
1

C H A P T E R

1

Understanding Internet Security

How secure is the data that you transmit on the Internet? How vulnerable is
your personal data to hackers? Even computer-literate, experienced program-
mers fi nd it’s hard to answer these questions with certainty. You probably know
that standard encryption algorithms are used to protect data — you’ve likely
heard of public-key algorithms such as RSA and DSA — and you may know
that the U.S. government’s Data Encryption Standard has been replaced by an
Advanced Encryption Standard. Everybody knows about the lock icon in their
browsers that indicates that the session is protected by HTTPS. You’ve most
likely heard of PGP for e-mail security (even if you gave up on it after failing
to convince your friends to use it).

In all likelihood, though, you’ve also heard of man in the middle attacks, timing
attacks, side-channel attacks, and various other attacks that aim to compromise
privacy and security. Anybody with a web browser has been presented with the
ominous warning message that “This site’s security cannot be trusted — either
the certifi cate has expired, or it was issued by a certifi cate authority you have
chosen not to trust.” Every week, you can read about some new zero-day exploit
uncovered by security researchers that requires a round of frantic patching. As
a professional programmer, you may feel you ought to know exactly what that
means — yet trying to decipher these messages and determine whether you
should really be worried or not takes you down the rabbit hole of IETF, PKCS,
FIPS, NIST, ITU, and ASN. You may have tried to go straight to the source and
read RFC 2246, which describes TLS, but you may have discovered, to your

c01.indd 1c01.indd 1 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

CO
PYRIG

HTED
 M

ATERIA
L

2 Chapter 1 n Understanding Internet Security

chagrin, that RFC 2246 presumes a background in symmetric cryptography,
public-key cryptography, digital signature algorithms, and X.509 certifi cates.
It’s unclear where to even begin. Although there are a handful of books that
describe SSL and “Internet Security,” none are targeted at the technically inclined
reader who wants, or needs, to know the details.

A mantra among security professionals is that the average programmer
doesn’t understand security and should not be trusted with it until he verses
himself in it. This is good, but ultimately unhelpful, advice. Where does one
begin? What the security professionals are really trying to tell you is that, as a
practitioner rather than a casual user, it’s not enough to treat security as a black
box or a binary property; you need to know what the security is doing and how
it’s doing it so that you know what you are and aren’t protected against. This
book was written for you — the professional programmer who understands the
basics of security but wants to uncover the details without reading thousands
of pages of dry technical specifi cations (only some of which are relevant).

This book begins by examining sockets and socket programming in brief.
Afterward, it moves on to a detailed examination of cryptographic concepts
and fi nally applies them to SSL/TLS, the current standard for Internet security.
You examine what SSL/TLS does, what it doesn’t do, and how it does it. After
completing this book, you’ll know exactly how and where SSL fi ts into an over-
all security strategy and you’ll know what steps yet need to be taken, if any, to
achieve additional security.

What Are Secure Sockets?

The Internet is a packet-switching network. This means that, for two hosts to com-
municate, they must packetize their data and submit it to a router with the destina-
tion address prepended to each packet. The router then analyzes the destination
address and routes the packet either to the target host, or to a router that it
believes is closer to the target host. The Internet Protocol (IP), outlined in RFC
971, describes the standard for how this packetization is performed and how
addresses are attached to packets in headers.

A packet can and probably will pass through many routers between the sender
and the receiver. If the contents of the data in that packet are sensitive — a pass-
word, a credit card, a tax identifi cation number — the sender would probably
like to ensure that only the receiver can read the packet, rather than the packet
being readable by any router along the way. Even if the sender trusts the rout-
ers and their operators, routers can be compromised by malicious individuals,
called attackers in security terminology, and tricked into forwarding traffi c that’s
meant for one destination to another, as shown in http://www.securesphere
.net/download/papers/dnsspoof.htm. If you’d like to get an idea just how many
different hosts a packet passes through between you and a server, you can use

c01.indd 2c01.indd 2 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

 Chapter 1 n Understanding Internet Security 3

the traceroute facility that comes with every Internet-capable computer to print
a list of the hops between you and any server on the Internet.

An example of a traceroute output is shown below:

 [jdavies@localhost]:~$ traceroute www.travelocity.com

traceroute to www.travelocity.com (151.193.224.81), 30 hops max, 40 byte packets

 1 192.168.0.1 (192.168.0.1) 0.174 ms 0.159 ms 0.123 ms

 2 * * *

 3 172.216.125.53 (172.216.125.53) 8.052 ms 7.978 ms 9.699 ms

 4 10.208.164.65 (10.208.164.65) 10.731 ms 9.895 ms 9.489 ms

 5 gig8-2.dllatxarl-t-rtr1.tx.rr.com (70.125.217.92) 12.593 ms 10.952 ms

13.003 ms

 6 gig0-1-0.dllatxl3-rtr1.texas.rr.com (72.179.205.72) 69.604 ms 37.540 ms

14.015 ms

 7 ae-4-0.cr0.dfw10.tbone.rr.com (66.109.6.88) 13.434 ms 13.696 ms 15.259 ms

 8 ae-1-0.pr0.dfw10.tbone.rr.com (66.109.6.179) 15.498 ms 15.948 ms 15.555 ms

 9 xe-7-0-0.edge4.Dallas3.Level3.net (4.59.32.17) 18.653 ms 22.451 ms 16.034

ms

10 ae-11-60.car1.Dallas1.Level3.net (4.69.145.3) 19.759 ms

ae-21-70.car1.Dallas1.Level3.net (4.69.145.67) 17.455 ms

ae-41-90.car1.Dallas1.Level3.net (4.69.145.195) 16.469 ms

11 EDS.car1.Dallas1.Level3.net (4.59.113.86) 28.853 ms 25.672 ms 26.337 ms

12 151.193.129.61 (151.193.129.61) 24.763 ms 26.032 ms 25.481 ms

13 151.193.129.99 (151.193.129.99) 28.727 ms 25.441 ms 26.507 ms

14 151.193.129.173 (151.193.129.173) 26.642 ms 23.995 ms 28.462 ms

15 * * *

Here, I’ve submitted a traceroute to www.travelocity.com. Each router along
the way is supposed to respond with a special packet called an ICMP timeout
packet, as described in RFC 793, with its own address. The routers that cannot
or will not do so are represented with * * * in the preceding code. Typically
the routers don’t respond because they’re behind a fi rewall that’s confi gured
not to forward ICMP diagnostic packets. As you can see, there are quite a few
hops between my home router and Travelocity’s main web server.

