
Chapter 1

Introduction to Location

Theory and Models

1.1 INTRODUCTION

If you ask what to look for in buying a house, any realtor will tell you

that there are three things that are important: location, location, and

location. The theory behind this answer is that the community in which

you elect to live and the location within that community are likely to

affect your quality of life at least as much as the amenities within your

house. For example, if you live within walking distance of the local

elementary school, your children will not need to be bused to school.

If you live near a community center, you may be able to avoid involve-

ment in car pools taking children to and from activities. If your house

is too close to a factory, noise, traffic, and pollution from the factory

may degrade your quality of life.

Location decisions also arise in a variety of public and private sec-

tor problems. For example, state governments need to determine loca-

tions for bases for emergency highway patrol vehicles. Similarly, local

governments must locate fire stations and ambulances. In all three of

these cases, poor locations can increase the likelihood of property

damage and/or loss of life. In the private sector, industry must locate

offices, production and assembly plants, distribution centers, and retail

outlets. Poor location decisions in this environment lead to increased

costs and decreased competitiveness.

In short, the success or failure of both private and public sector

facilities depends in part on the locations chosen for those facilities.

This book presents methods for finding desirable or optimal facility

locations.
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We should emphasize from the beginning that the word “optimal”

is used in a mathematical sense. That is, we will define quantifiable

objectives that depend on the locations of the facilities. We will then

identify algorithms (rigorous procedures) for finding optimal or at least

good facility locations.

Two factors limit the broader optimality of the sites suggested by

the optimization models discussed in this text. First, in many cases,

nonquantifiable objectives and concerns will influence siting decisions

to a great extent. Often, the qualitative factors that influence siting

decisions are critically important. Thus, to the extent that the proce-

dures discussed in this text ignore qualitative concerns and factors, the

sites identified by the mathematical algorithms are optimal only in a

narrow sense of the word. Second, the performance of a system is

affected by many factors of which location is only one. For example,

the ability of an ambulance service to save lives (an objective that

many would attribute to such a service) depends not only on the prox-

imity of the ambulance bases to the calls for service (which can be

measured and optimized to some extent) but also on such factors as the

training and skill of the paramedics, the public’s knowledge of emer-

gency medical procedures and when it is appropriate to call for an

ambulance, the existence of a 911 emergency line, and the protocols

and technologies employed by the paramedics.

In the face of (1) exogenous qualitative concerns that influence

siting decisions and (2) nonlocation factors that affect the perform-

ance of facilities, one might legitimately ask, “Why bother develop-

ing mathematical location models?” There are a number of answers

to this question. First, while location is not the only factor influencing

the success or failure of an enterprise, it is critical in many cases.

Poorly sited ambulances will lead to an increased average response

time with the associated increase in mortality, that is, more deaths.

Second, while exogenous qualitative factors will influence siting

decisions, mathematical models allow us to quantify the degradation

in the quantifiable objectives that comes from recognizing the quali-

tative concerns. Thus, if it is important to locate an ambulance in one

district for political reasons, the increase in average response time (or

maximum response time) resulting from the imposition of this politi-

cal constraint can be quantified. Third, the modeling process (identi-

fying objectives and constraints and collecting data) often improves

the decisions that are made even if the models are never run. Fourth,

there are nonlocation problems in which models identical to those

discussed in later chapters arise. For example, the problem of select-

ing tools in a flexible manufacturing context is mathematically
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similar to that of locating ambulances in a city (Daskin, Jones, and

Lowe, 1990).

Section 1.2 outlines a number of key questions that are addressed

in location models. Section 1.3 extends the discussion of ambulance

location problems and introduces some of the terminology used in

location modeling. In this section, we also describe qualitatively

another location problem—that of locating landfill sites for solid

wastes. Section 1.4 identifies a number of key dimensions along which

facility location models can be constructed. Section 1.5 outlines a tax-

onomy of location models based largely on the underlying topology of

the space in which the demands and facilities are embedded. After out-

lining the taxonomy in Section 1.5.1, Section 1.5.2 develops a simple

analytic location model from which insight about key tradeoffs in loca-

tion problems can be derived. Finally, Section 1.6 summarizes the

chapter.

1.2 KEY QUESTIONSADDRESSED BY LOCATION
MODELS

Mathematical location models are designed to address a number of

questions including:

(a) How many facilities should be sited?

(b) Where should each facility be located?

(c) How large should each facility be?

(d) How should demand for the facilities’ services be allocated to

the facilities?

The answers to these questions depend intimately on the context in

which the location problem is being solved and on the objectives

underlying the location problem. In some cases, such as ambulance sit-

ing problems, we will want to locate the facilities as near as possible to

the demand sites. In locating radioactive waste repositories, we will

want to be in a geologically stable region and would like to be as far as

possible from major population centers.

The number of facilities to be located as well as the size of the

individual facilities is often a function of the service/cost tradeoffs. In

many cases, not only does the quality of service improve as the number

of facilities located increases but the cost of providing the service also

increases. For example, having more ambulances is generally prefera-

ble to having fewer ambulances, since the likelihood of having an
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available ambulance near a call for service increases with the number

of vehicles deployed. In addition, there are no significant economies of

scale in ambulance operations, that is, having a single site with multi-

ple ambulances is not much cheaper than having the same number of

ambulances at multiple locations. Thus, having a large number of sin-

gle vehicle ambulance bases is likely to be preferable to having a small

number of multivehicle bases. At some point, however, the quality of

medical care provided by the paramedics degrades as more ambulan-

ces are added to the system. The reason for this is that there are not

enough demands requiring a variety of medical skills to maintain the

paramedics’ training. In many manufacturing contexts, there are sig-

nificant economies of scale, which drive the location decisions toward

having a smaller number of large facilities.

