
CHAPTER 1

MULTI- AND MANY-CORES,
ARCHITECTURAL OVERVIEW FOR
PROGRAMMERS

Lasse Natvig, Alexandru Iordan, Mujahed Eleyat, Magnus Jahre

and Jorn Amundsen

1.1 INTRODUCTION

1.1.1 Fundamental Techniques

Parallelism has been used since the early days of computing to enhance performance.
From the first computers to the most modern sequential processors (also called uni-
processors), the main concepts introduced by von Neumann [20] are still in use. How-
ever, the ever-increasing demand for computing performance has pushed computer
architects toward implementing different techniques of parallelism. The von Neu-
mann architecture was initially a sequential machine operating on scalar data with
bit-serial operations [20]. Word-parallel operations were made possible by using
more complex logic that could perform binary operations in parallel on all the bits in
a computer word, and it was just the start of an adventure of innovations in parallel
computer architectures.

3Programming Multicore and Many-core Computing Systems,
First Edition. Edited by Sabri Pllana and Fatos Xhafa.
© 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.

CO
PYRIG

HTED
 M

ATERIA
L

4 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Prefetching is a 'look-ahead technique' that was introduced quite early and is
a way of parallelism that is used at several levels and in different components of
a computer today. Both data and instructions are very often accessed sequentially.
Therefore, when accessing an element (instruction or data) at address k, an auto-
matic access to address k+1 will bring the element to where it is needed before it
is accessed and thus eliminates or reduces waiting time. Many clever techniques
for hardware prefetching have been researched [5, 17] and can be exploited in the
context of the new multicore processors. However, the opportunities and challenges
given by the new technology in multicores require both a review of old techniques
and a development of new ones [9, 21]. Software prefetching exploits sequential
access patterns in a similar way but either it is controlled by the compiler
inserting prefetch operations or it can be explicitly controlled by the programmer [10].

Block access is also a fundamental technique that in some sense is a parallel op-
eration. Instead of bringing one word closer to the processor, for example, from
memory or cache, a cache line (block of words) is transferred. Block access also
gives a prefetching effect since the access to the first element in the block will bring
in the succeeding elements. The evolution of processor and memory technology during
the last 20 years has caused a large and still increasing gap between processor and
memory speed-making techniques such as prefetching and block access even more
important than before. This processor–memory gap, also called the memory wall, is
further discussed in Section 1.2.

Functional parallelism is a very general technique that has been used for a long
time and is exploited at different levels and in different components of almost all
computers today. The principle is to have different functional units in the processor
that can operate concurrently. Consequently, more than one instruction can be ex-
ecuted at the same time, for example, one unit can execute an arithmetic integer
operation while another unit executes a floating-point operation. This is to exploit
what has later been called instruction level parallelism (ILP).

Pipelining is one main variant of functional parallelism and has been used ex-
tensively at different levels and in different components of computers to improve
performance. It is perhaps most widely known from the instruction pipeline used in
almost all contemporary processors. Instructions are processed as a sequence of steps
or stages, such as instruction fetch, instruction decoding, execution and write back of
results. Modern microprocessors can use more than 20 pipeline stages so that more
than 20 instructions are being processed concurrently. Pipelining gives potentially a
large performance gain but also added complexity since interdependencies between
instructions must be handled to ensure correct execution of the program.

The term scalar processor denotes computers that operate on one computer word
at a time. When functional parallelism is used as described in the preceding text
to exploit ILP, we have a superscalar processor. A k-way superscalar processor
can issue up to k instructions at the same time (during one clock cycle). Also instruction
fetching, decoding and other nonarithmetic operations are parallelized by adding
more functional units.

INTRODUCTION 5

Figure 1.1 Flynn’s taxonomy.

1.1.2 Multiprogramming, Multiprocessors and Clusters

Multiprogramming is a technique invented in the 1960s to interleave the execution of
the programs and I/O operations among different users by time multiplexing. In this
way many users can share a single computer and get acceptable response time, and
the concept of a time-sharing operating system controlling such a computer was a
milestone in the history of computers.

Multiprocessors are computers with two or more distinct physical processors, and
they are capable of executing real parallel programs. Here, at the cost of additional
hardware, a performance gain can be achieved by executing the parallel processes in
different processors.

Many multiprocessors were developed during the 1960s and early 1970s, and in
the start most of the commercial multiprocessors had only two processors. Different
research prototypes were also developed, and the first computer with a large number
of processors was the Illiac IV developed at the University of Illinois [6]. The project
development stretched roughly 10 years, and the computer was designed to have 256
processors but was never built with more than 64 processors.

1.1.2.1 Flynn’s Taxonomy Flynn divided multiprocessors into four categories
based on the multiplicity of instruction streams and data streams – and this has
become known as the famous Flynn’s taxonomy [14, 15] illustrated in Figure 1.1.

