steel
[13]

1 Vacuum 400–1,600
100 Vacuum 2,500–14,000

Copper to copper [13] 1 Vacuum 1,000–10,000
100 Vacuum 20,000–100,000

Aluminum to aluminum [13] 1 Vacuum 2,000–6,600
100 Vacuum 25,000–50,000

Aluminum to aluminum [13]
(10 μm roughness)

1 Air 3,600
1 Helium 10,000
1 Silicone oil 19,000

Aluminum to aluminum [13, 14] 1 Dow Corning 140,000
340 grease

Stainless steel to stainless steel
[13, 14]

35 Dow Corning 250,000
340 grease

increasing interface pressure, increasing interface temperature, and decreasing
surface roughness. As might be expected, the interface conductance is higher with
a softer material (e.g., aluminum) than with a harder material (e.g., stainless steel).
The smoothness of the surface is another factor that affects contact conductance; a
joint with a superior surface finish may exhibit lower contact conductance owing
to waviness. The adverse effect of waviness can be overcome by introducing
between the surfaces an interface shim from a soft material such as lead. Contact
conductance also is reduced with a decrease in the ambient air pressure because
the effective thermal conductance of the gas entrapped in the interface is lowered.

5. Other Boundary Conditions and Relations . Two additional boundary con-
ditions are frequently used during the solution of the heat conduction equation.
When symmetry is present in a given coordinate direction, it is often desirable
to limit the domain to one-half of the problem and use the line of symmetry as
an alternative boundary condition. Since the net heat flux is zero across a line of
symmetry, the boundary condition becomes

∂T

∂n

∣∣∣∣
boundary

= 0 (symmetry condition) (1-61)
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which acts like an adiabatic (i.e., perfectly insulated) boundary in keeping with
thermodynamic equilibrium. Care should be taken, however, when imposing sym-
metry as a boundary condition. For example, the initial condition T (r̂, t = 0) or
nonuniform internal energy generation g(r̂) may break the symmetry, even if the
outer boundary conditions appear symmetric.

A second condition, more of a pseudoboundary condition, to consider here
concerns the necessity for finite temperature throughout the domain of the prob-
lem. With curvilinear coordinate systems, as will be seen in later chapters, the
solution of the heat equation often contains functions that tend to infinity as
their argument approaches zero. Because such behavior violates the condition
of finite temperature, these functions are eliminated from the general solution
if zero is within the spatial variable domain of the problem. Under this sce-
nario, the equivalent boundary condition at the coordinate origin (r = 0) may
be stated as

lim
r→0

T (r) �= ±∞ (finite temperature condition) (1-62)

which implies that a finite temperature limit exists at the origin.

Example 1-1 Problem Formulation for 1-D Cylinder
Consider a hollow cylinder (i.e., thick-walled pipe) subjected to convection
boundary conditions at the inner r = a and outer r = b surfaces into ambient
fluids at constant temperatures T∞1 and T∞2, with heat transfer coefficients h∞1
and h∞2, respectively, as illustrated in Fig. 1-11. Write the boundary conditions.

Figure 1-11 Boundary conditions for cylinder in Example 1-1.

The domain of the problem is a ≤ r ≤ b; hence boundary conditions are
required at r = a and r = b. The appropriate convection boundary condition is
given by equation (1-57a), which is written here in the general cylindrical form

−k
∂T

∂r
= ±h(T − T∞) (1-63)

The positive conductive heat flux is always in the positive r direction per
Fourier’s law, while the outward-drawn surface normal at the boundary surfaces
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r = a and r = b are in the negative r and positive r directions, respectively.
Hence positive convection at the inner surface (r = a) is in the opposite direction
of positive conduction, while positive conduction and convection are both in the
same direction at the outer surface (r = b). Accordingly, we have to introduce
a sign change to Newton’s law for the inner surface, what we consider to be
convection on the back side with respect to the coordinate direction. With these
considerations in mind, the two boundary conditions (BC) become

BC1: − k
∂T

∂r

∣∣∣∣
r=a

= −h∞1

(
T |r=a − T∞1

)
(1-64a)

BC2: − k
∂T

∂r

∣∣∣∣
r=b

= h∞2

(
T |r=b − T∞2

)
(1-64b)