In network programming parlance, the tenuous connection between a sender
and a receiver is referred to as a socket. When one host — the client — is ready
to establish a connection with another — the server — it sends a synchronize
(SYN) packet to the server. If the server is willing to accept the connection,
it responds with a SYN and acknowledge packet. Finally, the client acknowl-
edges the acknowledgment and both sides have agreed on a connection. This
three-packet exchange is referred to as the TCP handshake and is illustrated in
Figure 1-1. The connection is associated with a pair of numbers: the source port
and the destination port, which are attached to each subsequent packet in the
communication. Because the server is sitting around, always listening for con-
nections, it must advertise its destination port ahead of time. How this is done
is protocol-specifi c; some protocols are lucky enough to have “magic numbers”
associated with them that are well-known (in other words, you, the programmer
are supposed to know them). This is the Transport Control Protocol (TCP); RFC

c01.indd 3c01.indd 3 12/10/2010 9:43:23 AM12/10/2010 9:43:23 AM

4 Chapter 1 n Understanding Internet Security

793 describes exactly how this works and how both sides agree on a source and
destination port and how they sequence these and subsequent packets.

Figure 1-1: TCP three-way handshake

ACK

SYN/ACK

SYN

serverclient

TCP and IP are usually implemented together and called TCP/IP. A socket refers
to an established TCP connection; both sides, client and server, have a socket
after the three-way handshake described above has been completed. If either side
transmits data over this socket, TCP guarantees, to the best of its ability, that the
other side sees this data in the order it was sent. As is required by IP, however,
any intermediate router along the way also sees this data.

SSL stands for Secure Sockets Layer and was originally developed by Netscape
as a way to allow the then-new browser technology to be used for e-commerce.
The original specifi cation proposal can be found in http://www.mozilla.org/
projects/security/pki/nss/ssl/draft02.html. Although it has since been
standardized and renamed Transport Layer Security (TLS), the name SSL is much
more recognizable and in some ways describes better what it does and what
it’s for. After a socket has been established between the client and the server,
SSL defi nes a second handshake that can be performed to establish a secure
channel over the inherently insecure TCP layer.

“Insecure” Communications: Understanding the
HTTP Protocol

HTTP, or Hypertext Transport Protocol, which is offi cially described in RFC 2616,
is the standard protocol for web communication. Web clients, typically referred
to as browsers, establish sockets with web servers. HTTP has a well-known
destination port of 80. After the socket has been established, the web browser
begins following the rules set forth by the HTTP protocol to request documents.
HTTP started out as a fairly simple protocol in which the client issued a GET
command and a description of what it would like to get, to which the server

c01.indd 4c01.indd 4 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 5

responded with either what the client requested in document form or an error
indicating why it could not or did not give the client that document. Either
way, the socket would be closed after this. If the client wanted another docu-
ment, it would create another socket and request another document. Over the
years, HTTP has been refi ned quite a bit and optimized for bandwidth, speed,
and security features.

 HTTP was also the primary motivator for SSL. Originally, SSL didn’t stand
on its own; it was designed as an add-on to HTTP, called HTTPS. Although SSL
was subsequently decoupled from HTTP, some of its features were optimized
for HTTP, leaving it to be a bit of a square peg in a round hole in some other
contexts. Because HTTP and SSL go so well together, in this book I motivate SSL
by developing an HTTP client and adding security features to it incrementally,
fi nally arriving at a working HTTP/SSL implementation.

Implementing an HTTP Client
Web browsers are complex because they need to parse and render HTML — and,
in most cases, render images, run Javascript, Flash, Java Applets and leave room
for new, as-yet-uninvented add-ons. However, a web client that only retrieves
a document from a server, such as the wget utility that comes standard with
most Unix distributions, is actually pretty simple. Most of the complexity is in
the socket handling itself — establishing the socket and sending and receiving
data over it.

Start with all of the includes that go along with socket communication — as
you can see, there are quite a few, shown in Listing 1-1.

Listing 1-1: “http.c” header includes

/**

 * This test utility does simple (non-encrypted) HTTP.

 */

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <string.h>

#include <sys/types.h>

#ifdef WIN32

#include <winsock2.h>

#include <windows.h>

#else

#include <netdb.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

#endif

c01.indd 5c01.indd 5 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

6 Chapter 1 n Understanding Internet Security

The main routine is invoked with a URL of the form http://www.server
.com/path/to/document.html. You need to separate the host and the path using
a utility routine parse_url, shown in Listing 1-2.

Listing 1-2: “http.c” parse_url

/**

 * Accept a well-formed URL (e.g. http://www.company.com/index.html) and return

 * pointers to the host part and the path part. Note that this function

 * modifies the uri itself as well. It returns 0 on success, -1 if the URL is

 * found to be malformed in any way.

 */

int parse_url(char *uri, char **host, char **path)

{

 char *pos;

 pos = strstr(uri, “//”);

 if (!pos)

 {

 return -1;

 }

 *host = pos + 2;

 pos = strchr(*host, ‘/’);

 if (!pos)

 {

 *path = NULL;

 }

 else

 {

 *pos = ‘\0’;

 *path = pos + 1;

 }

 return 0;

}

You scan through the URL, looking for the delimiters // and / and replace
them with null-terminators so that the caller can treat them as C strings. Notice
that the calling function passes in two pointers to pointers; these should be
null when the function starts and will be modifi ed to point into the uri string,
which came from argv.

The main routine that coordinates all of this is shown in Listing 1-3.