A conventional computer (uniprocessor or von Neumann machine) is termed a
Single Instruction Single Data (SISD) machine. It has one execution or processing
unit (PU) that is controlled by a single sequence of instructions, and it operates on a
single sequence of data in memory. In the early days of computing, the control logic
needed to decode the instructions into control signals that manage the execution and
data traffic in a processor was a costly component. When introducing parallel pro-
cessing, it was therefore natural to let multiple execution units operate on different
data (multiple data streams) while they were controlled by the same single control
unit, that is, a single instruction stream. A fundamental limitation of these SIMD archi-

6 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

tectures is that different PUs cannot execute different instructions and, at the same
time, they are all bound to one single instruction stream.

SIMD machines evolved in many variants. A main distinction is between SIMD
with shared memory as shown in Figure 1.1 and SIMD computers with distributed
memory. In the latter variant, the main memory is distributed to the different PUs.
The advantage of this architecture is that it is much easier to implement compared
to multiple data streams to one shared memory. A disadvantage is that it gives the
need for some mechanism such as special instructions for communicating between
the different PUs.

The Multiple Instruction Single Data (MISD) category of machines has been
given a mixed treatment in the literature. Some textbooks simply say that no ma-
chines of this category have been built, while others present examples. In our view
MISD is an important category representing different parallel architectures. One of
the example architectures presented in the classical paper by Flynn [14] is very simi-
lar to the variant shown in Figure 1.1. Here a source data stream is sent from the
memory to the first PU, then a derived data stream is sent to the next PU, where it
is processed by another program (instruction stream) and so on until it is streamed
back to memory. This kind of computation has by some authors been called a soft-
ware pipeline [26]. It can be efficient for applications such as real-time processing
of a stream of images (video) data, where data is streamed through different PUs
executing different image processing functions (e.g. filtering or feature extraction).

Another type of parallel architectures that can be classified as MISD is systolic
arrays . These are specialized hardware structures, often implemented as an
application specific integrated circuit (ASIC), and use highly pipelined and parallel exe-
cution of specific algorithms such as pattern matching or sorting [36, 22].

The Multiple Instruction Multiple Data (MIMD) category comprises most con-
temporary parallel computer architectures, and its inability to categorize these has
been a source for the proposal of different alternative taxonomies [43]. In a MIMD
computer every PU has its own control unit that reads a separate stream of,
instructions dictating the execution in its PU. Just as for SIMD machines, a main
subdivision of MIMD machines is into those having shared memory or distributed
memory. In the latter variant each PU can have a local memory storing both
instructions and data. This leads us to another main categorization of multipro-
cessors, –shared memory multiprocessors and message passing multiprocessors.

1.1.2.2 Shared Memory versus Message Passing When discussing commu-
nication and memory in multiprocessors, it is important to distinguish the program-
mers view (logical view or programming model) from the actual implementation
(physical view or architecture). We will use Figure 1.2 as a base for our discussion.

The programmers, view of a shared memory multiprocessor is that all processes
or threads share the same single main memory. The simplest and cheapest way of
building such a machine is to attach a set of processors to one single memory thr-
ough a bus. A fundamental limitation of a bus is that it allows only one transaction
(communication operation or memory access) to be handled at a time. Consequently,
its performance does not scale with the number of processors. When multiproces-

INTRODUCTION 7

Figure 1.2 Multiprocessor memory architectures and programming models.

sors with higher number of processors were built – the bus was often replaced by
an interconnection network that could handle several transactions simultaneously.
Examples are a crossbar switch (all-to-all communication), multistage networks, hy-
percubes and meshes (see [23] Appendix E for more details). The development
of these parallel interconnection networks is another example of increased use of
parallelism in computers, and they are highly relevant also in multi- and many-core
architectures.

When attaching many processors to a single memory module through a parallel in-
terconnection network, the memory could easily become a bottleneck. Consequently,
it is common to use several physical memory modules as shown in Figure 1.2(a).
Although it has multiple memory modules, this architecture can be called a
centralized memory system since the modules (memory banks) are assembled as
one subsystem that is equally accessible from all the processors. Due to this uni-
formity of access, these systems are often called symmetric multiprocessors (SMP)
or uniform memory access (UMA) architectures. This programming model (SW)
using shared memory implemented on top of centralized memory (HW) is marked
as alternative (1) in Figure 1.2(c).

The parallel interconnection network and the multiplicity of memory modules
can be used to let the processors work independently and in parallel with different
parts of the memory, or a single processor can distribute its memory accesses across
the memory banks. This latter technique was one of the early methods to exploit
parallelism in memory systems and is called memory interleaving. It was motivated
by memory modules being much slower than the processors and was together with
memory pipelining used to speed up memory access in early multiprocessors [26]. As
seen in the next section, such techniques are even more important today.