1-6 NONDIMENSIONAL ANALYSIS OF THE HEAT
CONDUCTION EQUATION

In general, the solution and analysis of engineering problems benefit by first non-
dimensionalizing the governing equations. This process often yields important
nondimensional groups, such as the Fourier number and Biot number, and reduces
the dependency of the solution from a potentially large number of dimensional
parameters. We consider the general 1-D Cartesian coordinate system, which
from equation (1-25) is written here as

∂2T

∂x2
+ g

k
= 1

α

∂T

∂t
(1-65)

over the domain 0 ≤ x ≤ L, with the following initial (IC) and boundary
conditions:

IC: T (x, t = 0) = T0 (1-66a)

BC1:
∂T

∂x

∣∣∣∣
x=0

= 0 (1-66b)

BC2: − k
∂T

∂x

∣∣∣∣
x=L

= h(T |x=L − T∞) (1-66c)

It is now possible to define the nondimensional independent variables , denoted
with an asterisk, using the available dimensional parameters of the problem. The
independent variables become

x∗ = x

L
(1-67a)

t∗ = αt

L2
(1-67b)
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where the nondimensional time is known as the Fourier number . The most com-
mon approach to define the nondimensional temperature is to use the reference
temperature (e.g., the fluid temperature) in combination with the temperature
difference between the initial and fluid temperatures, namely,

T ∗ = T − T∞
T0 − T∞

(1-68)

A formal change of variables is now done via the chain rule, namely,

∂T

∂x
= ∂T

∂T ∗
∂T ∗

∂x
= (

T0 − T∞
) ∂T ∗

∂x
(1-69a)

and
∂T ∗

∂x
= ∂T ∗

∂x∗
∂x∗

∂x
= ∂T ∗

∂x∗
1

L
(1-69b)

Combining equations (1-69a) and (1-69b) yields

∂T

∂x
= T0 − T∞

L

∂T ∗

∂x∗ (1-70)

Further differentiating equation (1-70) yields

∂2T

∂x2
= ∂

∂x

(
T0 − T∞

L

∂T ∗

∂x∗

)
= T0 − T∞

L

∂2T ∗

∂x∗2

∂x∗

∂x
= T0 − T∞

L2

∂2T ∗

∂x∗2
(1-71)

It is seen that the necessary dimension of the second derivative on the left-hand
side of equation (1-71), namely K/m2, is now supplied by the scaling factor of
the right-hand side, since the right-hand side second derivative is dimensionless.
In a similar manner,

∂T

∂t
= ∂T

∂T ∗
∂T ∗

∂t
= T0 − T∞

∂T ∗

∂t
(1-72a)

∂T ∗

∂t
= ∂T ∗

∂t∗
∂t∗

∂t
= ∂T ∗

∂t∗
α

L2
(1-72b)

which together yield

∂T

∂t
= α

(
T0 − T∞

)
L2

∂T ∗

∂t∗
(1-73)

Inserting equations (1-71) and (1-73) into the heat equation yields

∂2T ∗

∂x∗2
+ gL2

k
(
T0 − T∞

) = ∂T ∗

∂t∗
(1-74)
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All terms in equation (1-74) are now without dimension; hence it represents the
nondimensional form of the 1-D heat equation . In a similar manner, the initial
and boundary conditions are readily transformed:

IC: T ∗(x∗, t∗ = 0) = T0 − T∞
T0 − T∞

= 1 (1-75a)

BC1:
∂T ∗

∂x∗

∣∣∣∣
x∗=0

= 0 (1-75b)

BC2: − ∂T ∗

∂x∗

∣∣∣∣
x∗=1

= Bi T ∗∣∣
x∗=1 (1-75c)

where Bi = hL/k is defined as the nondimensional Biot number , named after the
physicist and mathematician Jean-Baptiste Biot. The Biot number is an important
heat transfer parameter relating the conduction of heat within a solid to the con-
vection of heat across the boundary, and is discussed in greater detail in Section
1-8. Examination of equations (1-74) and (1-75) reveals that the nondimensional
temperature T ∗ depends on only two nondimensional parameters. If the internal
energy generation is set to zero (g = 0), then

T ∗(x∗, t∗) = f (Bi) (1-76)

such that the nondimensional temperature profile depends only on the Biot num-
ber. Clearly nondimensionalization is a powerful tool for engineering analysis.

