Joining Technology for New Metallic Glasses and Inorganic Materials

DEVITRIFICATION BEHAVIOR AND CRYSTAL-GLASSY MIXED-PHASE STRUCTURES OBSERVED IN PARTIALLY CRYSTALLIZED Cu-BASED GLASSY ALLOYS

D. V. Louzguine-Luzgin^{1,2}, G. Xie², Q. Zhang¹ and A. Inoue^{1,2}

¹ WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

² Institute for Materials Research, Tohoku University, Aoba-Ku, Sendai 980-8577, Japan

ABSTRACT

We studied Cu-Zr-based alloys having exceptionally high glass-forming ability (GFA), and investigated the influence of Ag and Al on the GFA and crystallization behavior. Most of the bulk glassy alloys studied do not contain any crystals in the as-solidified state. The crystallization kinetics of $Cu_{55}Zr_{45}$, $Cu_{56}Zr_{50}$, $Cu_{55-x}Zr_{45}Ag_x$ (x=0,10,20), $Cu_{45}Zr_{45}Al_5Ag_5$, $Cu_{55}Zr_{45}Tl_{10}Ag_5$, $Cu_{55}Hf_{25}Tl_{15}Ag_5$, $Cu_{44}Ag_{18}Zr_{26}Tl_5$ and $Cu_{36}Zr_{48}Al_8Ag_8$ glassy alloys was analyzed. $Cu_{35}Zr_{45}Ag_{20}$ alloy exhibits possible phase separation upon heating within the supercooled liquid region prior to crystallization. The depletion of Ag in the residual glassy phase results in the higher thermal stability of $Cu_{35}Zr_{45}Ag_{10}$ versus $Cu_{35}Zr_{45}Ag_{20}$. $Cu_{50}Zr_{50}$ undergoes primary crystallization, forming a metastable monoclinic CuZr phase, while $Cu_{55}Zr_{45}$, $Cu_{45}Zr_{45}Ag_{10}$, $Cu_{35}Zr_{45}Ag_{20}$ and $Cu_{45}Zr_{45}Al_5Ag_5$ undergoeutectic crystallization, forming mostly stable phases. $Cu_{50}Zr_{50}$, $Cu_{52}Zr_{50}Tl_{10}Ag_5$ and $Cu_{45}Zr_{45}Al_5Ag_5$ undergo nanocrystallization. Although some differences in the crystallization behavior between $Cu_{55-x}Zr_{45}Ag_x$ (x=0, 10, 20) and $Cu_{45}Zr_{45}Al_5Ag_5$ were found, this may not be the only reason Al and Ag additions improve the GFA of the Cu-Zr alloy. The difficulty in nucleating the tP4 AgZr⁵⁵ phase may be responsible for the high glass-forming ability of the $Cu_{36}Zr_{48}Al_8Ag_8$ and $Cu_{44}Zr_{45}Zr_{26}Tl_5$ alloys.

INTRODUCTION

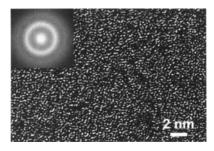
The structure and properties of bulk glassy alloys have been widely studied since the late 1980's $^{1.2,3}$. Cu-Zr-based alloys exhibit good potential for industrial applications. However, the glass-forming ability (GFA) of Cu-rich alloys has been limited 4 . Several attempts have also been made to increase the GFA of these alloys based on different criteria. These include a reduced glass transition temperature, $T_{rg} = T_g/T_1^{-5}$, where T_g is the glass-transition temperature and T_1 is the liquidus temperature; the width of the supercooled liquid region (ΔT_x) defined as T_x - T_g , where T_x is the crystallization onset temperature, and γ = $T_x/(T_g+T_1)^{-6}$. Binary Cu-Zr and Cu-Hf bulk glassy alloys were reported to form, though only in narrow composition ranges 7 . It was also reported that some of these binary glasses contained nanocrystals in the as-quenched condition 8 . The addition of a third element like Ti 9 or Al 10 , for example, produced dense packing 11 , and enhanced the GFA 12 of the binary alloys 13 . Thus, $Cu_3eZr_4gAl_8Ag_8$ could be produced in a fully glassy state with a maximum diameter of 25 mm 14 . The structure and crystallization behavior of some binary Cu-Zr 15 , ternary Cu-Zr-Ti 16 , 17 , 18 , 19 , and some quaternary Cu-based 20 glassy alloys were studied in detail. The nanocrystal-glassy Cu-Zr 8 and Cu-Zr-Al 21 , 22 composites showed a large room-temperature compressive plastic deformation of up to 50%. Ag drastically improved the GFA of Cu-Zr-Ti alloys 23 11

Following the above findings, the role of Al and Ag to improve the GFA of different Cu-based alloys, their thermal stability, and their crystallization behavior were studied in the present work. Another purpose is to find a possible link between the crystallization behavior and GFA of the alloys.

