
C H A P T E R 1
INTRODUCTION TO OPERATORS,
PROBABILITIES AND THE
LINEAR MODEL

THIS CHAPTER has a little bit of everything: normed and Hilbert spaces, linear

operators, probabilities, including conditional expectations and different modes of

convergence, and matrix algebra. Introduction to the OLS method is given along with

a discussion of methodological issues, such as the choice of the format of the con-

vergence statement, choice of the conditions sufficient for convergence and the use of

L2-approximability. The exposition presumes that the reader is versed more in the

theory of probabilities than in functional analysis.

1.1 LINEAR SPACES

In this book basic notions of functional analysis are used more frequently than in most
other econometric books. Here I explain these notions the way I understand them—
omitting some formalities and emphasizing the intuition.

1.1.1 Linear Spaces

The Euclidean space Rn is a good point of departure when introducing linear spaces.
An element x ¼ (x1, . . . , xn) [ Rn is called a vector. Two vectors x, y can be added
coordinate by coordinate to obtain a new vector

xþ y ¼ (x1 þ y1, . . . , xn þ yn): (1:1)

A vector x can be multiplied by a number a [ R, giving ax ¼ (ax1, . . . , axn). By com-
bining these two operations we can form expressions like ax þ by or, more generally,

a1x(1) þ � � � þ amx(m) (1:2)

where a1, . . . , an are numbers and x(1), . . . , x(m) are vectors. Expression (1.2) is called
a linear combination of vectors x(1), . . . , x(m) with coefficients a1, . . . , an. Generally,
multiplication of vectors is not defined.
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Here we observe the major difference between R and Rn. In R both summation
a þ b and multiplication ab can be performed. In Rn we can add two vectors, but to
multiply them we use elements of another set – the set of real numbers (or scalars) R.

Generalizing upon this situation we obtain abstract linear (or vector) spaces.
The elements x, y of a linear space L are called vectors. They can be added to give
another vector x þ y. Summation is defined axiomatically and, in general, there is
no coordinate representation of type (1.1) for summation. A vector x can be multiplied
by a scalar a [ R. As in Rn, we can form linear combinations [Eq. (1.2)].

The generalization is pretty straightforward, so what’s the big deal? You see, in
functional analysis complex objects, such as functions and operators, are considered
vectors or points in some space. Here is an example. Denote C[0, 1] the set of continu-
ous functions on the segment [0, 1]. The sum of two functions F, G [ C[0, 1] is
defined as the function F þ G with values (F þ G)(t) ¼ F(t)þ G(t), t [ [0, 1]
[this is an analog of Eq. (1.1)]. Continuity of F, G implies continuity of their sum
and of the product aF, for a a scalar, so C[0, 1] is a linear space.

1.1.2 Subspaces of Linear Spaces

A subset L1 of a linear space L is called its linear subspace (or just a subspace, for
simplicity) if all linear combinations ax þ by of any elements x, y [ L1 belong to
L1. Obviously, the set f0g and L itself are subspaces of L, called trivial subspaces.
For example, in Rn the set L1 ¼ {x : c1x1 þ � � � þ cnxn ¼ 0} is a subspace because
if x, y [ L1, then c1(ax1 þ by1)þ � � � þ cn(axn þ byn) ¼ 0. Thus, in R3 the usual
straight lines and two-dimensional (2-D) planes containing the origin are subspaces.
All intuition we get from our day-to-day experience with the space we live in applies
to subspaces. Geometrically, summation x þ y is performed by the parallelogram rule.
Multiplying x by a number a = 0 we obtain a vector ax of either the same (a . 0) or
opposite (a , 0) direction. Multiplying x by all real numbers, we obtain a straight line
{ax : a [ R} passing through the origin and parallel to x. This is a particular situation
in which it may be convenient to call x a point rather than a vector. Then the previous
sentence sounds like this: multiplying x by all real numbers we get a straight line pas-
sing through the origin and the given point x.

For a given x1, . . . , xn its linear span M is, by definition, the least linear space of
L containing those points. In the case n ¼ 2 it can be constructed as follows. Draw a
straight line L1 ¼ {ax1 : a [ R} through the origin and x1 and another straight line
L2 ¼ {ax2 : a [ R} through the origin and x2. Then form M by adding elements of
L1 and L2 using the parallelogram rule: M ¼ {xþ y : x [ L1, y [ L2}.

1.1.3 Linear Independence

Vectors x1, . . . , xn are linearly independent if the linear combination c1x1 þ � � � þ cnxn

can be null only when all coefficients are null.

EXAMPLE 1.1. Denote by ej ¼ (0, . . . , 0, 1, 0, . . . , 0) (unity in the jth place) the
jth unit vector in Rn. From the definition of vector operations in Rn we see that
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c1e1 þ � � � þ cnen ¼ (c1, . . . , cn). Hence, the equation c1e1 þ � � � þ cnen ¼ 0 implies
equality of all coefficients to zero and the unit vectors are linearly independent.

If in a linear space L there exist vectors x1, . . . , xn such that

1. x1, . . . , xn are linearly independent and

2. any other vector x [ L is a linear combination of x1, . . . , xn,

then L is called n-dimensional and the system {x1, . . . , xn} is called its basis. If, on the
other hand, for any natural n, L contains n linearly independent vectors, then L is called
infinite-dimensional.

EXAMPLE 1.2. The unit vectors in Rn form a basis because they are linearly inde-
pendent and for any x [ Rn we can write x ¼ (x1, . . . , xn) ¼ x1e1 þ � � � þ xnen.

EXAMPLE 1.3. C[0, 1] is infinite-dimensional. Consider monomials xj(t) ¼ t j,
j ¼ 0, . . . , n. By the main theorem of algebra, the equation c0x0(t)þ � � � þ
cnxn(t) ¼ 0 with nonzero coefficients can have at most n roots. Hence, if
c0x0(t)þ � � � þ cnxn(t) is identically zero on [0, 1], the coefficients must be zero, so
these monomials are linearly independent.

Functional analysis deals mainly with infinite-dimensional spaces. Together with the
desire to do without coordinate representations of vectors this fact has led to the devel-
opment of very powerful methods.

1.2 NORMED SPACES

1.2.1 Normed Spaces

The Pythagorean theorem gives rise to the Euclidean distance

dist(x, y) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

(xi � yi)2
r

(1:3)

between points x, y [ Rn. In an abstract situation, we can first axiomatically define the
distance dist(x, 0) from x to the origin and then the distance between any two points
will be dist(x, y) ¼ dist(x � y, 0) (this looks like tautology, but programmers use
such definitions all the time). dist(x, 0) is denoted kxk and is called a norm.

Let X be a linear space. A real-valued function k � k defined on X is called a
norm if

1. kxk � 0 (nonnegativity),

2. kaxk ¼ jajkxk for all numbers a and vectors x (homogeneity),

3. kxþ yk � kxk þ kyk (triangle inequality) and

4. kxk ¼ 0 implies x ¼ 0 (nondegeneracy).
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By homogeneity the norm of the null vector is zero:���� 0
(vector)

���� ¼ ���� 0
(number)

� 0
(vector)

���� ¼ j0jk0k ¼ 0:

Nondegeneracy makes sure that the null vector is the only vector whose norm is zero.
If we omit the nondegeneracy requirement, the result is the definition of a seminorm.

Distance measurement is another context in which points and vectors can be
used interchangeably. kxk is a length of the vector x and a distance from point x to
the origin.

In this book, the way norms are used for bounding various quantities is clear
from the next two definitions. Let {Xi} be a nested sequence of normed spaces,
X1 # X2 # . . . : Take one element from each of these spaces, xi [ Xi. We say that
{xi} is a bounded sequence if supi kxikXi

, 1 and vanishing if kxikXi
! 0:

1.2.2 Convergence in Normed Spaces

A linear space X provided with a norm k � k is denoted (X, k � k). This is often sim-
plified to X. We say that a sequence {xn} converges to x if kxn � xk ! 0. In this case
we write lim xn ¼ x.

Lemma

(i) Vector operations are continuous: if lim xn ¼ x, lim yn ¼ y and lim an ¼ a,
then lim anxn ¼ ax, lim(xn þ yn) ¼ lim xn þ lim yn.

(ii) If lim xn ¼ x, then limkxnk ¼ kxk (a norm is continuous in the topology
it induces).

Proof.

(i) Applying the triangle inequality and homogeneity,

kanxn � axk � k(an � a)xk þ kan(xn � x)k

¼ jan � ajkxk þ kankkxn � xk ! 0:

Here we remember that convergence of the sequence {an} implies its bound-
edness: supjanj , 1.

(ii) Let us prove that

kxk � kyk
�� �� � kx� yk: (1:4)

The proof is modeled on a similar result for absolute values. By the triangle inequality,
kxk � kx� yk þ kyk and kxk � kyk � kx� yk: Changing the places of x and y and
using homogeneity we get kyk � kxk � ky� xk ¼ kx� yk: The latter two inequal-
ities imply Eq. (1.4).

Equation (1.4) yields continuity of the norm: jkxnk � kxkj � kxn � xk ! 0: B
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We say that {xn} is a Cauchy sequence if limn,m!1(xn � xm) ¼ 0. If {xn} converges
to x, then it is a Cauchy sequence: kxn � xmk � kxn � xk þ kx� xmk ! 0. If the
converse is true (that is, every Cauchy sequence converges), then the space is called
complete. All normed spaces considered in this book are complete, which ensures
the existence of limits of Cauchy sequences.

1.2.3 Spaces lp

A norm more general than (1.3) is obtained by replacing the index 2 by an arbitrary
number p [ [1, 1). In other words, in Rn the function

kxkp ¼
X

i

jxij
p

� �1=p
(1:5)

satisfies all axioms of a norm. For p ¼ 1, definition (1.5) is completed with

kxk1 ¼ sup
i
jxij (1:6)

because limp!1 kxkp ¼ kxk1. Rn provided with the norm k � kp is denoted
Rn

p (1 � p � 1).
The most immediate generalization of Rn

p is the space lp of infinite sequences of
numbers x ¼ (x1, x2, . . . ) that have a finite norm kxkp [defined by Eqs. (1.5) or (1.6),
where i runs over the set of naturals N]. More generally, the set of indices I ¼ {i} in
Eq. (1.5) or Eq. (1.6) may depend on the context. In addition to Rn

p we use Mp (the set
of matrices of all sizes).

The jth unit vector in lp is an infinite sequence ej ¼ (0, . . . , 0, 1, 0, . . . ) with
unity in the jth place and 0 in all others. It is immediate that the unit vectors are linearly
independent and lp is infinite-dimensional.

1.2.4 Inequalities in lp

The triangle inequality in lp kxþ ykp � kxkp þ kykp is called the Minkowski inequal-
ity. Its proof can be found in many texts, which is not true with respect to another, less
known, property that is natural to call monotonicity of lp norms:

kxkp � kxkq for all 1 � q � p � 1: (1:7)

If x ¼ 0, there is nothing to prove. If x = 0, the general case can be reduced to the case
kxkq ¼ 1 by considering the normalized vector x=kxkq: kxkq ¼ 1 implies jxij � 1 for
all i. Hence, if p , 1, we have

kxkp ¼
X

i

jxij
p

� �1=p
�

X
i

jxij
q

� �1=p
¼

X
i

jxij
q

� �1=q
¼ kxkq :

If p ¼ 1, the inequality supijxij � kxkq is obvious.
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In lp there is no general inequality opposite to Eq. (1.7). In Rn
p there is one. For

example, in the case n ¼ 2 we can write

max{jx1j, jx2j} � (jx1j
pþ jx2j

p)1=p
� 21=pmax{jx1j, jx2j}:

All such inequalities are easy to remember under the general heading of equivalent
norms. Two norms k�k1 and k�k2 defined on the same linear space X are called equiv-
alent if there exist constants 0 , c1 � c2 , 1 such that c1kxk1 � kxk2 � c2kxk1 for
all x.

Theorem. (Trenogin, 1980, Section 3.3) In a finite-dimensional space any two
norms are equivalent.