1-7 HEAT CONDUCTION EQUATION FOR ANISOTROPIC MEDIUM

So far we considered the heat flux law for isotropic media, namely, the thermal
conductivity k is independent of direction, and developed the heat conduction
equation accordingly. However, there are natural as well as synthetic materials in
which thermal conductivity varies with direction. For example, in a tree trunk the
thermal conductivity may vary with direction; specifically, the thermal conductiv-
ities along the grain and across the grain are different. In lamellar materials, such
as graphite and molybdenum disulfide, the thermal conductivity along and across
the laminations may differ significantly. For example, in graphite, the thermal
conductivity varies by about two orders of magnitude between the two princi-
pal orientations. Other examples include sedimentary rocks, fibrous reinforced
structures, cables, heat shielding for space vehicles, and many others.

Orthotropic Medium

First we consider a situation in the rectangular coordinates in which the ther-
mal conductivities kx, ky , and kz in the x, y , and z dimensions, respectively,



28 HEAT CONDUCTION FUNDAMENTALS

are different. Then the heat flux vector q ′′(r̂, t) given by equation (1-2) is
modified as

q ′′(x, y, z, t) = −
(

îkx

∂T

∂x
+ ĵ ky

∂T

∂y
+ k̂kz

∂T

∂z

)
(1-77)

and the three components of the heat flux vector in the x, y , and z directions,
respectively, become

q ′′
x = −kx

∂T

∂x
q ′′

y = −ky

∂T

∂y
and q ′′

z = −kz

∂T

∂z
(1-78a,b,c)

Similar relations can be written for the heat flux components in the cylindrical
and spherical coordinates. The materials in which thermal conductivity varies in
the (x, y, z ), (r , θ , z ), or (r , θ , φ) directions are called orthotropic materials . The
heat conduction equation for an orthotropic medium in the rectangular coordinate
system is obtained by introducing the heat flux vector given by equation (1-77)
into equation (1-23), which for a quiescent medium yields

∂

∂x

(
kx

∂T

∂x

)
+ ∂

∂y

(
ky

∂T

∂y

)
+ ∂

∂z

(
kz

∂T

∂z

)
+ g = ρc

∂T

∂t
(1-79)

Thus the thermal conductivity has three distinct components.

Anisotropic Medium

In a more general situation encountered in heat flow through crystals , at any
point in the medium, each component q ′′

x , q ′′
y , and q ′′

z of the heat flux vector is
considered a linear combination of the temperature gradients ∂T /dx , ∂T /dy , and
∂T /dz , that is,

q ′′
x = −

(
k11

∂T

∂x
+ k12

∂T

∂y
+ k13

∂T

∂z

)
(1-80a)

q ′′
y = −

(
k21

∂T

∂x
+ k22

∂T

∂y
+ k23

∂T

∂z

)
(1-80b)

q ′′
z = −

(
k31

∂T

∂x
+ k32

∂T

∂y
+ k33

∂T

∂z

)
(1-80c)

Such a medium is called an anisotropic medium , and the thermal conductivity
for such a medium has nine components, k ij , called the conductivity coefficients ,

that are considered to be the components of a second-order tensor k :

k ≡
∣∣∣∣∣∣

k11 k12 k13
k21 k22 k23
k31 k32 k33

∣∣∣∣∣∣ (1-81)
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Crystals are typical examples of anisotropic materials involving nine conduc-
tivity coefficients [15]. The heat conduction equation for anisotropic solids in the
rectangular coordinate system is obtained by introducing the expressions for the
three components of heat flux given by equations (1-80) into the energy equation
(1-23). Again for a quiescent medium, we find

k11
∂2T

∂x2
+ k22

∂2T

∂y2
+ k33

∂2T

∂z2
+ (

k12 + k21

) ∂2T

∂x ∂y
+ (

k13 + k31

) ∂2T

∂x ∂z

+ (
k23 + k32

) ∂2T

∂y ∂z
+ g (x, y, z, t) = ρc

∂T (x, y, z, t)

∂t
(1-82)

where k12 = k21, k13 = k31, and k23 = k32 by the reciprocity relation. This matter
will be discussed further in Chapter 15.

1-8 LUMPED AND PARTIALLY LUMPED FORMULATION

The transient heat conduction formulations considered up to this point assume
a general temperature distribution varying both with time and position. There
are many engineering applications in which the spatial variation of temperature
within the medium can be neglected, and temperature is considered to be a
function of time only. Such formulations, called lumped system formulation or
lumped capacitance method , provide a great simplification in the analysis of
transient heat conduction; but their range of applicability is very restricted. Here
we illustrate the concept of the lumped formulation approach and examine its
range of validity in terms of the dimensionless Biot number.