Listing 1-3: “http.c” main

#define HTTP_PORT 80

/**

 * Simple command-line HTTP client.

c01.indd 6c01.indd 6 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 7

 */

int main(int argc, char *argv[])

{

 int client_connection;

 char *host, *path;

 struct hostent *host_name;

 struct sockaddr_in host_address;

#ifdef WIN32

 WSADATA wsaData;

#endif

 if (argc < 2)

 {

 fprintf(stderr, “Usage: %s: <URL>\n”, argv[0]);

 return 1;

 }

 if (parse_url(argv[1], &host, &path) == -1)

 {

 fprintf(stderr, “Error - malformed URL ‘%s’.\n”, argv[1]);

 return 1;

 }

 printf(“Connecting to host ‘%s’\n”, host);

After the URL has been parsed and the host is known, you must establish
a socket to it. In order to do this, convert it from a human-readable host name,
such as www.server.com, to a dotted-decimal IP address, such as 100.218.64.2.
You call the standard gethostbyname library function to do this, and connect
to the server. This is shown in Listing 1-4.

Listing 1-4: “http.c” main (continued)

 // Step 1: open a socket connection on http port with the destination host.

#ifdef WIN32

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR)

 {

 fprintf(stderr, “Error, unable to initialize winsock.\n”);

 return 2;

 }

#endif

 client_connection = socket(PF_INET, SOCK_STREAM, 0);

 if (!client_connection)

 {

 perror(“Unable to create local socket”);

 return 2;

 }

 host_name = gethostbyname(host);

 if (!host_name)

(Continued)

c01.indd 7c01.indd 7 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

8 Chapter 1 n Understanding Internet Security

 {

 perror(“Error in name resolution”);

 return 3;

 }

 host_address.sin_family = AF_INET;

 host_address.sin_port = htons(HTTP_PORT);

 memcpy(&host_address.sin_addr, host_name->h_addr_list[0],

 sizeof(struct in_addr));

 if (connect(client_connection, (struct sockaddr *) &host_address,

 sizeof(host_address)) == -1)

 {

 perror(“Unable to connect to host”);

 return 4;

 }

 printf(“Retrieving document: ‘%s’\n”, path);

Assuming nothing went wrong — the socket structure could be created, the
hostname could be resolved to an IP address, the IP address was reachable, and
the server accepted your connection on the well-known port 80 — you now have
a usable (cleartext) socket with which to exchange data with the web server. Issue
a GET command, display the result, and close the socket, as shown in Listing 1-5.

Listing 1-5: “http.c” main (continued)

 http_get(client_connection, path, host);

 display_result(client_connection);

 printf(“Shutting down.\n”);

#ifdef WIN32

 if (closesocket(client_connection) == -1)

#else

 if (close(client_connection) == -1)

#endif

 {

 perror(“Error closing client connection”);

 return 5;

 }

#ifdef WIN32

 WSACleanup();

#endif

 return 0;

}

An HTTP GET command is a simple, plaintext command. It starts with the
three ASCII-encoded letters GET, all in uppercase (HTTP is case sensitive), a
space, the path to the document to be retrieved, another space, and the token

c01.indd 8c01.indd 8 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 9

HTTP/1.0 or HTTP/1.1 depending on which version of the HTTP protocol the
client understands.

NOTE At the time of this writing, there are only two versions of HTTP; the
differences are immaterial to this book.

The GET command itself is followed by a carriage-return/line-feed pair (0x0A
0x0D) and a colon-separated, CRLF-delimited list of headers that describe how
the client wants the response to be returned. Only one header is required — the
Host header, which is required to support virtual hosting, the situation where
several hosts share one IP address or vice-versa. The Connection header is not
required, but in general you should send it to indicate to the client whether you
want it to Keep-Alive the connection — if you plan on requesting more docu-
ments on this same socket — or Close it. If you omit the Connection: Close
header line, the server keeps the socket open until the client closes it. If you’re
just sending a single request and getting back a single response, it’s easier to
let the server just close the connection when it’s done sending. The header list
is terminated by an empty CRLF pair.

A minimal HTTP GET command looks like this:

GET /index.html HTTP/1.1

Host: www.server.com

Connection: close

The code to format and submit a GET command over an established socket is
shown in Listing 1-6. Note that the input is the socket itself — the connection
argument — the path of the document being requested, and the host (to build
the host header).

Listing 1-6: “http.c” http_get

#define MAX_GET_COMMAND 255

/**

 * Format and send an HTTP get command. The return value will be 0

 * on success, -1 on failure, with errno set appropriately. The caller

 * must then retrieve the response.

 */

int http_get(int connection, const char *path, const char *host)

{

 static char get_command[MAX_GET_COMMAND];

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 return -1;

 }

 sprintf(get_command, “Host: %s\r\n”, host);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

(Continued)

c01.indd 9c01.indd 9 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

10 Chapter 1 n Understanding Internet Security

 return -1;

 }

 sprintf(get_command, “Connection: close\r\n\r\n”);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 return -1;

 }

 return 0;

}

Finally, output the response from the server. To keep things simple, just dump
the contents of the response on stdout. An HTTP response has a standard for-
mat, just like an HTTP request. The response is the token HTTP/1.0 or HTTP/1.1
depending on which version the server understands (which does not necessarily
have to match the client’s version), followed by a space, followed by a numeric
code indicating the status of the request — errored, rejected, processed, and so
on — followed by a space, followed by a textual, human-readable, description
of the meaning of the status code.

Some of the more common status codes are shown in Table 1-1.

Table 1-1: Common status codes

STATUS MEANING

200 Everything was OK, requested document follows.

302 Requested document exists, but has been moved — new location
follows.

403 Forbidden: Requested document exists, but you are not authorized to
view it.

404 Requested document not found.

500 Internal Server Error.

There are quite a few more status codes, as described in RFC 2616. The response
status line is followed, again, by a CRLF, and a series of colon-separated, CRLF-
delimited headers, a standalone CRLF/blank line end-of-headers marker, and
the document itself. Here’s an example HTTP response:

HTTP/1.1 200 OK

Date: Tue, 13 Oct 2009 19:34:51 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:57 GMT

ETag: “1876a-ff-316f5740”

Accept-Ranges: bytes

c01.indd 10c01.indd 10 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 11

Content-Length: 255

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<html>

<head>

<TITLE>Welcome to the server</TITLE>

</head>

<BODY BGCOLOR=ffffff>

This is the server’s homepage

</BODY>

</html>

Here’s an example of a 404 “not found” error:

HTTP/1.1 404 Not Found

Date: Tue, 13 Oct 2009 19:40:53 GMT

Server: Apache

Last-Modified: Fri, 27 Oct 2006 01:53:58 GMT

ETag: “1875d-c5-317e9980”

Accept-Ranges: bytes

Content-Length: 197

Vary: Accept-Encoding

Connection: close

Content-Type: text/html; charset=ISO-8859-1

<!DOCTYPE HTML PUBLIC “-//IETF//DTD HTML 2.0//EN”>

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL was not found on this server.</p>

</body></html>

Even though the document requested was not found, a document was returned,
which can be displayed in a browser to remind the user that something has
gone wrong.

