
Chapter 1: Tuning the Database

In This Chapter
✓ Examining the work to be done

✓ Contemplating physical design considerations

✓ Choosing and clustering indexes

✓ Co-clustering two relations

✓ Indexing on multiple attributes

✓ Tuning indexes, queries, and transactions

✓ Query tuning in a high-concurrency environment

✓ Benchmarking

✓ Keeping user interactions separate from transactions

✓ Holding down traffic between application and server

✓ Creating a precompiled list of frequently used queries

The word tuning is generally taken to mean optimizing an existing system
that isn’t operating at top capacity. Tuning doesn’t do you much good,

however, if your initial design isn’t at least close to optimal in the first place.
Tuning can take you only so far from your starting point. It’s a lot easier to
tune a slightly off-pitch B string on your guitar to a perfect B than it is to
tune a G string up to a perfect B. (Also, you’re a lot less likely to break the
string.) Tuning for optimal performance should start in the initial design
stage of a database, not at some later time when design decisions have been
cast in concrete.

The performance of a database management system (DBMS) is generally
judged by how fast it executes queries. Two types of operations are impor-
tant: the retrieval of data from a database and the updating of records in a
database. The speed at which records can be accessed is key to both types
of operations, because you must locate a record before you can retrieve or
update the data in it. The users’ data model on which you’ll base your data-
base design is almost certainly structured in a way that isn’t the best from a
performance standpoint. The users are primarily concerned with function-
ality and may have little or no idea of how the design of a database affects
how well it performs. You must transform the users’ data into a conceptual
schema that you actualize in the form of an Entity-Relationship (ER) model
diagram. Recall that the Entity-Relationship data model and its associated
diagrams are extensively covered in Book II.

40_9780470929964-bk07ch01.indd 57940_9780470929964-bk07ch01.indd 579 2/24/11 3:45 PM2/24/11 3:45 PM

CO
PYRIG

HTED
 M

ATERIA
L

580

Analyzing the Workload
Optimal design of a database depends largely on how the database will be
used. What kinds of queries will it be subjected to? How often will updates
be made, compared with how often queries are posed? These kinds of ques-
tions try to get at what the workload will be. The answers to such questions
have great bearing on how the database should be structured. In effect, the
design of the database is tuned based on how it will typically be used.

To give you a sound foundation for designing your database to best handle
the workload to which it will be subjected, draft a workload description. The
workload description should include the following elements:

 ✦ A list of all the queries you expect to be run against the database, along
with an estimate of the expected frequency of each query compared
with the frequencies of all the other queries and update operations

 ✦ A list of all the update operations you expect to perform, along with an
estimate of the expected frequency of each operation compared with
the frequencies of all the other updates and queries

 ✦ Your goal for the performance of each type of query and update

Queries can vary tremendously in complexity, so it’s important to determine
in advance how complex each query is and how that complexity will affect
the overall workload. You can determine query complexity by answering a
few questions:

 ✦ How many relations (tables) are accessed by this query?

 ✦ Which attributes (columns) are selected?

 ✦ Which attributes appear in the WHERE clause, and how selective are the
WHERE clause conditions likely to be?

Just as queries can vary a great deal, so can update operations. Questions
regarding updates should include the following:

 ✦ Which attributes appear in the WHERE clause, and how selective are the
WHERE clause conditions likely to be?

 ✦ What type of update is it: INSERT, DELETE, or UPDATE?

 ✦ In UPDATE statements, which fields will be modified?

Considering the Physical Design
Among the factors that have a major impact on performance, few, if any,
have a greater effect than indexes. On the plus side, indexes point directly
to the desired record in a table, thereby bypassing the need to scan down

Analyzing the Workload

40_9780470929964-bk07ch01.indd 58040_9780470929964-bk07ch01.indd 580 2/24/11 3:45 PM2/24/11 3:45 PM

Book VII

Chapter 1

T
u

n
in

g
 th

e

D
a

ta
b

a
se

581

through the table until you come upon the record you want. This feature can
be a tremendous time-saver for a query. On the minus side, every time an
insertion update or a deletion update is made to a table, the indexes on that
table must be updated too, costing time.

When chosen properly, indexes can be a great help. When chosen poorly,
indexes can waste resources and slow processing substantially.

Regarding indexes, you need to answer several questions:

 ✦ Which tables should have indexes, and which should not?

 ✦ For the tables that should have indexes, which columns should be
indexed?