Facility location models are also concerned with the allocation of

demands to facilities. In some cases, it is important that demands at a

site not be split between facilities. For example, in some retailing oper-

ations, a retail store must be supplied by a single warehouse. For

administrative reasons, the store’s supply cannot be split between dif-

ferent warehouses. In other cases, such as ambulance services,

demands can be served by any available facility. Facility location mod-

els must reflect these different demand allocation policies and must

then allocate demands (or fractions of the total demand in a region) to

different facilities. In many cases, demands will be allocated to the

nearest (available) facility; in other cases, doing so may not be optimal.

1.3 EXAMPLE PROBLEMDESCRIPTIONS

In this section, we outline a number of different facility location con-

texts and qualitatively define some of the classical location problems.

1.3.1 Ambulance Location

As indicated above, poor ambulance locations can cost lives! To illus-

trate this point, a commonly cited statistic is that if a person’s brain is

denied oxygen for more than 4min (e.g., as a result of a stroke or heart

attack), the likelihood of the individual surviving to lead a normal life

drops below 50%. This suggests that we would like to locate ambulan-

ces so that the maximum response time is well under 4min. Thus, one

objective might be to minimize the number of ambulances needed so

that all demand nodes are within a given number of minutes (the
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service standard) of the nearest ambulance. Such a model formulation

is known as a set covering model. Demands are said to be covered if

the nearest ambulance is located not more than X min away, where X is

the service standard used in the model (e.g., 4min). Set covering mod-

els have been used by a number of authors in locating ambulances and

other emergency service vehicles (e.g., Toregas et al., 1971; Walker,

1974; Plane and Hendrick, 1977; Daskin and Stern, 1981; Jarvis,

Stevenson, and Willemain, 1975).

One of the common problems associated with the set covering

model is that the solution is likely to call for locating more vehicles

than the community can afford. If we deployed one less vehicle and

relocated the remaining vehicles to maximize the number of demands

that can be served within the given service standard (e.g., 4min), the

fraction of the demands that would not be serviceable within the ser-

vice standard would generally be far less than 1/N, where N is the num-

ber of ambulances called for by the set covering model. In other words,

the last few ambulances add relatively little to the fraction of demands

that can be served within the service standard but add significantly to

the cost of the ambulance service. This suggests an alternate objective:

maximize the number of demands that can be covered within a speci-

fied service standard using a given number of vehicles. Such a model is

known as a maximum covering model. In practice, the fleet size that is

input into such a model is often varied from 1 up to the number

required for full coverage as indicated by the set covering model. This

allows us to trace out the tradeoff between additional vehicles and cov-

erage. Such a curve is shown in Figure 1.1. In this example, ten vehi-

cles are needed to cover all demands. In other words, the solution to

the set covering model for this problem is ten vehicles. The maximum

covering model would then be solved for one through nine vehicles in

the system. Notice that the incremental coverage decreases as addi-

tional vehicles are added to the system. Maximum covering models

and their variants have also been used in analyzing ambulance systems

and related emergency services (e.g., Daskin, 1982, 1983; Eaton et al.,

1985; Church and ReVelle, 1974; Belardo et al., 1984).

In some cases, logical choices for the service standard might not be

readily available. The choice of 4min in the discussion of the covering

models was predicated on the observation that irreversible brain dam-

age is likely to occur if the brain is denied oxygen for more than 4min.

However, this does not necessarily imply that 4min is the appropriate

service standard. A shorter service standard could be justified by the

observation that the clock for brain damage begins at the onset of the

medical incident (the stroke or heart attack that denies the brain
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oxygen), while the clock for the response time begins only once the

vehicle begins to roll out of its base. There is often a long time (several

minutes) between when a medical incident arises and when a vehicle

begins traveling to the scene. This additional time is consumed by the

time required to recognize the need for an ambulance, the time to

notify the dispatcher of the need, and the time required by the dis-

patcher to assign the call to a vehicle and to notify the vehicle’s crew

of the call. On the other hand, a longer service standard may be dic-

tated by budgetary considerations. Requiring all demands to be served

within 4min may be too costly. It would be cheaper to have all

demands served within 5min or some longer time period. This sug-

gests yet another model and another objective function: minimize the

maximum response time (the time between a demand site and the near-

est ambulance) using a given number (P) of vehicles. Such a model is

referred to as the P-center problem.

Covering and center problems focus on the worst-case behavior of

the system, for example, the maximum response time. In practice,

there is often a tradeoff between minimizing the maximum response

time and minimizing the average response time. This suggests yet a

fourth model and objective that might be used in locating ambulances:
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Figure 1.1 Typical tradeoff in maximum covering model.1

1 The tradeoff curve shown is for the CITY1990.GRT data set with a coverage distance

of 410 miles. The results shown are optimal values.

6 Chapter 1 Introduction to Location Theory and Models



minimize the average response time (the time between a demand site

and the nearest ambulance) using a given number (P) of vehicles. This

model is called the P-median problem (Hakimi, 1964, 1965).

While we have outlined a number of different objectives that might

be used in locating ambulances, it is important that we realize explic-

itly some of the factors that have been ignored in this discussion. The

importance of doing so was enunciated particularly well by Jacobsen

(1990, p. 205) who pointed out that formulating a problem incorrectly

(e.g., failing to account for important problem factors) is likely to be

far more important than whether or not you obtain an optimal or sub-

optimal solution to a particular problem formulation. Thus, while the

focus of this book is generally on finding optimal solutions (or near

optimal solutions) to specific mathematical statements of facility loca-

tion problems, we must always ask whether the model being solved

adequately represents the real problem being analyzed.

In the context of ambulance location, at least three facets of the

real-world problem have been ignored in the discussion above. First,

the models outlined above ignore the stochastic (or random) nature of

demands and the fact that the nearest vehicle might not be available

when called upon to serve a demand. A variety of approaches have

been adopted to address this problem including: extending the determi-

nistic models outlined above (Aly and White, 1978; Weaver and

Church, 1983b, 1984; Daskin, 1982, 1983); incorporating queuing the-

ory into location models (Larson, 1974; Fitzsimmons, 1973); and sim-

ulation approaches (Swoveland et al., 1973). Once the inputs to the

model are recognized as being random variables, the outputs are likely

to be random variables as well. Thus, we might no longer be interested

only in the average response time (as in the P-median model) but also

in the distribution of response times. Also, just as the demands are sto-

chastic, so are the travel times. Models with stochastic travel times

have also been developed (Weaver and Church, 1983a; Mirchandani

and Odoni, 1979; Daskin and Haghani, 1984; Daskin, 1987).

