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C H A P T E R 1

Tools of the
Trade

T o understand markets in a logical and objective manner, it is impor-
tant to employ tools from mathematics and statistics in an appropri-
ate way to unearth relevant patterns. This chapter highlights some

of the basic tools used by practitioners to understand the volumes of data
produced on a daily basis by financial markets. The tools described here
allow an understanding of data in relatively simple terms and help forecast
the direction of seemingly random series. The focus here is on the intuition
behind mathematical tools rather than a deep dive into the formulas. Often
finance books and academic papers rely on complex mathematical models
to explain market behavior. As markets are constantly evolving, elaborate
quantitative constructs can rapidly become irrelevant and provide false sig-
nals about market movements.

The frequent failure of complex quantitative models to forecast mar-
kets is not intended to discourage market investors from using mathe-
matics; instead, misuse of math is to be avoided. Indeed, mathematics is
crucial for objective analysis of market movements and for appropriately
controlling risks. Although overuse of mathematics can be a problem, the
opposite is just as dangerous. Market participants who only use qualitative
assessments to trade markets may be exposed to numerous hidden risks. In
the paragraphs to come, we consider some statistical techniques useful in
finance, the appropriate situations in which to use them, and their embed-
ded assumptions. These techniques are building blocks; creative thinking
and building on the ideas behind these methods can lead to the discovery
of new trading patterns as well as a more thorough evaluation of market
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2 TOOLS OF THE TRADE

behavior. This chapter purposefully avoids mathematical proofs; instead,
the focus is on developing a practical and intuitive grasp of the concepts.
Readers are encouraged to consult mathematics or statistics texts for more
detailed analysis of the concepts.

BASIC STATISTICS

Knowledge of basic statistics is a prerequisite for understanding today’s
markets, and especially the rates markets, where there is a preponderance
of mathematically adept investors. We use the term “basic stats” to refer
to initial descriptive statistics used to understand the data quantitatively.
We build on these initial descriptions of the data using more advanced sta-
tistical techniques. To begin with, we consider the time series of a simple
and commonly traded security: the 2-year Treasury yield. Figure 1.1 shows
the 2-year Treasury yield time series over the past 20 years. We refer to
this series repeatedly as we build our tools to think about how to trade
this security. The figure also shows the average value and increments of
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FIGURE 1.1 Two-Year Treasury Yield along with Average Value and One–Standard
Deviation Bands
Source: Board of Governors of the Federal Reserve.
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one standard deviation (SD) from the average value over the entire period
shown. These quantities are discussed in more detail later in the chapter.

For a time series, basic descriptive statistical quantities are akin to de-
scriptions of people’s height and weight. In the realm of time series, the
crucial descriptions are mean (or average), standard deviation, minimum,
maximum, and, to a lesser extent, median. (Note: Mode is a commonly used
descriptor in some fields but tends to have limited application in finance.)
The median refers to the point in the middle when the data is sorted. The
median tends to be less useful than the average since it is very resistant
to outliers while profit and losses (P/Ls) are not. The mean of a string of
data is the sum of the data series divided by the number of data points. The
mean is susceptible to outliers since unusually high or low points can drag
the average in either direction. Figure 1.1 shows the mean of the 2-year
Treasury yield, which is 4.5% over the long run. This average, though, is
susceptible to extreme values of the 2-year yields. At times, to deal with se-
ries where outliers can misrepresent data, outlying data can be trimmed,
referred to as a trimmed mean. An example of this methodology is the
calculation of the London Interbank Offered Rate (LIBOR) by the British
Bankers’ Association (BBA), where 16 banks submit their estimates for
short-term rates and the top four and bottom four submissions are dis-
carded to arrive at a trimmed mean. Frequently, averages are considered
on a rolling basis over a fixed number of days; these are referred to as mov-
ing averages. Here, each point in the modified time series represents the
average of a fixed number of preceding points from the original time se-
ries. A related concept to the average value is the weighted average. The
simple average essentially multiplies each variable with an equal weight of
1/n, where n is the number of elements. However, the weights on the aver-
age do not need to be equal, but can instead be altered based on different
criteria. For example, the weight could be altered based on how close the
data point is to today if more recent data points need to be given more
weight.