 ✦ For each index, should it be clustered or unclustered? Recall that a
table can have only one clustered index, and that it will give the greatest
performance boost. The column that is used most often as a retrieval
key should be the one with a clustered index. Other columns used as
retrieval keys less frequently would get unclustered indexes.

I address all these questions in this chapter.

After you arrive at a conceptual schema and determine that you need to
make changes to improve performance, what kinds of modifications can
you make? For one thing, you could change the way you divide up your data
among the tables in your design. For another, you could alter the level of
normalization of your tables.

 ✦ Often, you have more than one way to normalize a schema, and one
such way may deliver better performance than others. You may want to
change the way tables are defined to take advantage of a schema that
gives you better performance than your current schema does.

 ✦ Although this method may sound somewhat heretical, sometimes it pays
to denormalize your schema and accept a risk of modification anomalies
in exchange for a significant performance boost.

 ✦ Contrary to the preceding point, sometimes it makes sense to take nor-
malization a step further than you otherwise would — in effect, to over-
normalize. This method can improve the performance of queries that
involve only a few attributes. When you give those attributes a table of
their own, sometimes you can speed retrievals.

You should carefully examine queries and updates that are run frequently
to see whether rewriting them would enable them to execute faster. There’s
probably not much advantage to applying such scrutiny to queries that are
rarely run, but after you have some history and notice the ones that are
being run continually, it may pay to give those queries an extra look to see
whether they can be improved.

Considering the Physical Design

40_9780470929964-bk07ch01.indd 58140_9780470929964-bk07ch01.indd 581 2/24/11 3:45 PM2/24/11 3:45 PM

582

Choosing the Right Indexes
Indexes can improve the performance of database retrievals dramatically,
for several reasons. One reason is that an index tends to be small compared
with the table that it’s indexing. This fact means that the index is likely to
be in the cache, which is accessible at semiconductor-memory speed rather
than on disk — a million-to-one performance advantage right there. Other
reasons depend on the type of query being performed and on whether the
index is clustered. I discuss clustering in the next section.

Avoiding unnecessary indexes
Because maintaining indexes carries an overhead cost, you don’t want
to create any indexes that won’t improve the performance of any of your
retrieval or update queries. To decide which database tables shouldn’t be
indexed, consult the workload description you created as the first step in
the design process (refer to “Analyzing the Workload,” earlier in this chap-
ter). This description contains a list of queries and their frequencies.

Here’s a no-brainer: If a table has only a small number of rows, there’s no
point in indexing it. A sequential scan through relatively few rows executes
quickly.

For larger tables, the best candidates for indexes are columns that appear in
the query’s WHERE clause. The WHERE clause determines which table rows
are to be selected.

It’s likely — particularly in a system in which a large number of different
queries are run — that some queries are more important than others. Those
queries are run more often, or they’re run against more and larger tables, or
getting results quickly is critical for some reason. Whatever the case, priori-
tize your queries, with the most important coming first. For the most impor-
tant query, create indexes that give the best performance. Then move down
the line, adding indexes that help the progressively less-important queries.
Your DBMS’s query optimizer chooses the best execution plan available to it
based on the indexes that are present.

Different kinds of indexes exist, each with its own structure. One kind of
index is better for some retrievals; another kind is better for others. The
most common index types are B+ tree, hash, and ISAM (see “Choosing an
index type,” later in this chapter). Theoretically, for any given query, the
query optimizer chooses the best index type available. Most of the time,
practice follows theory.

Choosing a column to index
Any column that appears in a query’s WHERE clause is a candidate for
indexing. If the WHERE clause contains an exact-match selection, such as
EMPLOYEE.DepartmentID = DEPARTMENT.DepartmentID, a hash index

Choosing the Right Indexes

40_9780470929964-bk07ch01.indd 58240_9780470929964-bk07ch01.indd 582 2/24/11 3:45 PM2/24/11 3:45 PM

Book VII

Chapter 1

T
u

n
in

g
 th

e

D
a

ta
b

a
se

583

on EMPLOYEE.DepartmentID usually performs best. The number of rows
in the EMPLOYEE table is sure to be larger than the number of rows in the
DEPARTMENT table, so the index is of more use applied to EMPLOYEE than
it is applied to DEPARTMENT.

 A hash index stores pairs of keys and values based on a pseudo-randomizing
function called a hash function.

If the WHERE clause contains a range selection, such as EMPLOYEE.Age
BETWEEN 55 AND 65, a B+ tree index on EMPLOYEE.Age will probably be
the best performer. (A B+ tree is a balanced tree data structure whose leaves
contain a sequence of key/pointer pairs.) If the table is rarely updated, an
ISAM index may be competitive with the B+ tree index.