Second, there is a need to balance the workload of the different

vehicles. This stems from the needs (1) to preserve morale among the

emergency medical service employees and (2) to maintain the skill

level of all paramedics at some minimal level by ensuring that they are

all exposed to a minimum number of medical emergencies of differing

types.

As in all situations, we must ask whether facility location is really

the correct problem. The quality of medical care delivered to the public

and the likelihood of people surviving major medical incidents (e.g.,

auto crashes, assaults with deadly weapons, heart attacks, and strokes)
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depend on many factors in addition to the location of ambulances in

the community. The installation of a 911 emergency phone line can

reduce the time needed to contact an ambulance dispatcher. This

reduction in time may be greater (as compared with its cost) than that

achievable by any relocation of ambulances. Improving the quality of

hospital emergency room care may also go a long way toward reducing

fatalities. It may be more cost effective to spend public funds on such

improvements than it would be on relocating vehicles or adding ambu-

lances. Instituting a community-wide CPR (cardiopulmonary resusci-

tation) education program might also be a cost-effective way of saving

lives.2

The analysis assumed that all calls are equally important. In fact,

this is not the case. Calls are often differentiated into critical (life-

threatening) and noncritical calls. Also, some patients can be cared for

at the scene of the incident, while others require transport to the hospi-

tal. In addition, the models outlined above fail to recognize the tempo-

ral variation in the overall intensity of calls (typically Friday night is

the busiest time of the week) and the temporal variation in the spatial

distribution of calls (more incidents will be reported from business dis-

tricts during working hours than during the early morning hours). This

temporal variation in demand suggests that having fixed sites may not

be optimal; using relocatable ambulances may be preferable (Carson

and Batta, 1990).

Once we distinguish between the severity of different demands for

ambulance services, we recognize it may be advantageous to institute a

multitiered system in which paramedics with differing levels of train-

ing are deployed (along with vehicles with correspondingly different

levels of equipment). It may not be cost effective to have all paramed-

ics trained at the highest level and to have all vehicles capable of

responding to all types of medical emergencies. We may be able to

deploy more vehicles and paramedics by (i) disaggregating calls based

on their severity and (ii) allowing response units and personnel to be

specialized for certain types of calls. In a multitiered system, dispatch-

ing rules become even more complicated. Not only might it not be

advantageous to dispatch the nearest available vehicle (since doing so

might leave large portions of the service area uncovered), but we must

now decide which type of vehicle and crew to dispatch to each event.

2 The notion of asking whether location solutions are the best way to attack a problem

extends well beyond emergency services. For example, in considering problems of

energy management, one solution might be to install additional power generation facil-

ities. Another solution might be to manage the peak demand for power better.
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The possibilities are shown schematically in Figure 1.2. If possible, we

should dispatch an EMT (emergency medical technician) to a noncrit-

ical call and a paramedic in an advanced life support (ALS) vehicle to

a critical incident. However, we might also want to dispatch an EMT to

a critical call if the vehicle is likely to get to the scene before the ALS

vehicle. Doing so would give the public the impression that something

is being done about the emergency. This policy, however, ties up extra

resources since two vehicles would then be dispatched under these

conditions. Similarly, if an ALS vehicle is very near a noncritical inci-

dent, we might elect to dispatch the ALS vehicle. This policy has the

advantage of getting medical assistance to the scene quickly, but has

the disadvantage of tying up an expensive ALS vehicle and highly

trained crew that might be needed elsewhere while they are busy

serving the noncritical incident.

Finally, we note that the models we have briefly outlined, in partic-

ular the set covering model, the maximum covering model, and the

P-center model, have all been used extensively in a broad range

of public sector facility location problems including the location of

libraries, schools, clinics, hospitals, and bus stops.

Figure 1.2 Dispatching options in a multitiered system.
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1.3.2 Siting Landfills for HazardousWastes

We turn briefly to another problem, that of locating landfills for

disposal of hazardous wastes. First, any such site must be deemed geo-

logically stable and suitable. Given this condition, the choice between

sites might be dictated by a number of objectives. First, we would like

to be as close as possible to the waste generation sites to minimize the

transport costs as well as the exposure of the public to the hazardous

wastes while they are en route to the disposal site. Minimizing the

average (or total) shipping distance over some period of time results in

a P-median formulation. However, many of the waste generation sites

may be close to heavily populated regions. In this case, we would like

the disposal sites to be far from populated areas. This suggests the use

of a maxisum or maxian model in which we attempt to locate a given

number (P) of facilities to maximize the (population weighted) dis-

tance between population centers and the nearest sites (Church and

Garfinkel, 1978; Minieka, 1983). Clearly, this objective and the P-

median objective conflict. The presence of conflicting objectives is

common in facility location problems.

Both models take the number of facilities as given. In practice, we

need to balance the initial capital investment costs against the ongoing

operating costs. Thus, we might like to minimize the sum of the fixed

site preparation costs and the discounted present cost of the stream of

operating costs (e.g., on-site operating costs and transport costs). This

leads to what is known as a fixed charge facility location problem.

Finally, we would like to reduce the inequities across communities.

No community wants to be the dumping site for the rest of the state or

the rest of the country. Thus, we might like to spread the risk or dis-

benefit around to the extent that it is possible to do so (e.g., Ratick and

White, 1988; Erkut and Neuman, 1992; Wyman and Kuby, 1994). This

has recently become an issue not only in the location of disposal sites

but also in the routing of materials from generation sites to disposal

facilities (Lindner-Dutton, Batta, and Karwan, 1991; ReVelle, Cohon,

and Shobrys, 1991; List and Mirchandani, 1991; List et al., 1991).