The main alternative to centralized memory is called distributed memory and is
shown in Figure 1.2(b). Here, the memory modules are located together
with the processors. This architecture became popular during the late 1980s
and 1990s, when the combination of the RISC processor and VLSI technology made it
possible to implement a complete processor with local memory and network inter-
connect (NIC) on a single board. The machines typically ran multiprocessor variants
of the UNIX operating system, and parallel programming was facilitated by message
passing libraries, standardized with the message passing interface (MPI) [47]. Typ-
ical for these machines is that access to a processors local memory module is much

(a) (b) (c)

n n

8 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

faster than access to the memory module of another processor, thus giving the name
NonUniform Memory Access (NUMA) machines. This multiprocessor variant with
message passing SW and a physically distributed memory is marked as (2) in
the right part of Figure 1.2(c).

The distributed architectures are generally easier to build, especially for com-
puters designed to be scalable to a large number of processors. When the number of
processors grows in these machines either the cost of the interconnection network will
increase rapidly (as with crossbar) or it will become both more costly and slower (as
with multistage network). A slower network will make every memory access slower
if we use centralized memory.

However, with distributed memory, a slower network can to some extent be hid-
den if a large fraction of the accesses can be directed to the local memory module.
When this design choice is made, we can use cheaper networks and even a hierarchy
of interconnection networks, and the programmer is likely to develop software that
exploits the given NUMA architecture. A disadvantage is that the distribution and
use of data might become a crucial factor to achieve good performance – and in that
way making programming more difficult. Also, the ability of porting code to other
architectures without loosing performance is reduced.

Shared memory is generally considered to make parallel programming easier
compared to message passing, since cooperation and synchronization between the
processors can be done through shared data structures, explicit message passing code
can be avoided, and memory access latency is relatively uniform. In such distributed
shared memory (DSM) machines, the programmers view is one single address space,
and the machine implements this using specialized hardware and/or system software
such as message passing. The last alternative (3) – to offer message passing on top
of centralized memory-is much less common but can have the advantage of offer-
ing increased portability of message passing code. As an example, MPI has been
implemented on multicores with shared memory [42].

The term multicomputer has been used to denote parallel computers built of au-
tonomous processors, often called nodes [26]. Here, each node is an independent
computer with its own processor and address space, but message passing can be
used to provide the view of one distributed memory to the multicomputer program-
mer. The nodes normally also have I/O units, and today the mostly used term for
these parallel machines is cluster. Many clusters are built of commercial-off-the
-shelf (COTS) components,such as standard PCs or workstations and a fast local area
network or switch. This is probably the most cost-efficient way of building a large
supercomputer if the goal is maximum compute power on applications that are easy
to parallelize. However, although the network technology has improved steadily,
these machines have in general a much lower internode communication speed and
capacity compared to the computational capacity (processor speed) of the nodes. As
a consequence, more tightly coupled multiprocessors have often been chosen for the
most communication intensive applications.

1.1.2.3 Multithreading Multithreading is quite similar to multiprogramming,
that is, multiple processes or threads share the functional units of one processor by using

WHY MULTICORES? 9

overlapped execution. The purpose can be to execute several programs on one pro-
cessor as in multiprogramming or can be to execute a single application organized
as a multithreaded program (real parallel program). The threads in multithreading
are sometimes called HW threads, while the threads of an application can be called
SW threads or processes. The HW threads are under execution in the processor ,
while SW threads can be waiting in a queue outside the processor or even swapped
to disk.

When implementing multithreading in a processor, it is common to add internal
storage making it possible to save the current architectural state of a thread in a very
fast way, making rapid switches between threads possible.

A switch between processes, normally denoted context switch in operating sys-
tems terminology, can typically use hundreds or even thousands of clock cycles,
while there is multithreaded processors that can switch to another thread within one
clock cycle. Processes can belong to different users (applications) while threads be-
long to the same user (application). The use of multithreading is now commonly
called thread-level parallelism (TLP), and it can be said to be a higher level of paral-
lelism than ILP since the execution of each single thread can exploit ILP.

Fine-grained multithreading denotes cases where the processor switches between
threads at every instruction, while in coarse grained multithreading the processor
executes several instructions from the same thread between switches, normally when
the thread has to wait for a lengthy memory access. Both ILP and TLP can be
combined as in simultaneous multithreading (SMT) processors where the k issue
slots of a k-way superscalar processor can be filled with instructions from different
threads. In this way, it offers 'real parallelism' in the same way as a multiprocessor.
In a SMT processor, the threads will compete for the different subcomponents of
the processor, and this might at first sight seem to be a poor solution compared to a
multiprocessor where a process or thread can run at top speed without competition
from other threads. The advantage of SMT is the good resource utilization of such
architectures – very often the processor will stall on lengthy memory operations,
and more than one thread is needed to fill in the execution gap. Hyper-threading is
Intel’s terminology (officially called hyper-threading technology) and corresponds
to SMT [48].

1.2 WHY MULTICORES?

In recent years, general-purpose processor manufacturers have started to provide
chips with multiple processor cores. This type of processor is commonly referred
to as a multicore architecture or a chip multiprocessor (CMP) [38]. Multicores
have become a necessity due to four technological and economical constraints, and
the purpose of this section is to give a high-level introduction to these.