 ISAM indexes are small and can be searched quickly. However, if insertions
or deletions are frequent, a table with ISAM indexing can quickly lose its effi-
ciency advantage.

Using multicolumn indexes
If a WHERE clause imposes conditions on more than one attribute, such as
EMPLOYEE.Age BETWEEN 55 AND 65 AND EMPLOYEE.DeptName =
Shipping, you should consider using a multicolumn index. If the index
includes all the columns that the query retrieves (an index-only query),
the query could be completed without touching the data table at all. This
method could speed the query dramatically and may be sufficient motiva-
tion to include in the index a column that you otherwise wouldn’t include.

Clustering indexes
A clustered index is one that determines the sort order of the table that it’s
indexing, as opposed to an unclustered index, which has no relationship to
the sort order of the table.

Suppose that several queries of the EMPLOYEE table have a WHERE clause
similar to WHERE EMPLOYEE.LastName = ‘Smith’. In such a case, it
would be beneficial to have a clustered index on EMPLOYEE.LastName. All
the employees named Smith would be clustered in the index, and they’d be
retrieved very quickly. Quick retrieval is possible because after you’ve found
the index to the first Smith, you’ve found them all. Access to the desired
records is almost instantaneous.

 Any given table can have only one clustered index. All other indexes on that
table must be unclustered. Unclustered indexes can be helpful, but not as
helpful as clustered indexes. For that reason, if you’re going to choose one
index to be the clustered index for a table, choose the one that will be used
by the most important queries in the list of queries in the workload descrip-
tion (refer to “Analyzing the Workload,” earlier in this chapter).

Choosing the Right Indexes

40_9780470929964-bk07ch01.indd 58340_9780470929964-bk07ch01.indd 583 2/24/11 3:45 PM2/24/11 3:45 PM

584

Consider the following example:

SELECT DeptNo
FROM EMPLOYEE
WHERE EMPLOYEE.Age > 29 ;

You can use a B+ tree index on Age to retrieve only the rows in which
employee age is greater than 29. Whether this method is worthwhile
depends on the age distribution of the employees. If most employees are 30
or older, the indexed retrieval won’t do much better than a sequential scan.

Suppose that only 10 percent of the employees are more than 29 years old.
If the index on Age is clustered, you gain a substantial improvement over a
sequential scan. If the index is unclustered, however — as it’s likely to be —
it could require a buffer-page swap for every qualifying employee and will
likely be more expensive than a sequential scan. I say that an index on Age
is likely to be unclustered based on the assumption that at least one column
in the EMPLOYEE table is more deserving of a clustered index than the Age
column.

You can see from this example that choosing whether to create an index
for a table column isn’t a simple matter. Doing an effective job of choosing
requires detailed knowledge of the data as well as of the queries that are run
on it.

Figure 1-1 compares the costs of using a clustered index, an unclustered
index, and a sequential scan to retrieve rows from a table.

Figure 1-1:
The cost of
retrievals
with and
without an
index.

Co
st

Percentage of rows retrieved
100O

Clustered index

Sequential scan

Unclustered index

Choosing the Right Indexes

40_9780470929964-bk07ch01.indd 58440_9780470929964-bk07ch01.indd 584 2/24/11 3:45 PM2/24/11 3:45 PM

Book VII

Chapter 1

T
u

n
in

g
 th

e

D
a

ta
b

a
se

585

Figure 1-1 reveals a few things about the cost of indexes:

 ✦ A clustered index always performs better than an unclustered index.

 ✦ A clustered index performs better than a sequential scan unless practi-
cally all the rows are retrieved.

 ✦ When one record is being retrieved, or a very few records are being
retrieved, a clustered index performs much better than a sequential
scan.

 ✦ When one record is being retrieved, or a very few records are being
retrieved, an unclustered index performs better than a sequential scan.

 ✦ When more than about 10 percent of the records in a table are retrieved,
a sequential scan performs better than an unclustered index.

That last point disproves the myth that indexing a table column that is used
as a retrieval key always improves performance compared with the perfor-
mance of a sequential scan.

Choosing an index type
In most cases, a B+ tree index is preferred because it does a good job on
range queries as well as equality queries. Hash indexes are slightly better
than B+ tree indexes in equality queries but not nearly as good in range que-
ries, so overall, B+ tree indexes are preferred.