For testing purposes, you don’t care about the response itself, as long as you
get one. Therefore, don’t make any efforts to parse these responses — just dump
their contents, verbatim, on stdout as shown in Listing 1-7.

Listing 1-7: “http.c” display_result

#define BUFFER_SIZE 255

/**

 * Receive all data available on a connection and dump it to stdout

 */

void display_result(int connection)

{

 int received = 0;

(Continued)

c01.indd 11c01.indd 11 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

12 Chapter 1 n Understanding Internet Security

 static char recv_buf[BUFFER_SIZE + 1];

 while ((received = recv(connection, recv_buf, BUFFER_SIZE, 0)) > 0)

 {

 recv_buf[received] = ‘\0’;

 printf(“%s”, recv_buf);

 }

 printf(“\n”);

}

This is all that’s required to implement a bare-bones web client. Note, how-
ever, that because the socket created was a cleartext socket, everything that’s
transmitted between the client and the server is observable, in plaintext, to
every host in between. In general, if you want to protect the transmission from
eavesdroppers, you establish an SSL context — that is, secure the line — prior to
sending the GET command.

Adding Support for HTTP Proxies
One important topic related to HTTP is the HTTP proxy. Proxies are a bit tricky
for SSL. Notice in Listing 1-4 that a socket had to be created from the client to the
server before a document could be requested. This means that the client had to
be able to construct a SYN packet, hand that off to a router, which hands it off to
another router, and so on until it’s received by the server. The server then con-
structs its own SYN/ACK packet, hands it off, and so on until it’s received by the
client. However, in corporate intranet environments, packets from outside
the corporate domain are not allowed in and vice versa. In effect, there is no
route from the client to the server with which it wants to connect.

In this scenario, it’s typical to set up a proxy server that can connect to the
outside world, and have the client funnel its requests through the proxy. This
changes the dynamics a bit; the client establishes a socket connection with the
proxy server fi rst, and issues a GET request to it as shown in Figure 1-2. After
the proxy receives the GET request, the proxy examines the request to determine the
host name, resolves the IP address, connects to that IP address on behalf of
the client, re-issues the GET request, and forwards the response back to the
client. This subtly changes the dynamics of HTTP. What’s important to notice is
that the client establishes a socket with the proxy server, and the GET request
now includes the full URL.

Because you may well be reading this behind such a fi rewalled environment,
and because proxies present some unique challenges for SSL, go ahead and add
proxy support to the minimal HTTP client developed in the preceding section.

First of all, you need to modify the main routine to accept an optional proxy
specifi cation parameter. A proxy specifi cation includes, of course, the hostname
of the proxy server itself, but it also typically allows a username and password

c01.indd 12c01.indd 12 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 13

to be passed in, as most HTTP proxies are, or at least can be, authenticating.
The standard format for a proxy specifi cation is

http://[username:password@]hostname[:port]/

where hostname is the only part that’s required. Modify your main routine
as shown in Listing 1-8 to accept an optional proxy parameter, preceded by -p.

Figure 1-2: HTTP Proxies

client proxy server

Connect (e.g., on port 8080)
GET http://www.server.com/somedocument.html HTTP/1.1
resolve www.server.com, connect to it (on port 80)
GET /somedocument.html HTTP/1.1
HTTP/1.1 200 OK
HTTP/1.1 200 OK

Listing 1-8: “http.c” main (with proxy support)

int main(int argc, char *argv[])

{

 int client_connection;

 char *proxy_host, *proxy_user, *proxy_password;

 int proxy_port;

 char *host, *path;

 struct hostent *host_name;

 struct sockaddr_in host_address;

 int ind;

#ifdef WIN32

 WSADATA wsaData;

#endif

 if (argc < 2)

 {

 fprintf(stderr,

 “Usage: %s: [-p http://[username:password@]proxy-host:proxy-port]\

<URL>\n”,

 argv[0]);

 return 1;

 }

 proxy_host = proxy_user = proxy_password = host = path = NULL;

 ind = 1;

 if (!strcmp(“-p”, argv[ind]))

 {

 if (!parse_proxy_param(argv[++ind], &proxy_host, &proxy_port,

(Continued)

c01.indd 13c01.indd 13 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

14 Chapter 1 n Understanding Internet Security

 &proxy_user, &proxy_password))

 {

 fprintf(stderr, “Error - malformed proxy parameter ‘%s’.\n”,

 argv[2]);

 return 2;

 }

 ind++;

 }

 if (parse_url(argv[ind], &host, &path) == -1)

If the fi rst argument is -p, take the second argument to be a proxy specifi cation
in the canonical form and parse it. Either way, the last argument is still a URL.

If parse_proxy_param succeeds, proxy_host is a non-null pointer to the host-
name of the proxy server. You need to make a few changes to your connection
logic to support this correctly, as shown in Listing 1-9. First you need to establish
a socket connection to the proxy host rather than the actual target HTTP host.