Since most financial market entities are not deterministic, a concept
called a random variable is useful. A random variable can be thought of
as a variable that can take on a range of values, such as the commonly
used x in algebra. However, the difference here is that instead of having
a set value in an equation, a random variable essentially is a “package”
of values, with each value occurring with some probability. The range of
values of the random variable as well as the probabilities associated with
the variable is known as its probability distribution (or just distribution).
For a random variable, a special type of weighted average is known as
the expected value. The expected value is calculated as the average payoff
of the random variable weighted by the probability of its occurrence. For
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example, if the payoff from a dice roll is the rolled value, then the expected
value is 1 × 1/6 + 2 × 1/6 + 3 × 1/6 + 4 × 1/6 + 5 × 1/6 + 6 × 1/6 = 3.5,
since each roll has 1/6 probability of taking place. Note that given the equal
probability of each roll, the expected value is the same as the simple aver-
age of the payoffs. The notation for expected value of a random variable is
generally E(X).

Probability distributions as with the dice are known as discrete distri-
butions because the payoffs occur in discrete amounts. In the finance field,
continuous distributions, which have continuous payoffs, are used more
frequently. One common probability distribution used in finance and other
fields is the normal distribution, which represents the familiar bell curve.
The center of the distribution, and also the most likely scenario, is the aver-
age. A continuous probability distribution’s description is generally given
through a mathematical function known as a probability density function.
The probability density function gives the chance of an event occurring for
this distribution around a single point—it can be approximately thought
of as equivalent to the 1/6 probability of a given dice roll in a discrete dis-
tribution. For example, for the normal distribution, the probability density
function (pdf) is

pdf(x) = 1/
√

(2��2) × e−(x−�)∧2/(2�∧2)

where � = standard deviation
� = mean of the distribution

Taking this one step further, we arrive at a cumulative distribution
function (cdf), which gives the probability of the random variable taking
values less than a given value. For example, for a normal distribution, this
would be denoted as �(k), which is the probability of a random normal
variable x taking values less than k. Unlike the pdf, the normal distribu-
tion cdf does not have a closed-form formula, but instead numerical meth-
ods are needed to calculate the value. Geometrically, it is the area under
the bell curve to left of the k point. The details of probability distributions
are beyond the scope of this text, but the idea of a cumulative distribu-
tion arises in pricing options, which we discuss in Chapter 11. The concept
behind the terminology is the important bit, as these functions can be cal-
culated using software packages.

The expected value can be thought of as the average level of a ran-
dom variable. The variance can be thought of as movement of the variable
around its average. The variance is calculated as the sum of squared devia-
tions of each data point from the average normalized by the number of data
points. For the die described earlier, the variance would be calculated as
1/6 × [(3.5 – 1)2 + (3.5 – 2)2 + (3.5 – 3)2 + (3.5 – 4)2 + (3.5 – 5)2 + (3.5 – 6)2].
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In expected value notation, variance = E(X – �)2 = E(X2) – E(X)2. The
standard deviation, a related and more commonly considered measure, is
defined as the square root of the variance. Variance and standard devia-
tions are measures of dispersion in a data set; since they sum up squares of
deviation, a negative or positive deviation is irrelevant in this case. Regard-
less of whether it is positive or negative, the size of the deviation is what
matters. The weight of each deviation grows rapidly by how “unusual” it
is (i.e., how far away it is from the average value). Figure 1.1 shows in-
crements of one standard deviation above and below the average 2-year
Treasury yield since 1990; the standard deviation here is 1.9%. Due to the
link between standard deviation and dispersion, it is also used commonly
as a risk measure in finance, and is commonly referred to as volatility. For
example, volatility of a series of historical returns may be represented as
10% per year. If market returns are assumed to follow a normal distribu-
tion, the volatility has a further interpretation. For each standard deviation
away from the mean in either direction, the chance of being outside the
range drops off successively. For 1 standard deviation on either side of the
mean of a normal distribution, the chance of an occurrence in that range
is about 68.3% and 95% for 2 standard deviations. Therefore, a volatility of
10% per year implies that next year’s return is likely to be 10% above or
10% below the average return about 68% of the time. Furthermore, the re-
turn has a 95% chance of being within 10% × 2 = 20% of the average. Of
course, if the distribution was different than normal, then the likelihood of
outsized returns could be lower or higher. One area of continuing research
in academic and market circles deals with the fact that normal distribu-
tions make “unlikely” events much rarer than reality (i.e., the frequency
of multi–standard deviation moves in markets is higher than would be the
case if markets were truly normal). There are other types of distributions
that have “fat tails” (i.e., incorporate a higher likelihood of large moves),
but the mathematics related to such distributions tends to be more com-
plex, making them less prevalent in models.