Consider a small, high-conductivity material, such as a metal, initially at a
uniform temperature T 0, and then suddenly immersed into a well-stirred hot bath
maintained at a uniform temperature T∞. Let V be the volume, A the surface
area, ρ the density, c the specific heat of the solid, and h the convection heat
transfer coefficient between the solid’s surface and the fluid. We assume that the
temperature distribution within the solid remains sufficiently uniform for all times
due to its small size and high thermal conductivity. Under such an assumption,
the uniform temperature T (t) of the solid can be considered to be a function of
time only. The energy balance equation, taking the entire solid as the control
volume, is stated as

(
Rate of heat flow from the

solid through its boundaries

)
=

(
Rate of change of the

internal energy of the solid

)
(1-83)

Considering convection as the only means for heat to enter or leave the control
volume, the energy equation (1-83) takes the form

−hA[T (t) − T∞] = ρVc
dT(t)

dt
(1-84)
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which is rearranged to yield

dT(t)

dt
+ hA

ρVc
[T (t) − T∞] = 0 for t > 0 (1-85a)

IC: T (t = 0) = T0 (1-85b)

Equation (1-85a) is a nonhomogeneous ordinary differential equation, which
is readily solved using the sum of the homogeneous and particular solutions.
However, it is useful to remove the nonhomogeneity by defining the excess
temperature θ(t) as

θ(t) = T (t) − T∞ (1-86)

With this substitution, the lumped formulation becomes

dθ(t)

dt
+ mθ(t) = 0 for t > 0 (1-87a)

IC: θ(t = 0) = T0 − T∞ = θ0 (1-87b)

where
m = hA

ρVc
(1-87c)

The solution of equations (1-87) becomes

θ(t) = θ0e
−mt (1-88)

This is a very simple expression for the temperature of the solid as a function
of time, noting that the parameter m has the unit of s–1 and may be thought
of as the inverse of the thermal time constant . The physical significance of the
parameter m is better envisioned if its definition is rearranged in the form

1

m
= (ρcV)

(
1

hA

)
(1-89)

which is the product of the thermal heat capacitance and the resistance to con-
vection heat transfer. It follows that the smaller the thermal capacitance and/or
the convective resistance, the larger is the value of m , and hence the faster is the
rate of change of temperature θ(t) of the solid according to equation (1-88).

In order to establish some criterion for the range of validity of such a straight-
forward method for the analysis of transient heat conduction, we consider the
definition of the Biot number, and rearrange it in the form

Bi ≡ hLc

ks

= Lc/ksA

1/hA
= internal conductive resistance

external convective resistance
(1-90)

where ks is the thermal conductivity of the solid. Lc is the characteristic length
of the solid and is generally defined as Lc = V/A.

We recall that the lumped system analysis is applicable if the temperature
distribution within the solid remains sufficiently uniform during the transients.
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This may be interpreted as the condition in which the internal resistance to
conduction within the solid is negligible as compared to the external resistance
to convection heat transfer at the solid–fluid boundary. Now we refer to the above
definition of the Biot number and note that the internal conductive resistance of
the solid is very small in comparison to the external convective resistance if the
Biot number is much less than unity , say one order of magnitude smaller. We
therefore conclude that the lumped system analysis is valid only for small values
of the Biot number, namely

Bi = hLc

ks

< 0.1 (lumped analysis criterion) (1-91)

We note that equation (1-91) is a guideline for validity of lumped analysis,
but must emphasize that spatial gradients gradually diminish with decreasing Bi
number for transient problems. Hence a Bi = 0.1 does not represent an abrupt
transition from the presence of spatial gradients to the absence of spatial gradients,
but rather is considered a reasonable interpretation of Bi � 1. For example, exact
analytic solutions of transient heat conduction for solids in the form of a slab,
cylinder or sphere, subjected to convective cooling show that for a Bi < 0.1, the
variation of temperature within the solid during transients is less than about 5%.
Hence it may be concluded that the lumped system analysis may be applicable
for most engineering applications if the Biot number is less than about 0.1.