Listing 1-9: “http.c” main (with proxy support) (continued)

 if (proxy_host)

 {

 printf(“Connecting to host ‘%s’\n”, proxy_host);

 host_name = gethostbyname(proxy_host);

 }

 else

 {

 printf(“Connecting to host ‘%s’\n”, host);

 host_name = gethostbyname(host);

 }

 host_address.sin_family = AF_INET;

 host_address.sin_port = htons(proxy_host ? proxy_port : HTTP_PORT);

 memcpy(&host_address.sin_addr, host_name->h_addr_list[0],

 sizeof(struct in_addr));

…

 http_get(client_connection, path, host, proxy_host,

 proxy_user, proxy_password);

Finally, pass the proxy host, user, and password to http_get. The new parse_
proxy_param function works similarly to the parse_url function in Listing
1-2: pass in a pointer to the argv string, insert nulls at strategic places, and set
char * pointers to the appropriate places within the argv string to represent
the individual pieces, as shown in Listing 1-10.

Listing 1-10: “http.c” parse_proxy_param

int parse_proxy_param(char *proxy_spec,

 char **proxy_host,

 int *proxy_port,

 char **proxy_user,

 char **proxy_password)

{

c01.indd 14c01.indd 14 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

 Chapter 1 n Understanding Internet Security 15

 char *login_sep, *colon_sep, *trailer_sep;

 // Technically, the user should start the proxy spec with

 // “http://”. But, be forgiving if he didn’t.

 if (!strncmp(“http://”, proxy_spec, 7))

 {

 proxy_spec += 7;

 }

In Listing 1-11, check to see if an authentication string has been supplied. If the @
symbol appears in the proxy_spec, it must be preceded by a “username:password”
pair. If it is, parse those out; if it isn’t, there’s no error because the username and
password are not strictly required.

Listing 1-11: “http.c” parse_proxy_param (continued)

 login_sep = strchr(proxy_spec, ‘@’);

 if (login_sep)

 {

 colon_sep = strchr(proxy_spec, ‘:’);

 if (!colon_sep || (colon_sep > login_sep))

 {

 // Error - if username supplied, password must be supplied.

 fprintf(stderr, “Expected password in ‘%s’\n”, proxy_spec);

 return 0;

 }

 *colon_sep = ‘\0’;

 *proxy_user = proxy_spec;

 *login_sep = ‘\0’;

 *proxy_password = colon_sep + 1;

 proxy_spec = login_sep + 1;

 }

Notice that, if a username and password are supplied, you modify the proxy_
spec parameter to point to the character after the @. This way, proxy_spec now
points to the proxy host whether an authentication string was supplied or not.

Listing 1-12 shows the rest of the proxy parameter parsing — the user can
supply a port number if the proxy is listening on a non-standard port.

Listing 1-12: “http.c” parse_proxy_param (continued)

 // If the user added a “/” on the end (as they sometimes do),

 // just ignore it.

 trailer_sep = strchr(proxy_spec, ‘/’);

 if (trailer_sep)

 {

 *trailer_sep = ‘\0’;

 }

 colon_sep = strchr(proxy_spec, ‘:’);

 if (colon_sep)

(Continued)

c01.indd 15c01.indd 15 12/10/2010 9:43:24 AM12/10/2010 9:43:24 AM

16 Chapter 1 n Understanding Internet Security

 {

 // non-standard proxy port

 *colon_sep = ‘\0’;

 *proxy_host = proxy_spec;

 *proxy_port = atoi(colon_sep + 1);

 if (*proxy_port == 0)

 {

 // 0 is not a valid port; this is an error, whether

 // it was mistyped or specified as 0.

 return 0;

 }

 }

 else

 {

 *proxy_port = HTTP_PORT;

 *proxy_host = proxy_spec;

 }

 return 1;

}

The port number is also optional. If there’s a : character before the end of
the proxy specifi cation, it denotes a port; otherwise, assume the standard HTTP
port 80.

At this point, you have all the pieces you need for HTTP proxy support except
for the changes to the actual http_get routine. Remember that, in ordinary,
“proxy-less” HTTP, you start by establishing a connection to the target HTTP
host and then send in a GET /path HTTP/1.0 request line. However, when
connecting to a proxy, you need to send a whole hostname because the socket
itself has just been established between the client and the proxy. The request
line becomes GET http://host/path HTTP/1.0. Change http_get as shown
in Listing 1-13 to recognize this case and send a proxy-friendly GET command
if a proxy host parameter was supplied.

Listing 1-13: http_get (modifi ed for proxy support)

int http_get(int connection,

 const char *path,

 const char *host,

 const char *proxy_host,

 const char *proxy_user,

 const char *proxy_password)

{

 static char get_command[MAX_GET_COMMAND];

 if (proxy_host)

 {

 sprintf(get_command, “GET http://%s/%s HTTP/1.1\r\n”, host, path);

 }

 else

 {

c01.indd 16c01.indd 16 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 17

 sprintf(get_command, “GET /%s HTTP/1.1\r\n”, path);

 }

If the proxy is non-authenticating, this is all you need to do. If the proxy is
an authenticating proxy, as most are, you need to supply an additional HTTP
header line including the proxy authorization string.
Proxy-Authorization: [METHOD] [connection string]

[METHOD], according to RFC 2617, is one of BASIC or DIGEST. It’s also com-
mon to see the non-standard NTLM in Microsoft environments. BASIC is, clearly,
the simplest of the three, and the only one you’ll support — hopefully, if you’re
behind a proxy, your proxy does, too. The format of connection string varies
depending on the METHOD. For BASIC, it’s base64_encode(‘username:password’).

Reliable Transmission of Binary Data with Base64
Encoding
You may be somewhat familiar with Base 64 encoding, or at least be familiar
with the term. In early modem-based communication systems, such as e-mail
relay or UUCP systems, an unexpected byte value outside of the printable ASCII
range 32–126 could cause all sorts of problems. Early modems interpreted byte
code 6 as an acknowledgment, for example, wherever it occurred in the stream.
This created problems when trying to transmit binary data such as compressed
images or executable fi les. Various (incompatible) encoding methods were
developed to map binary data into the range of printable ASCII characters; one
of the most popular was Base64.

Base64 divides the input into 6-bit chunks — hence the name Base64 because
26=64 — and maps each 6-bit input into one of the printable ASCII characters.
The fi rst 52 combinations map to the upper- and lowercase alphabetic characters
A–Z and a–z; the next 10 map to the numerals 0–9. That leaves two combinations
left over to map. There’s been some historical contention on exactly what these
characters should be, but compatible implementations map them, arbitrarily, to
the characters + and /. An example of a Base64 encoding is shown in Figure 1-3.