The concept of volatility applies to a single variable and can be ex-
tended further to covariance between two or more variables. The covari-
ance conveys how much two quantities move with respect to each other.
In expected value notation, the covariance between two variables X and
Y is calculated as E(X × Y) – E(X) × E(Y). If two variables are indepen-
dent, that is, they have no relation to each other, the covariance is 0. These
expected values depend on the distributions of the two variables. Covari-
ance also is used to calculate the variance of the sums of two variables.
The variance of a sum of random variables A and B, expressed as Var(A +
B) = Var(A) + Var(B) + 2 × Cov(A, B). The covariance is closely related
to the concept of correlation, which will be discussed in more detail when
we cover regression.
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REGRESSION: THE FUNDAMENTALS

Now that the basic statistics have been covered, we move on to regression,
which is one of the most extensively used, and at times misunderstood,
tools to analyze empirical data. The purpose of regression is not really to
price the instruments, but rather to analyze time series data and deduce
relationships between them to predict their future behavior. The basic
statistics discussed in the previous section concern a single time series.
However, as might be expected, the financial world is full of intersecting
relationships between variables, with various factors coming in and out
of importance. Regression analysis provides a logical way to analyze such
relationships.

The most commonly used type of regression is linear regression, which
fits a “best-fit” line between the scatterplot of data points of two variables.
By “scatterplot,” we mean a graph that conveys this information: “the value
of y when the value of x was .” Another way to think about this scatter-
plot is the value of a variable y at time t versus the value of a variable x also
at time t (although time does not have to be the only common factor). An
example of such a relationship would be between inflation and unemploy-
ment rate. Figure 1.2 shows the relationship from 1975 to 1977; the linear
relationship between the two is evident. The y-axis on the figure is the in-
flation rate, the x-axis is the unemployment rate, and each point on the
figure is the inflation rate that existed for a given level of unemployment
rate. The points do not have to be unique—for example, at an unemploy-
ment level of 8%, we may see inflation at 2% in one time period and at 10%
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FIGURE 1.2 Inflation Regressed against Unemployment from 1975 to 1977
Source: Federal Reserve Bank of St. Louis.
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in another time period, which would lead to two vertical points at 2% and
10% corresponding to 8% on the x-axis in the graph.

Once we have our data set defined, the regression line is fitted by find-
ing a line such that the sum of squared distances from the line across the
scatterplot points is minimized. This process is known as the least squares
method and forms the basis for many simpler-fitting algorithms. The linear
regression process results in an equation of the form:

ymodel = alpha + beta × xt (1.1)

where alpha and beta = constants (explained below)
xt = explanatory variable at time t