1.3 LINEAR OPERATORS

1.3.1 Linear Operators

A linear operator is a generalization of the mapping A : Rm
! Rn induced by an n� m

matrix A according to y ¼ Ax. Let L1, L2 be linear spaces. A mapping A : L1 ! L2 is
called a linear operator if

A(axþ by) ¼ aAxþ bAy (1:8)

for all vectors x, y [ L1 and numbers a, b.
A linear operator is a function in the first place, and the general definition of an

image applies to it:

Im(A) ¼ {Ax : x [ L1} # L2:

However, because of the linearity of A the image Im(A) is a linear subspace of L2:
Indeed, if we take two elements y1, y2 of the image, then there exist x1, x2 [ L1

such that Axi ¼ yi: Hence, a linear combination

a1y1 þ a2y2 ¼ a1Ax1 þ a2Ax2 ¼ A(ax1 þ bx2)

belongs to the image. With a linear operator A we can associate another linear subspace

N(A) ¼ {x [ L1 : Ax ¼ 0} # L1,

called a null space of A. Its linearity easily follows from that of A: if x, y belong to the
null space of A, then their linear combination belongs to it too: A(axþ by) ¼
aAxþ bAy ¼ 0.

The set of linear operators acting from L1 to L2 can be considered a linear space.
A linear combination of operators aAþ bB of operators A, B is an operator defined by
(aAþ bB)x ¼ aAxþ bBx. It is easy to check linearity of aAþ bB.
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If A is a linear operator from L1 to L2 and B is a linear operator from L2 to L3, then
we can also define a product of operators BA by (BA)x ¼ B(Ax). Applying Eq. (1.8)
twice we see that BA is linear:

(BA)(axþ by) ¼ B(aAxþ bAy) ¼ a(BA)xþ b(BA)y:

1.3.2 Bounded Linear Operators

Let X1, X2 be normed spaces and let A : X1 ! X2 be a linear operator. We can relate
kAxk2 to kxk1 by composing the ratio kAxk2=kxk1 if x = 0. A is called a bounded
operator if all such ratios are uniformly bounded, and the norm of an operator A is
defined as the supremum of those ratios:

kAk ¼ sup
x=0

kAxk2
kxk1

: (1:9)

An immediate consequence of this definition is the bound kAxk2 � kAkkxk1 for all
x [ X1, from which we see that the images Ax of elements of the unit ball
b1 ¼ {x [ X1 : kxk1 � 1} are uniformly bounded:

kAxk2 � kAk for all x [ b1: (1:10)

To save a word, a bounded linear operator is called simply a bounded operator.
Let B(X1, X2) denote the set of bounded operators acting from X1 to X2:

Lemma. B(X1, X2) with the norm (1.9) is a normed space.

Proof. We check the axioms from Section 1.2.1 one by one.

1. Nonnegativity is obvious.

2. Homogeneity of Eq. (1.9) follows from that of k � k2.

3. The inequality k(Aþ B)xk2 � kAxk2 þ kBxk2 implies

kAþ Bk ¼ sup
x=0

k(Aþ B)xk2
kxk1

� sup
x=0

kAxk2
kxk1

þ sup
x=0

kBxk2
kxk1

¼ kAk þ kBk:

4. If kAk ¼ 0, then kAxk2 ¼ 0 for all x and, consequently, A ¼ 0. B

1.3.3 Isomorphism

Let X1, X2 be normed spaces. A linear operator I : X1 ! X2 is called an isomor-
phism if

1. kIxk2 ¼ kxk1 for all x [ X1 (preservation of norms) and

2. IX1 ¼ X2 (I is a surjection).
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Item 1 implies that kIk ¼ 1 and I is one-to-one (if Ix1 ¼ Ix2, then kx1 � x2k1 ¼

kI(x1 � x2)k2 ¼ 0 and x1 ¼ x2): Hence, the inverse of I exists and is an isomorphism
from X2 to X1.

Normed spaces X1 and X2 are called isomorphic spaces if there exists an iso-
morphism I : X1 ! X2. Vector operations in X1 are mirrored by those in X2 and the
norms are the same, so as normed spaces X1 and X2 are indistinguishable. However,
a given operator in one of them may be easier to analyze than its isomorphic image
in the other, because of special features. Let A be a bounded operator in X1. It is

easy to see that ~A ¼ IAI�1 is a linear operator in X2. Moreover, the norms are preserved
under this mapping:

k ~Ak ¼ sup
x=0

kIAI�1xk2
kxk2

¼ sup
y=0

kIAyk2

kIyk2
¼ sup

y=0

kAyk1
kyk1

¼ kAk:

1.3.4 Convergence of Operators

Let A, A1, A2, . . . be bounded operators from a normed space X1 to a normed space X2.
The sequence {An} converges to A uniformly if kAn � Ak ! 0, where the norm is as
defined in Eq. (1.9). This is convergence in a normed space B(X1, X2): The word ‘uni-
form’ is pertinent because, as we can see from Eq. (1.10), when kAn � Ak ! 0, we
also have the convergence kAnx� Axk2 ! 0 uniformly in the unit ball b1.

The sequence {An} is said to converge to A strongly, or pointwise, if for each
x [ X1 we have kAnx� Axk2 ! 0. Of course, uniform convergence implies strong
convergence.

1.3.5 Projectors

Projectors are used (or implicitly present) in econometrics so often that it would be a
sin to bypass them.

Let X be a normed space and let P : X ! X be a bounded operator. P is called a
projector if

P2 ¼ P: (1:11)

Suppose y is a projection of x, y ¼ Px. Then P doesn’t change y: Py ¼ P2x ¼ Px ¼ y.
This property is the key to the intuition behind projectors.

Consider on the plane two coordinate axes, X and Y, intersecting at a positive,
not necessarily straight, angle. Projection of points on the plane onto the axis X parallel
to the axis Y has the following geometrical properties:

1. The projection of the whole plane is X.

2. Points on X stay the same.

3. Points on Y are projected to the origin.

4. Any vector on the plane is uniquely represented as a sum of two vectors, one
from X and another from Y.

All these properties can be deduced from linearity of P and Eq. (1.11).
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Lemma. Let P be a projector and denote Q ¼ I � P, where I is the identity operator
in X. Then

(i) Q is also a projector.

(ii) Im(P) coincides with the set of fixed points of P: Im(P) ¼ {x : x ¼ Px}:

(iii) Im(Q) ¼ N(P), Im(P) ¼ N(Q):

(iv) Any x [ X can be uniquely represented as x ¼ yþ z with y [
Im(P), z [ Im(Q):

Proof.

(i) Q2 ¼ (I � P)2 ¼ I2 � 2Pþ P2 ¼ I � P ¼ Q:

(ii) If x [ Im(P), then x ¼ Py for some y [ X and Px ¼ P2y ¼ Py ¼ x, so that
x is a fixed point of P. Conversely, if x is a fixed point of P, then
x ¼ Px [ Im(P):

(iii) The equation Px ¼ 0 is equivalent to Qx ¼ (I � P)x ¼ x, and the equation
Im(Q) ¼ N(P) follows. Im(P) ¼ N(Q) is obtained similarly.

(iv) The desired representation is obtained by writing x ¼ Pxþ (I � P)x ¼
yþ z, where y ¼ Px [ Im(P) and z ¼ (I � P)x ¼ Qy [ Im(Q). If x ¼
y1 þ z1 is another representation, then, subtracting one from another, we
get y� y1 ¼ �(z� z1). Hence, P( y� y1) ¼ �P(z� z1). Here the right-
hand side is null because z, z1 [ Im(Q) ¼ N(P). The left-hand side is
y� y1 because both y and y1 are fixed points of P. Thus, y ¼ y1 and z ¼ z1.

B

1.4 HILBERT SPACES

1.4.1 Scalar Products

A Hilbert space is another infinite-dimensional generalization of Rn. Everything starts
with noticing how useful a scalar product

kx, yl ¼
Xn

i¼1

xiyi (1:12)

of two vectors x, y [ Rn is. In terms of it we can define the Euclidean norm, in Rn:

kxk2 ¼
Xn

i¼1

x2
i

 !1=2

¼ kx, xl1=2 : (1:13)

Most importantly, we can find the cosine of the angle between x, y by the
formula

cos(cx, y) ¼
kx, yl
kxk2 kyk2

: (1:14)
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To do without the coordinate representation, we observe algebraic properties of
this scalar product. First of all, it is a bilinear form: it is linear with respect to one argu-
ment when the other is fixed:

kaxþ by, zl ¼ akx, zlþ bk y, zl, kz, axþ byl ¼ akz, xlþ bkz, yl

for all vectors x, y, z and numbers a, b. Further, we notice that kx, xl is always nonne-
gative and kx, xl ¼ 0 is true only when x ¼ 0.

Thus, on the abstract level, we start with the assumption that H is a linear space
and kx, yl is a real function of arguments x, y [ H having properties:

1. kx, yl is a bilinear form,

2. kx, xl � 0 for all x [ H and

3. kx, xl ¼ 0 implies x ¼ 0.

4. kx, yl ¼ ky, xl for all x, y.

Such a function is called a scalar product. Put

kxk ¼ kx, xl1=2 : (1:15)

Lemma. (Cauchy–Schwarz inequality) jkx, ylj � kxkkyk:

Proof. The function f (t) ¼ kxþ ty, xþ tyl of a real argument t is nonnegative by
item 2. Using items 1 and 4 we see that it is a quadratic function:

f (t) ¼ kx, xþ tylþ tk y, xþ tyl ¼ kx, xlþ 2tkx, ylþ t2k y, yl:

Its nonnegativity implies that its discriminant kx, yl2
� kx, xlk y, yl is nonpositive. B

1.4.2 Continuity of Scalar Products

Notation (1.15) is justified by the following lemma.

Lemma

(i) Eq. (1.15) defines a norm on H and the associated convergence concept:
xn ! x in H if kxn � xk ! 0:

(ii) The scalar product is continuous: if xn ! x, yn ! y, then kxn, ynl! kx, yl:

Proof.

(i) By the Cauchy–Schwarz inequality

kxþ yk2 ¼ kxþ y, xþ yl ¼ kxk2þ2kx, ylþ kyk2

� kxk2þ2kxkkyk þ kyk2 ¼ (kxk þ kyk)2 ,
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which proves the triangle inequality in Section 1.2.1 (3). The other properties
of a norm (nonnegativity, homogeneity and nondegeneracy) easily follow
from the scalar product axioms.

(ii) Convergence xn ! x implies boundedness of the norms kxnk: Therefore, by
the Cauchy–Schwarz inequality,

kkxn, ynl� kx, ylk � kkxn, yn � ylk þ kkxn � x, ylk
� kxnkkyn � yk þ kxn � xkkyk: B

A linear space H that is endowed with a scalar product and is complete in the norm
generated by that scalar product is called a Hilbert space.

1.4.3 Discrete Hölder’s Inequality

An interesting generalization of the Cauchy–Schwarz inequality is in terms of the
spaces lp from Section 1.2.3. Let p be a number from [1, 1) or the symbol 1. Its con-
jugate q is defined from 1=pþ 1=q ¼ 1. Explicitly,

q ¼

p=(p� 1) [ (1, 1), 1 , p , 1;

1, p ¼ 1;

1, p ¼ 1:

8><>:
Hölder’s inequality states that

X1
i¼1

jxiyij � kxkp kykq : (1:16)

A way to understand it is by considering the bilinear form kx, yl ¼
P1

i¼1xiyi. It is
defined on the Cartesian product l2 � l2 and is continuous on it by Lemma 1.4.2
Hölder’s inequality allows us to take arguments from different spaces: kx, yl is defined
on lp � lq and is continuous on this product.

1.4.4 Symmetric Operators

Let A be a bounded operator in a Hilbert space H. Its adjoint is defined as the operator
A� that satisfies

kAx, yl ¼ kx, A�yl for all x, y [ H:

This definition arises from the property of the transpose matrix A0,

Xn

i¼1

(Ax)iyi ¼
Xn

i¼1

xi(A
0y)i:
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Existence of A� is proved using the so-called Riesz theorem. We do not need the gen-
eral proof of existence because in all the cases we need, the adjoint will be constructed
explicitly. Boundedness of A� will also be proved directly.