Because the input stream is, obviously, a multiple of 8 bits, dividing it into 6-bit
chunks creates a minor problem. Because 24 is the least-common-multiple of 6
and 8, the input must be padded to a multiple of 24 bits (three bytes). Although
Base64 could just mandate that the encoding routine add padding bytes to
ensure alignment, that would complicate the decoding process. Instead the
encoder adds two = characters if the last chunk is one byte long, one = character
if the last chunk is two bytes long, and no = characters if the input is an even
multiple of three bytes. This 6:8 ratio also means that the output is one third
bigger than the input.

c01.indd 17c01.indd 17 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

18 Chapter 1 n Understanding Internet Security

F igure 1-3: Base64 Encoding

6

0 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1

0

A B C ...

1 1 0 1 0

15 7

0 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 1

9 C 3 D 7

G H I ... O P Q ... 6 ...3 4 5

2826

As you see in Listing 1-14, Base64 encoding is pretty simple to implement
after you understand it; most of the complexity deals with non-aligned input:

Listing 1-14: “base64.c” base64_encode

static char *base64 =

 “ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/”;

void base64_encode(const unsigned char *input, int len, unsigned char *output)

{

 do

 {

 *output++ = base64[(input[0] & 0xFC) >> 2];

 if (len == 1)

 {

 *output++ = base64[((input[0] & 0x03) << 4)];

 *output++ = ‘=’;

 *output++ = ‘=’;

 break;

 }

 *output++ = base64[

 ((input[0] & 0x03) << 4) | ((input[1] & 0xF0) >> 4)];

 if (len == 2)

 {

 *output++ = base64[((input[1] & 0x0F) << 2)];

 *output++ = ‘=’;

 break;

 }

 *output++ = base64[

c01.indd 18c01.indd 18 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 19

 ((input[1] & 0x0F) << 2) | ((input[2] & 0xC0) >> 6)];

 *output++ = base64[(input[2] & 0x3F)];

 input += 3;

 }

 while (len -= 3);

 *output = ‘\0’;

}

Here, the output array is already assumed to have been allocated as 4/3 *
len. The input masks select 6 bits of the input at a time and process the input
in 3-byte chunks.

Base64 decoding is just as easy. Almost. Each input byte corresponds back
to six possible output bits. This mapping is the exact inverse of the encoding
mapping. However, when decoding, you have to be aware of the possibility that
you can receive invalid data. Remember that the input is given in 8-bit bytes, but
not every possible 8-bit combination is a legitimate Base64 character — this is,
in fact, the point of Base64. You must also reject non-aligned input here; if the
input is not a multiple of four, it didn’t come from a conformant Base64 encod-
ing routine. For these reasons, there’s a bit more error-checking that you need
to build into a Base64 decoding routine; when encoding, you can safely accept
anything, but when decoding, you must ensure that the input actually came
from a real Base64 encoder. Such a Base64 decoder is shown in Listing 1-15.

Listing 1-15: “base64.c” base64_decode

static int unbase64[] =

{

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,

 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, 52,

 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, 0, -1, -1, -1,

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, -1,

 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,

 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, -1

};

int base64_decode(const unsigned char *input, int len, unsigned char *output)

{

 int out_len = 0, i;

 assert(!(len & 0x03)); // Is an even multiple of 4

 do

 {

 for (i = 0; i <= 3; i++)

 {

 // Check for illegal base64 characters

 if (input[i] > 128 || unbase64[input[i]] == -1)

(Continued)

c01.indd 19c01.indd 19 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

20 Chapter 1 n Understanding Internet Security

 {

 fprintf(stderr, “invalid character for base64 encoding: %c\n”,

 input[i]);

 return -1;

 }

 }

 *output++ = unbase64[input[0]] << 2 |

 (unbase64[input[1]] & 0x30) >> 4;

 out_len++;

 if (input[2] != ‘=’)

 {

 *output++ = (unbase64[input[1]] & 0x0F) << 4 |

 (unbase64[input[2]] & 0x3C) >> 2;

 out_len++;

 }

 if (input[3] != ‘=’)

 {

 *output++ = (unbase64[input[2]] & 0x03) << 6 |

 unbase64[input[3]];

 out_len++;

 }

 input += 4;

 }

 while (len -= 4);

 return out_len;

}

Notice that unbase64 was declared as a static array. Technically you could have
computed this from base64, but because this never changes, it makes sense to
compute this once and hardcode it into the source. The –1 entries are non-base64
characters. If you encounter one in the decoding input, halt.

What does all of this Base64 stuff have to do with proxy authorization? Well,
BASIC authorization has the client pass a username and a password to the proxy
to identify itself. In a minor nod to security, HTTP requires that this username
and password be Base64 encoded before being transmitted. This provides some
safeguard (but not much) against accidental password leakage. Of course, even a
lazy attacker with access to a packet sniffer could easily Base64 decode the proxy
authorization line. In fact, the open-source Wireshark packet sniffer decodes it
for you! Still, it’s required by the specifi cation, so you have to support it.

To support proxy authorization, add the following to http_get as shown in
Listing 1-16.

Listing 1-16: “http.c” http_get (with proxy support) (continued)

 sprintf(get_command, “Host: %s\r\n”, host);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

c01.indd 20c01.indd 20 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 21

 return -1;

 }

 if (proxy_user)

 {

 int credentials_len = strlen(proxy_user) + strlen(proxy_password) + 1;

 char *proxy_credentials = malloc(credentials_len);

 char *auth_string = malloc(((credentials_len * 4) / 3) + 1);

 sprintf(proxy_credentials, “%s:%s”, proxy_user, proxy_password);

 base64_encode(proxy_credentials, credentials_len, auth_string);

 sprintf(get_command, “Proxy-Authorization: BASIC %s\r\n”, auth_string);

 if (send(connection, get_command, strlen(get_command), 0) == -1)

 {

 free(proxy_credentials);

 free(auth_string);

 return -1;

 }

 free(proxy_credentials);

 free(auth_string);

 }

 sprintf(get_command, “Connection: close\r\n\r\n”);

Now, if you invoke your http main routine with just a URL, it tries to connect
directly to the target host; if you invoke it with parameters:

./http -p http://user:password@proxy-host:80/ http://some.server.com/path

You connect through an authenticating proxy and request the same page.