In some cases where a retrieval is made of data contained in multiple tables,
however, a hash index will do better. One such case involves a nested loop
join, in which the inner table is the indexed table and the index includes the
join columns. (This situation is called a hash join.) Because an equality selec-
tion is generated for each row in the outer table, the advantage of the hash
index over the B+ tree index is multiplied. Another case in which the hash
join comes out ahead is when there is an important equality query and there
are no range queries on a table.

You don’t need to lose a lot of sleep over choosing an index type. Most data-
base engines make the choice for you, and that choice usually is the best one.

Weighing the cost of index maintenance
Indexes slow update operations because every time a table is updated with
an insertion or a deletion, all its indexes must be updated as well. Balance
this situation against the speed gained by accessing table rows faster than
would be possible with a sequential table scan. Even updates are poten-
tially speeded because a row must be located before it can be updated.
Nevertheless, you may find that the net benefit of some indexes doesn’t
justify their inclusion in the database, and you’re better off dropping them.

Choosing the Right Indexes

40_9780470929964-bk07ch01.indd 58540_9780470929964-bk07ch01.indd 585 2/24/11 3:45 PM2/24/11 3:45 PM

586

If you suspect that an index might be doing you more harm than good, run
some test queries with the index both present and absent. Use the results to
guide your decision.

Using composite indexes
Composite indexes are indexes on more than one column. They can give
superior performance to queries that have more than one condition in the
WHERE clause. Here’s an example:

SELECT EmployeeID
FROM EMPLOYEES
WHERE Age BETWEEN 55 AND 65
 AND Salary BETWEEN 4000 and 7000 ;

Both conditions in the WHERE clause are range conditions. An index based
on <Age, Salary> performs about as well as an index based on <Salary,
Age>. Either one performs better than an index based only on <Age> or only
on <Salary>.

Now consider the following example:

SELECT EmployeeID
FROM EMPLOYEES
WHERE Age = 57
 AND Salary BETWEEN 4000 and 7000 ;

In this case, an index based on <Age, Salary> performs better than an
index based on <Salary, Age> because the equality condition on <Age>
means that all the records that have Age = 57 are clustered by the time the
salary evaluation is done.

Tuning Indexes
After the database you’ve designed has been in operation for a while, you
should reevaluate the decisions you made about indexing. When you created
the system, you chose indexes based on what you expected usage to be. Now,
after several weeks or months of operation, you have actual usage statistics.
Perhaps some of the queries that you thought would be important aren’t run
very often after all. Perhaps you made assumptions about what indexes would
be used by the query optimizer, but now you find that limitations of the opti-
mizer prevent it from using those indexes, to the detriment of performance.

Based on the actual performance data that you have now, you can tune
your indexes. This tuning may entail dropping indexes that are doing you no
good and merely consuming resources, or it may mean adding new indexes
to speed queries that turned out to be more important than they first
appeared.

Tuning Indexes

40_9780470929964-bk07ch01.indd 58640_9780470929964-bk07ch01.indd 586 2/24/11 3:45 PM2/24/11 3:45 PM

Book VII

Chapter 1

T
u

n
in

g
 th

e

D
a

ta
b

a
se

587

For best results, tuning indexes must be an ongoing activity. As time goes
on, the nature of the workload is bound to evolve. As it does, the best
indexes to support the current workload need to evolve, too. The database
administrator must keep track of performance and respond when it starts to
trend downward.

Another problem, which appears after a database has been in operation for
an extended period of time, might be called the tired index. A tired index is
one that no longer delivers the performance advantage that it did when it
was first applied to the database. When an index is fresh and new — whether
it’s a B+ tree index, an ISAM index, or some other kind — it has an optimal
structure. As time goes on, insertions, deletions, and updates are made to
the table that the index is associated with, and the index must adjust to
these changes. In the process of making those adjustments, the structure of
the index changes and moves away from optimality. Eventually, performance
is affected enough to be noticeable. The best solution to this problem is to
drop the index and then rebuild it. The rebuilt index once again has an opti-
mal structure.

The only downside to this solution is that the database table must be out of
service while its index is being rebuilt. The amount of time it takes to rebuild
an index depends on several things, including the speed of the processor
and the size of the table being indexed. For some databases, you may not
even experience any downside. The database engine will rebuild indexes
automatically as needed.

Tuning Queries
After your system has been running for a while, you may find that a query is
running slower than you expect. Several possible causes exist, and you have
several ways to fix the problem. Because you generally have several ways
to code a query, all producing the same result, perhaps you could recode it,
along with an appropriate change of indexes.