10 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Technological trends for microprocessors. Simplified version of Figure 1 in [18].

High-performance single-core processors consume a great deal of power, and high
power consumption necessitates expensive packaging and powerful cooling solu-
tions. During the 1990s and into the 21st century, the strategy of scaling down the gate
size of integrated circuits, reducing the supply voltage and increasing the clock rate,
was successful and resulted in faster single-core processors. However, around year
2004, it became infeasible to continue reducing the supply voltage, and this made it
difficult to continue increasing the clock speed without increasing power dissipation.
As a result, the power dissipation started to grow beyond practical limits [18], and
the single-core processors were said to hit the power wall. In a CMP, multiple cores
can cooperate to achieve high performance at a lower clock frequency.

Figure 1.3 illustrates the evolution of processors and the recent shift toward
multicores. First, the figure illustrates that Moore’s law still holds since the number
of transistors is increasing exponentially. However, the relative performance, clock
speed and power curves have a distinct knee in 2004 and has been flat or slowly
increasing since then. As these curves flatten, the number of cores per chip curve
has started to rise. The aggregate chip performance is the product of the relative
performance per core and the number of cores on a chip, and this scales roughly
with Moore’s law. Consequently, Figure 1.3 illustrates that multicores are able to
increase aggregate performance without increasing power consumption. This expo-
nential performance potential can only be realized for a single application through
scalable parallel programming.

1.2.2 The Memory Wall

Processor performance has been improving at a faster rate than the main memory
access time for more than 20 years [23]. Consequently, the gap between processor
performance and main memory latency is large and growing. This trend is referred
to as the processor–memory gap or memory wall. Figure 1.4 contains the classical
plot by Hennessy and Patterson that illustrates the memory wall. The effects of the

Figure 1.3

1.2.1 The Power Wall

WHY MULTICORES? 11

The processor–memory gap (a) and a typical memory hierarchy (b).

memory wall have traditionally been handled with latency hiding techniques such as
pipelining, out-of-order execution and multilevel caches. The most evident effect
of the processor–memory gap is the increasing complexity of the memory hierarchy,
shown in Figure 1.4(b). As the gap increased, more levels of cache were added.
In recent years, it has been common with a third level of cache, L3 cache. The
figure gives some typical numbers for storage capacity and access latency at the
different levels [23].

The memory wall also affects multicores, and they invest a significant amount
of resources to hide memory latencies. Fortunately, since multicores use lower
clock frequencies, the processor–memory gap is growing at a slower rate for multi-
cores than for traditional single cores. However, aggregate processor performance
is growing at roughly the same rate as Moore’s Law. Therefore, multicores to
some extent transform a latency hiding problem into an increased bandwidth de-
mand. This is helpful because off-chip bandwidth is expected to scale significantly
better than memory latencies [29, 40]. The multicore memory system must pro-
vide enough bandwidth to support the needs of an increasing number of concurrent
threads. Therefore, there is a need to use the available bandwidth in an efficient
manner [30].

1.2.3 The ILP Wall and the Complexity Wall

It has become increasingly difficult to improve performance with techniques that ex-
ploit ILP beyond what is common today. Although there is a considerable ILP
available in the instruction stream [55], extracting it has proven difficult
with current process technologies [2]. This trend has been referred to as the ILP wall.
Multicores alleviate this problem by shifting the focus from transparently extracting
ILP from a serial instruction stream to letting the programmer provide the
parallelism through TLP.

Designing and verifying a complex out-of-order processor is a significant task.
This challenge has been referred to as the complexity wall. In a multicore, a proces-
sor core is designed once and reused as many times as there are cores on the chip.

(a) (b)

Figure 1.4

12 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

These cores can also be simpler than their single-core counterparts. Consequently,
multicores facilitate design reuse and reduce processor core complexity.

1.3 HOMOGENEOUS MULTICORES

Contemporary multicores can be divided into two main classes. This section intro-
duces homogeneous multicores that are processors where all the cores are similar,

they have the same amount of cache resources. Conceptually, these multicores are
quite similar to SMPs. The section starts by introducing a possible categorization
of such multicores, before we describe a selected set of modern multicores
at a high level. All of these are rather complex products, and both the scope
of this chapter and the space available make it impossible to give a complete
and thorough description. Our goal is to introduce the reader to the richness
and variety of the market – motivating for further studies. The other mainclass,
heterogeneous multicores, is discussed in the next section. A tabular summary
of a larger number of commercial multicores can be found in a recent paper by
Sodan et-al. [48].