It is useful here to examine graphically the behavior of the transient tem-
perature profile for three different values of the Biot number, namely Bi � 1,
Bi ≈ 1, and Bi � 1. This is done in Figure 1-12 for a symmetric plane wall with a

(a) (b) (c)

T∞ T∞

T∞T∞ T∞ T∞ T∞ T∞

T∞

Figure 1-12 Temperature distribution T(x,t) for a symmetric plane wall cooled by con-
vection heat transfer for various Biot numbers.
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uniform initial temperature of T 0, which is then subjected to cooling via convec-
tion heat transfer at both surfaces from a fluid at T∞.

For the case of Bi � 1, Figure 1-12(a), the wall is observed to cool uniformly
from the initial temperature T 0 to the steady-state temperature, which would
be T∞. This is consistent with spatial gradients being dominated by convective
resistance, hence T � T (t). Figure 1-12(b) shows the case of Bi ≈ 1; hence
comparable conductive and convective resistances lead to temperature gradients
within the solid and temperature differences between the solid and fluid. Finally,
Figure 1-12(c) depicts the Bi � 1, which in the limiting case corresponds to
h → ∞, or essentially the case of prescribed surface temperature. Under this
condition, the spatial temperature gradients dominate the problem. In particular,
the gradient near the surfaces at t � 0 is very steep.

Example 1-2 Lumped Analysis for a Solid Sphere
The temperature of a gas stream is to be measured with a thermocouple. The
junction may be approximated as a sphere of diameter and properties: D =
3
4 mm, k = 30 W/(m · K), ρ = 8400 kg/m3, and c = 400 J/(kg · K). If the heat
transfer coefficient between the junction and the gas stream is h = 600 W/(m2 ·
K), how long does it take for the thermocouple to record 99% of the temper-
ature difference between the gas temperature and the initial temperature of the
thermocouple? Here we neglect any radiation losses.

The characteristic length Lc is

Lc = V

A
= ( 4

3 )πr3

4πr2
= r

3
= D

6
=

3
4

6
= 1

8
mm = 1.25 × 10−4 m

The Biot number becomes

Bi = hLc

k
= 600

30
1.25 × 10−4 = 2.5 × 10−3

The lumped system analysis is applicable since Bi < 0.1. From equation (1-88)
we have

T (t) − T∞
T0 − T∞

= 1

100
= e−mt

or

emt = 100 → mt = 4.605

The value of m is determined from its definition:

m = hA

ρVc
= h

ρcLc

= 600

8400 × 400 × 0.000125
= 1.429 s−1
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Then

t = 4.605

m
= 4.605

1.429
∼= 3.2 s

That is, about 3.2 s is needed for the thermocouple to record 99% of the
applied temperature difference.

Partial Lumping

In the lumped system analysis described above, we considered a total lumping in
all the space variables; as a result, the temperature for the fully lumped system
became a function of the time variable only.

It is also possible to perform a partial lumped analysis , such that the temper-
ature variation is retained in one of the space variables but lumped in the others.
For example, if the temperature gradient in a solid is steep in the x direction
and very small in the y and z directions, then it is possible to lump the system
with regard to the y and z variables and let T = T(x). To illustrate this matter we
consider a solid with thermal conductivity k as shown in Figure 1-13 in which
temperature gradients are assumed to be large along the x direction, but small
over the y–z plane perpendicular to the x axis. This would be valid by consider-
ing the length scale δ as the width of the solid in the y and z directions, such that
Biy = Biz = hδ/k < 0.1. Let the solid dissipate heat by convection from its lateral
surfaces into an ambient fluid at a constant temperature T ∞ with a uniform heat
transfer coefficient h over the entire exposed surface.

To develop the steady-state heat conduction equation with lumping over the
plane perpendicular to the x axis, we consider an energy balance for a differential
disk of thickness dx located about the axial location x given by

⎛
⎜⎜⎝

Net rate of heat

gain by conduction

in the x direction

⎞
⎟⎟⎠ −

⎛
⎜⎜⎝

Rate of heat loss

by convection from

the lateral surfaces

⎞
⎟⎟⎠ = 0 (1-92)

T∞

Figure 1-13 Nomenclature for derivation of partially lumped heat conduction equation.
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When the appropriate rate expressions are introduced for each of these terms,
we obtain (

qx − qx+dx

) − hP (x)dx
(
T (x) − T∞

) = 0 (1-93)

where the heat rates qx and qx+dx are given by

qx = −kA(x)
∂T

∂x
(1-94a)

qx+dx = qx + ∂qx

∂x
dx = −kA(x)

