
CHAPTER 1

INTRODUCTION

This book is a continuation of Frequency Synthesis by Phase Lock, 2nd edition (FS2)

[Egan, 2000] with significant emphasis on the study of sigma–delta (SD) frequency
synthesis. Although SD synthesis has already been introduced in FS2 (Section 8.3),

there is much more to learn, so much that there is a danger of the reader being

overwhelmed. For this reason, we will proceed with experimental observation, one

experiment at a time, picking up information as we go. We will depend on FS2 to

define a level of knowledge about frequency synthesis that precedes this new study.

It will provide a ready reference for background, but we will provide enough

information to make referral unnecessary, albeit helpful, for the reader who has

acquired basic knowledge about frequency synthesis elsewhere.

The experimental observations will be based on Simulink� simulations.While it is

not necessary to use the Simulink program to follow the results that will be discussed,

models and discussions will be subsequently provided to enable the reader to perform

the Simulink simulations and to progress from there to new simulations to answer new

questions. Some books and papers are largely based on development of one or more

ICs or delve intomonolithic circuit realizations. These have advantages, but the use of

simulations permits easier demonstration of a large variety of different configurations

and effects.

Following our discussion of SD synthesis, we will consider two topics that are

important when simultaneous wide bandwidth and small frequency steps are to be
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achieved without the use of SD synthesis. Finally, wewill introduce an area of current

intense interest, all-digital frequency synthesis. This has become important because

the deep submicron CMOS technology that is being used to achieve advances in

digital circuits is increasingly incompatible with analog circuits.

In order not to interrupt the main flow, many developments are included in

Appendices. This also allows the information to be easily accessed from multiple

places in the main text. Each appendix is designated by a letter, and an attempt has

beenmade to choose a letter that could be associated with the content (e.g., L for loop,

N for noise) as an aid to recalling the location of the material. Equations, figures,

sections, and so on in Appendix Z are numbered Z.n, where Z is the letter designation

for that appendix [e.g., Eq. (C.3.2) for an equation in Appendix C]. Such items in FS2

are referred to by a designator F.n, as if FS2were an appendix, but the corresponding

designator inFS2 is just n [e.g., Eq. (F.4.5) refers to Eq. (4.5) inFS2]. Amore detailed

explanation is given in Appendix F.

1.1 PHASE-LOCKED SYNTHESIZER

The basic phase-locked frequency synthesizer is illustrated in Fig. 1.1a. The reference

for the loop is a source at a fixed frequency fref. It is commonly derived by frequency

division from a fundamental reference at frequency f
0
ref. The phase of the fixed signal

at fref is compared with the phase of the signal at frequency fout/N from the frequency

fref

ϕref

fout
ϕout

ϕe
Σ

–
Kp

1/N

1/sKvKLFF(s)

fout

fe ϕe
Σ

–
Kp

1/N

1/s KvKLFF(s)

Reference PD VCO OutputLoop
filter

Frequency divider

(a)

(b)

(c)

u1

u1 u2

u2

N

FIGURE 1.1 Basic phase-locked frequency synthesizer: (a) function block diagram and

(b and c) mathematical block diagrams.
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divider, where fout is the frequency of theVCO and the loop output andN is the divider

ratio. The phase comparison occurs in the phase detector (PD). The output of the PD is

passed through the loop filter to drive the VCO, completing the loop.

Figure 1.1b is the mathematical block diagram representing this process. An

integration is required to convert the frequency difference between the reference and

divider output to a phase difference, so the Laplace representation for integration, 1/s,

must be placed in the loop. It can be placed after the frequency difference, as in

Fig. 1.1b, or after the VCO, as in Fig. 1.1c. The representation chosen depends on

whetherwewish to consider frequency or phase at the terminals of the synthesizer.We

will see that the representation of the all-digital phase-locked synthesizer differs in

one significant way from Fig. 1.1.

1.2 FRACTIONAL-N FREQUENCY SYNTHESIS

The steady-state value of the frequency from a locked loop is

Fout ¼ FrefN: ð1:1Þ

The ratio N is inherently a whole number. Sometimes it is advantageous to employ a

value of N that contains a fraction,

N ¼ Nint þ nfract: ð1:2Þ

To do this, we can letN¼Nint sometimes andN¼Nint þ 1 other times, so the average

valueN is given by Eq. (1.2). This is called fractional-N synthesis.We can also useSD
synthesis to obtain improved noise characteristics through the use of other particular

sequences of N-values that average to N.

1.3 REPRESENTING A CHANGE IN DIVIDE NUMBER

The most common transient expected in frequency synthesis results from a change in

divider ratioN. We need away to represent this transient, which results from a change

to a loop parameter, in a manner that permits us to obtain the loop response by

analysis of a linear time-invariant circuit.

Figure 1.2a illustrates a change in N, which results in a transient at the output

of the summer (e). The frequency there changes from fout(0)/N1 before switching to

fout(0)/N2 after switching, where fout(0) is the output frequency at the moment of

switching. The same transient could be caused by a frequency change, injected into

the time-invariant loop shown in Fig. 1.2b, of

Dfdð0Þ ¼ foutð0Þ N2

N1

�1

� �
: ð1:3Þ
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If the loop is initially at steady state,

foutð0Þ ¼ N1Fref ð1:4Þ

and Eq. (1.3) becomes

Dfdð0Þ ¼ FrefðN2 �N1Þ ¼ FrefDN; ð1:5Þ

which is also the eventual size of the output frequency change. Since N¼N2 after

switching, the loop response is analyzed using that value of N. This is further

illustrated in Fig. F.2.19. Thus, we can analyze the response to a change in the

parameterN as if it were the response of a time-invariant circuit to a step signal at fd, so

long as the loop is initially at steady state.