1.3.1 Early Generations

In the paper Chip Multithreading: Opportunities and Challenges by Spracklen and
Abraham [50], the authors introduced a categorization of what they called chip multi

core architectures. As shown in Figure 1.5, the first generation multicores typically
had processor cores that did not share any on-chip resources except the off-chip
datapaths. It was normally two cores per chip and they were derived from earlier
uniprocessor designs. Also the PUs used in the second generation multicores
were from earlier uniprocessor designs, but they were more tightly integrated
through use of a shared L2 cache. It could be more than two processors, and the
shared L2 made intracore communication very fast. The cores sometimes run the
same program (SPMD), so the demand for cache capacity for storing instructions can
be reduced. Both these advantages of the shared L2 cache can reduce the demand
of off-chip bandwidth. However, more than one core using the L2 cache introduce
new challenges such as cache partitioning, fairness and quality of service (Qos)
[12, 11, 30].

The third generation multicores can be said to be those using cores that are de-
signed from the ground up and optimized to sit in a multicore processor. These may
typically be simpler cores running at a lower frequency and hence with a much lower
power consumption. Further, they are typically using SMT. Olukotun and Hammond [37]

.call these three generations for simple CMP, shared-cache CMP and multithreaded
shared-cache CMP, respectively.

that is, they execute the same instruction set, they run on the same clock frequency and

threaded processors (CMT processors) that also can be used to categorize multi-

HOMOGENEOUS MULTICORES 13

Multicore processor generations: first (a), second (b), third (c).

1.3.2 Many Thin Cores or Few Fat Cores?

The choice between a few powerful and many less powerful processors or cores
has been discussed widely both during the multiprocessor era and the multicore
era. In his classical paper Amdahl [3] gave a simple formula explaining how the
serial fraction of an application severely constraints the maximum speedup that can be
achieved by a multiprocessor. The serial fraction is a code that cannot be parallelized,
and Amdahl’s law might motivate for having at least one core that is faster than the
others, that is, go for a heterogeneous multicore. For executing the so-called embarrassingly
parallel applications, that is, applications that are very easy to parallelize since they
have no or a very tiny serial part – a multicore with a large number of small cores
might be most efficient, especially if power efficiency is in focus. However, if there
is significant serial fraction, a smaller number of more powerful cores might be best.
A recent paper by Hill and Marty [24] titled Amdahl’s Law in the Multicore Era
demonstrates the influence of Amdahl’s law on this trade-off in an elegant way.

1.3.3 Example Multicore Architectures

1.3.3.1 IBM(R) Power(R) Performance Optimization With Enhanced RISC
(POWER) is an IBM processor architecture for technical computing workloads im-
plementing superscalar RISC. The POWER architecture was the starting point in
1991 of the Apple R©, IBM and Motorola R© (now Freescale Semiconductor R©) joint
effort to develop a new RISC processor architecture, the PowerPC R© architecture
[49]. The design goals of PowerPC were to create a single chip providing multipro-
cessing extensions and 64-bit support (addressing and operations). It was later ex-
panded with vector instructions, originally trademarked AltiVecTM. In 2006, POWER
and PowerPC was unified into a new brand, the Power Architecture, owned by
Power.org.

The POWERn series of processors are IBM’s main product line implementing
the Power architecture. The first product in this series was the multichip, super-

(a) (b) (c)

Figure 1.5

14 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

scalar and out-of-order POWER1 processor, introduced in 1990. The POWER7 R©,
introduced in 2010, is the latest development in this series and is also the pro-
cessor to power the first DARPA High Productivity Computing System (HPCS)
petaflops computer. A stripped-down POWER7-core is expected to be used in the
Blue Gene R©/Q system, replacing the BlueGene/P massively parallel supercomputer
in 2012.

The POWER7 processor provides 4, 6 or 8 cores per chip, each with 4-way hard-
ware multithreading (SMT) [1]. A core might under software control be set to

Power 7 multicore, simplified block diagram.

operate at different degrees of multithreading from single-threaded mode (ST) to
4-ways SMT.

The chip is implemented in 45 nm technology, with cores running at a nominal
frequency of 3.0 – 4.14 GHz, depending on the configuration. The cache hierarchy
consists of 32K 4-way L1 data and instruction caches, a 256K 8-way L2 cache and
32 MB shared L3 cache, partitioned into 8 4 MB 8-way partitions. The L3 cache is
implemented with embedded DRAM technology (eDRAM). The chip is organized
as 8 cores (called chiplets), each containing the PU, L1 and L2 caches and
one of the 8 L3-cache partitions (Fig. 1.6). A consequence of this design is
that the L3 has a nonuniform latency. A pair of DDR3 DRAM controllers, each
with four 6.4 GHz channels provides a sustained main memory bandwidth of over
100 GB/s.

In addition to POWER6 R© VMX (AltiVec) and decimal floating point (DFU), the
POWER7 core provides the new VSX vector facility. VSX is mainly an extension for
64-bit vector floating-point arithmetic; it does not provide 64-bit integer arithmetic
like Intel R© and AMD processors.

Energy efficiency is implemented at the core or chiplet level where each core
frequency might be individually changed. The modes sleep, nap and turbo allows
dynamic voltage and frequency adjustment, from off, to –50% and +10% for maxi-
mum performance.

×

Figure 1.6

HOMOGENEOUS MULTICORES 15

Figure 1.7 ARM Cortex A15, simplified block diagram.