EXPERIMENTAL PROCEDURE

The ingots of the $Cu_{55}Zr_{45}$, $Cu_{50}Zr_{50}$, $Cu_{55}_{-x}Zr_{45}Ag_x$ (x=10,20). $Cu_{45}Zr_{45}Al_5Ag_5$, $Cu_{55}Zr_{30}Ti_{10}Ag_5$, $Cu_{55}Zr_{55}Zr_{55}$, $Cu_{55}Zr_{55}Zr_{55}Zr_{55}$, $Cu_{55}Zr_{55}Zr_{55}Zr_{55}$

are given in nominal atomic percentages) were prepared by arc-melting mixtures of (99.9 wt.% purity) under an argon atmosphere. From these ingots, ribbon samples of about 20 μ m thickness and 1 mm width were prepared by melt spinning on to a single copper roller at a roller tangential velocity of about 40 m/s. Bulk rod samples of more than 1 mm diameter were prepared by the copper-mold casting technique. The structure of both the ribbon and rod samples was examined by X-ray diffractometry (XRD) with monochromatic CuK_{α} radiation. A high-resolution field-emission scanning electron microscope (SEM Hitachi S-4800) equipped with an energy dispersive X-ray spectrometer (EDS) was also used for structural characterization of the polished cross-sections. Phase transformations were studied by differential scanning calorimetry (DSC) at a heating rate of 0.67 K/s and differential isothermal calorimetry (DIC). Transmission electron microscopy (TEM) investigations were carried out using a JEOL JEM 2010 microscope operating at 200 kV and equipped with an energy dispersive X-ray spectrometer (EDS) of 0.1 keV resolution. Samples for TEM were prepared first mechanically and subsequently by an ion-polishing technique. In order to avoid structural damage the ion-beam energy was kept below 2 keV. The oxygen content in the studied alloys was kept below 500 ppm (by weight).


RESULTS AND DISCUSSION

Most of the bulk glassy alloys studied do not contain any crystals in the as-solidified state while some samples like $Cu_{44}Ag_{15}Zr_{36}Ti_5$ studied by TEM were found to contain well developed medium-range order zones and even nanoparticles in a bulk form. For example, the structure of the $Cu_{36}Zr_{48}Al_8Ag_8$ metallic bulk glass-forming alloy studied by high-resolution transmission electron microscopy (HRTEM) is shown in Fig. 1. On prolonged observation in the TEM, the glassy phase partially crystallized. Nanocrystals were detected after about 120 s of observation under focused beam which is typical for some Cu-based glassy alloys 25 .

Following our Fig. 1 and our recent XRD studies one can suggest that the medium-range order in the studied Cu-Zr-based alloys maintains up to about 2 nm distance ²⁶. It is also shown that the interatomic distances in the first coordination shell correspond to those of some crystalline compounds used as glassy-phase approximants ²⁷.

The GFA and the crystallization behavior of glassy alloys were analyzed and are summarized in Table I. Natural logarithm of the critical diameter as an indicator of the GFA is plotted as a function of T_{rg} and γ parameter in Fig. 2. Although, some other indicators of the GFA give a better correspondence than T_{rg} correlates quite well with the critical diameter of Cu-Zr-based alloys belonging to the similar systems studied in the present work.