1.3.3 Summary

In summary, modeling location problems requires an understanding of

the real-world operations that are to be reflected in the model. Models

need not reflect every aspect of the real-world operations. In fact, parsi-

monious models are generally better than complex inscrutable models.
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The ability to know what must be incorporated into a model and what

can safely be treated as exogenous is both an art and a science. As

illustrated above, location problems often involve multiple conflicting

objectives. The purpose of modeling is to identify the tradeoffs

between the objectives while capturing as much of the richness of the

real-world problem as is necessary to ensure the credibility of the mod-

eler and model itself. Finally, we must always ask whether improving

facility locations is the most cost-effective way of improving the sys-

tem under study.

1.4 KEY DIMENSIONSOF LOCATION PROBLEMS
ANDMODELS3

Location problems and models may be classified in a number of ways.

The classification may be based on the topography that is used (e.g.,

planar problems versus discrete location problems, problems on trees

versus those on general graphs, and problems using different distance

metrics) or the number of facilities to be located. Problems may also be

classified based on the nature of the inputs (e.g., whether they are static

or dynamic, known with certainty or only known in a probabilistic

sense). Models may further be classified based on whether single or

multiple products or demands must be accommodated by the facilities

being located, whether there is one objective or multiple objectives,

whether the beneficiaries and investors are the same or different actors,

whether the facilities are of unlimited capacity or are capacitated, as

well as a variety of other classification criteria. This section identifies

key dimensions or characteristics of facility location problems and

models.

1.4.1 Planar Versus Network Versus Discrete
LocationModels

One of the key differences between location models is in the way in

which demands and candidate facility locations are represented. In pla-

nar location models, demands occur anywhere on a plane. We often

represent demands using a spatially distributed probability distribution

[which gives the likelihood of demands arising at any given X;Yð Þ

3 Similar taxonomies have been developed by Brandeau and Chiu (1989) and Krarup

and Pruzan (1990).
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coordinate]. In such problems, facilities may be located anywhere on

the plane. This modeling approach is to be contrasted with network

location models, in which demands and travel between demand sites

and facilities are assumed to occur only on a network or graph com-

posed of nodes and links. Often, we assume that demands occur only

at the nodes of the network, though some network location models

have permitted demands to be generated anywhere on the links of the

network. In network location models, facilities can be located only on

the nodes or links of the network. One of the key questions we will be

interested in considering is: when is location only on the nodes of the

network optimal? The presence of an underlying network often facili-

tates the development of solution algorithms. Discrete location models

allow for the use of arbitrary distances between nodes. As such, the

structure of the underlying network is lost. However, by removing the

restriction that the distances between nodes are obtained from an

underlying network, the more general class of discrete location models

allows a broader range of problems to be modeled. Discrete location

problems are generally formulated as mixed integer programming

problems as discussed below. For a further discussion of the differ-

ences between these three types of models, the reader is referred to

Chhajed, Francis, and Lowe (1993).

The focus of this book is on network and discrete location models.

Handler and Mirchandani (1979) and Mirchandani and Francis (1990)

provide excellent overviews of network location models, while planar

location models are discussed in Hurter and Martinich (1989) and

Love, Morris, and Wesolowsky (1988).

1.4.2 Tree Problems Versus General Graph Problems

Within the class of network location models, we often distinguish

between problems that arise on trees and those that must be formulated

on a more general (fully connected) graph. Figure 1.3 illustrates a

number of different trees and general networks.

A tree is a network in which there is at most one path from any

node to any other node. In other words, a tree is an acyclic graph or a

graph with no cycles. In general, we will focus our attention on span-

ning trees (trees in which there is exactly one path between any node

and any other node). If such a tree has N nodes, it will have N � 1

links.

Our interest in trees as opposed to more general graphs results

from two considerations. First, many real-life problems can be
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represented quite well as trees. For example, the links depicting major

highways within a region often form a tree as long as we ignore the

cycles formed by beltways surrounding major urban areas. Also, major

parts of power transmission and telecommunication networks—partic-

ularly the portions used for the delivery of local services—are essen-

tially trees. Second, given a verbal or mathematical statement of a

location problem, it is often the case that we can solve the problem

easily on a tree while solving it on a more general network is excep-

tionally difficult. In Chapter 3, we formalize the notions of easy and

difficult problems using complexity theory.

1.4.3 DistanceMetrics

Location models are also often characterized by the distance metric

(the method of measuring distances) that is used. For network location

models, we will generally use the shortest distance between any pair of

(a)  A spanning tree

(b)  Two trees or a forest

(c)  A connected or general network

(d)  A complete graph or a clique Figure 1.3 Example trees and graphs.
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points using links in the network. In Chapter 2, we discuss algorithms

for finding the shortest paths between points in a network. In planar

location problems, one of three distance metrics is typically employed:

(a) Manhattan or right-angle distance metric

d xi; yið Þ; xj; yj
� �� � ¼ xi � xj

�� ��þ yi � yj
�� ��

(b) Euclidean or straight-line distance metric

d xi; yið Þ; xj; yj
� �� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xi � xj
� �2 þ yi � yj

� �2q

(c) ‘p distance metric

d xi; yið Þ; xj; yj
� �� � ¼ xi � xj

�� ��� �p þ yi � yj
�� ��� �p� 	1=p

where d xi; yið Þ; xj; yj
� �� �

is the distance between the ith and jth points

and xi; yið Þ gives the coordinates of the ith point. A bit of thought will

show that the ‘2 metric (the ‘p metric when p¼ 2) is the same as the

Euclidean distance between two points and that the ‘1 metric is equiv-

alent to the Manhattan or right-angle distance. What is the ‘1 metric?

This is left as an exercise for the reader.