ARM became one
of the first companies to implement multicore technology with the launch of the
ARM11TM MPCoreTM processor in 2004. The latest version of the ARM MPCore
technology is the ARM CortexTM-A15 MPCore processor, targeting markets ranging
from mobile computing, high-end digital home, servers and wireless infrastructure.

The processor can be implemented to include up to four cores (see Figure 1 7) The. .
multicore architecture enables the processor to exceed the performance of single

Every Cortex-A series processor has power management features including dynamic
voltage and frequency scaling and the ability for each core to go independently into
standby, dormant or power off energy management states. Like its predecessors
Cortex-A15 is based on the ARMv7A processor architecture giving full application
compatibility with all ARM Cortex-A processors. This compatibility enables access
to an established developer and software ecosystem.

Each processor core has an out-of-order superscalar pipeline and low-latency ac-
cess through a bus to a shared L2 cache that can be up to 4 MB. The cores provide
floating-point support and special SIMD instructions for media performance [4].

1.3.3.3 Sun UltraSPARC(R) T2 Sun’s UltraSPARC T2 is a homogeneous
multithreaded multicore specially designed to exploit the TLP present
in almost every server type application. Sun introduced its first multicore,
multithreaded microprocessor the UltraSPARC T1 (codenamed Niagara) in Novem-
ber 2005 [33]. The UltraSPARC T1 uses the SPARC V9 R© instruction set and was
available with 4, 6 and 8 processing cores, each able to execute four threads simul-
taneously [48]. The UltraSPARC T2 includes a network interface unit and a PCI
express interface unit, and this is why the T2 is sometimes referred to as a system
on chip [45]. It was available in October 2007 and produced in 65 nm technology.

The UltraSPARC T2 is comprised of 8 64-bit cores, and each core can execute 8 in-
dependent threads. Thus, T2 is able to execute 64 threads simultaneously. The cores
are connected by a crossbar to an 8-banked shared L2 cache, 4 DRAM controllers and
2 interface units (Fig. 1.8).

In order to minimize power requirements and to meet temperature constraints, the
UltraSPARC T2 uses a core frequency of only 1.4 GHz. A complete implementation
of the UltraSparc T2 processor in VerilogTM (a HW description language) along

-core high-performance embedded devices while consuming significantly less power.

1.3.3.2 ARM(R) Cortex -A15 MPCoreTM ProcessorTM

16 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

Figure 1.8 Sun UltraSPARC T2 architecture, simplified block diagram.

with tools is freely available from the OpenSPARC R© project [54]. This gives the
interested researcher a rare opportunity to study the inner details of a modern multi-
core processor.

In autumn 2010, Oracle launched the SPARC T3, previously known as Ultra-
SPARC T3. It has 16 cores each capable of 8-way SMT giving a total of 128-way
multithreading [39].

1.3.3.4 AMD Istanbul The Istanbul processor is the first 6-core AMD OpteronTM

processor and is available for 2-, 4- and 8-socket systems, with clock speeds rang-
ing from 2.0 to 2.8 GHz. It was introduced in June 2009 and is manufactured in a
45 nm process and based on the AMD 64-bit K10 architecture. The K10 architecture
supports the full AMD64 instruction set and SIMD instructions for both integer and
floating-point operations [25].

Figure 1.9 shows a simplified block diagram. The processor has six cores, three
levels of cache, a crossbar connecting the cores, the system request interface, the
memory controller and the three HyperTransport TM 3.0 links. The memory con-
troller supports DDR2 memory with a bandwidth of up to 12.8 GB/s. In addition,
the HyperTransport 3.0 links provide an aggregate bandwidth of 57.6 GB/s and are
used to allow communication between different Istanbul processors.

The 6 MB of L3 cache is shared among the 6 cores: there are a 512 KB L2 cache
per core and 64 KB L1 data cache and a 64 KB L1 instruction cache for each core.

1.3.3.5 Intel(R) Nehalem In November 2008, with the release of CoreTM i7,
Intel introduced the new microprocessor architecture Nehalem [28]. The Nehalem
architecture (Fig. 1.10) has been used in a large number of processor variants in the
mobile, desktop and servers markets and is mainly produced in 45 nm technology.
The core count is typically 2 for mobile products, 2 – 4 cores for desktop and 4,

HOMOGENEOUS MULTICORES 17

AMD Opteron Istanbul processor, simplified block diagram.

Figure 1.10 Intel Nehalem architecture – 4 cores, simplified block diagram.

6 or 8 for servers. At the high end, the Nehalem architecture shrinked to 32 nm
technology (also called Westmere) has been announced to provide a 10-core chip.

Intel introduced with Nehalem the turbo boost technology (TBT) to allow ad-
justments of core frequency at runtime [27]. Considering the number of active cores,
estimated current usage, estimated power requirements and CPU temperature, TBT
determines the maximum frequency that the processor can run at. Core frequency
can be increased in steps of 133 MHz and to a higher level if few cores are active.
This allows for a boost in performance while still maintaining the power envelope.
To save energy, it is possible to power down cores when they are idle, but when
needed again they are turned on, and the frequency of the processor is reduced ac-
cordingly [52].