Implementing an HTTP Server
Because you probably also want to examine server-side SSL, develop a server-
side HTTP application — what is usually referred to as a web server — and add
SSL support to it, as well. The operation of a web server is pretty straightfor-
ward. It starts by establishing a socket on which to listen for new requests.
By default, it listens on port 80, the standard HTTP port. When a new request
is received, it reads an HTTP request, as described earlier, from the client,
forms an HTTP response that either satisfi es the request or describes an error
condition, and either closes the connection (in the case of HTTP 1.0) or looks
for another request (in the case of HTTP 1.1+).

The main routine in Listing 1-17 illustrates the outer shell of an HTTP
server — or any other internet protocol server, for that matter.

Listing 1-17: “webserver.c” main routine

#define HTTP_PORT 80

int main(int argc, char *argv[])

{

(Continued)

c01.indd 21c01.indd 21 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

22 Chapter 1 n Understanding Internet Security

 int listen_sock;

 int connect_sock;

 int on = 1;

 struct sockaddr_in local_addr;

 struct sockaddr_in client_addr;

 int client_addr_len = sizeof(client_addr);

#ifdef WIN32

 WSADATA wsaData;

 if (WSAStartup(MAKEWORD(2, 2), &wsaData) != NO_ERROR)

 {

 perror(“Unable to initialize winsock”);

 exit(0);

 }

#endif

 if ((listen_sock = socket(PF_INET, SOCK_STREAM, 0)) == -1)

 {

 perror(“Unable to create listening socket”);

 exit(0);

 }

 if (setsockopt(listen_sock,

 SOL_SOCKET,

 SO_REUSEADDR,

 &on, sizeof(on)) == -1)

 {

 perror(“Setting socket option”);

 exit(0);

 }

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = htons(HTTP_PORT);

 local_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

 //local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(listen_sock,

 (struct sockaddr *) &local_addr,

 sizeof(local_addr)) == -1)

 {

 perror(“Unable to bind to local address”);

 exit(0);

 }

 if (listen(listen_sock, 5) == -1)

 {

 perror(“Unable to set socket backlog”);

 exit(0);

 }

 while ((connect_sock = accept(listen_sock,

c01.indd 22c01.indd 22 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 23

 (struct sockaddr *) &client_addr,

 &client_addr_len)) != -1)

 {

 // TODO: ideally, this would spawn a new thread.

 process_http_request(connect_sock);

 }

 if (connect_sock == -1)

 {

 perror(“Unable to accept socket”);

 }

 return 0;

}

This code is standard sockets fare. It issues the four required system calls
that are required for a process to act as a TCP protocol server: socket, bind,
listen, and accept. The accept call will block — that is, not return — until a
client somewhere on the Internet calls connect with its IP and port number.
The inside of this while loop handles the request. Note that there’s nothing
HTTP specifi c about this loop yet; this could just as easily be an e-mail server,
an ftp server, an IRC server, and so on. If anything goes wrong, these calls
return –1, perror prints out a description of what happened, and the process
terminates.

There are two points to note about this routine:

 n The call to setsockopt(listen_socket, SOL_SOCKET, SO_REUSEADDR,
&on, sizeof(on)). This enables the same process to be restarted if
it terminates abnormally. Ordinarily, when a server process terminates
abnormally, the socket is left open for a period of time referred to as the
TIME_WAIT period. The socket is in TIME_WAIT state if you run netstat.
This enables any pending client FIN packets to be received and processed
correctly. Until this TIME_WAIT period has ended, no process can listen on
the same port. SO_REUSEADDR enables a process to take up ownership of a
socket that is in the TIME_WAIT state, so that on abnormal termination, the
process can be immediately restarted. This is probably what you always
want, but you have to ask for it explicitly.

 n Notice the arguments to bind. The bind system call tells the OS which port
you want to listen on and is, of course, required. However, bind accepts a
port as well as an interface name/IP address. By supplying an IP address
here, you can specify that you’re only interested in connections coming
into a certain interface. You can take advantage of that and bind this socket
with the loopback address (127.0.0.1) to ensure that only connections from
this machine are accepted (see Listing 1-18).

c01.indd 23c01.indd 23 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

24 Chapter 1 n Understanding Internet Security

Listing 1-18: “webserver.c” remote connection exclusion code

 local_addr.sin_family = AF_INET;

 local_addr.sin_port = htons(HTTP_PORT);

 local_addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);

 //local_addr.sin_addr.s_addr = htonl(INADDR_ANY);

 if (bind(listen_sock, (struct sockaddr *) &local_addr,

 sizeof(local_addr)) == -1)

If you uncomment the line below (INADDR_ANY), or just omit the setting of
local_addr.sin_addr.s_addr entirely, you accept connections from any avail-
able interface, including the one connected to the public Internet. In this case,
as a minor security precaution, disable this and only listen on the loopback
interface. If you have local fi rewall software running, this is unnecessary, but
just in case you don’t, you should be aware of the security implications.

Now for the HTTP-specifi c parts of this server. Call process_http_request for
each received connection. Technically, you ought to spawn a new thread here so
that the main thread can cycle back around and accept new connections; however,
for the current purpose, this bare-bones single-threaded server is good enough.

Processing an HTTP request involves fi rst reading the request line that should
be of the format

GET <path> HTTP/1.x

Of course, HTTP supports additional commands such as POST, HEAD, PUT,
DELETE, and OPTIONS, but you won’t bother with any of those — GET is good
enough. If a client asks for any other functionality, return an error code 501:
Not Implemented. Otherwise, ignore the path requested and return a canned
HTML response as shown in Listing 1-19.