During SD modulation, the parameter N undergoes continual changes but the

output is relatively steady at the synthesized frequency,

foutð0Þ ¼ NFref ; ð1:6Þ

so Eq. (1.3) then becomes

Dfdð0Þ ¼ FrefN
N2

N1

�1

� �
¼ Fref

N

N1

DN ð1:7Þ

[compare with Eq. (1.5)]. Since this now applies to the individual steps at each

reference period, we can also write

FIGURE 1.2 Representation of a change in divide number N.
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fdðnTrefÞ ¼ Fref

N

N1

NmodðnTrefÞ; ð1:8Þ

where Nmod is the modulated divider ratio.

Looking at the various frequency components in the sequence of Nmod values, the

low-frequency components will be affected by the average value ofN1 (i.e.,N); so, for

fm� fref, Eq. (1.8) suggests

fdð fm � frefÞ � FrefNmodð fm � frefÞ; ð1:9Þ

implying thatNmod can be represented as an equivalent frequency deviation injected at

fd in Fig. 1.2b. However, such averaging cannot be applied to the higher frequency

components. Thus, we can expect the response for fm� fref to be as if f ¼ frefNmod

were injected at the divider input [Eq. (F.8.75)], but the exact response, including the

higher modulation frequencies, usually those beyond the loop bandwidth, will differ.

That response is developed in Appendix Q (and its form supports the treatment of the

low-frequency components that we have just described).

1.4 UNITS

We will try to use units everywhere, which may lead to some unfamiliar looking

expressions. For example, rather than writing f ¼ 1=T , we relate frequency f to

period T by

f ¼ cycle=T : ð1:10Þ

However, we drop or add radian units, and only radian units, at will (see Section

F.1.1.4 for an explanation).

1.5 REPRESENTING PHASE NOISE

Sinusoidal frequency modulation of a signal at frequency fmwith a peak deviation Df
produces a sinusoidal phase deviation at the same frequency with a peak phase

deviation of m, called the modulation index,

mð fmÞ ¼ Df ð fmÞ=fm; ð1:11Þ

in radians (Section F.3.1). This causes sidebands on the signal, spaced at multiples of

fm from the central spectral line. Whenm is small relative to 1 rad, the central spectral

line is reduced little from its level without modulation, the sidebands fall off rapidly,

and the first sideband has an amplitude of m/2 relative to the central line. If there are

many modulating frequencies and if they are spaced very closely, or continuous, we

can treat them as a phase power spectral density (PPSD) Sw with units of rad2/Hz
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(Section F.3.7). The units of

SwjdB ¼ 10 dB log10 Sw ð1:12Þ

are decibels relative to a radian squared per hertz, dBr/Hz.

This relationship between the first sidebands and the discrete phase deviation

implies a similar relationship between Sw( fm) and the relative single-sideband power

spectral density (PSD) Lw(D f) at an offset ofD f¼�fm from spectral center (whichwe

seewhen observing the signal on a spectrum analyzer), requiring still thatm be small,

in which case (Section F.3.7)

LwðDf ¼ �fmÞ ¼ Swð fmÞ=2: ð1:13Þ

If the restriction on m is not met, Eq. (1.13) is not valid. However, by definition,

LwðDf ¼ fmÞ¼D Swð fmÞ=2: ð1:14Þ

The density Lw is a popular measure of oscillator phase noise because at sufficiently

large Df¼ fm, the modulation index is small, so Lw � Lw at those offsets. Thus, Lw

indicates what the power spectrum of a signal looks like, except close to the center,

where Sw (and thus Lw) continue to climb with decreasing Df, even as Lw approaches a
peak at Df¼ 0. As fm) 0, the measurement of Sw requires ever narrower filters and

takes ever longer times, causing a practical limit on the minimum fm at which it is

measured, but no such limit exists for Lw.

The density Lw(Df¼�fm) is called single-sideband density because it is the

relative density on either side of the spectral center, Lw(Df¼ þ fm) or the equivalent

Lw(Df¼�fm). We will not use double-sideband density.

The alternative use of Lw or Sw should present no problem because of the simple

relationship Eq. (1.14), which can also be expressed as

LwjdBc=Hz � SwjdBr=Hz�3 dB: ð1:15Þ

In the Fourier domain, positive and negative frequencies are used, and the power

densities are divided evenly between the positive and negative frequencies. We will

generally use one-sided densities and will designate two-sided (Fourier) densities by

using a subscript 2. Thus,

S2;wð fmÞ ¼ Swð fmÞ=2 ð1:16Þ
and

LwðDf ¼ fmÞ ¼ S2;wð fmÞ: ð1:17Þ

A relationship similar to Eq. (1.16) holds also for power spectral density, but

Lw(Df¼�fm) is the relative PSD, normalized to the signal power, so it is the same

(F.3.41)
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one-sided as two-sided, since both the signal power and PSD are changed by the

same factor of 2.

1.6 PHASE NOISE AT THE SYNTHESIZER OUTPUT

The various noise sources in the synthesizer and their effects on the output spectrum

are covered extensively inFS2, especially in Chapters 3 (density) and 5 (discrete).We

will further consider some of these and some additional noise source in Chapter 4, in

particular as they relate to synthesizer ICs and to SD synthesizers.

1.7 OBSERVING THE OUTPUT SPECTRUM

We will observe the effects of fractional-N synthesis on the synthesizer’s output

spectrum using a Simulinkmodel of a type-2 PLLwith a 58 kHz unity gain bandwidth

fL. See Section L.1 for details. We will initially use a sample-and-hold (S&H) phase

detector (Appendix P) to make the phase values easier to observe. Eventually, wewill

change to the more common phase frequency detector (PFD).
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