Both Ag-bearing and Ag-free alloys exhibit devitrification forming of a supercooled liquid region and subsequent formation of the equilibrium crystalline phases. The addition of Ti causes nanocrystallization of Cu-Zr-Ag as well as Cu-Zr and Cu-Hf alloys (see Fig. 3 illustrating HRTEM image and nanobeam electron diffraction (NBD) pattern) though the XRD pattern of the annealed sample still does not show any sharp peaks (Fig. 4). The Cu₃₀Zr₅₀ glassy alloy exhibited a primary crystallization behavior forming a metastable monoclinic mP4 CuZr phase while Cu₃₅Zr₄₅, Cu₄₅Zr₄₅Ag₁₀, Cu₃₅Zr₄₅Ag₂₀, Cu₃₀Zr₄₅Al₅ and Cu₄₅Zr₄₅Al₅Ag₅ glassy alloys showed rather eutectic crystallization forming mostly equilibrium phases (Fig. 5). For example, the simultaneous formation of oC68 (Cu,Ag)₁₀Zr₇ and tP4 (Ag,Cu)Zr solid solution phases in the Cu-Zr-Ag alloys by nucleation and 3-dimensional interface-controlled growth of nuclei indicates rather eutectic crystallization. Although, some difference in the crystallization behavior of Cu₅₅xZr₄₅Ag_x, Cu₅₀Zr₄₅Al₅ and Cu₄₅Zr₄₅Al₅Ag₅ glassy alloys was found as shown in Table I it may be not the only reason for

T_{rg} or γ

Figure 1. Typical HRTEM image of the Cu₃₆Zr₄₈Al₈Ag₈ glassy alloy. The insert is selected-area diffraction pattern.

Figure 2. Natural logarithm of the critical diameter as a function of T_{rg} and γ parameter given in Table I.

Table I. GFA, natural logarithm of critical diameter (der) and crystallization behavior of the Cu-Zr-based alloys studied. IR-initial crystallization reaction.

Alloy	ln(d _{cr} , mm)	Tg/TI	γ	IR	Phase composition*
Cu ₅₅ Zr ₄₅	0.41	0.59	0.399	Eutectic	oC68 Cu ₁₀ Zr ₇ + cP2 CuZr
Cu ₅₀ Zr ₅₀	0.69	0.59	0.380	Primary	mP4 CuZr
Cu45Zr45Ag10	1.79	0.60	0.412^{30}	Eutectic	oC68 Cu ₁₀ Zr ₇ and tP4 AgZr
Cu ₃₅ Zr ₄₅ Ag ₂₀	0.41	0.56	0.404	Eutectic	oC68 Cu ₁₀ Zr ₇ and tP4 AgZr
Cu55Zr30Ti10Ag5	1.1	0.60	0.397	Primary	nanoscale, unidentified
Cu ₅₀ Zr ₄₅ Al ₅	0.69	0.61^{31}	0.416	Eutectic	oC68 Cu ₁₀ Zr ₇ + unidentified
Cu ₄₅ Zr ₄₅ Al ₅ Ag ₅	2.20	0.62^{32}	0.425	Eutectic	oC68 Cu ₁₀ Zr ₇ , cF16 Cu ₂ AlZr
					and tP4 AgZr
$Cu_{44}Ag_{15}Zr_{36}Ti_{5}$	2.30	0.63^{25}	0.404	Primary	tP4 AgZr
Cu ₃₆ Zr ₄₈ Al ₈ Ag ₈	3.22	0.63	0.433	Primary	tP4 AgZr

^{*} a certain solid solubility of other alloying elements is found in some of the binary phases.

the improvement of the GFA of the Cu-Zr alloys by Al and Ag addition.

Contrary to the Cu₄₅Zr₄₅Al₅Ag₅ alloy in which a mixture of oC68 Cu₁₀Zr₇⁵⁸, cF16 Cu₂AlZr and tP4 AgZrss (ss denotes solid solution) phases was found to form directly by a single-stage eutectic-type reaction and other similar eutectic alloys, the Cu36Zr48Al8Ag8 alloy exhibited a primary precipitation of tP4 AgZr^{ss} phase upon crystallization on heating. Cu₃₆Zr₄₈Al₈Ag₈ and Cu₄₄Ag₁₅Zr₃₆Ti₅ alloys have a higher glass-forming ability than the Cu₄₅Zr₄₅Al₅Ag₅ alloy but exhibited a primary crystallization. The first DSC exothermic peak in the Cu₃₆Zr₄₈Al₈Ag₈ alloy exhibits two shoulders while a single-stage transformation takes place in the Cu₄₅Zr₄₅Al₅Ag₅ alloy suggesting that this is close to the eutectic composition. The values of the Avrami exponent close to 4 observed upon the isothermal crystallization of the eutectic alloys supports this conclusion.