The equation here can be thought of as the “average” relationship be-
tween y and x. Thus, by inputting an x value, we can arrive at a model y

value. The meaning of the term “linear regression” becomes apparent, since
our model equation is that of a straight line in geometry. The model y value
is the best prediction of y given a value of x, which is referred to as a con-
ditional expectation or conditional mean. Recall that earlier we referred to
the mean of a series as a first-order prediction, but now we are condition-
ing that mean on the value of an explanatory variable, which we hope will
improve prediction results. Given that Equation 1.1 is a best-fit line through
the data, most data points will tend to lie at some distance from the line.
This leads to the concept of the error, which can be found by considering
a particular value of x. Now we consider the y value on the same day as
x, referred to as the “actual” value, and subtract out the model value of y,
which is found by plugging in x into Equation 1.1. To summarize:

ymodel = alpha + beta × xt

errort = yt − ymodel

where errort = error at time t

Before we analyze the errors in further detail, what are the alpha and
beta in Equation 1.1? The alpha is referred to as the intercept, and it is the
value of y if the value of x is 0. The alpha can be thought of as the “default”
value of the dependent variable in case of lack of effect from x. Occasion-
ally, the intercept can be forced to be 0 in situations when it is known
beforehand that the default value of y when x is 0 is also 0, which is an
option that is not commonly used. The beta here, as the reader may recall
from geometry class, is the slope of the best-fit line. The slope’s intuitive
interpretation is the sensitivity of y to x; that is, the change in y for a unit
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change in x. The beta is a crucial variable to understanding relationships
between variables, which in turn is an important factor when offsetting
risks in trades (discussed in detail in Chapter 8). The errort, shown as the
difference between the actual value and the model value, is also known
as the residual. The residual gives a quantitative measure of how effective
the regression is at predicting the actual values for any given explanatory
variable value. Of course, the smaller the residual, the more accurate the
regression. Since the residual varies for each explanatory variable, a com-
bined measure known as the standard error can give a quantitative measure
of how well the regression works at fitting the data. The standard error is
essentially the standard deviation of the residuals. It gives an indication of
the average error for the regression’s predictions—the larger the standard
error, the less accurate the regression.

Finally, given the linear nature of this relationship, the fact that beta is
constant implies that the sensitivity of y to changes in x remains the same
regardless of the level of x; at times, this may be a desirable characteris-
tic, but at other times, this may be too simplistic a model, and nonlinear
methods may need to be considered (discussed later). In Figure 1.2, for ex-
ample, the alpha is shown to be –16.52 and beta is 2.91. This beta implies
that as unemployment rises 1%, the inflation rate in this period rises 2.91%.

The stylized example in Figure 1.2 focuses on the basic case of a single-
variable linear regression. However, as the reader may have guessed, finan-
cial variables are rarely driven by a single factor, but instead are complex
interactions of many factors. To consider a more realistic case, Equation
1.2 may be easily extended to the case of many variables:

ymodel = alpha + beta1 × x1t + beta2 × x2t + . . . + beta n × xnt (1.2)

where alpha and beta1. . .n = constants
x1t, x2t, . . . xnt = n explanatory factors at time t

As with the one-variable case, the predicted y is linear with respect to
its factors, but in this case, more than one explanatory variable is being
used to predict y. The error here is computed using a similar calculation,
by subtracting the actual value of y and the model value of y. The alpha, or
intercept, also has the same interpretation, which represents the value of y

if none of the factors had any contribution to the prediction. In multiple re-
gression, the betas take on a slightly more subtle interpretation. Each beta
is the partial sensitivity of y with regard to the corresponding factor (i.e.,
beta1 is the partial sensitivity of x1). The partial sensitivity can be thought
of as the effect of one particular factor on y after controlling for the effects
of all other variables considered. An example of this would be in the case of
a medical study to consider the effect of weight on blood pressure, where
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it may not be enough to know the average increase in blood pressure for
each one-pound gain in weight. Instead, other factors, such as family his-
tory or job stress levels, may need to be added. Once these other factors are
added in the regression, the partial beta of weight will change since other
relevant factors are being considered; the new, partial sensitivity of blood
pressure to weight gives a more accurate relationship between the two.
In the context of finance, knowledge of partial sensitivities is essential for
hedging risks and accurately setting up trades. When important factors are
missing from a model, a trader/researcher can have an inaccurate sense of
the impact of various market factors on a trade, which can of course lead
to large losses.