∂T

∂x
+ ∂

∂x

[
−kA(x)

∂T

∂x

]
dx (1-94b)

where we have again used a Taylor series expansion for qx+dx, and where the
other quantities are defined as

A(x) = cross-sectional area of the disk

P(x) = perimeter of the disk

h = convection heat transfer coefficient

k = thermal conductivity of the solid

T∞ = ambient fluid temperature

We now introduce equations (1-94) into (1-93) to yield

d

dx

[
A(x)

dT

dx

]
− hP (x)

k

(
T − T∞

) = 0 (1-95)

We have left equation (1-95) to reflect a variable cross-sectional area; hence
A(x) and P(x) both are prescribed functions of x . If we further assume that
the cross-sectional area is constant, namely, A(x) = A0 = constant and P (x ) =
P0 = constant, then equation (1-95) reduces to

d2T

dx2 − hP0

kA0

(
T − T∞

) = 0 (1-96)

which is the fin equation for fins of uniform cross section. Rather than solving
this second-order ordinary differential equation (ODE), it is useful to once again
define the excess temperature θ(x):

θ(x) = T (x) − T∞ (1-97)

which yields the final form of the 1-D constant-area fin equation, namely

d2θ

dx2 − hP0

kA0
θ = 0 (1-98a)



LUMPED AND PARTIALLY LUMPED FORMULATION 35

or

d2θ

dx2 − m2θ = 0 (1-99)

where the parameter m is defined as

m2 = hP0

kA0
(1-99)

The solution to the fin equation (1-98b) can be expressed in the form

θ(x) = C1e
−mx + C2e

mx (1-100a)

or

θ(x) = C1cosh(mx) + C2sinh(mx) (1-100b)

We note here that the general solution form of the second-order ode in equation
(1-98) is determined by the roots of the auxiliary or characteristic equation

λ2 − m2 = 0 (1-101)

The present case of two real roots (i.e., λ1,2 = ±m) yields the exponential solution
given by equation (1-100a). However, for the case of a conjugate pair of real
roots, the solution may also be formed using the hyperbolic functions as given by
equation (1-100b). For this case, it is readily seen that a linear combination of the
two exponential solutions yields the hyperbolics. The two unknown coefficients
C1 and C2 are determined by the application of boundary conditions at x = 0 and
x = L, which correspond to the base and tip of the fin, respectively. Typically,
the temperature at the base of the fin is prescribed

θ(x = 0) = Tb − T∞ = θb (1-102)

However, there are several choices of boundary conditions at the tip of the fin,
including the following four cases:

1. −k
∂T

∂x

∣∣∣∣
x=L

= h(T |x=L − T∞) (convective tip) (1-103a)

which yields −k
∂θ

∂x

∣∣∣∣
x=L

= h θ |x=L (1-103b)

2.
∂T

∂x

∣∣∣∣
x=L

= 0 (insulated/symmetric tip) (1-104a)

which yields
∂θ

∂x

∣∣∣∣
x=L

= 0 (1-104b)
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3. T (x = L) = Ttip (prescribed tip) (1-105a)

which yields θ(x = L) = Ttip − T∞ = θtip (1-105b)

4. T (x → ∞) = T∞ (long/infinite fin) (1-106a)

which yields θ(x → ∞) = 0 (1-106b)

Generally, it is preferable to use the hyperbolic solution, equation (1-100b),
for the finite domain problems, that is, boundary equations (1-103) – (1-105),
and to use the exponential solution, equation (1-100a), for the infinite domain
problem, namely boundary equation (1-106).

The solution of equation (1-95) for fins of a variable cross section is more
involved, as the resulting ode has nonconstant coefficients. Analytic solutions of
fins of various cross sections can be found in references 16 and 17.
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PROBLEMS

1-1 Derive the heat conduction equation (1-43) in cylindrical coordinates using
the differential control approach beginning with the general statement of
conservation of energy. Show all steps and list all assumptions. Consider
Figure 1-7.

1-2 Derive the heat conduction equation (1-46) in spherical coordinates using
the differential control approach beginning with the general statement of
conservation of energy. Show all steps and list all assumptions. Consider
Figure 1-8.