Cu₃₅Zr₄₅Ag₂₀ alloy exhibited possible phase separation upon heating within the supercooled liquid region prior to crystallization of the liquid. Fig. 6 represents a globular residual amorphous phase surrounded by crystalline (Ag,Cu)Zr and (Cu,Ag)10Zr7 phases. The depletion of the residual glassy phase in Ag as tested by EDX in TEM argues for the higher thermal stability of the Cu₃₅Zr₄₅Ag₁₀ glassy phase versus Cu₃₅Zr₄₅Ag₂₀.

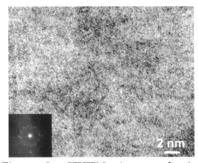


Figure 3. HRTEM image of the Cu₅₅Hf₂₅Ti₁₅Ag₅ alloy annealed at 770 K for 300 s. The insert is NBD pattern.

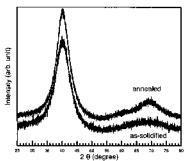


Figure 4. XRD patterns of the Cu₅₅Hf₂₅Ti₁₅Ag₅ alloy in as-solidified and annealed at 770 K for 300 s state.

The structure of the nanoscale phases in $Cu_{55}Zr_{30}Ti_{10}Ag_5$ and $Cu_{55}Hf_{25}Ti_{15}Ag_5$ alloys remained unknown owing to their small size. One should also admit a very high density of the precipitates (Fig. 3). Contrary to Cu-Zr-Ti-(Pd,Au) alloys containing noble metals in which formation of the nanoscale icosahedral phase was observed³⁵ the Ag-containing glassy alloys studied in the present work did not form the icosahedral phase on crystallization.

No significant difference is found in the glass-transition temperature of the melt-spun ribbons and bulk glassy rods of $Cu_{36}Zr_{48}Al_8Ag_8$. On annealing the melt-spun ribbon sample at 744 K for 480 s, primary crystallization led to the formation of tP4 AgZr⁵⁵ phase. An unidentified phase was also present. Additionally, the oC68 $Cu_{10}Zr_7^{55}$ phase formed at higher temperatures. On annealing the ribbon sample at a higher temperature of 900 K for 300 s, crystallization was complete resulting in the formation of the tI6 Zr_2Cu crystalline phase.

In the case of the bulk (10-mm-diameter rod) samples formation of the $AgZr^{ss}$ phase was also observed in the initial stage of crystallization. The $Cu_{10}Zr_7$ phase also formed in the bulk sample on heat treating at 900 K, and a well-defined fraction of the $CuZr_2$ phase is present after long term annealing. However, even at such a high temperature the structure is not in equilibrium after annealing for 84.6 ks. Only on annealing at 1000 K the ribbon and bulk samples attained the equilibrium structure which indicates a very high stability of the intermediate phases.

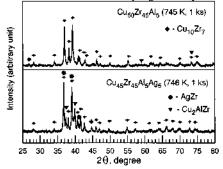


Figure 5. XRD patterns of some alloys in a heat-treated state.

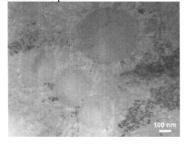


Figure 6. Cu₃₅Zr₄₅Ag₂₀ alloy annealed at 722 K for 1 ks, bright-field image, TEM.

Difficulty of nucleation of tP4 AgZrss phase may be the reason for the high glass-forming ability of Cu₃₆Zr₄₈Al₈Ag₈ and Cu₄₄Ag₁₅Zr₃₆Ti₅ alloys. Although this phase has quite a simple structure it contains a large fraction of Ag which is rather a minor alloying element in the alloys, and thus, diffusion redistribution of the alloying elements is required upon its formation, which may slow down the crystallization kinetics.