Multiple regressions are difficult to visualize given the multidimen-
sional nature of the modeling. For a two-variable regression, for example, a
three-dimensional figure would be required with two axes for the indepen-
dent variables and an axis for the dependent variable. While impractical in
a two-variable regression, for higher-order regressions, the figures are even
less practical. To display multiple regressions on two-dimensional figures,
the concept of a partial regression is used. Consider Equation 1.2. To dis-
play the relationship of the y variable to x1t, the regression to display would
be y – (beta2 × x2t + . . . + betan × xnt) regressed against x1t. This partial

regression would preserve the same pattern and strength of association as
multiple regression. To view the regression versus other x variables, the
same procedure is repeated while keeping the target variable on the right-
hand side of the equation.

So far we have considered only linear regression, in both single and
multivariate settings. The linear aspect can be deduced by looking at the
equations (they resemble the equations of a line in geometry) and also fol-
lows from the fact that the sensitivity of y to any factor x is a fixed constant
beta. This constant beta does not have to be the case. In fact, linear regres-
sion is a very special case of general regression methods, and nearly any
function may be used to relate x and y. The introduction of more compli-
cated functions beyond a straight line vastly increases the complexity of
the problem being considered, and should be used only if there is a com-
pelling case to do so. As we will see in the goodness-of-fit section, an overly
complicated model may improve the explanatory power of a model, but
also subjects it to an increased risk of overfitting, which can actually lead
to poor subsequent predictions.

Although general nonlinear regressions are a complex topic, there is a
relatively simple extension of the linear regression just considered. Here,
the alphas and betas are similar to the linear regression case (i.e., fixed
constants), but the variables themselves may be squared, cubic, or higher
powers of the factor variables. Why would we consider such a case? Gen-
erally, polynomials are considered when the relationship between y and x
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FIGURE 1.3 Example of a Quadratic Regression

is very plainly not a straight line, as seen in Figure 1.3, which shows two fic-
titious data sets with a quadratic relationship. It may be that the sensitivity
of y grows as x grows, which would be the case in the quadratic regression
depicted in Equation 1.3:

ymodel = alpha + beta1 × x + beta2 × x2 (1.3)

Here, the equation is similar to the ones we covered earlier, but the depen-
dence of y is on the square of x. The consequence of this is that y does not
grow at a fixed beta rate as x grows; instead the growth in y becomes more
rapid as x grows. Another way to think about a quadratic regression is that
the sensitivity of y to x itself grows in a linear fashion, making y linked
to x in a square relationship. For example, if we assume alpha = 0 and
beta = 2, the value of y at x = 1 is 0 + 2 × 12 = 2; at x = 2, the value of y is
0 + 2 × 22 = 8. Here, the value of y rose by 6 when x increased from 1 to 2.

To explore these ideas in more concrete terms, we consider a simpli-
fied case of explaining the 2-year yield, which we considered earlier in ex-
amples of the mean and standard deviation. These quantities describe the
series. In fact, if we were asked to predict the 2-year yield, we may use
the long-term mean of 4.5% as our first guess. Although simple to com-
pute, as Figure 1.1 shows, the mean is also a very poor predictor of future
movements, given that deviations from the mean can be very large. How
can we improve on this? To answer this question, we must first hypoth-
esize which other, more fundamental variables may be driving the 2-year
yield. As a matter of terminology, the 2-year yield then is referred to as the
“dependent” variable while our mystery variable to explain the 2-year yield
would be an “explanatory” or “independent” variable. By incorporating at
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least some of the vast amount of information available to us about related
variables, we may greatly improve the accuracy of our predictions. We ex-
plore drivers of interest rates in subsequent chapters and use regressions
often to improve on forecasting as well as to understand which drivers
matter more than others.