A is called symmetric if A ¼ A�. Symmetric operators stand out by having prop-
erties closest to those of real numbers.

1.4.5 Orthoprojectors

Cosines of angles between vectors from H can be defined using Eq. (1.14). We don’t
need this definition, but we do need its special case: vectors x, y [ H are called
orthogonal if kx, yl ¼ 0. For orthogonal vectors we have the Pythagorean theorem:

kxþ yk2 ¼ kxþ y, xþ yl ¼ kxk2þ2kx, ylþ kyk2 ¼ kxk2þkyk2:

Two subspaces X, Y # H are called orthogonal if every element of X is orthogonal to
every element of Y.

If a projector P in H (P2 ¼ P) is symmetric, P ¼ P�, then it is called an ortho-
projector. In the situation described in Section 1.3.5, when points on the plane are pro-
jected onto one axis parallel to another, orthoprojectors correspond to the case when
the axes are orthogonal.

Lemma. Let P be an orthoprojector and let Q ¼ I � P. Then

(i) Im(P) is orthogonal to Im(Q).

(ii) For any x [ H, kPxk is the distance from x to Im(Q).

Proof.

(i) Let x [ Im(P) and y [ Im(Q). By Lemma 1.3.5(ii), x ¼ Px, y ¼ Qy:
Hence, x and y are orthogonal:

kx, yl ¼ kPx, Qyl ¼ kx, P(I � P)yl ¼ kx, (P� P2)yl ¼ 0:

(ii) For an arbitrary element x [ H and a set A # H the distance from x to A is
defined by

dist(x, A) ¼ inf
y[A
kx� yk:

Take any y [ Im(Q): In the equation

x� y ¼ Pxþ Qx� Qy ¼ Pxþ Q(x� y)
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the two terms at the right are orthogonal, so by the Pythagorean theorem

kx� yk2 ¼ kPxk2þkQ(x� y)k2 � kPxk2 ,

which implies the lower bound for the distance dist(x, Im(Q)) � kPxk: This lower
bound is attained on y ¼ Qx [ Im(Q): kx� yk ¼ kPxþ Qx� Qxk ¼ kPxk: Hence,
dist(x, Im(Q)) ¼ kPxk: B

1.5 Lp SPACES

1.5.1 s-Fields

Let V be some set and let F be a nonempty family of its subsets. F is called a s-field if

1. unions, intersections, differences and complements of any two elements of
F belong to F ,

2. the union of any sequence {An : n ¼ 1, 2, . . .} of elements of F belongs to F
and

3. V belongs to F .

This definition contains sufficiently many requirements to serve most purposes
of analysis. In probabilities, s-fields play the role of information sets. The precise
meaning of this sentence at times can be pretty complex. The following existence
statement is used very often.

Lemma. For any system S of subsets of V there exists a s-field F that contains S
and is contained in any other s-field containing S.

Proof. The set of s-fields containing S is not empty. For example, the set of all sub-
sets of V is a s-field and contains S. Let s be the intersection of all s-fields containing
S: It obviously satisfies 1–3 and hence is the s-field we are looking for. B

The s-field whose existence is affirmed in this lemma is called the least s-field gen-
erated by S and denoted s(S):

1.5.2 Borel s-field in Rn

A ball in Rn centered at x [ Rn of radius 1 . 0,

b1(x) ¼ {y [ Rn : kx� yk2 , 1},

is called an 1-neighborhood of x. We say that the set A # Rn is an open set if each
point x belongs to A with its neighborhood b1(x) (where 1 depends on x). The Borel
s-field Bn in Rn is defined as the smallest s-field that contains all open subsets of
Rn: It exists by Lemma 1.5.1. In more general situations, when open subsets of V
are not defined, s-fields of V are introduced axiomatically.
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1.5.3 s-Additive Measures

A pair (V, F ), where V is some set and F is a s-field of its subsets, is called a mea-
surable space. A set function m defined on elements of F with values in the extended
half-line [0, 1] is called a s-additive measure if for any disjoint sets A1, A2, . . . [ F
one has

m
[1
j¼1

Aj

 !
¼
X1
j¼1

m(Aj):

EXAMPLE 1.4. On a plane, for any rectangle A define m(A) to be its area. The
extension procedure from the measure theory then leads to the Lebesgue measure m

with V ¼ R2and F ¼ B2 (m is defined on all Borel subsets of R2 ).

A probabilistic measure is a s-additive measure that satisfies an additional
requirement m(V) ¼ 1: In this case, following common practice, we write P instead
of m: Thus, a probability space (sometimes also called a sample space) is a triple
(V, F , P) where V is a set, F is a s-field of its subsets and P is a s-additive measure
on F such that P(V) ¼ 1:

EXAMPLE 1.5. On a plane, take the square [0, 1]2 as V and let P be the Lebesgue
measure. Then F will be the set of Borel subsets of the square.

1.5.4 Measurable Functions

Let (V1, F 1) and (V2, F 2) be two measurable spaces. A function f :V1 ! V2 is
called measurable if f�1(A) [ F 1 for any A [ F 2: More precisely, it is said to be
(F 1, F 2)-measurable. In particular, when (V1, F 1) ¼ (Rn, Bn) and (V2, F 2) ¼
(Rm, Bm), this definition gives the definition of Borel-measurability. Most of the
time we deal with real-valued functions, when V2 ¼ R and F 2 ¼ B1 is the Borel
s-field. In this case we simply say that f is F 1-measurable. All analysis operations
in the finite-dimensional case preserve measurability. The next theorem is often
used implicitly.

Theorem. (Kolmogorov and Fomin, 1989, Chapter 5, Section 4)

1. Let X, Y and Z be arbitrary sets with systems of subsets sX , sY and sZ ,
respectively. Suppose the function f : X ! Y is (sX , sY )-measurable and
g : Y ! Z is (sY , sZ)-measurable. Then the composition z(x) ¼ g( f (x)) is
(sX , sZ)-measurable.

2. Let f and g be defined on the same measurable space (V, F ): Then a linear
combination af þ bg and product fg are measurable. If g does not vanish,
then the ratio f =g is also measurable.
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1.5.5 L p Spaces

Let (V, F , m) be any space with a s-additive measure m and let 1 � p , 1. The set of
measurable functions f :V! R provided with the norm

k f kp ¼

ð
V

j f (x)jpdm

� �1=p

, 1 � p , 1,

is denoted Lp ¼ Lp(V). In the case p ¼ 1 this definition is completed with

k f k1 ¼ ess supx[V j f (x)j ¼ inf
m(A)¼0

sup
x[VnA

j f (x)j:

The term in the middle is, by definition, the quantity at the right and is called essential
supremum. These definitions mean that values taken by functions on sets of measure
zero don’t matter. An equality f (t) ¼ 0 is accompanied by the caveat “almost every-
where” (a.e.) or “almost surely” (a.s.) in the probabilistic setup, meaning that there
is a set of measure zero outside which f (t) ¼ 0:

1.5.6 Inequalities in Lp

Apparently, Lp spaces should have a lot in common with lp spaces. The triangle
inequality in Lp kF þ Gkp � kFkp þ kGkp is called a Minkowski inequality.

Hölder’s inequality looks like this:ð
V

j f (x)g(x)j dm � k f kp kgkq ,

where q is the conjugate of p. When m(V) , 1, we can use this inequality to show that
for 1 � p1 , p2 � 1, L p2 is a subset of L p1 :

ð
V

j f (x)j p1 dm �

ð
V

j f (x)j p1 p2= p1 dm

� �p1= p2
ð
V

dm

� �1� p1= p2

¼ f
�� �� p1

p2
[m(V)]1�p1=p2 :

In particular, when (V, F , P) is a probability space, we get

k f k p1
� k f k p2

if 1 � p1 , p2 � 1:

This is the opposite of the monotonicity relation (1.7).

1.5.7 Covariance as a Scalar Product

Real-valued measurable functions on a probability space (V, F , P) are called random
variables. Let X, Y be integrable random variables (integrability is necessary for their
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means to exist). Denote x ¼ X � EX, y ¼ Y � EY : Then the covariance of X, Y is
defined by

cov(X, Y) ¼ E(X � EX)(Y � EY) ¼ Exy, (1:17)

the standard deviation of X is, by definition,

s(X) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cov(X, X)

p
¼

ffiffiffiffiffiffiffi
Ex2
p

¼ s(x) (1:18)

and the definition of correlation of X, Y is

r(X, Y) ¼
cov(X, Y)
s(X)s(Y)

¼
Exy

s(x)s(y)
: (1:19)

Comparison of Eqs. (1.17), (1.18) and (1.19) with Eqs. (1.12), (1.13) and (1.14) from
Section 1.4.1 makes clear that definitions (1.17), (1.18) and (1.19) originate in
Euclidean geometry. In particular, s (X) is the distance from X to EX and from x to
0. While this idea has been very fruitful, I often find it more useful to estimate
(EX2)1=2, which is the distance from X to 0.

1.5.8 Dense Sets in Lp, p < 1

Let us fix some space with measure (V, F, m). A set M # Lp is said to be dense in Lp if
any function f [ Lp can be approximated by some sequence f fng# M: k fn2f kp! 0.
By 1A we denote the indicator of a set A:

1A ¼
1, x [ A;
0, x � A:

�
A finite linear combination

P
i ci1Ai of indicators of measurable sets Ai [ F is called a

step function. We say that the measure m is a s-finite measure if V can be represented
as a union of disjoint sets Vi,

V ¼
[

i

Vi, (1:20)

of finite measure m(Vi) , 1. For example, Rn is a union of rectangles of finite
Lebesgue measure.

Lemma. If p , 1 and the measure m is s-finite, then the set M of step functions is
dense in Lp.

Proof.

Step 1. Let f [ Lp. First we show that the general case of V of infinite measure can be
reduced to the case m (V) , 1. Since for the sets from Eq. (1.20) we haveð

V

j f (x)j pdm ¼
X

l

ð
Vl

j f (x)j pdm , 1,
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for any 1 . 0 there exists L . 0 such that
P

l.L

Ð
Vl
j f (x)j pdm , 1: DenoteeV ¼SL

l¼1Vl. Whatever step function ~f 1 we find to approximate f in L p(eV)
in the sense that ð

V
� j f (x)� ~f 1(x)j pdm , 1,

we can extend it by zero,

f1(x) ¼
~f 1(x), x [ eV;

0, x [ VneV,

(

to obtain an approximation to f in Lp(V):ð
V

j f � f1j
pdm ¼

ð
V
� j f � ~f 1j

pdmþ

ð
VnV

� j f j
pdm , 21:

f1 will be a step function and m(eV) , 1:

Step 2. Now we show that f can be considered bounded. From

ð
V

j f j pdm ¼
X1
l¼1

ð
{l�1�j f (x)j,l}

j f (x)j pdm , 1

we see that for any 1 . 0, L can be chosen so that
Ð

{L�j f (x)j}j f (x)j pdm , 1.

Then f is bounded on eV ¼ j f (x)j � L and, as above, we see that approximat-

ing f by a simple function on eV is enough.

Step 3. Now we can assume that m(V) , 1 and j f (x)j � L: Take a large k and par-
tition [2L, L] into k nonoverlapping (closed, semiclosed or open, it does not
matter) intervals D1, . . . , Dk of length 2L=k: Let l1, . . . , lk denote the left ends
of those intervals and put Am ¼ f�1(Dm), m ¼ 1, . . . , k: Then the sets Am are
disjoint,

jlm � f (x)j �
2L

k
for x [ Am and V ¼

[k

m¼1

Am:

This implies

ð
V

X
m

lm1Am (x)� f (x)

�����
�����

p

dm ¼
X

m

ð
Am

jlm � f (x)j pdm

�
2L

k

� � p

m(V)! 0, k! 1:
B
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1.6 CONDITIONING ON s-FIELDS

1.6.1 Absolute Continuity of Measures

Let (V, F, P) be a probability space and let f be an integrable function on V. Then
the s-additivity of Lebesgue integrals (Kolmogorov and Fomin, 1989, Chapter 5,
Section 5.4) ðS1

m¼1

Am

f (x)dP ¼
X1
m¼1

ð
Am

f (x)dP for disjoint measurable Am

means that

n(A) ¼
ð

A
f (x)dP (1:21)

is a s-additive set function with the same domain F as that of P. Another property of
Lebesgue integrals (see the same source) states that n is absolutely continuous with
respect to P: n(A) ¼ 0 for each measurable set A for which P(A) ¼ 0. The Radon–
Nikodym theorem affirms that the opposite is true: s-additivity and absolute continu-
ity are sufficient for a set function to be of form (1.21).