The QuickPath interconnect (QPI) was introduced in Nehalem to provide high
speed, point-to-point connections between all cores, the I/O hub, the memory con-
troller and the large shared L3 cache (Fig. 1.10). The L3 cache is inclusive. Ne-
halem-based processors have up to 3.5 times more memory bandwidth than previous
generation processors.

Figure 1.9

18 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

The Nehalem architecture reintroduced hyper-threading, a technique that allows
each core to run two threads simultaneously, improving on resource utilization and
reducing latency. Although it was introduced in Intel processors as early as in 2002,
it was not used in the Intel core architecture that preceded Nehalem.

For faster computation of media applications, the Nehalem architecture supports
the SSE4 instruction set introduced in the previous generation processors. SSE is
an abbreviation for streaming SIMD extensions and is an SIMD instruction set ex-
tension to the 86 architecture that is used by compilers and assembly coders for
vectorization.

1.3.3.6 Tilera(R) TILE64 TM Tilera [53] has developed and is currently ship-
ping the TILEPro36TM and TILEPro64TM series of embedded many-core processors.
The Tilera devices may contain up to 64 individual 32-bit processors on a single sil-
icon device and are targeted at embedded markets which require programmability,
high performance and demanding power constraints. All Tilera devices contain nu-
merous integrated IO interfaces, allowing system designers to save board real estate
and complexity by integrating the IO and processing into a single device. Current
target markets for the TILEProTM family of devices include video and network pro-
cessing. The TILEPro family of devices is fabricated in TSMC’s 90 nm technology
and comes in 700 and 866 MHz frequency grades.

Each Tilera device contains multiple individual processor cores. Each core sup-
ports the TILE instruction set architecture (ISA), a Tilera proprietary ISA sharing
many similarities with modern RISC ISAs. The Tilera ISA is a 3-wide VLIW for-
mat, where each 64-bit VLIW instruction encodes three operations. Correspondingly,
there are three execution pipelines per processor core, two arithmetic pipelines and
one load/store pipeline. When running at 866 MHz, a TILEPro64 is capable of 166
billion 32-bit operations per second. Additionally, the Tilera ISA contains SIMD op-
erations, enabling 32b, 16b and 8b arithmetic. The physical address of the TILEPro
devices is 36 bits, giving a TILEPro device access to up to 64 GB of memory. The
TILEPro processor is an in-order machine, issuing 64-bit VLIW instructions in pro-
gram order. However, the TILEPro cache subsystem is out of order, allowing the
processor to continue to fetch, issue and execute instructions in the presence of mul-
tiple cache misses. The TILE cores do not have HW FPU support.

The TILEPro device is a complete system on a chip, containing multiple inte-
grated IO interfaces. TILEPro64 contains four integrated DDR2 memory controllers,
capable of supporting 800 MHz operation. Memory space may be configured to be
automatically interleaved across the four controllers or programmatically assigned
on a page-by-page mapping from page to controller.

A TILEPro processor core contains a 16 KB L1 instruction cache, an 8 KB L1 data
cache and a 64 KB unified L2 cache (used for both instructions and data). All pro-
cessor cores on a TILEPro device are cache coherent, enabling running of standard,
shared-memory programs such as POSIX threads across the entire device. The cores
may be configured into multiple coherence domains, allowing a single SMP Linux
image to run across all cores within the system, or only a subset. Tilera hypervisor
technology enables the ability to run multiple Linux images in parallel. Coherency

×

HETEROGENEOUS MULTICORES 19

is maintained between the processor cores via a unique directory-based coherency
protocol, called dynamic distributed cache (DDC). The DDC protocol tracks ad-
dress sharers within the system via a distributed directory and maintains coherence
by properly invalidating/updating shared data upon modification. Additionally, the
Tilera cache subsystem provides the ability for one core’s L2 cache to serve as a
backing L3 cache for another core within the system. In this context, the L2 storage
structures may contain both L2 and L3 cache blocks.

The TILEPro processor cores communicate with each other and the IO inter-
faces via multiple on-chip, packet-switched networks. These networks, called the
iMeshTM, are proprietary interconnects used to carry communication within the system
such as memory read requests, memory read responses, tile-to-tile read responses,
etc. The networks are configured in a mesh topology, providing performance
scalability as the number of cores is increased. The TILEPro devices contain three
separate mesh networks for memory and cache communication, as well as two
networks for user-level messaging. These networks are synchronous with the pro-
cessor cores and run at the same frequency, and the latency for a message through
the mesh networks is one processor cycle per node.

1.4 HETEROGENEOUS MULTICORES

This section introduces heterogeneous multicores – processors where one or some
of the cores are significantly different than the others. The difference can be as funda-
mental as the instruction set used, or it can be the processor speed or cache/memory
capacity of the different cores. We start by introducing some of the main types of het-
erogeneity, before we present three different contemporary products in this category
of processors.