CONCLUSIONS

The crystallization behavior of $Cu_{55}Zr_{45}$, $Cu_{50}Zr_{50}$, $Cu_{55-x}Zr_{45}Ag_x$ (x = 0, 10, 20), Cu₄₅Zr₄₅Al₅Ag₅, Cu₅₅Zr₃₀Ti₁₀Ag₅, Cu₅₅Hf₂₅Ti₁₅Ag₅, Cu₄₄Ag₁₅Zr₃₆Ti₁₅ and Cu₃₆Zr₄₈Al₈Ag₈ glassy alloys was analyzed. Cu35Zr45Ag20 alloy exhibited possible phase separation upon heating within the supercooled liquid region prior to crystallization. The depletion of Ag in the residual glassy phase results in the higher thermal stability of the Cu₃₅Zr₄₅Ag₁₀ versus Cu₃₅Zr₄₅Ag₂₀. Cu₅₅Zr₄₅, Cu₄₅Zr₄₅Ag₁₀, Cu₃₅Zr₄₅Ag₂₀ and Cu₄₅Zr₄₅Al₅Ag₅ glassy alloys show a eutectic-type crystallization, forming mostly stable phases. The addition of Ti causes nanocrystallization of Cu-Zr-Ag as well as Cu-Zr and Cu-Hf alloys. Although some difference in the crystallization behavior of $Cu_{55x}Zr_{45}Ag_x$ (x = 0, 10, 20) and Cu₄₅Zr₄₅Al₅Ag₅ glassy alloys was found, this may not be the only reason for the improvement in the GFA of the Cu-Zr alloys with the addition of Al and Ag. The difficulty in nucleating tP4 AgZr⁵⁵ may be responsible for the high glass-forming ability of Cu₂₆Zr₄₈Al₈Ag₈ and Cu₄₄Ag₁₅Zr₃₆Ti₅ alloys.

REFERENCES

- ¹ A. Inoue, "High Strength Bulk Amorphous Alloys with Low Critical Cooling Rates", Mater. Trans. JIM 36, 866 (1995).
- ² W. L. Johnson, "Bulk glass-forming metallic alloys: science and technology", MRS Bull. 24(10), 42
- A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys," Acta Mater. 48, 279 (2000).
- ⁴ D. H. Xu, G. Duan and W. L. Johnson, "Unusual Glass-Forming Ability of Bulk Amorphous Alloys Based on Ordinary Metal Copper", *Phys. Rev. Lett.* 92, 245 (2004).

 D. Turnbull and M. H. Cohen, "Free-Volume Model of the Amorphous Phase: Glass Transition", *J.*
- Chem. Phys. 34, 120 (1961).
- ⁶ Z.P. Lu, C.T. Liu, "A New Glass-Forming Ability Criterion for Bulk Metallic Glasses", Acta Mater. 50, 3501 (2002).
- A. Inoue and W. Zhang, "Formation, Thermal Stability and Mechanical Properties of Cu-Zr and Cu-Hf Binary Glassy Alloy Rods", Mater. Trans. 45, 584 (2004).
- A. Inoue, W. Zhang, T. Tsurui, A. R. Yavari and A. L. Greer, "Unusual Room-Temperature Compressive Plasticity in Nanocrystal-Toughened Bulk Copper-Zirconium Glass", Phil. Mag. Lett. 85, 221 (2005).
- A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, "High-Strength Cu-Based Bulk Glassy Alloys in Cu-Zr-Ti and Cu-Hf-Ti Ternary Systems", Acta Mater. 49, 2645 (2001).
- A. Inoue and W. Zhang, "Formation, Thermal Stability and Mechanical Properties of Cu-Zr-Al Bulk Glassy Alloys", Mater. Trans. 43, 2921 (2002).
- 11 D. B. Miracle, W. S. Sanders, "The Influence of Efficient Atomic Packing on the Constitution of Metallic Glasses", Phil. Mag. 83, 2409-2428, (2003).
- H.-J. Fecht, W.L. Johnson, "Thermodynamic Properties and Metastability of Bulk Metallic Glasses", Mater. Sci. Eng. A 375-377, 2-8 (2004).
- A. L. Greer, "Metallic Glasses", Science 267, 1947 (1995).
- ¹⁴ Q. Zhang, W. Zhang and A. Inoue, "Preparation of Cu₃₆Zr₄₈Ag₈Al₈ Bulk Metallic Glass with a Diameter of 25 mm by Copper Mold Casting", Mater. Trans. 48, 629 (2007).

- ¹⁵ N. Mattern, A. Schops, U. Kuhn, J. Acker, O. Khyostikova and J. Eckert, "Structural Behavior of Cu_xZr_{100-x} Metallic Glass (x = 35-70)", J. Non-Crystalline Solids 354, 1054 (2008).