Theorem. (Radon–Nikodym) (Kolmogorov and Fomin, 1989, Chapter 6, Section
5.3) If (V, F , P) is a probability space and n is a set function defined on F that is
s-additive and absolutely continuous with respect to P, then there exists an integrable
function f onV such that Eq. (1.21) is true. If g is another such function, then f ¼ g a.s.

1.6.2 Conditional Expectation

Let (V, F, P) be a probability space, X an integrable random variable and G a s-field
contained in F . The conditional expectation E(XjG) is defined as a G-measurable
function Y such that ð

A
YdP ¼

ð
A

XdP for all A [ G: (1:22)

EXAMPLE 1.6. Let G ¼ {;, V} be the smallest s-field. In the case A ¼ ; (or,
more generally, P(A) ¼ 0) Eq. (1.22) turns into an equality of two zeros. In the case
A ¼ V we see that the means of Y and X should be the same. Since a constant is the
only G-measurable random variable, it follows that E(XjG) ¼ EX:

EXAMPLE 1.7. Let G ¼ F be the largest s-field contained in F . Since X
is G-measurable, Y ¼ X satisfies Eq. (1.22). Hence, E(XjG) ¼ X by a.s. uniqueness.

Y ¼ X is an incorrect answer for Example 1.6 because inverse images X�1(B)
of some Borel sets would not belong to {;, V} unless F ¼ {;, V}: Y ¼ E(XjG)
contains precisely as much information about X as is necessary to calculate the
integrals in (1.22).
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1.6.3 Conditioning as a Projector

Lemma. Let (V, F, P) be a probability space and let G be a s-field contained in F.

(i) For any integrable X, E(XjG) exists. Denote PG X ¼ E(X j G) for X [ L1(V).

(ii) PG is linear, PG (aX þ bY) ¼ aPGX þ bPGY, and bounded, kPGXk1 � kXk1.

(iii) PG is a projector.

Proof.

(i) n(A) ¼
Ð

A XdP defines a s-additive set function on G that is absolutely con-
tinuous with respect to P. By the Radon–Nikodym theorem there exists a
G-measurable function Y such that Eq. (1.22) is true. This proves the exist-
ence of Y ¼ E(X j G).

(ii) We can use Eq. (1.22) repeatedly to obtain

ð
A
PG(aX þ bY) dP ¼

ð
A

(aX þ bY) dP ¼ a

ð
A

XdPþ b

ð
A

Y dP

¼ a

ð
A

PGX dPþ b

ð
A

PGY dP

¼

ð
A

(aPGX þ bPGY) dP, A [ G:

Since aPGX þ bPGY is G-measurable, it must coincide with PG (aX þ bY).
For any real-valued function f define its positive part by fþ ¼ maxf f, 0g

and negative part by f2 ¼2minf f, 0g. Then it is geometrically obvious that
f ¼ fþ � f� and j f j ¼ fþ þ f�: Decomposing PGX into its positive and
negative parts, PGX ¼ (PGX)þ � (PGX)�, and remembering that both sets
{PGX . 0} and {PGX , 0} are G-measurable we have

ð
V

jPGXj dP ¼

ð
V

[(PGX)þ þ (PGX)�] dP

¼

ð
PGX . 0

PGX dPþ

ð
PGX , 0

PGX dP

¼

ð
PGX . 0

X dPþ

ð
PGX , 0

X dP �

ð
V

jXj dP:

This proves that kPG k� 1.

(iii) P2
GX is defined as a G-measurable function Y such that

Ð
A Y dP ¼

Ð
A PGX dP

for all A [ G: Since PGX itself is G-measurable, we have Y ¼ PGX a.s.

B
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1.6.4 The Law of Iterated Expectations

In a 3-D space, projecting first to a plane and then to a straight line in that plane gives
the same result as projecting directly to the straight line. This is also true of condition-
ing (and projectors in general).

Lemma. LetH # G # F be nesteds-fields and denote PH and PG as the condition-
ing projectors on H and G, respectively. Then PHPG ¼ PGPH ¼ PH: Using the
conditional expectation notation, this is the same as

E[E(XjG)jH] ¼ E[E(XjH)jG] ¼ E(XjH): (1:23)

In particular, when H ¼ {;, V} is the least s-field, we get E[E(XjG)] ¼ EX for all
integrable X.

Proof. H-measurability of PHX implies its G-measurability. Hence, by Lemma 1.6.3
(iii) PG doesn’t change it. This proves that PGPH ¼ PH.

PGX is G-measurable and satisfies
Ð

A PGXdP ¼
Ð

A X dP for all A [ G: In par-
ticular, this is true for A [ H:

Ð
A PGXdP ¼

Ð
A XdP, A [ H: Confronting this with

the definition of PHPGX,ð
A

PHPGXdP ¼

ð
A

PGXdP, A [ H,

we see that
Ð

APHPGXdP ¼
Ð

A XdP, A [ H: But PH satisfies the same equation with
PHX in place of PHPGX and both are H-measurable. Hence, PHPGX ¼ PHX a.s. B

1.6.5 Extended Homogeneity

In the usual homogeneity, PG(aX) ¼ aPGX, a is a number. In the conditioning
context, a can be any G-measurable function, according to the next theorem. I call
this property extended homogeneity.

Theorem. If the variables X and XY are integrable and Y is G-measurable, then
PG(XY) ¼ YPGX:

The proof can be found, for example, in (Davidson 1994, Section 10.4).

1.6.6 Independence

s-fields H and G are called independent s-fields if any event A [ H is independent
of any event B [ G: P(A > B) ¼ P(A)P(B): Random variables X and Y are said to
be independent if s-fields s (X) and s (Y) are independent. Moreover, a family
{Xi : i [ I} of random variables is called independent if, for any two disjoint sets of
indices J, K, s-fields s (Xi : i [ J) and s (Xi : i [ K) are independent.
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Theorem. (Davidson 1994, Section 10.5) Suppose X is integrable and
H-measurable. If G is independent of H, then conditioning X on G provides minimum
information: E(XjG ) ¼ EX:

1.7 MATRIX ALGEBRA

Everywhere we follow the matrix algebra convention: all matrices and vectors in the
same formula are compatible. All matrices in this section are assumed to be of size
n� n: The determinant of A is denoted as det A or jAj.

1.7.1 Orthogonal Matrices

A matrix T is called orthogonal if

T 0T ¼ I: (1:24)

Since both T 0T and TT 0 have generic elements
P

ltiltli, Eq. (1.24) is equivalent to
TT 0 ¼ I: Equation (1.24) means, by definition of the inverse, that T�1¼ T 0:

Geometrically, the mapping y ¼ Tx is rotation in Rn: This is proved by noting
that T preserves scalar products: kTx, Tyl ¼ kx, T 0Tyl ¼ kx, yl: Hence, it preserves
vector lengths and angles between vectors, see Equations (1.13) and (1.14) in
Section 1.4.1. Rotation around the origin is the only mapping that has these properties.

1.7.2 Diagonalization of Symmetric Matrices

A number l [ R is called an eigenvalue of a matrix A if there exists a nonzero vector x
that satisfies Ax ¼ lx: Such a vector x is named an eigenvector corresponding to l:
From this definition it follows that A reduces to multiplication by l along the straight
line {ax : a [ R}:

The set L of all eigenvectors corresponding to l, completed with the null vector,
is a subspace of Rn, because Ax ¼ lx and Ay ¼ ly imply A(axþ by) ¼ l(axþ by):
This subspace is called a characteristic subspace of A corresponding to l: The dimen-
sion of the characteristic subspace (see Section 1.1.3) is called multiplicity of l: A
reduces to multiplication by l in L:

We say that a system of vectors x1, . . . , xk is orthonormal if

kxi, xjl ¼
1, i ¼ j;
0, i = j:

�
The system of unit vectors in Rn is an example of an orthonormal system. An ortho-
normal system is necessarily linearly independent because scalar multiplication of
the equation a1x1 þ � � � þ akxk ¼ 0 by vectors x1, . . . , xk yields a1 ¼ � � � ¼ ak ¼ 0:
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Theorem. (Diagonalization theorem) (Bellman 1995, Chapter 4, Section 7). If A is
symmetric of size n� n, then it has n real eigenvalues l1, . . . , ln, repeated with their
multiplicities. Further, there is an orthogonal matrix T such that

A ¼ T 0LT , (1:25)

where L is a diagonal matrix L ¼ diag[l1, . . . , ln]: Finally, the eigenvectors
x1, . . . , xn that correspond to l1, . . . , ln can be chosen orthonormal.

Equation (1.25) embodies the following geometry. In the original coordinate
system with the unit vectors ej (see Section 1.1.3) the matrix A has generic elements
aij: The first transformation T in Eq. (1.25) rotates the coordinate system to a new pos-
ition in which A is of simple diagonal form, the new axes being eigenvectors along
which applying A amounts to multiplication by numbers. The final transformation
by T 0 ¼ T�1 rotates the picture to the original position.

1.7.3 Finding and Applying Eigenvalues

Eigenvalues are the roots of the equation det(A� lI) ¼ 0: Application of this matrix
algebra rule is complicated as the left side of the equation is a polynomial of order n.
Often it is possible to exploit the analytical structure of A to find its eigenvalues using
the next lemma. A subspace L of Rn is called an invariant subspace of a matrix A if
AL # L:

Lemma

(i) l is an eigenvalue of A if and only if l� c is an eigenvalue of A� cI:

(ii) Let L be an invariant subspace of a symmetric matrix A. Denote P an ortho-
projector onto L, Q ¼ I � P and M ¼ Im(Q). Then M is an invariant sub-
space of A and the analysis of A reduces to the analysis of its restrictions
AjL and AjM :

Proof. Statement

(i) is obvious because the equation Ax ¼ lx is equivalent to (A� cI)x ¼
(l� c)x.

(ii) For any x, y [ Rn by symmetry of A, P,

kPAQx, yl ¼ kAQx, Pyl ¼ kQx, APyl ¼ 0:

The last equality follows from the facts that Py [ L ¼ Im(P), APy [ L and Im(P)
is orthogonal to Im(Q) [see Lemma 1.4.5(i)]. Plugging in y ¼ PAQx we
get kPAQxk ¼ 0 and PAQx ¼ 0: Since Qx runs over M when x runs over Rn,
we obtain PAM ¼ {0} or, by Lemma 1.4.5(ii), AM # M and M is invariant with
respect to A.
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Now premultiply by A the identity I ¼ P þ Q to get

A ¼ APþ AQ ¼ AjLPþ AjMQ: B

The second part of this lemma leads to the following practical rule. If you have man-
aged to find the first eigenvalue l and the corresponding characteristic subspace L of A,
then consider the restriction AjM to find the rest of the eigenvalues. This process of
“chipping off ” characteristic subspaces can be repeated. While you do that, construct
the orthonormal systems of eigenvectors until their total number reaches n.

Denoting y ¼ Tx, from Theorem 1.7.2 we have

kAx, xl ¼ kT 0LTx, xl ¼ kLTx, Txl ¼ kLy, yl ¼
Xn

i¼1

liy
2
i :

Hence, A is nonnegative and kAx, xl � 0 for all x if and only if all eigenvalues of A are
nonnegative. Therefore we can define the square root of a nonnegative symmetric
matrix by

A1=2 ¼ T 0diag[l1=2
1 , . . . , l1=2

n ]T :

1.7.4 Gram Matrices

In a Hilbert space H consider vectors x1, . . . , xk: Their Gram matrix is defined by

G ¼
kx1, x1l . . . kx1, xkl

. . . . . . . . .
kxk, x1l . . . kxk, xkl

0@ 1A:
Theorem. (Gantmacher 1959, Chapter IX, Section 5) Vectors x1, . . . , xk are linearly
independent if and only if det G . 0.