1.4.4 Number of Facilities to Locate

Another way of characterizing facility location problems is by the

number of facilities to be located. In some problems (e.g., the P-

median, P-center, and maximum covering problems), the number of

facilities to locate is exogenously specified. In other cases (e.g., the set

covering problem and the fixed charge facility location problem), the

number of facilities is endogenous to the problem and is a model out-

put. For those problem statements in which the number of facilities to

locate is exogenously specified, we also distinguish between single-

facility location problems and those in which multiple facilities are to

be sited. Often, single-facility location problems are dramatically eas-

ier than are their multifacility counterparts.
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1.4.5 Static Versus Dynamic Location Problems

Most of the location models that we will consider will be static prob-

lems. In static models, the inputs do not depend on time; typically, we

will use a single “representative” set of inputs and solve the problem

for a single “representative” period.

As noted above in the discussion of ambulance systems, inputs are

rarely static. Thus, while most location models are static, most location

problems are dynamic in that the inputs (and consequently the outputs as

well) depend on time. Inputs that may depend on time include demands,

costs, and available and preexisting candidate facility locations. In

dynamic problems, the models must explicitly include multiple periods

of time. Different periods might allow us (i) to capture hourly differences

in the mean number of demands for service, (ii) to reflect differences

between the spatial patterns of demands on weekdays and weekends, or

(iii) to account for increases in demands or costs over a period of years.

In dynamic problems, we are concerned not only with the question

of where to locate facilities but also with the question of when to invest

in new facilities or to close existing facilities. In some models of

dynamic location problems, once a facility is opened it is assumed to

be available for all future periods. In other models, facilities may be

opened, closed, or moved throughout the planning horizon (Ballou,

1968; Sweeney and Tatham, 1976; Van Roy and Erlenkotter, 1982;

Wesolowsky, 1973; Wesolowsky and Truscott, 1975).

While most researchers and planners have a good idea of what is

meant by a static location model, there is considerably less agreement

about what is meant by a dynamic location model. One approach might

be to identify a single set of locations that perform well with respect to

a number of spatially different demand patterns that occur at different

times. Such a problem statement might arise in locating fire stations

that need to respond well to demands during working hours as well as

on weekends. This approach might also be appropriate in locating

facilities to serve demands that vary in a cyclic manner (e.g., Osleeb

and Ratick, 1990). A second approach to the dynamic location problem

would be that of identifying the optimal evolution of facility locations

over time. Such a model would be appropriate for a firm that needs to

locate warehouses to supply its customers and that plans to expand

from a set of regional retail outlets to a national chain. In some cases,

it is best to find an optimal first period decision as opposed to a plan for

all future time periods (Daskin, Hopp, and Medina, 1992). Finally, an

alternate definition of the dynamic location problem would be that of

positioning vehicles in real time to respond to minute-by-minute
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changes in the fleet of available (nonbusy) vehicles. This problem in

particular has been analyzed by Kolesar and Walker (1974) using set

covering models.4

1.4.6 Deterministic Versus Probabilistic Models

Just as the inputs to models may be either static or dynamic, so too the

inputs may be deterministic (certain) or probabilistic (subject to uncer-

tainty). In dealing with location problems over time, many of the

inputs are likely to be uncertain. For example, future calls for ambu-

lance services are not known with certainty. Instead they must be pre-

dicted and, as such, are subject to uncertainty. This book focuses on

deterministic models, though in some cases we can readily generalize

the algorithms or model formulations to include some probabilistic

components. Louveaux (1993) reviews stochastic location models.

1.4.7 Single- Versus Multiple-Product Models

The models outlined above have all implicitly assumed that we are

dealing with a single homogenous product or service and that all

demands are identical. Most location models make this assumption.

However, in practice, it is often important to distinguish between dif-

ferent products or services all of which will be served by the same set

of facilities. For example, it may be important to distinguish between

critical and noncritical calls.

In some cases, products are distinguished by having different origins

and destinations. For example, a single set of transshipment facilities may

be used by an automobile manufacturer in shipping finished vehicles from

assembly plants to dealers. At such transshipment points, vehicles are

offloaded from railcars and loaded onto trucks for final delivery to cus-

tomers (typically, dealers). Each assembly plant/customer combination

would represent a different product. In other words, we would need to

distinguish between Cadillac Sevilles going from a Cadillac assembly

plant to a Cadillac dealer in San Diego and Chevrolet Corvettes going

from a Chevrolet plant to a dealer in Los Angeles, even though both

vehicles might use the same transshipment point in southern California.

4 Ratick et al. (1987) review dynamic location models. They distinguish between mod-

els in which facilities remain in the siting plan once they are opened and models that

allow facilities to be opened and closed throughout the planning horizon.
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1.4.8 Private Versus Public Sector Problems

In private sector problems, the investment costs and benefits are typi-

cally measured in monetary units. Furthermore, the costs and benefits

are generally incident on the same actors: the firm, its management,

and its investors all of whom share common objectives and goals. All

this makes cost/benefit analysis relatively easy.

In public sector location problems, many nonmonetary cost and ben-

efits must also be considered. For example, in locating hazardous waste

repositories, there are a number of environmental costs that may be diffi-

cult to translate into monetary units. In locating emergency services, the

dollar value of the lives saved as a result of shorter travel times may be

exceedingly difficult to assess. In siting public schools, the benefits may

be measured in terms of the number of students who graduate from high

school. In public sector problems, not only are costs and benefits often

incommensurable, but there are often multiple benefit measures (as dis-

cussed in Section 1.4.9). In addition, while the costs of public sector

projects may be borne by the public at large, the benefits are often con-

centrated on fewer people. Thus, investment in public schools directly

benefits school-aged children and their parents. Such investments do not

directly benefit other members of society, such as the elderly. Finally,

public sector investments are often complicated by the political process

in which beneficiaries of one investment may agree to support projects

from which they do not directly benefit. Thus, groups representing the

elderly may agree to support additional funding of public schools pro-

vided other groups’ support enhanced health care legislation.5

1.4.9 Single- Versus Multiple-Objective Problems
andModels

Most models capture a single objective; however, most problems are

inherently multiobjective in nature. Since one of the purposes of location

modeling is to help identify tradeoffs, single-objective models must often

be run with a range of input parameters (e.g., running a P-median prob-

lem with a number of values of P to trace the tradeoff between average

distance to a facility and the number of facilities sited). Alternatively,

multiple models need to be employed (e.g., Eaton and Daskin, 1980).