Sometimes, a query doesn’t run as you expect because the query optimizer
isn’t executing the plan that you expect it to. You can check on this situation
in most DBMSes by having the optimizer display the plan that it generated.
It’s quite possible that the optimizer isn’t finding the best plan. Here are
some possible causes:

 ✦ Some query optimizers don’t handle NULL values well. If the table you’re
querying contains NULL values in a field that appears in the WHERE
clause, this situation could be the problem.

 ✦ Some query optimizers don’t handle arithmetic or string expressions
well. If one of these expressions appears in the WHERE clause, the opti-
mizer may not handle it correctly.

Tuning Queries

40_9780470929964-bk07ch01.indd 58740_9780470929964-bk07ch01.indd 587 2/24/11 3:45 PM2/24/11 3:45 PM

588

 ✦ An OR connective in the WHERE clause could cause a problem.

 ✦ If you expect the optimizer to select a fast but sophisticated, plan, you
could be disappointed. Sometimes, the best plan is beyond the capabil-
ity of even high-end optimizers to find.

Some DBMSes give you some help in overcoming optimizer deficiencies.
They enable you to force the optimizer to use an index that you know will be
helpful or to join tables in the order that you know is best. For best results, a
thorough knowledge of the capabilities and the deficiencies of your DBMS is
essential, as is a good grasp of optimization principles.

Two possible culprits in performance problems are nested queries and cor-
related queries. Many optimizers don’t handle these queries well. If a nested
or correlated query isn’t performing up to expectations, recoding it without
nesting or correlation is a good thing to try.

Tuning Transactions
In an environment in which many users are using a database concurrently,
contention for a popular resource can slow performance for everyone. The
problem arises because a user locks a resource before using it and releases
the lock when she is finished with it. As long as the resource is locked, no
one else can access it.

Here are several things you can do to minimize the performance impact of
locking:

 ✦ Minimize the amount of time that you hold a lock. If you’re perform-
ing a series of operations with a transaction, obtain your locks as late as
possible and release them as soon as possible.

 ✦ Put indexes on a different disk from the one that holds the data
files. This practice prevents accesses to indexes from interfering with
accesses to data.

 ✦ Switch to a hash index. If a table is updated frequently, B+ tree indexes
on its columns lose much of their advantage, because the root of the
tree and the pages just below it must be traversed by every update.
They become hot spots, meaning that they’re locked frequently, becom-
ing bottlenecks. Making the switch to a hash index may help.

Tuning Transactions

40_9780470929964-bk07ch01.indd 58840_9780470929964-bk07ch01.indd 588 2/24/11 3:45 PM2/24/11 3:45 PM

Book VII

Chapter 1

T
u

n
in

g
 th

e

D
a

ta
b

a
se

589

Separating User Interactions from Transactions
Because computer instructions operate in the nanosecond realm and
humans operate in the second or even minute realm, one thing that can
really slow a database transaction is any interaction with a human. If that
transaction happens to hold a lock on a critical resource, the application
with which the user is interacting isn’t the only one to suffer a delay. Every
other application that needs that resource is brought to a screeching halt for
an interval of time that could be billions of times longer than necessary.

The obvious solution is to separate user interactions from transactions.
Never hold a lock on anything while waiting for a human to do something.

Minimizing Traffic between Application and Server
If you have a lot of applications running on a lot of client machines, all
depending on data that resides on a server, overall performance is limited
by the server’s capacity to send and receive messages. The fewer messages
that need to travel between client and server, the better. The smaller the
messages that need to travel between client and server, the better.

One approach to this problem is to use stored procedures — precompiled
application modules that run on the server rather than on the client. Their
primary purpose is to filter result sets rather than send a big chunk of the
database, so that only the needed data is transmitted to the client. This
method can reduce traffic between the server and client machines dramatically.

Precompiling Frequently Used Queries
If you execute the same query repeatedly — say, daily or even hourly — you
can save time by compiling it in advance. At runtime, executing the query is
the only thing that needs to be done. The compilation is done only once and
never needs to be repeated. The time saving due to this forethought adds up
and becomes significant over the course of weeks and months.

Precompiling Frequently Used Queries

40_9780470929964-bk07ch01.indd 58940_9780470929964-bk07ch01.indd 589 2/24/11 3:45 PM2/24/11 3:45 PM

590 Book VII: Database Tuning Overview

40_9780470929964-bk07ch01.indd 59040_9780470929964-bk07ch01.indd 590 2/24/11 3:45 PM2/24/11 3:45 PM