 ¹⁶ J. Z. Jiang, J. Saida, H. Kato, T. Ohsuna and A. Inoue, "Is Cu₆₀Ti₁₀Zr₃₀ a Bulk Glass-Forming
- Alloy?", Appl. Phys. Lett. 82, 4041 (2003).
- D. V. Louzguine and A. Inoue, "Nanocrystallization of Cu-(Zr or Hf)-Ti Metallic Glasses", J. Mater. Res. 17, 2112 (2002).
- ¹⁸ D. V. Louzguine and A. Inoue, "Evaluation of the Thermal Stability of a Cu₆₀Hf₂₅Ti₁₅ Metallic Glass", Appl. Phys. Lett. 81, 2561 (2002).
- ¹⁹ M. Kasai, J. Saida, M. Matsushita, T. Osuna, E. Matsubara and A Inque, "Structure and Crystallization of Rapidly Quenched Cu-(Zr or Hf)-Ti Alloys Containing Nanocrystalline Particles", J. Phys. Condensed Matter 14, 13867 (2002).
- ²⁰ D. V. Louzguine and A. Inoue, "Influence of Ni and Co Additions on Supercooled Liquid Region, Devitrification Behavior and Mechanical Properties of Cu-Zr-Ti Bulk Metallic Glass", J. Metastable & Nanocrystalline Mater. 15-16, 31 (2003).
- ²¹ J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang and J. Eckert, ""Work-Hardenable" Ductile Bulk Metallic Glass", Phys. Rev. Lett. 94, 205501 (2005).
- ²² S. Pauly, J. Das, C. Duhamel and J. Eckert, Martensite Formation in a Ductile Cu_{47.5}Zr_{47.5}Al₅ Bulk Metallic Glass Composite", Adv. Eng. Mater. 9, 487 (2007)
- ²³ C.-L. Dai, H. Guo, Y. Shen, Y. Li, E. Ma and J. Xu, "A New Centimeter-Diameter Cu-Based Bulk Metallic Glass", Scripta Mater. 54, 1403 (2006).
- ²⁴ F. Jia, W. Zhang and A. Inoue, "Effects of Additional Hf on the Thermal Stability and Mechanical
- Properties of Cu-Zr-Ag Bulk Glassy Alloys", Mater. Trans. 47, 1922 (2006).

 25 G. Xie, Q. Zhang, D. V. Louzguine, W. Zhang and A. Inoue, "Stability of Nanocrystallites Dispersed in Cu₅₀Zr₄₅Ti₅ Metallic Glass Under Electron Irradiation", J. Nanosci. and Nanotech, 7, 3286 (2007).
- ²⁶ D. V. Louzguine-Luzgin, K. Georgarakis, A. R. Yavari, G. Vaughan, G. Xie and A. Inoue "Effect of Ag Addition on Local Structure of Cu-Zr Glassy Alloy", Journal of Materials Research, 24, 274 (2009).
- D. V. Louzguine-Luzgin, A. R. Yavari, G. Vaughan and A. Inoue, "Clustered Crystalline Structures as Glassy Phase Approximants", Intermetallics, 17, 477 (2009).
- E. S. Park, D. H. Kima and W. T. Kim, Parameter for glass forming ability of ternary alloy systems, Appl. Phys. Lett. 86, 061907 (2005).
- Z.P. Lu, Y. Li, S.C. Ng, "Reduced Glass Transition Temperature and Glass Forming Ability of Bulk Glass Forming Alloys", Journal of Non-Crystalline Solids 270, 103 (2000).
- 30 W. Zhang, Q. Zhang, C. Qin and A. Inoue, "Synthesis and Properties of Cu-Zr-Ag-Al Glassy Alloys with High Glass-Forming Ability", Materials Science and Engineering: B 148, 92, (2008).
- ³¹ W. Zhang and A. Inoue, "Formation and Mechanical Strength of New Cu-Based Bulk Glassy Alloys", Materials Transactions, 45, 1210 (2004).
- 32 W. Zhang, F. Jia, Q. S. Zhang and A. Inoue, "Formation and Properties of Cu-Zr Binary Glassy Alloys", Mater. Sci. Eng. A 459, 330 (2007).
- 33 D. V. Louzguine-Luzgin and A. Inoue, "Formation and Properties of Quasicrystals", Annual Review of Materials Research, 38, 403 (2008).