REGRESSION: HOW GOOD A FIT?

Although we can easily come up with a line to fit the data, not all fits are
alike. We discussed the standard error earlier in relation to residuals as a
way to quantitatively determine the prediction error for a regression. Al-
though the standard error is a useful metric to understand the magnitude
of errors to expect from a model, it can be difficult to compare standard
errors across models, especially if the models are not very similar. Fur-
thermore, when relying on linear regressions, the standard error measure
does not easily tell us whether the linear regression model is appropriate
to begin with—some data sets resemble linear patterns more closely than
others. To quantify a goodness of fit, one of the most common, and also
misunderstood, metrics is correlation. Correlation can be thought of as the
closeness of association between two variables. It is a normalized mea-
sure allowing comparison of linear fit across different models. Correlation
varies between –1 and 1. A correlation of –1 implies strong negative associ-
ation, and a correlation of 1 implies strong positive association. A correla-
tion of 0 implies little or no association. Correlation may be familiar from
daily usage as a way to convey association, but in mathematical terms, the
formula is:

Correlation = cov(X, Y)/[stdev(X) × stdev(Y)]

where cov = covariance
stdev = standard deviation

Although covariance calculates association between variables X and
Y , it is difficult to compare covariance across different data sets since it is
dependent on their individual volatility levels. Essentially, correlation is a
way of normalizing covariance for the volatilities of the individual series
and results in a more easily comparable number. Correlation is not order
dependent; that is, the y and x variables can be interchanged without af-
fecting the measure.

A measure related to correlation is the R2, which, as the name may im-
ply, is the square of the correlation calculation above. The R2 denotes the
percentage of variation in the y variable explained by the x (or vice versa).
Since it is the square of a number, it is always positive. Therefore, R2 does
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not specify the direction of the association, only the strength. There is no
magic level of R2; it is completely situation dependent, and for different
models, different levels are tolerated. For example, for a model that is sup-
posed to trade the market, a 50% R2 would be poor. R2 can also be increased
by merely adding more variables, which is generally suboptimal. Therefore,
an adjustment is made to the R2 that inserts a penalty for inserting addi-
tional variables. The penalty for excess variables makes the adjusted R2

the more commonly used metric. The R2 can also determine the value of a
variable in a model. A rough method is to remove a variable from a multiple
regression and determine the impact on the overall R2; if the R2 does not
change, the variable was likely not too important.

For the 2-year yield example, probably the most fundamental driver
would be the prevailing Federal Reserve target interest rate. One point to
note here is that we need to select an explanatory variable about which we
may be able to form reasonably accurate predictions or use lags (more on
this later); more importantly, we have a reasonable expectation of causal-
ity of the variable. We would not want to use a variable such as the lu-
nar cycle in our prediction for 2-year yields; however, one can expect the
federal funds rate, on the other hand, to have a direct causal relation to
interest rates of farther out maturities. After the explanatory variable has
been selected, we can calculate the correlation between the 2-year yield
and the federal (fed) funds target rate, possibly using a software package.
Another variable that may be relevant for the 2-year Treasury could be the
Standard & Poor’s (S&P) 500 index since money tends to flow between
equities and Treasuries depending on risk appetite. Figure 1.4 shows the
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three variables alongside each other; the close relationship among the
three variables is clear. The correlation between the 2-year Treasury yield
and the fed funds target is 85%, while the correlation between the 2-year
Treasury and S&P 500 is 61%. As a multiple regression, the combined R2

for the multiple regression is 86%. Note that in the pairwise regressions,
the fed funds versus 2-year Treasury regression is 85%; adding the S&P 500
increases it only to 86%, which means that the S&P 500 adds less “new in-
formation” in addition to the fed funds rate. Although this description is
mathematically vague, this is a quick way to roughly figure out which vari-
ables matter in a multivariable regression.