5 ReVelle, Marks, and Liebman (1970) were among the first to distinguish between

public and private sector location problems. Ghosh and Harche (1993) provide a recent

review of location models used in private sector decision making.

1.4 Key Dimensions of Location Problems and Models 17



1.4.10 Elastic Versus Inelastic Demand

Most models treat demand as given and independent of the level of

service. In fact, demand in almost all cases depends on the level of

service provided. This, in turn, depends on the facility locations and

the types and sizes of facilities used. In some cases, demand is likely to

be relatively inelastic (independent of the level of service). For exam-

ple, if someone needs an ambulance, he or she is unlikely to inquire

about the cost. An individual is also unlikely to bother to find out the

expected arrival time of the vehicle and to identify alternative means of

getting to the hospital if the expected response time is too long. On the

other hand, consumers’ choices of where to shop depend critically on

the amenities within the shopping center, the location of the center, and

the number and variety of stores in the shopping center. Despite the fact

that demand in most real-world location problems exhibits some degree

of elasticity with respect to service (which depends in part on the loca-

tion decisions), we will generally treat demand as inelastic. Recent

work by Perl and Ho (1990) has examined some of the implications of

elastic demand on public facility location models. Kuby (1989) formu-

lates a model that maximizes the number of firms that can coexist in a

market. His model also incorporates elastic demand.

1.4.11 Capacitated Versus Uncapacitated Facilities

Many facility location models (e.g., standard set covering, maximum

covering, P-median, and P-center models) treat facilities as having

unlimited capacity. Other models impose explicit capacity limits on

facilities. In still other cases, the size of a facility is a model output.

1.4.12 Nearest Facility Versus General Demand
AllocationModels

As discussed above, the allocation of demand to facilities is a critical

issue in location modeling. Often, demands are assigned to the nearest

facility provided that facility has the capacity to serve the demand. In

capacitated problems, this may result in the need to split the demand at

a site between several facilities. If this is not permissible in a particular

problem setting, explicit constraints must be included in the model

(typically, in the form of integer variables) to force all of the demand

at a particular location to be assigned to a single facility. This may
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result in some demands being assigned to facilities other than the clos-

est site. In still other cases, models must recognize that a fraction of the

demand at a site will be served by the nearest facility, and the remain-

der of the demand will be served by more remote facilities when the

nearest facility is busy.

1.4.13 Hierarchical Versus Single-Level Models

In many systems, a hierarchy of facilities exists with flows between the

facilities that are being located. For example, in a national health care

system, rural health centers are likely to refer patients to clinics, which,

in turn, may refer patients to community hospitals. In some such sys-

tems, services provided at the lower level (e.g., the rural health center)

are offered at higher levels; in other cases, these services are not repli-

cated. Narula (1986) refers to these as successively inclusive and succes-

sively exclusive facility hierarchies, respectively. Also, in some systems,

patients may elect to go to the facility of their choice; in others, they

must begin service at the lowest level facility in the hierarchy and be

referred up from there. In such hierarchical location problems, the loca-

tions of the different facilities interact significantly through the flows

between the facilities. Facility interactions also arise in many facility

layout problems (Francis, McGinnis, and White, 1992).

1.4.14 Desirable Versus Undesirable Facilities

In most location problems, we are interested in locating desirable facil-

ities. In other words, value increases, in some sense, the closer the

facilities are to the people or goods being served. Ambulances, fire sta-

tions, schools, hospitals, post offices, warehouses, and production

plants are all considered desirable facilities in this sense.6 Some facili-

ties, however, are considered undesirable in the sense that most people

want them located as far away as possible. Typically, such facilities are

either noxious (posing a health or welfare hazard to people) or obnox-

ious (posing a threat to people’s lifestyles) facilities (Erkut and

6While these facilities are considered desirable in a general sense, it is clear that many

people might not want to buy a house immediately adjacent to a fire station, for exam-

ple, since the disruption associated with the fire engines responding to calls for service

may outweigh the benefit of being near the station. Nevertheless, it is generally better

to be near a fire station than to be far from a station. Similar issues might arise in the

location of other generally desirable facilities.
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Neuman, 1989). Hazardous waste sites, landfills, incinerators, missile

silos, and prisons generally fall into this category. In the location of

undesirable facilities, it is often useful to distinguish between cases in

which we are only concerned with the distance between facilities, as

might be the case in locating nuclear missile silos, and those in which

we are concerned with the distance between the facilities being located

and population centers, as might be the case in locating landfills. In

almost all practical location contexts involving the location of

undesirable facilities of any kind, multiple conflicting objectives are

likely to come into play. Thus, while we would like landfills to be

located far from population centers, we also want to minimize the costs

of transporting material from the waste generation sites to the landfill,

as discussed above in Section 1.3.2. Unfortunately, much of the waste

that is deposited in landfills is generated in highly populated areas.

Thus, in locating landfills, the tradeoff between minimizing transporta-

tion costs and minimizing the number of people affected by the land-

fills needs to be identified.

1.5 A TAXONOMYOF LOCATIONMODELS

In this section, we outline a taxonomy of location models, which is

based largely on the modeling assumptions about the spatial configura-

tion of the demands being served and facilities providing the service.

1.5.1 Typology of LocationModels

Figure 1.4 illustrates this taxonomy (and is adapted from Daskin

(2010)).