1.7.5 Positive Definiteness of Gram Matrices

Lemma. If vectors x1, . . . , xk [ Rn are linearly independent, then G is positive defi-
nite: kGx, xl . 0 for all x = 0:

Proof. According to the Silvester criterion (Bellman 1995, Chapter 5, Section 3),
G is positive definite if and only if all determinants

kx1, x1l, det
kx1, x1l kx1, x2l
kx2, x1l kx2, x2l

� �
, . . . , det G (1:26)

are positive. Linear independence of the system {x1, . . . , xk} implies that of all its
subsystems {x1}, {x1, x2}, . . . . Thus all determinants are positive by Theorem 1.7.4.

B
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1.7.6 Partitioned Matrices: Determinant and Inverse

Lemma. (Lütkepohl 1991, Section A.10). Let matrix A be partitioned as

A ¼
A11 A12

A21 A22

� �

where A11 and A22 are square. Then

(i) If A11 is nonsingular, jAj ¼ jA11j � jA22 � A21A�1
11 A12j.

(ii) If A11 and A22 are nonsingular,

A�1 ¼
D �DA12A�1

22

�A�1
22 A21D A�1

22 þ A�1
22 A21DA12A�1

22

 !

¼
A�1

11 þ A�1
11 A12GA21A�1

11 �A�1
11 A12G

�GA21A�1
11 G

 !
,

where D ¼ (A11 � A12A�1
22 A21)�1 and G ¼ (A22 � A21A�1

11 A12)�1.

1.8 CONVERGENCE OF RANDOM VARIABLES

A random variable is nothing but a (F , B)-measurable function X :V! R

where (V, F , P) is a probability space and B is the Borel s-field of R. In the
case of a random vector it suffices to replace R by Rn and B by Bn, the Borel
s-field of Rn:

1.8.1 Convergence in Probability

Let X, X1, X2, . . . be random vectors defined on the same probability space and with
values in the same space Rn: If

lim
n!1

P(kXn � Xk2 . 1) ¼ 0 for any 1 . 0,

then {Xn} is said to converge in probability to X. Convergence in probability is com-

monly denoted Xn!
p

X or plimXn ¼ X: From the equivalent definition

lim
n!1

P(kXn � Xk2 � 1) ¼ 1 for any 1 . 0

it may be easier to see that this notion is a natural generalization of convergence of
numbers. A nice feature of convergence in probability is that it is preserved under
arithmetic operations.
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Lemma. Let {Xi} and {Yi} be sequences of n� 1 random vectors and let {Ai} be a
sequence of random matrices such that plim Xi, plim Yi and plim Ai exist. Then

(i) plim(Xi + Yi) ¼ plimXi + plimYi:

(ii) plim AiXi ¼ plim Aiplim Xi:

(iii) Let g : Rn
! R be a Borel-measurable function such that X ¼ plim Xi takes

values in the continuity set Cg of g with probability 1, P(X [ Cg) ¼ 1: Then
plimg(Xi) ¼ g(X):

(iv) If plim Ai ¼ A and P(det A = 0) ¼ 1, then plim A�1
n ¼ A�1.

Proof. Statements (i) and (ii) are from (Lütkepohl 1991, Section C.1). (iii) is proved
in (Davidson 1994, Theorem 18.8).

(iv) The real-valued function 1=det A of a square matrix A of order n is continu-

ous everywhere in the space Rn2

of its elements except for the set det A ¼ 0: Elements
of A�1 are cofactors of elements of A divided by det A: Hence, they are also con-
tinuous where det A = 0. The statement follows on applying (iii) element by element.

B

Part (iv) of this lemma does not imply invertibility of An a.e. It merely implies
that the set on which An is not invertible has probability approaching zero.

1.8.2 Distribution Function of a Random Vector

Let X be a random vector with values in Rk. Its distribution function is defined by

FX(x) ¼ P(X1 � x1, . . . , Xk � xk) ¼ P X�1
Yk

n¼1

(�1, xn]

 ! !
, x [ Rk:

It is proved that FX induces a probability measure on Rk, also denoted by FX. We say
that X has density pX if FX is absolutely continuous with respect to the Lebesgue
measure in Rk, that is if

FX(A) ¼
ð

A
pX(t) dt

for any Borel set A. Random vectors X, Y are said to be identically distributed if their
distribution functions are identical: FX(x) ¼ FY (x) for all x [ Rk. The original pair
consisting of the vector X and probability space (V, F , P) is distributed identically
with the pair consisting of the identity mapping X(t) ¼ t on Rk and probability
space (Rk, Bk, FX) where Bk is the Borel field of subsets of Rk. Identically distributed
vectors have equal moments. In particular, there are two different formulas for

EX ¼

ð
V

X(v) dP(v) ¼
ð

Rk
tdFX(t)

(see Davidson 1994, Section 9.1).
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1.8.3 Convergence in Distribution

We say that a sequence of random vectors {Xi} converges in distribution to X if
FXi (t)! FX(t) at all continuity points t of the limit distribution FX . For convergence

in distribution we use the notation Xi!
d

X or dlimXi ¼ X.
In econometrics, we are interested in convergence in distribution because con-

fidence intervals for X in the one-dimensional (1-D) case can be expressed in terms of
FX : P(a , X � b) ¼ FX(b)� FX(a). Here the right-hand side can be approximated
by FXi (b)� FXi (a) if dlimXi ¼ X and a and b are continuity points of FX (which is
always the case if X is normal).

Convergence in distribution is so weak that it is not preserved under arithmetic
operations. In expressions like Xi þ Yi or AiXi we can pass to the limit in distribution if
one sequence converges in distribution and the other in probability to a constant.

Lemma. Let {Xi} and {Yi} be sequences of n� 1 random vectors and let {Ai} be a
sequence of random matrices such that dlimXi, plimYi and plimAi exist.

(i) If c ¼ plimYi is a constant, then dlim(Xi þ Yi) ¼ dlimXi þ c.

(ii) If A ¼ plimAi is constant, then dlimAiXi ¼ AdlimXi.

(iii) plimXi ¼ X implies dlimXi ¼ X. If X is a constant, then the converse is true:
dlimXi ¼ c implies plimXi ¼ c.

(iv) (Dominance of convergence in probability to zero) If plimAi ¼ 0, then the
same is true for the product: plimAiXi ¼ 0:

(v) Suppose Xn!
d

X where all random vectors take values in Rk. Let

h : Rk
! Rm be measurable and denote Dh the set of discontinuities of h.

If FX(Dh) ¼ 0, then h(Xn)!
d

h(X).

Proof. For (i) and (ii) see (Davidson 1994, Theorem 22.14) (1-D case). The proof
of (iii) can be found in (Davidson 1994, Theorems 22.4 and 22.5).

Statement (iv) is proved like this. If plimAi ¼ 0, then dlimAiXi ¼ 0 by (ii),
which implies plimAiXi ¼ 0 by (iii).

The proof of (v) is contained in (Billingsley 1968, Chapter 1, Section 5). B

The case c ¼ 0 of statement (i) is a perturbation result: adding to {Xi} a sequence {Yi}
such that plimYi ¼ 0 does not change dlimXi. A continuous h (for which Dh is empty)
is a very special case of (v). This case is called a continuous mapping theorem (CMT).
For (ii) “plimAi” is not constant, the way around is to prove convergence in distribution
of the pair {Ai, Xi}. Then CMT applied to h(Ai, Xi) ¼ AiXi does the job.

1.8.4 Boundedness in Probability

Let {Xn} be a sequence of random variables. We know that a (proper) random variable
X satisfies P(jXj . M)! 0 as M ! 1. Requiring this property to hold uniformly in
n gives us the definition of boundedness in probability: supn P (jXnj . M)! 0
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as M ! 1. We write Xn ¼ Op(1) when {Xn} is bounded in probability. This notation
is justified by item (i) of the next lemma.

Lemma

(i) If Xn ¼ xn ¼ constant, then xn ¼ O(1) is equivalent to Xn ¼ Op(1).

(ii) If Xn ¼ Op(1) and Yn ¼ Op(1), then Xn þ Yn ¼ Op(1) and XnYn ¼ Op(1).

Proof.

(i) It is easy to see that

sup
n

P(jxnj . M) ¼ sup
n

1{jxnj.M} ¼ 1{supnjxnj.M}: (1:27)

This implies that supnP(jXnj . M)! 0 if and only if supnjxnj � M:

(ii) Let us show that

{jXn þ Ynj . M} # {jXnj . M=2} < {jYnj . M=2}: (1:28)

Suppose the opposite is true. Then there exists v [ V such that

M , jXn(v)þ Yn(v)j � jXn(v)j þ jYn(v)j � M,

which is nonsense. Equation (1.28) implies

sup
n

P(jXn þ Ynj . M) � sup
n

P jXnj .
M

2

� �
þ sup

n
P jYnj .

M

2

� �
! 0, M ! 1,

that is, Xn þ Yn ¼ Op(1). Further, along with Eq. (1.28), we can prove

{jXnYnj . M} # jXnj .
ffiffiffiffiffi
M
pn o

< jYnj .
ffiffiffiffiffi
M
pn o

and therefore

sup
n

P(jXnYnj . M) � sup
n

P jXnj .
ffiffiffiffiffi
M
p� 	

þ sup
n

P jYnj .
ffiffiffiffiffi
M
p� 	

! 0, M ! 1, (1:29)

which proves that XnYn ¼ Op(1).

B
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1.8.5 Convergence in Probability to Zero

The definition of Section 1.8.1 in the special case when {Xn} is a sequence of random
variables gives the definition of convergence in probability to zero:
limn!1P(jXnj . 1) ¼ 0 for any 1: In this case, instead of Xn!

p
0 people often

write Xn ¼ op(1):

Lemma

(i) If Xn ¼ xn ¼ constant, then xn ¼ o(1) is equivalent to Xn ¼ op(1).

(ii) Xn ¼ op(1) implies Xn ¼ Op(1).

(iii) If Xn ¼ op(1) and Yn ¼ op(1), then Xn + Yn ¼ op(1).

(iv) Suppose Xn ¼ op(1) or Xn ¼ Op(1) and Yn ¼ op(1). Then XnYn ¼ op(1).

(v) If Xn!
d

X and Yn ¼ op(1), then XnYn ¼ op(1).

Proof.

(i) From an equation similar to Eq. (1.27):

lim sup
n!1

P(jxnj . 1) ¼ lim sup
n!1

1{jxnj.1} ¼ 1{lim supn!1 jxnj.1},

we see that limn!1 P(jXnj . 1) ¼ 0 is equivalent to lim supn!1 jxnj � 1

and Xn ¼ op(1) is equivalent to xn ¼ o(1).

(ii) If Xn ¼ op(1), then, for any given d . 0, there exists n0 such that
P(jXnj . M) � d, n � n0. Increasing M, if necessary, we can make sure
that P(jXnj . M) � d, n , n0. Thus, supnP(jXnj . M) � d. Since d . 0
is arbitrary, this proves Xn ¼ Op(1).

(iii) This statement follows from Lemma 1.8.1(i).

(iv) By (ii) Xn ¼ Op(1), modify Eq. (1.29) to get

sup
n�n0

P(jXnYnj . 1M) � sup
n

P(jXnj . M)þ sup
n�n0

P(jYnj . 1):

Taking an arbitrary d . 0, choose a sufficiently large M, define 1 ¼ d=M
and then select a sufficiently large n0: The right-hand side will be small,
which proves XnYn ¼ op(1).

(v) This is just a different way of stating Lemma 1.8.3(iv).

B

1.8.6 Criterion of Convergence in Distribution of
Normal Vectors

A normal vector is defined using its density. We don’t need the formula for the density
here. It suffices to know that the density of a normal vector e is completely determined
by its first moment Ee ¼

Ð
Rn tdFe(t) and second moments Eeiej ¼

Ð
Rn titjdFe(t).
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Lemma. Convergence in distribution of a sequence {Xk} of normal vectors takes
place if and only if the limits limEXk and limV(Xk) exist where V(X) ¼
E(X � EX)(X � EX)0.