The concept of correlation is relatively simple to grasp, and given the
proliferation of computers, one rarely has to calculate it by hand. How-
ever, issues can arise when using correlation inappropriately in financial
markets. Since understanding relationships between market variables is
very important to understanding markets overall, misinterpreting correla-
tion can be quite risky. One issue with correlation is that it is susceptible
to erroneous signals in nonstationary variables. Stationary variables are
those whose average and variance roughly stay the same over time. If a
variable is trending higher consistently, for example, it is not stationary.
Figure 1.5 shows a regression of two variables, the 2-year Treasury yield
and the Japanese yen currency. The R2 of the regression of the levels of the
two variables is 70%, suggesting a strong link between the variables. To be
sure, there may be some relationship between the variables dealing with
cross-border flows and the search for higher interest rates. However, this
correlation may arise in part from pure trending in the 2007 to 2008 time
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FIGURE 1.6 2Y Treasury Yield Changes Regressed against Japanese Yield
Changes
Sources: Board of Governors of the Federal Reserve, Bloomberg LP.

period used for the regression, since the economic turmoil at the time
caused many variables to move in similar trends even if they had little
causal link. To test the link between the yen and 2-year yields in a more
rigorous way, a better regression is between daily changes of the two vari-
ables. The use of daily changes reduces the chance of spurious trends cre-
ating false correlations. Figure 1.6 shows the regression of daily changes
between the yen and 2-year Treasury yield. Now the R2 is at 42%, which
is still relatively high but significantly lower than the 70% in the levels re-
gression. This suggests that some of the relationship in the levels of the
two variables is due to trending and some to causality; in general for re-
gressions, it is always prudent to check regressions between changes or
percentage changes to control for spurious trends.

PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis (PCA) is a statistical technique used to sim-
plify multidimensional data sets that are highly correlated. In informal
terms, PCA calculates a few underlying variables that describe complicated
systems where the variables are closely related. PCA has become increas-
ingly common in the rates market lately as it is an ideal technique to sim-
plify the interest rate market. After all, the interest rate market is composed
of interest rates of different time frames, such as 2-year, 5-year, and 10-year
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maturities, all of which move closely with each other. Instead of using re-
gressions of each of these rates, PCA breaks down the system into a sim-
pler two to three variables that describe the system almost as well as using
the whole set of factors. The principal components are ranked in order of
how much they explain the system. For example, the first principal compo-
nent is the linear combination of interest rates, which describes the maxi-
mum amount of variation of the interest rate market; the second principal
component describes the maximum amount of variation after the effect of
the first principal component is taken out; and so on. These reduced vari-
ables tend to be linear weighted averages of the full set of variables, such
as the weighted average of the 2-, 5-, 10-, and 30-year rates. By using PCAs
to describe the various interest rates in the market, investors can also find
those rates that seem unusually high or low, thus pointing to opportunities
for profit. Thus, PCA can be used as a first step to find mispriced trades;
once these are found, the fundamental and technical factors behind them
are needed to eliminate trades that are mispriced for a good reason. A de-
tailed discussion of the mathematics underlying PCA is beyond the scope
of this book; for more information on PCA and other multivariable statisti-
cal methods, see Applied Multivariate Statistical Analysis by Härdle and
Simar.

SCALING THROUGH TIME

A common assumption behind financial mathematics is that returns fol-
low a Brownian motion. A random series of returns can be thought of as a
random walk—that is, movements up or down based on an outcome from
a probability distribution. Without digging deeply into the mathematics,
Brownian motion can be understood as the random walk stemming from a
normal distribution. One of the ideas that stems from the theory of Brown-
ian motion is that variance scales with time; for instance, the passage of
time grows the variance of the process by a proportional factor. Thus, the
standard deviation grows with the square root of time. For example, if the
daily standard deviation of a Brownian motion series is 1%, the three-month
standard deviation would be 1% × √

60 since three months is 60 busi-
ness days, while the one-year standard deviation is 1% × √