Listing 1-19: “webserver.c” process_http_request

static void process_http_request(int connection)

{

 char *request_line;

 request_line = read_line(connection);

 if (strncmp(request_line, “GET”, 3))

 {

 // Only supports “GET” requests

 build_error_response(connection, 501);

 }

 else

 {

 // Skip over all header lines, don’t care

 while (strcmp(read_line(connection), “”));

 build_success_response(connection);

 }

#ifdef WIN32

c01.indd 24c01.indd 24 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 25

 if (closesocket(connection) == -1)

#else

 if (close(connection) == -1)

#endif

 {

 perror(“Unable to close connection”);

 }

}

Because HTTP is line-oriented — that is, clients are expected to pass in
multiple CRLF-delimited lines that describe a request — you need a way to read
a line from the connection. fgets is a standard way to read a line of text from a
fi le descriptor, including a socket, but it requires that you specify a maximum
line-length up front. Instead, develop a simple (and simplistic) routine that
autoincrements an internal buffer until it’s read the entire line and returns it
as shown in Listing 1-20.

Listing 1-20: “webserver.c” read_line

#define DEFAULT_LINE_LEN 255

char *read_line(int connection)

{

 static int line_len = DEFAULT_LINE_LEN;

 static char *line = NULL;

 int size;

 char c; // must be c, not int

 int pos = 0;

 if (!line)

 {

 line = malloc(line_len);

 }

 while ((size = recv(connection, &c, 1, 0)) > 0)

 {

 if ((c == ‘\n’) && (line[pos - 1] == ‘\r’))

 {

 line[pos - 1] = ‘\0’;

 break;

 }

 line[pos++] = c;

 if (pos > line_len)

 {

 line_len *= 2;

 line = realloc(line, line_len);

 }

 }

 return line;

}

c01.indd 25c01.indd 25 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

26 Chapter 1 n Understanding Internet Security

There are three problems with this function:

 n It keeps reallocating its internal buffer essentially forever. A rogue client
could take advantage of this, send a malformed request with no CRLF’s
and crash the server.

 n It reads one byte at a time from the socket. Each call to recv actually
invokes a system call, which slows things down quite a bit. For optimal
effi ciency, you should read a buffer of text, extract a line from it, and store
the remainder for the next invocation.

 n Its use of static variables makes it non-thread-safe.

You can ignore these shortcomings, though. This implementation is good
enough for your requirements, which is to have a server to which you can add
SSL support.

To wrap up the web server, implement the functions build_success_response
and build_error_response shown in Listing 1-21.

Listing 1-21: “webserver.c” build responses

static void build_success_response(int connection)

{

 char buf[255];

 sprintf(buf, “HTTP/1.1 200 Success\r\nConnection: Close\r\n\

Content-Type:text/html\r\n\

\r\n<html><head><title>Test Page</title></head><body>Nothing here</body></html>\

\r\n”);

 // Technically, this should account for short writes.

 if (send(connection, buf, strlen(buf), 0) < strlen(buf))

 {

 perror(“Trying to respond”);

 }

}

static void build_error_response(int connection, int error_code)

{

 char buf[255];

 sprintf(buf, “HTTP/1.1 %d Error Occurred\r\n\r\n”, error_code);

 // Technically, this should account for short writes.

 if (send(connection, buf, strlen(buf), 0) < strlen(buf))

 {

 perror(“Trying to respond”);

 }

}

c01.indd 26c01.indd 26 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

 Chapter 1 n Understanding Internet Security 27

Again, these don’t add up to a fantastic customer experience, but work well
enough to demonstrate server-side SSL.

You can run this and either connect to it with the sample HTTP client developed
in the section “Implementing an HTTP client” or connect with any standard
web browser. This implements RFC-standard HTTP, albeit a microscopically
small subset of it.

Roadmap for the Rest of This Book

SSL was originally specifi ed by Netscape, when it became clear that e-commerce
required secure communication capability. The fi rst release of SSL was SSLv2
(v1 was never released). After its release, SSLv2 was found to have signifi cant
fl aws, which will be examined in greater detail in Chapter 6. Netscape later
released and then turned over SSLv3 to the IETF, which promptly renamed it
TLS 1.0 and published the fi rst offi cial specifi cation in RFC 2246. In 2006, TLS
1.1 was specifi ed in RFC 4346 and in 2008, TLS 1.2 was released and is specifi ed
in RFC 5246.

The rest of this book is dedicated to describing every aspect of what SSL does
and how it does it. In short, SSL encrypts the traffi c that the higher-level protocol
generates so that it can’t be intercepted by an eavesdropper. It also authenticates
the connection so that, in theory, both sides can be assured that they are indeed
communicating with who they think they’re communicating with.

SSL support is now standard in every web browser and web server, open-
or closed-source. Although SSL was originally invented for secure HTTP, it’s
been retrofi tted, to varying degrees of success, to work with other protocols. In
theory, SSL is completely specifi ed at the network layer, and any protocol can
just layer invisibly on top of it. However, things aren’t always so nice and neat,
and there are some drawbacks to using SSL with protocols other than HTTP.
Indeed, there are drawbacks even to using it with HTTP. I guess you can say that
nothing is perfect. You come back to the details of HTTPS, and how it differs
from HTTP, in Chapter 6 after you’ve examined the underlying SSL protocol.

Additionally, there are several open-source implementations of the SSL protocol
itself. By far the most popular is Eric A. Young’s openssl. The ubiquitous Apache
server, for example, relies on the openssl library to provide SSL support. A more
recent implementation is GnuTLS. Whereas openssl 0.9.8e (the most recent version
as of this writing) implements SSLv2, SSLv3 and TLS 1.0, GnuTLS implements
TLS 1.0, 1.1 and 1.2. Therefore it’s called TLS rather than SSL because it doesn’t
technically implement SSL at all. Also, Sun’s Java environment has SSL support

c01.indd 27c01.indd 27 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

28 Chapter 1 n Understanding Internet Security

built in. Because Sun’s JDK has been open-sourced, you can also see the details
of how Sun built in SSL. This is interesting, as OpenSSL and GnuTLS are writ-
ten in C but most of Sun’s SSL implementation is written in Java. Throughout
the book, you examine how these three different implementations work. Of
course, because this book walks through yet another C-based implementation,
you are able to compare and contrast these popular implementations with the
approach given here.

c01.indd 28c01.indd 28 12/10/2010 9:43:25 AM12/10/2010 9:43:25 AM