Proof. This statement is obtained by combining two facts. The characteristic
function fX of a random vector X is defined by

fX(t) ¼ Eeikt,Xl, t [ Rn:

Here i ¼
ffiffiffiffiffiffiffi
�1
p

. The first fact is that convergence in distribution dlimXk ¼ X is equiv-
alent to the pointwise convergence

limfXk
(t) ¼ fX(t) for all t [ Rn

(see Billingsley 1995, Theorem 26.3). The second fact is that the characteristic func-
tion of a normal vector X depends only on two parameters: its mean EX and variance
V(X ) see (Rao 1965, Section 8a.2). B

1.9 THE LINEAR MODEL

1.9.1 The Classical Linear Model

The usual assumptions about the linear regression

y ¼ Xbþ e (1:30)

are the following:

1. y is an observed n-dimensional random vector,

2. the matrix of regressors (or independent variables) X of size n� k is assumed
known,

3. b [ Rk is the parameter vector to be estimated from data (y and X),

4. e is an unobserved n-dimensional error vector with mean zero and

5. n . k and det X0X = 0.

The matrix X is assumed constant (deterministic). In dynamic models, with lags
of the dependent variable at the right side, those lags are listed separately. I am in favor
of separating deterministic regressors from stochastic ones from the very beginning,
rather than piling them up together and later trying to specify the assumptions by sort-
ing out the exogenous regressors.
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1.9.2 Ordinary Least Squares Estimator

The least squares procedure first gives rise to the normal equation

X0Xb̂ ¼ X0y

for the OLS estimator b̂ of b and then, subject to the condition det X0X = 0, to the
formula of the estimator

b̂ ¼ (X0X)�1X0y:

This formula and model (1.30) itself lead to the representation

b̂ � b ¼ (X0X)�1X0e (1:31)

used to study the properties of b̂ : In particular, the assumption Ee ¼ 0 implies that b̂

is unbiased, Eb̂ ¼ b and that its distribution is centered on b.

1.9.3 Normal Errors

N(m, S) denotes the class of normal vectors with mean m and variance S (which in
general may be singular). Errors distributed as N(0, s 2I) are assumed as the first
approximation to reality. Components e1, . . . , en of such errors satisfy

cov(ei, ej) ¼ 0, i = j, Eei ¼ 0, Ee2
i ¼ s2: (1:32)

The first equation here says that e1, . . . , en are uncorrelated.

Lemma. If e � N(0, s 2I), then the components of e are independent identically
distributed.

Proof. By the theorem from (Rao 1965, Section 8a.2) uncorrelatedness of the com-
ponents of e plus normality of e imply independence of the components. By Eq. (1.32)
the first and second moments of the components coincide, therefore their densities
and distribution functions coincide. B

1.9.4 Independent Identically Distributed Errors

We write e � IID(0, s 2I) to mean that the components of e are independent identi-
cally distributed (i.i.d.), have mean zero and covariance s2I: Lemma 1.9.3 means
that N(0, s 2I) # IID(0, s 2I):

Lemma. Suppose e � IID(0, s2I) and put F 0 ¼ {;, V}, F t ¼ s(ej : j � t),
t¼ 1, 2, . . . Then et is F t-measurable, E(etjF t�1)¼ 0, E(e2

t jF t�1)¼ s2, t ¼ 1, . . . , n.

Proof. For t ¼ 1, E(e1jF 0) ¼ Ee1 ¼ 0 (see Example 1.6 in Section 1.6.2).
Let t . 1. By definition, F t�1 ¼ s (ej : j � t � 1) and s (et) are independent.
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By Theorem 1.6.6, E(etjF t�1) ¼ Eet ¼ 0: Similarly, E(e2
t jF t�1) ¼ Ee2

t ¼ s 2 (see
Theorem 1.5.4(i) about nonlinear transformations of measurable functions). B

1.9.5 Martingale Differences

Let {F t : t ¼ 1, 2, . . .} be an increasing sequence of s-fields contained in F :
F 1 # . . . # F n # . . . , F : A sequence of random variables {et : t ¼ 1, 2, . . .} is
called adapted to {F t} if et is F t-measurable for t ¼ 1, 2, . . . If a sequence of integr-
able variables {et} satisfies

1. {et} is adapted to {F t} and

2. E(etjF t�1) ¼ 0 for t ¼ 1, 2, . . . , where F 0 ¼ {;, V},

then we say that {et, F t} or, shorter, {et} is a martingale difference (m.d.) sequence.

Lemma. Square-integrable m.d. sequences are uncorrelated and have mean zero.

Proof. By the law of iterated expectations (LIE) [Eq. (1.23)] and the m.d. property
item 2 the means are zero:

Eet ¼ E[E(etjF t�1)jF 0] ¼ 0, t ¼ 1, 2, . . .

Let s , t. Since es isF s-measurable, it isF t�1-measurable. By extended homogeneity
(Section 1.6.5) and the LIE

Eeset ¼ E[E(esetjF t�1)] ¼ E[esE(etjF t�1)] ¼ 0: B

The generality of the m.d. assumption is often reduced by the necessity to
restrict the behavior of the second-order conditional moments by the condition

E(e2
t jF t�1) ¼ s 2, t ¼ 1, 2, . . . (1:33)

Owing to the LIE this condition implies Ee2
t ¼ s 2, t ¼ 1, 2, . . . We denote by

MD(0, s 2) the square-integrable m.d.’s that satisfy Eq. (1.33). By Lemma 1.9.4,
IID(0, s 2I) # MD(0, s 2) if we put F t ¼ s (ej : j � t).

1.9.6 The Hierarchy of Errors

We have proved that

N(0, s 2I) # IID(0, s 2I) # MD(0, s 2): (1:34)

Members of any of these three classes have a mean of zero and are uncorrelated.
Normal errors are in the core of all error classes considered in this book. This
means that any asymptotic results should hold for normal errors and the class of
normal errors can be used as litmus paper for tentative assumptions and proofs. The
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criterion of convergence in the distribution of normal vectors (Section 1.8.6) facilitates
verifying convergence in this class.

Some results will be proved for linear processes as errors. Let {cj : j [ Z} be a
double-infinite summable sequence of numbers,

P
j[Zjcjj , 1, and let {ej : j [ Z}

be a sequence of integrable zero-mean random variables, called innovations. A linear
process is a sequence {vj : j [ Z} defined by the convolution

vt ¼
X
j[Z

cjet�j, t [ Z: (1:35)

Members of any of the above three classes may serve as the innovations. If c0 ¼ 1 and
cj ¼ 0 for any j = 0, we get vt ¼ et, which shows that the class of linear processes
includes any of the three classes of Eq. (1.34).

Linear processes with summable {cj} are called short-memory processes. If
supj Ejejj , 1 and

P
jjcjj , 1, then vt have uniformly bounded L1-norms,

Ejvtj � supj Ejejj
P

jjcjj , 1, and zero means. More general processes with

square-summable {cj},
P

j[Zc
2
j , 1, are called long-memory processes. In this

case, if the innovations are uncorrelated and have uniformly bounded L2-norms,
then vt exist in the sense of L2: Ev2

t � supj Ee2
j

P
jc

2
j , 1. There are also mixing pro-

cesses, see (Davidson, 1994), which are more useful in nonlinear problems. Long-
memory and mixing processes are not considered here. Long-memory processes do
not fit Theorem 3.5.2, as discussed in Section 3. Conditions in terms of mixing pro-
cesses do not look nice, perhaps because they are inherently complex or the theory
is underdeveloped.

1.10 NORMALIZATION OF REGRESSORS

1.10.1 Normal Errors as the Touchstone of the Asymptotic
Theory

Suppose we have a series of regressions y ¼ Xbþ e with the same b and n going to
infinity (dependence of y, X and e on n is not reflected in the notation). We would like

to know if the sequence of corresponding OLS estimators b̂ converges in distribution

to a normal vector. We shall see that, as a preliminary step, b̂ should be centered on

b and properly scaled, so that convergence takes place for Dn(b̂ � b), where Dn is
some matrix function of the regressors. The factor Dn is called a normalizer (it
normalizes variances of components of the transformed errors in the OLS estimator
formula to a constant). The choice of the normalizer is of crucial importance as it
affects the conditions imposed later on X and e.

The classes of regressors and errors should be as wide as possible. The search for
these classes is complicated if both regressors and errors are allowed to vary. However,
under the hierarchy of errors described above the normal errors are the core of the
theory. The implication is that, whatever the conditions imposed on X, they should
work for the class of normal errors. The OLS estimator, being a linear transformation
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of e, is normal when e is normal. Therefore from the criterion of convergence in dis-
tribution of normal vectors (Section 1.8.6) we conclude that the choice of the normal-
izer and the class of regressors should satisfy the conditions

1. lim EDn(b̂ � b) exists and

2. lim V(Dn(b̂ � b)) exists

when e � N(0, s 2I): For deterministic X, it is natural to stick to deterministic Dn, so

condition 1 trivially holds because of unbiasedness of b̂ : The second condition can be
called a variance stabilization condition.

1.10.2 Where Does the Square Root Come From?

Consider n independent observations on a normal variable with mean b and standard
deviation s: In terms of regression, we are dealing with X ¼ (1, . . . , 1)0 (n unities) and
e � N(0, s 2I): From the representation of the OLS estimator (1.31)

b̂ � b ¼ (e1 þ � � � þ en)=n: By independence of the components of e this implies

V(b̂ � b) ¼
1
n2

[V(e1)þ � � � þ V(en)] ¼
s2

n
:

Now it is easy to see that with Dn ¼
ffiffiffi
n
p

the variance stabilization condition is satisfied

and the criterion of convergence of normal variables gives
ffiffiffi
n
p

(b̂ � b)!
d

N(0, s 2):
The square root also works for stable autoregressive models (Hamilton, 1994).

1.10.3 One Nontrivial Regressor and Normal Errors

Consider a slightly more general case y ¼ xbþ e with x [ Rn and a scalar b. The rep-

resentation of the OLS estimator reduces to b̂ � b ¼ x0e=kxk2
2 and we easily find that

V(kxk2 (b̂ � b)) ¼
1

kxk2
2

Xn

i¼1

x2
i s

2 ¼ s 2

under the same assumption e � N(0, s 2I): It follows that

kxk2 (b̂ � b) �!
d

N(0, s 2) (1:36)

and Dn ¼ kxk2 is the right normalizer.
What if instead of Dn we use

ffiffiffi
n
p

? Then
ffiffiffi
n
p

(b̂ � b) ¼
ffiffiffi
n
p

x0e= kxk22 and the
variance stabilization condition leads to

n

kxk22
! constant:
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This means that the
ffiffiffi
n
p

-rule separates a narrow class of regressors for which kxk2 is of
order

ffiffiffi
n
p

for large n. In general, any function of n tending to 1 as n! 1 can be used
as a normalizer for some class of regressors, and there are as many classes as there are
functions with different behavior at infinity.

The normalizer Dn ¼ kxk2 is better because it adapts to the regressor instead
of separating some class. For example, for x ¼ (1, . . . , 1)0 (n unities) it gives the
classical square root and for a linear trend x1 ¼ 1, x2 ¼ 2, . . . , xn ¼ n it grows as
n3=2: As Dn is self-adjusting, you don’t need to know the rate of growth of kxk2 :
This is especially important in applications where regressors don’t have any particular
analytical pattern. The decisive argument is that Dn is in some sense unique (see
Section 1.11.3).

1.10.4 The Errors Contribution Negligibility Condition

Let us look again at y ¼ xbþ e where e1, . . . , en are now IID(0, s2I) and not necess-
arily normal. Having made up our mind regarding the normalizer we need to prove
convergence in distribution of

kxk2 (b̂ � b) ¼
x1

kxk2
e1 þ � � � þ

xn

kxk2
en:

Here is where CLTs step in. The CLTs we need affirm the asymptotic normality of
weighted sums

Xn

t¼1

wntet

of random variables e1, . . . , en, which are not necessarily normal. Convergence in
distribution of such sums is possible under two types of restrictions.