251, or 15.84%
(since there are 251 business days in one year). These are the standard
deviation scales for a Brownian motion—for example, if the one-year stan-
dard deviation is greater than 15.84%, the series is trending, while a one-
year standard deviation less than 15.84% implies a stronger mean reversion
tendency.
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BACKTESTING STRATEGIES

Statistical tools can help formalize trading rules to provide objective sig-
nals. Even if signals produced by trading rules are not implemented blindly,
they can provide a useful way of verifying whether certain rules have re-
sulted in effective profits in the past. One very simple rule, for example,
can be formulated as: “If bond prices fell yesterday, sell bonds today with
the expectation of a further decline.” Such a strategy is very simplistic and
unlikely to be very effective, but it is an example of a trading rule whose
performance can be tested in the past. Various statistical methods, such
as regressions, combined with relevant fundamental driving factors, can
be useful in building models that eventually may give trading signals. These
signals can be tested in the past. Once a trading rule is used to generate past
results, various statistical quantities can measure how good the rule is in
producing profits. The simplest way to evaluate the results of an existing
strategy or a prospective series of signals is to use average return. How-
ever, it is possible that two strategies with the same average return could
have very different risks. For example, two strategies with 3% per year re-
turn could have 10% per year and 30% per year standard deviation, making
the second one much less attractive due to its higher volatility. To account
for this, a common metric is to take the ratio of the average to the standard
deviation. In the example, the ratios are 3%/10% and 3%/30%, or 0.3 and 0.1,
making the first one more attractive. In general, any profit or return needs
to be scaled by volatility as it removes the “luck” factor, since increasing
risk can generally increase returns. The ratio of average return to standard
deviation is known as a Sharpe ratio. At times, the ratio is annualized us-
ing the frequency of the trades or observations of returns to enable better
comparison with other strategies. For example, if a trading strategy gives
a signal once a week, the annualized ratio would use

√
52 for 52 weeks in

a year. Most often, at least a Sharpe ratio over 1.0 is needed to consider
the strategy as viable, although this threshold can vary depending on the
type of trade and risk tolerance. Furthermore, combining different strate-
gies with relatively low individual Sharpe ratios can produce higher Sharpe
ratio combinations. What determines how additive new strategies are? In
short, it is correlation. Highly correlated strategies combined together will
not be very additive for the combined Sharpe ratio, but combining strate-
gies with low correlation can result in the Sharpes adding up, even if the
individual ones are low.

The Sharpe ratio is just the starting point in evaluating a trading strat-
egy. Even strategies with relatively high Sharpes can have large draw-
downs. Drawdown refers to the largest peak-to-trough decline in returns
and measures a sort of worst-case scenario for the strategy. A trader may
not be willing to accept a high Sharpe strategy with a large drawdown
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that can deplete capital, leaving little for the strategy. In addition to the
overall drawdown, periods where the strategy does poorly must be ana-
lyzed closely. In such periods, it is necessary to understand the driving
factors contributing to the poor performance; regressions of strategy re-
turns versus market variables can help determine these problem factors.
Overall, building trading strategies is as much about thinking of trading
rules as it is about controlling risk in an effective way. To do this, a variety
of statistical measures should be employed to understand all aspects of a
strategy’s risk.

SUMMARY

This chapter covered the basic mathematical tools needed to understand
data in a somewhat objective manner. In the end, statistics and mathemat-
ics are just tools to help understand and forecast relationships between dif-
ferent variables. Methods such as regression can help analyze relationships
between multiple variables and to assess the strength of such relationships.
Since financial variables tend to be increasingly linked with each other, sta-
tistical tools are indispensable in understanding markets. Statistical tools
such as Sharpe ratios can also help to separate out the “luck” factor and en-
able a more objective assessment of the performance of a trading strategy.
Finally, each mathematical tool is associated with a set of assumptions and
flaws. It is important to be cognizant of these flaws and assumptions to use
these tools effectively in analyzing data.
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