Analytic location models assume that demands are distributed in

some manner over space. For example, we might typically assume that

demands are uniformly distributed over a square of diamond-shaped

region. By uniformly distributed, we mean that the density of demand

is constant over the shape of the region. One way to think about this is

that the demand region is a piece of bread and the demand density is

the thickness of peanut butter that is spread (perfectly with exactly

even thickness) over the piece of bread. Candidate facilities can be

located anywhere in the service region. Clearly, these sorts of models

make very strong assumptions. The population in the United States, for

example, is anything but uniformly distributed across the country.

Within the contiguous United States, New Jersey has a density of
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approximately 1200 people per square mile, while Wyoming has a

density of about 6 people per square mile, at the other extreme. Never-

theless, these methods can provide some insights into the structure of

solutions to location models. Section 1.5.2 illustrates this sort of

modeling.

Despite its name, continuous location models assume that the

demands occur at discrete sites. The demand level at these sites is

known a priori. The candidate facilities can be located anywhere in a

region. The Weber location model is typical of models in this class.

The Weber model finds the center of gravity of the demand points. The

easiest way to think about the Weber problem is to imagine the

demands as being weights that are suspended below a plywood board

by frictionless pulleys at each of the demand points. The weight is pro-

portional to the demand at that point. The strings on which the

demands are suspended are tied to a tiny ring. The point at which the

ring comes to rest is the location of the Weber point or the solution to

the Weber problem. This problem is typically solved using the Weisz-

feld procedure as described by Drezner et al. (2001).

Network location models treat demands and facilities as being

located on a network composed of nodes and links. The U.S. Interstate

Highway system is a typical network that might be utilized for this sort

of analysis. All demands and all facilities must be located on the net-

work. Typically, demands are located at the nodes of the network.

Facilities can be located either on the nodes or on the links of the net-

work. One question that is often asked is whether at least one optimal

solution to the problem at hand consists of locating facilities only on

the nodes of the network. As we will see, for some objectives and

Figure 1.4 Alternative taxonomy of location models.
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problems, the answer to this question is yes, while for other problems,

the answer is no. Research in this field is often aimed at finding very

efficient algorithms to solve special instances of network location

problems (see Chapter 3 for a formal definition of efficiency). The

algorithm of Goldman (1971) discussed in Chapter 6 is illustrative of

this sort of modeling.

Finally, discrete location models make no particular assumptions

about the demand and facility locations. We are simply given the loca-

tions or coordinates of the demand nodes and the candidate locations.

The “distances” between the demand and candidate locations do not

need to adhere to any particular formula. For example, the airline fares

between different cities in the United States do not seem to be related

very well to the distances between the cities. These models are often

formulated as integer programming models and solved using exact or

heuristic (approximate) methods. Many of the models discussed in this

book fall into this category of location models.

1.5.2 A Simple Analytic Model

While most of this book is devoted to network and discrete location

models, this section presents a simple analytic location model. The

problem that we address in this section is the analytic analog of the

fixed charge location problem outlined in Chapter 7. The service net-

work we consider is a diamond with the travel directions at 45� to the

sides of the diamond as shown in Figure 1.5. Demands are assumed to

be uniformly distributed over the region with a demand density of r
demands per unit area. If the service region has an area a, then we can

show that (1) it is optimal to locate a single facility to serve the region

at the center of the service area and that the average distance between

the facility and a randomly selected demand is given by ð2=3Þ ffiffiffiffiffiffiffiffi
a=2

p
. If

we were to divide the service area into N equally sized diamond-

shaped subregions and we were to locate a facility at the center of each

Figure 1.5 Service area and direc-

tions of travel for a simple analytic

location model.
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subregion, the average distance between a randomly selected demand

and the nearest facility would be ð2=3Þ ffiffiffiffiffiffiffiffiffiffiffi
a=2N

p
. Figure 1.6 illustrates a

service region divided into N ¼ 9 subregions.
Associated with each facility that we locate is a fixed cost of f .

There is also a unit transportation cost c per demand per mile. The key

problem that we face is determining the optimal number of facilities to

locate so that we minimize the sum of the facility and transport costs.

As we increase the number of facilities, the total fixed facility costs

will increase (linearly), but the transport costs will decrease (with the

square root of the number of facilities located. This tradeoff is shown

in Figure 1.7 for a region of 100 square miles, a unit transport cost of 1,

a demand density of 25 demands per square mile per unit time, and a

fixed facility cost of 225 per facility per unit time. In this case, the

optimum number of facilities to locate is nine resulting in a total cost

of $5953.

In general, the total cost as a function of the number of facilities

that we locate is given by

TC Nð Þ ¼ f N þ cra
2

3

ffiffiffiffiffiffi
a

2N

r
 �
(1.1)

The first term of (1.1) represents the fixed facility costs, while the sec-

ond represents the transport costs. The term in parentheses is the aver-

age distance, ra represents the total number of demands, and c

converts the rest of the term to monetary units. Ignoring the need for

the number of facilities to be an integer (and ideally a squared number

so that we can evenly divide the service region into equally sized dia-

monds), we can find the optimal number of facilities to locate by

Figure 1.6 Example service

region subdivided into nine

subregions.
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taking the derivative of (1.1) with respect to N and equating the deriva-

tive to 0. We do this in (1.2) below.

dTC Nð Þ
dN

¼ f � cra
1

3

ffiffiffi
a

2

r
N�1:5 ¼ 0 (1.2)

Solving for N, we obtain

N� ¼ a � cr

3
ffiffiffi
2

p
f


 �2=3

(1.3)

If we substitute the optimal number of facilities given by (1.3) into

the total cost function (1.1), we obtain the optimal total cost as shown

in (1.4):

TC N�ð Þ ¼ f N� þ cra
2

3

ffiffiffiffiffiffiffiffi
a

2N�

r
 �

¼ af 1=3 crð Þ2=3 1

3
ffiffiffi
2

p

 �2=3

þ 2
1

3
ffiffiffi
2

p

 �2=3

( )

¼ 1:145af 1=3 crð Þ2=3

(1.4)

Figure 1.7 Typical cost components in a simple analytic model.