The first type limits dependence among the random variables and is satisfied
in the case under consideration because we assume independence. The second
type requires contribution of each term in the sum to vanish asymptotically where

contribution ¼
variance of a term

variance of the sum
:

Under our assumptions this type boils down to the condition

lim
n!1

max
1�t�n

jxtj

kxk2
¼ 0, (1:37)

often called an errors contribution negligibility condition. This condition in combi-
nation with e � IID(0, s 2I) is sufficient to prove Eq. (1.36).
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1.11 GENERAL FRAMEWORK IN THE CASE OF K
REGRESSORS

1.11.1 The Conventional Scheme

Now in the model y ¼ Xbþ e we allow X to have more than one column and assume
det X0X = 0, e � IID(0, s 2I).

The rough approach consists in generalizing upon Section 1.10.2 (with a
constant regressor) by relying on the identity

ffiffiffi
n
p

(b̂ � b) ¼
X0X

n

� ��1 X0effiffiffi
n
p : (1:38)

Suppose that here

limit A ¼ lim
n!1

X0X

n
exists and is nonsingular (1:39)

and that

X0effiffiffi
n
p �!

d
N(0, B): (1:40)

Then, by continuity of matrix inversion (X0X=n)�1
! A�1 and the rule for conver-

gence in distribution [Lemma 1.8.3(ii)] implies

X0X

n

� ��1 X0effiffiffi
n
p �!

d
A�1u, u � N(0, B):

As a result,

ffiffiffi
n
p

(b̂ � b) �!
d

N(0, A�1BA�1): (1:41)

As in case k ¼ 1, the rough approach separates a narrow class of regressor matrices by
virtue of conditions (1.39) and (1.40).

The refined approach is based on the variance stabilization idea.
Partitioning X into columns, X ¼ (X1, . . . , Xk), we see that the vector u ¼ X0e

has components uj ¼ X0j e with variances V(uj) ¼ s 2 kXjk
2
2 : Since X0X is the Gram

matrix of the system {X1, . . . , Xk}, the condition det X0X = 0 is equivalent to
linear independence of the columns (Section 1.7.4) and implies kXjk2 = 0 for all j
and large n. If we define the normalizer by

Dn ¼ diag


kX1k2 , . . . , kXkk2

�
, (1:42)
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then the matrix

H ¼ XD�1
n ¼

X1

kX1k2
, . . . ,

Xk

kXkk2

� �
¼ (H1, . . . , Hk)

has normalized columns, kHjk2 ¼ 1: This construction is simple yet so important that
I would love to name it after the discoverer. Unfortunately, the historical evidence is
not clear-cut, as is shown in Section 1.11.2. For this reason I call Dn a variance-
stabilizing (VS) normalizer.

The analog of Eq. (1.38) is [see Eq. (1.31)]

Dn(b̂ � b) ¼ Dn(X0X)�1X0e

¼ (D�1
n X0XD�1

n )�1D�1
n X0e ¼ (H0H)�1H0e: (1:43)

Naturally, the place of Eqs. (1.39) and (1.40) is taken by

limit A ¼ lim
n!1

H0H exists and is nonsingular (1:44)

and

H0e �!
d

N(0, B): (1:45)

We call both the combinations of Eqs. (1.38) þ (1.39) þ (1.40) and Eqs.
(1.43) þ (1.44) þ (1.45) a conventional scheme of derivation of the OLS asymptotics.

The result in Section 1.11.3 implies that, if we want to use Eq. (1.43), condition
(1.44) is unavoidable. If Eq. (1.44) is not satisfied with any normalization, the con-
ventional scheme itself should be modified (see in Chapter 4, how P.C.B. Phillips
handles this issue).

1.11.2 History

The probabilists became aware of the variance stabilization principle a long time ago.
It is realized in one or another form in all CLTs. It took some time for the idea to
penetrate econometrics.

Eicker (1963) introduced the normalizer Dn, but considered convergence of
components of the OLS estimator instead of convergence of the estimator in joint dis-
tribution. Anderson (1971) proved convergence in joint distribution using Dn and
mentioned that the result “in a slightly different form was given by Eicker”.
Schmidt (1976), without reference to either Eicker or Anderson, established a result
similar to Anderson’s. None of these three authors compare Dn to the classical normal-
izer. Moreover, Schmidt’s comments imply that he thinks of Dn as complementary to
the square root.

Amemiya (1985) proved Anderson’s result, without referring to the three
authors just cited. Evidently, he was the first to show that Dn is superior to

ffiffiffi
n
p

in
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the sense that Eq. (1.44) is more general than Eq. (1.39). He also noticed that Dn-type
normalization is applicable to maximum likelihood estimators.

Finally, Mynbaev and Castelar (2001) established that Dn is more general than
any other normalizer, as long as the conventional scheme is employed. This result is
the subject of Section 1.11.3.

1.11.3 Universality of Dn

Definition. A diagonal matrix (actually, a sequence of matrices) Dn is called a
conventional-scheme-compliant (CSC) normalizer if H ¼ XD�1

n satisfies Eqs. (1.44)
and (1.45) for all errors e � IID(0,s 2I):
If {Mn} is any sequence of nonstochastic diagonal matrices satisfying the condition

limit M ¼ lim Mn exists and is nonsingular (1:46)

and Dn is a CSC normalizer, then it is easily checked that eDn ¼ MnDn is also a CSC
normalizer with

eH ¼ HM�1
n , ~A ¼ limeH0 eH ¼ M�1AM�1, ~B ¼ M�1BM�1:

Theorem. (Mynbaev and Castelar 2001) The VS normalizer (1.42) is unique in the
class of CSC normalizers up to a factor satisfying Eq. (1.46). It follows that if with
some normalizer the conventional scheme works, then Dn can also be used, while
the converse may not be true.

Proof. Let Dn ¼ diag[ �dn1, . . . , �dnk ] be some CSC normalizer, H ¼ X D
�1
n , and let

�A and B be the corresponding elements of the conventional scheme. The diagonal of

the limit relation H
0
H! �A gives

H
0

j Hj ¼ kXjk
2
2=

�d
2
nj �! �a jj , j ¼ 1, . . . , k, (1:47)

where Hj denote the columns of H, Xj the columns of X and �aij the elements of �A:
Recalling that Dn has dnj ¼ kXjk2 on its diagonal we deduce from Eq. (1.47) that

dnj= �dnj �! �a1=2
jj , j ¼ 1, . . . , k: (1:48)

By the Cauchy–Schwarz inequality the elements of H
0
H satisfy the inequality

jH
0

i Hjj � kHik2 kHjk2 : Letting n! 1 here and using Eq. (1.47) we get

j�aijj � (�aii �a jj)1=2 : This tells us that none of the diagonal elements can be zero because
otherwise a whole cross in �A would consist of zeros and �A would be singular.

Now from Eq. (1.48) we see that Mn ¼ Dn D
�1
n satisfies Eq. (1.46) and

Dn ¼ Mn Dn differs from Dn by an asymptotically constant diagonal factor. It follows
that Dn is CSC with A ¼ M�1AM�1 and B ¼ M�1BM�1:

1.11 GENERAL FRAMEWORK IN THE CASE OF K REGRESSORS 37



The square root is an example of a normalizer that has a narrower area of appli-
cability than Dn. B

1.11.4 The Moore–Penrose Inverse

Suppose A is a singular square matrix. According to (Rao 1965, Section 1b.5) the
Moore–Penrose inverse Aþ of a matrix A is uniquely defined by the properties

AAþA ¼ A, (1:49)

AþAAþ ¼ Aþ, (1:50)

AAþ and AþA are symmetric: (1:51)

When A is symmetric, Aþ can be constructed explicitly using its diagonal rep-
resentation. Let A be of order n and diagonalized as A ¼ PLP0 where P is orthogonal,
P0P ¼ I and L is a diagonal of eigenvalues of A (see Theorem 1.7.2). Denote

1
l

� �þ
¼

1
l

, l = 0;

0, l ¼ 0:

�
(L�1)þ ¼ diag

1
l1

� �þ
, . . . ,

1
ln

� �þ� 

,

Aþ ¼ P(L�1)þP0:

Lemma. Aþ is the Moore–Penrose inverse of A. It is symmetric and the matrix
Q ¼ AþA is an orthoprojector: Q0 ¼ Q, Q2 ¼ Q:

Proof. Aþ is symmetric by construction. It is easy to see that the product
D ¼ (L�1)þL has zeros where L has zeros and unities where L has nonzero eigen-
values. Therefore LD ¼ L and DLþ ¼ Lþ, so that Eqs. (1.49) and (1.50) are true:

AAþA ¼ PLDP0 ¼ A, AþAAþ ¼ PDLþP0 ¼ Aþ:

Besides, the matrices AAþ ¼ PLLþP0 and AþA ¼ PLþLP0 ¼ PDP0 are symmetric.
By the uniqueness of the Moore–Penrose inverse, Aþ is that inverse.

The symmetry of Q ¼ AþA has just been shown. Q is idempotent:
Q2 ¼ (AþA)2 ¼ PD2P0 ¼ Q. B

Note that Aþ is not a continuous function of A. For example,

An ¼
1 0
0 1=n

� �
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converges to

A ¼
1 0
0 0

� �
¼ Aþ

but

Aþn ¼
1 0
0 n

� �
does not converge to Aþ.

1.11.5 What if the Limit of the Denominator Matrix
is Singular?

Can the Moore–Penrose inverse save the situation? It is important to realize that con-
vergence in distribution of Dn( b̂ � b) in the conventional scheme is obtained as a
consequence of Equations (1.43)–(1.45) from Section 1.11.1. Since the Moore–
Penrose inversion is not continuous, the scheme does not work when the limit of
the denominator matrix is singular. The next proposition shows that the Moore–
Penrose inverse can be applied if outside (independent of the conventional scheme)
information is available in the form

limit v ¼ dlimDn(b̂ � b) exists: (1:52)

Lemma. If instead of Eq. (1.44) we assume that

limit A ¼ lim
n!1

H0H exists and is singular (1:53)

and if two pieces of information about convergence in distribution are available in the
form of Eqs. (1.45) and (1.52), then

Qv � N(0, AþBAþ)

where Q ¼ AþA is an orthoprojector.

Proof. The normal equation X0X(b̂ � b) ¼ X0e can be rewritten as

H0HDn(b̂ � b) ¼ H0e:

Denoting u the limit of the numerator and using Eqs. (1.53), (1.45) and (1.52) we get
Av ¼ u: Premultiply this by Aþ to obtain Qv ¼ Aþu: Now the statement follows from
Eq. (1.45). B

Thus, under the additional condition (1.52) some projection of v is normally
distributed, with a degenerate variance AþBAþ.
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1.12 INTRODUCTION TO L2-APPROXIMABILITY

1.12.1 Asymptotic Linear Independence

By Theorem 1.7.4 the Gram matrix

G ¼ H0H ¼
H01H1 . . . H01Hk

. . . . . . . . .
H0kH1 . . . H0kHk

0@ 1A
is nonsingular if and only if the columns H1, . . . , Hk of H are linearly independent.
Therefore condition (1.44) is termed the asymptotic linear independence condition.
The question is: can the word “asymptotic” be removed from this name, that is, are
there any vectors for which nonsingularity of the limit A ¼ limn!1H0H would
mean simply linear independence? Imagine that for each j we have convergence of col-
umns Hj ! Mj, as n! 1, in such a way that H0kHl ! M0kMk: Then existence of the
limit A ¼ limn!1 H0H would be guaranteed and detA = 0 would mean linear inde-
pendence of M1, . . . , Mk.

Unfortunately, the sequences {Hj : n . k} do not converge. Their elements
belong to Rn

2, which can be embedded naturally into l2(N). A necessary condition

for convergence x(n) ! x in l2(N) is the coordinate-wise convergence x(n)
i ! xi,

n! 1, for all i ¼ 1, 2, . . . . But for Eq. (1.45) to be true we have to require the
errors contribution negligibility condition (1.37) which in terms of the elements of
H looks like this:

lim
n!1

max
i, j
jhijj ¼ 0:

Thus, convergence Hj ! Mj, as n! 1, implies Mj ¼ 0, but this is impossible
because kHjk2 ¼ 1 for all n because of normalization.