1-3 Show that the following two forms of the differential operator in the
cylindrical coordinate system are equivalent:

1

r

d

dr

(
r

dT

dr

)
= d2T

dr2 + 1

r

dT

dr

1-4 Show that the following three different forms of the differential operator
in the spherical coordinate system are equivalent:

1

r2

d

dr

(
r2 dT

dr

)
= 1

r

d2

dr2 (rT) = d2T

dr2 + 2

r

dT

dr

1-5 Set up the mathematical formulation of the following heat conduction
problems. Formulation includes the simplified differential heat equation
along with boundary and initial conditions. Do not solve the problems.
a. A slab in 0 ≤ × ≤ L is initially at a temperature F (x ). For times t >

0, the boundary at x = 0 is kept insulated, and the boundary at x = L
dissipates heat by convection into a medium at zero temperature.

b. A semi-infinite region 0 ≤ × < ∞ is initially at a temperature F (x ).
For times t > 0, heat is generated in the medium at a constant, uni-
form rate of g0 (W/m3), while the boundary at x = 0 is kept at zero
temperature.
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c. A hollow cylinder a ≤ r ≤ b is initially at a temperature F (r). For
times t > 0, heat is generated within the medium at a rate of g(r),
(W/m3), while both the inner boundary at r = a and outer boundary
r = b dissipate heat by convection into mediums at fluid temperature
T∞.

d. A solid sphere 0 ≤ r ≤ b is initially at temperature F (r). For times t
> 0, heat is generated in the medium at a rate of g(r) (W/m3), while
the boundary at r = b is kept at a uniform temperature T 0.

1-6 A solid cube of dimension L is originally at a uniform temperature T 0.
The cube is then dropped into a large bath where the cube rapidly settles
flat on the bottom. The fluid in the bath provides convection heat transfer
with coefficient h (W/m2 K) from the fluid at constant temperature T∞.
Formulate the heat conduction problem. Formulation includes the simpli-
fied differential heat equation along with appropriate boundary and initial
conditions. Include a sketch with your coordinate axis position. Do not
solve the problem.

1-7 For an anisotropic solid, the three components of the heat conduction
vector qx, qy , and qz are given by equations (1-80). Write the similar
expressions in the cylindrical coordinates for qr, qφ, qz and in the spherical
coordinates for qr, qφ, qθ .

1-8 An infinitely long, solid cylinder (D = diameter) has the ability for uni-
form internal energy generation given by the rate g0 (W/m3) by passing
a current through the cylinder. Initially (t = 0), the cylinder is at a uni-
form temperature T 0. The internal energy generation is then turned on
(i.e., current passed) and maintained at a constant rate g0, and at the same
moment the cylinder is exposed to convection heat transfer with coeffi-
cient h (W/m2 K) from a fluid at constant temperature T∞, noting that
T∞ > T0. The cylinder has uniform and constant thermal conductivity k
(W/m K). The Biot number hD/k � 1. Solve for time t at which point
the surface heat flux is exactly zero. Present your answer in variable form.

1-9 A long cylindrical iron bar of diameter D = 5 cm, initially at temperature
T 0 = 650◦C, is exposed to an air stream at T ∞ = 50◦C. The heat trans-
fer coefficient between the air stream and the surface of the bar is h =
80 W/(m2 · K). Thermophysical properties are constant: ρ = 7800 kg/m3,
c = 460 J/(kg · K), and k = 60 W/(m · K). Determine the time required
for the temperature of the bar to reach 250◦C by using the lumped system
analysis.

1-10 A thermocouple is to be used to measure the temperature in a gas
stream. The junction may be approximated as a sphere having thermal
conductivity k = 25 W/(m · K), ρ = 8400 kg/m3, and c = 0.4 kJ/(kg · K).
The heat transfer coefficient between the junction and the gas stream is
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h = 560 W/(m2 · K). Calculate the diameter of the junction if the
thermocouple should measure 95% of the applied temperature difference
in 3 s.

1-11 Determine the constants C1 and C2 for the constant area fin solution
of equations (1-100) for the case of the prescribed base temperature of
equation (1-102), and the following tip conditions:
a. Convective tip per equation (1-103)
b. Insulated or symmetric tip per equation (1-104)
c. Prescribed temperature tip per equation (1-105)
d. Infinitely long fin per equation (1-106)