24 Chapter 1 Introduction to Location Theory and Models



The second line of (1.4) breaks the total cost into two terms: the

first is derived from the fixed facility costs and the second from

the transport costs. At the optimal number of facilities, the trans-

port costs are twice the fixed facility costs. This is also shown

graphically in Figure 1.7.

In deriving the optimal number of facilities, we have clearly made

a large number of restrictive assumptions. Fortunately, the total cost is

not very sensitive to small changes in the number of facilities. In fact,

if we actually locate N ¼ aN� facilities—in other words, the number

of facilities is a times the optimal number—the ratio of the cost using

the suboptimal number of facilities to the optimal number can be

shown to be

TC Nð Þ
TC N�ð Þ ¼

TC aN�ð Þ
TC N�ð Þ ¼ aþ 2=

ffiffiffi
a

p
3

(1.5)

Figure 1.8 plots this ratio against the value of a. The insensitivity

of the total cost to variations in the number of facilities used is clear.

Table 1.1 presents this information in a slightly different way. For a

desired percentage difference or error between the actual and optimal

cost, the table gives the allowable range in a, the ratio of the actual to

optimal number of facilities. For example, as long as the number of

facilities is within 75–131% of the optimal number, the cost will be

within 2% of the optimal total cost.

Figure 1.8 Ratio of actual to optimal cost versus ratio of actual to optimal number of

facilities for the simple analytic model.

1.5 ATaxonomy of Location Models 25



1.6 SUMMARY

In this chapter, we have identified the key questions answered by facil-

ity location models. We have qualitatively introduced a number of

classical facility location models through example problems. Finally,

we have outlined a taxonomy of location models and problems. In the

course of this discussion, we identified those areas that will be the pri-

mary focus of the remainder of this text. In particular, the text will

focus on network and discrete location problems, ignoring planar, or

continuous location problems and models.

Most network and discrete location problems of interest to us

can be formulated as linear programming problems in which some

of the variables are constrained to take on only integer values. Such

problems are called integer linear programming problems. An

understanding of linear programming is essential to the formulation

and solution of many facility location problems. In addition, certain

pure linear programming problems must be solved before most

facility location problems can be attacked. For example, the prob-

lem of finding the shortest path from a facility to a demand node

can be formulated as a linear programming problem. Often, shortest

path distances are needed as inputs to facility location problems.

Finally, once the facility locations are known, the problem of

assigning demand nodes to facilities, particularly when the facilities

have limited service capacities, can often be cast as another linear

programming problem called the transportation problem. Chapter 2

reviews linear programming in general as well as a number of spe-

cial linear programming problems that are intimately linked to facil-

ity location problems including the transportation problem and the

shortest path problem.

Table 1.1 Allowable Range of Alpha for Various Percentage Errors in the

Optimal Cost for the Simple Analytic Model

%Error Min Alpha Max Alpha

0 1.000 1.000

1 0.808 1.212

2 0.751 1.316

5 0.631 1.530

10 0.516 1.811

25 0.345 2.476
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EXERCISES

1.1 The ‘p distance metric was defined as follows:

‘p ¼ d xi; yið Þ; xj; yj
� �� � ¼ xi � xj

�� ��� �p þ yi � yj
�� ��� �p� 	1=p

If we let ‘1 ¼ limp!1 ‘p
� 	

, what is ‘1 equal to?
Note: This distance metric is used in a number of industrial contexts.

For example, it can be used to compute the time that it takes for an auto-

mated picker to move from one location to another in a warehouse when

movements in both the X and Y directions can occur simultaneously, but

the time to move between locations is governed by the larger of the two

distances. Its three-dimensional extension has similar applications in

robotics.

1.2 Use the real estate listings in your local newspaper to identify at least

four or more houses in your city that are comparable in terms of the num-

ber of bedrooms and the number of bathrooms.

(a) What are the asking prices of the houses?

(b) What is the ratio of the largest asking price to the smallest asking

price?

(c) What location factors might account for the differences in prices

between the homes?

(d) What nonlocation factors might account for the price differences?

1.3 Identify at least two different objectives that public officials might have

in locating new prisons.

1.4 With the ever-growing concerns about the environment, vehicle emission

inspection policies are coming under increasing review.

(a) Discuss at least two different objectives that state officials would

have in determining the locations of vehicle emission testing stations.

(b) Discuss nonlocational strategies that might be employed to increase

public cooperation with emission testing laws.

(c) Discuss how the problem of locating vehicle emission testing stations

fits into the location problem taxonomy outlined in Section 1.4.

1.5 The area of the contiguous United States is approximately 3.12 million

square miles. The population (based on the 2010 census) of the continen-

tal United States was approximately 307 million people, resulting in a

density of approximately 98.4 people per square mile. Assume that the

cost of shipping an item 1 mile is $0.01. For fixed costs ranging from $20

to $200 million (in increments of $20 million) plot.

(a) The optimal number of facilities to use.

(b) The optimal total cost, using the model outlined in Section 1.5.2.
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1.6 A national healthcare provider wants to establish clinics in a medium-

sized city of 1,000,000 people. The area of the city is 1000 square miles.

If the market penetration of the provider in the city is 20% of the popula-

tion, the cost of a clinic is $250,000 per year, the cost per mile is $0.10,

and each person is expected to make an average of four visits per year to

the clinic(s),

(a) Find the optimal number of clinics for the provider to staff, using the

model of Section 1.5.2.

(b) Compute the total cost of staffing this many clinics.

(c) Compute the average distance between a randomly selected patient

and the nearest clinic.

(d) Note that the maximum distance (for the model of Section 1.5.2) is

1.5 times the average distance. Suppose the provider wants to ensure

that no patient is more than 5 miles from the nearest clinic. How

many clinics should the provider staff under these conditions? What

is the new total cost of this configuration?

(e) Identify at least three problems associated with using the model of

Section 1.5.2 in this context.
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