1.12.2 Discretization

The general idea is to approximate sequences of vectors (functions of a discrete argu-
ment) with functions of a continuous argument.

For any natural n a function f [ C[0, 1] generates a vector with coordinates
f (i=n), i ¼ 1, . . . , n:A sequence of vectors {x(n)}, with x(n) [ Rn for all n, can be con-
sidered close to f if

max
1�i�n

x(n)
i � f

i

n

� ����� ����! 0, n! 1:

This kind of approximation was used by Nabeya and Tanaka (1988), see also,
(Tanaka, 1996). A better idea is to use the class L2(0, 1), which is wider than
C[0, 1]: However, the members of L2(0, 1) are defined only up to sets of Lebesgue
measure 0, and it doesn’t make sense to talk about values f (i=n) for f [ L2(0, 1):

Instead of values we can use integrals
Ð i=n

(i�1)=n f (t) dt, i ¼ 1, . . . , n: For convenience,
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the vector of integrals is multiplied by
ffiffiffi
n
p

, which gives the definition of the discreti-
zation operator dn

(dn f )i ¼
ffiffiffi
n
p

ði=n

(i�1)=n
f (t) dt, i ¼ 1, . . . , n: (1:54)

The sequence {dn f : n [ N} is called L2-generated by f. L2-generated sequences were
introduced by Moussatat (1976).

With the volatility of economic data, in econometrics it is unacceptable to
require regressors to be L2-generated or, in other words, to be exact images of some
f [ L2(0, 1) under the mapping dn: To allow some deviation from exact images, in
a conference presentation (Mynbaev 1997) I defined an L2-approximable sequence
as a sequence {x(n)} for which there is a function f [ L2(0, 1) satisfying

kx(n) � dnf k2 ! 0:

If this is true, we also say that {x(n)} is L2-close to f [ L2(0, 1):
It is worth emphasizing that the OLS estimator asymptotics can be proved with-

out this condition. When the errors are independent, the asymptotic linear indepen-
dence and errors contribution negligibility condition are sufficient for this purpose,
see (Anderson 1971; Amemiya 1985). In 1997 I needed this notion to find the asymp-
totic behavior of the fitted value, which is a more advanced problem. Note also that
(Pötscher and Prucha 1997) and Davidson (1994) used the term Lp-approximability
in a different context.

L2-approximable sequences and, more generally, Lp-approximable sequences
defined in (Mynbaev 2000) possess some continuity properties when p , 1: This
is their main advantage over general sequences.

1.12.3 Ordinary Least Squares Asymptotics

Theorem. Consider a linear model y ¼ Xbþ u where

(i) the errors u1, . . . , un are defined by Eq. (1.35), the innovations {ej : j [ Z}
are IID(0,s2I),

P
j[Z jcjj , 1 and e2

j are uniformly integrable;

(ii) for each j ¼ 1, . . . , k, the sequence of columns {Hj : n . k} of the normal-
ized regressor matrix H ¼ XD�1

n is L2-close to Mj [ L2(0, 1);

(iii) the functions M1, . . . , Mk are linearly independent.

Then the denominator matrix H0H converges to the Gram matrix G of the system
M1, . . . , Mk and

Dn(b̂ � b) �!
d

N(0, (sbc)2G�1): (1:55)

Proof. By Theorem 2.5.3 limn!1 H0iHj ¼
Ð 1

0 MiMj dt and, in consequence,

lim H0H ¼ G: By Theorem 3.5.2 H0u!
d

N(0, (sbc)2G) (this includes the case
when H0u converges in distribution and in probability to a null vector). Equation
(1.55) follows from the conventional scheme. B
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In similar results with VS normalization (Anderson, 1971, Theorem 2.6.1;
Schmidt, 1976, Section 2.7; Amemiya, 1985, Theorem 3.5.4) the errors are assumed
independent. Assumptions on H vary from source to source. In Theorems 2.5.3 and
3.5.2 the necessary properties of H are derived from the L2-approximability assump-
tion. Instead, we could require them directly. When the errors are independent,
these properties are: existence of the limit A ¼ limn!1 H0H, asymptotic linear
independence det A = 0 and the errors contribution negligibility condition
limn!1 maxi, jjhijj ¼ 0: Thus, as far as the OLS asymptotics for the classical model
is concerned, the L2-approximability condition is stronger than the minimum required.
It becomes indispensable when deeper properties are needed, like convergence of the
fitted value considered next.

1.12.4 Convergence of the Fitted Value

The fitted value is defined by ŷ ¼ Xb̂ . The need for its asymptotics may arise in the
following way. Suppose we have to estimate stock q(t) based on its known initial
value q(t0) and flow (rate of change) q0(t). By the Newton–Leibniz formula,
q(t)� q(t0) ¼

Ð t
t0

q0(s) ds. If q 0(t) is measured at discrete points and regressed on,

say, a polynomial of time, the interpolated fitted value approximates q0 on the
whole interval [t0, t] and integrating it gives an estimate of q(t)� q(t0).

As is the case with the OLS estimator, the fitted value has to be transformed to
achieve convergence in distribution. Centering on Xb results in

ŷ� Xb ¼ X(b̂ � b) ¼ XD�1
n Dn(b̂ � b) ¼ HDn(b̂ � b): (1:56)

Convergence of Dn(b̂ � b) is available from Theorem 1.12.3, but H does not con-
verge, as explained in Section 1.12.1. It happens, though, that interpolating H leads
to a convergent sequence in L2(0, 1).

A vector x with n values is interpolated by constants to obtain a step function
Dnx ¼

Pn
t¼1 xt1it. The interpolation operator Dn is applied to columns of H. From

Eq. (1.56) we get

Dn( ŷ� Xb) ¼ Dn

Xk

l¼1

Hl[Dn(b̂ � b)]l ¼
Xk

l¼1

(DnHl)[Dn(b̂ � b)]l:

Theorem. Under the assumptions of Theorem 1.12.3 the fitted value converges in
distribution to a linear combination of the functions M1, . . . ,Mk,

Dn( ŷ� Xb) �!
d Xk

l¼1

Mlct,

where the random vector c ¼ (c, . . . , ck)0 is distributed as N(0, (sbc)2G�1).

Proof. By Lemma 2.5.1 the L2-approximability condition kHl 2 dnMlk ! 0 is
equivalent to kDnHl 2 Mlk! 0. Convergence of {DnHl} to Ml in L2 implies
convergence in distribution of {DnH} to the vector M ¼ (M1, . . . , Mk)0. In the
expression Dn(ŷ� Xb) ¼ [DnH0][Dn(b̂ � b)] both factors in brackets at the right
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converge in distribution. Since their limits M and u ¼ dlimDn(b̂ � b) are independent

and, for each n, DnH and Dn(b̂ � b) are independent, the relations DnH!
d

M and

Dn(b̂ � b)!
d

u imply convergence of the pair (DnH, Dn(b̂ � b))!
d

(M, u) see
(Billingsley 1968, pp. 26–27). By the continuous mapping theorem then

Dn( ŷ� Xb)!
d

M0u. B

1.12.5 Convictions and Preconceptions

In econometrics too much depends on the views of the researcher. Apparently, a set of
real-world data can be looked at from different angles. Unfortunately, theoretical
studies also suffer from the subjectivity of their authors. Two different sets of assump-
tions for the same model may lead to quite different conclusions. The choice of the
assumptions depends on the previous experience of the researcher, the method
employed and the desired result. Assumptions made for and views drawn from a
simple model are often taken to a higher level where they can be called convictions
if justified or preconceptions if questionable.

A practitioner usually worries only about the qualitative side of the result. A
highly technical paper about estimator asymptotics in his/her interpretation boils
down to “under some regularity conditions the estimator is asymptotically normal”.
Hypotheses tests are conducted accordingly, the result is cited without proofs in expo-
sitory monographs for applied specialists and, with time, becomes a part of folklore.
The probability of a critical revision of the original paper declines exponentially.

Imagine that you are a security agent entrusted with the task of capturing an alien
that is killing humans. If you presuppose that the beast is disguised like a human your
course of actions will be quite different from what it would be if you were looking for a
giant cockroach.

When you see a new estimator, its asymptotics is that alien. The best of all is not
to presume that it is of a particular type. Make simplified assumptions and look at the
finite-sample distributions in the case of normal disturbances. If they are normal, per-
haps the asymptotics is also normal. If they are not, a suitable transformation of the
estimator, such as centering and scaling, may result in normal asymptotics.
Alternatively, you may have to apply a CLT in conjunction with the CMT to obtain
nonnormal asymptotics. All these possibilities are illustrated in the book.

By choosing the format of the result you make a commitment. Normal asymp-
totics is usually proved using a CLT. Let us say it comes with conditions (A), (B) and
(C). To satisfy them, you impose in terms of your model conditions (A0), (B0) and (C0),
respectively. These conditions determine the class of processes your result is appli-
cable to. By selecting a different format you are bound to use different techniques
and obtain a different class.

In the case of the conventional scheme an easy way to go is simply assume that X
and e are such that either Eqs. (1.39) þ (1.40) or Eqs. (1.44) þ (1.45) are satisfied. I
call such a “theorem” a pig-in-a-poke result. While this approach serves illustrative
purposes in a university course well, its value in a research paper or monograph is
doubtful. Eicker (1963) mentions that conditions should be imposed separately on
the errors and regressors.
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In this relation it is useful to distinguish between low-level conditions, stated
directly in terms of the primary elements of the model, such as Eq. (1.44), and
high-level conditions, expressed in terms of some complex combinations of the
basic elements, such as Eq. (1.45). Of course, this distinction is relative. For instance,
the L2-approximability assumption about deterministic regressors made in the most
part of this book is of a lower level than Eq. (1.44).

The parsimony principle in econometric modeling states that a model should
contain as few parameters as possible or be simple otherwise and still describe the pro-
cess in question well. A similar principle applies to the choice of conditions. If you
have imposed several of them and are about to require a new one, make sure that it
is not implied or contradicted by the previous conditions. My major professor,
M. Otelbaev, used to say, “If I am allowed to impose many conditions, I can prove
anything”.

Transparency, simplicity and beauty are other subjective measures of the
assumptions quality. A good taste is acquired by reading and comparing many
sources. It is not a good idea to have a prospective user of your result prove a whole
theorem to check whether your assumptions are satisfied. Nontransparent conditions
appealing to existence of objects with certain properties are especially dangerous. It
is quite possible to use the right theorems and comply with all the rules of formal
logic and get a bad statement because the set of objects it applies to will be empty if
the conditions are contradictory or existence requirements are infeasible. Contradic-
tions are easy to avoid by using conditions with nonoverlapping responsibilities. In
other words, beware of two different conditions governing the behavior of the same
object.

Generalizations do not always work, as we have seen when going from constant
to variable regressors. However, when studying a dynamic model, such as the mixed
spatial model Y ¼ Xb þ rWY þ e in Chapter 5, I choose the conditions and methods
that work for its two submodels, Y ¼ Xb þ e and Y ¼ rWY þ e. In this sense, this
book is not free from subjectivity.

Generalizations based on the conventional scheme can be as harmful as any
others. The study of the purely spatial model in Chapter 5 shows that the said
model violates the habitual notions in several ways:

1. the OLS asymptotics is not normal,

2. the limit of the numerator vector is not normal,

3. the limit of the denominator matrix is not constant,

4. the normalizer is identically 1 (that is, no scaling is necessary) and

5. there is no consistency.

These days requirements to econometric papers are very high. If you suggest a
new model, you have to defend it by showing its theoretical advantages and testing its
practical performance, preferably in the same paper. The author of a new model can be
excused if he/she studies the model under simplified assumptions and leaves the
generalizations and refinements to the followers. The way of modeling determ-
inistic regressors advocated here allows us to combine simple assumptions with
rigorous proofs.
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