1.4.1 Types of Heterogeneity in Multicores

Single-ISA heterogeneous multicores are processors where all the cores have the
same ISA, that is, they can execute the same instructions, but they can have
different clock frequencies and/or cache sizes. Also the cores might have,
different architectures implementing the same ISA. Typically there is one
or a few high-performance cores (fat cores) that are superscalar out-of-order
processors and a larger number of smaller and simpler cores that can be in-order
processors with a shorter pipeline [34]. As discussed in Section 1.3.2, this can be
beneficial for speeding up applications where there is a significant part of the com-
putation that is serial or if some of the threads put more demand on the memory
system. This kind of multicores is called by some authors asymmetric multicore
processors (AMP). They have gained increased interest lately since they potentially
can be more energy efficient than conventional homogeneous multicores [13].

Multiple-ISA multicores such as the Cell/BE TM microprocessor presented in
Section 1.4.2.1 have two or more different instruction sets. They require a toolchain
for each core type and are in general harder to program. In addition, many of these

20 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

processors, including CellTM, have explicitly managed memory hierarchies where
the programmer is responsible for placement and transfer of data. This will in general
increase programmer effort and code complexity compared to a cache-based system
that are automatic and hidden from the programmer. Recent research has shown that
comparable performance can be achieved through programming environments where
compiler and runtime support implicitly manage locality [44].

In the embedded systems market, there is a long tradition of using highly hetero-
geneous multicores with different kinds of simple or complex cores and HW units
integrated on a single chip. These multiprocessor system-on-chip (MPSoC) sys-
tems often achieve a very high level of power efficiency through specialization [35],
but again the price to pay is often more difficult programming. MPSoC systems
have been available as commercial products for longer than multicores, and some
few MPSoCs are homogeneous. We refer the reader to a recent survey of MPSoCs
by Wolf, Jerraya and Martin for this rich branch of multicore processors [57].

Graphics processing units (GPU) and accelerators are also considered examples
of heterogeneous multicores, even though in most cases they in general need a host
processor to be able to run a complete application. The principle of hardware ac-
celeration – adding a special purpose HW unit to off load the processor or to speed
up computation by doing specific functions in HW instead of software - has a long
history. About 30 years ago, a common practice for speeding up floating-point op-
erations in a PC was to add a floating-point coprocessor unit (FPU). Today , the
inclusion of different accelerator subunits in a CMP is becoming increasingly
popular, and IBM has recently announced a processor architecture where processing
cores and hardware accelerators are closely coupled [16].

Similarly, the GPU was added to accelerate the processing of graphics. GPUs
have during the last two decades been through a substantial development from spe-
cialized units for graphics processing only to more programmable units being
popular for general-purpose GPU (GPGPU). Their programming has become
substantially improved through languages such as CUDATM and OpenCLTM [32, 8].

1.4.2 Examples of Multicore Architectures

1.4.2.1 The CellTM Processor Architecture The Cell Broadband EngineTM

(Cell/BE) is a heterogeneous processor that was jointly developed by Sony R©, Tos-
hiba R© and IBM R©. As shown in Figure 1.11, it is mainly composed of one main core
(power processing element (PPE)), 8 specialized cores (called synergistic processing
elements (SPEs)), an on-chip memory controller and a controller for a configurable
I/O interface, all linked together by an element interconnection bus (EIB) [46]. The
main core is a 64-bit Power processor with vector processing extensions and two lev-
els of hardware-managed caches, a 32 KB L1 data cache and a 512 KB L2 cache. In
addition, it is a dual-issue, dual-threaded processor that has a single-precision peak
of 25.6 Gflops/s and a double-precision peak of 6.4 Gflops/s.

The 8 SPEs are SIMD cores (SPU) which each possess a 256 KB local store (LS)
for storing both data and instructions, a 128 128-bit register file and a memory
flow controller (MFC). MFC has the capability to move code and data between main

×

HETEROGENEOUS MULTICORES 21

Simplified block diagram of Cell/BE

memory and LS using a direct memory access (DMA) controller. Moreover, each
SPE has a single-precision peak of 25.6 Gflops/s and a double-precision peak of
only 1.83 Gflops/s. The EIB is composed of 4 unidirectional rings that are used as a
communication bus between elements that are connected to it, and it can deliver
25.6 GB/s to each of them.

The memory controller is used to connect to a dual-channel Rambus extreme
data rate (XDR) memory which can deliver a bandwidth of 25.6 GB/s. In addition,
the Cell has an I/O controller which can be dedicated to connect up to two separate
logical interfaces [31]. These interfaces provide chip-to-chip connections and can be
used to design an efficient dual-processor system.

The main core (PPE) is usually responsible for running the operating system and
controlling the other cores (SPEs); it can start, stop, interrupt and schedule pro-
cesses running on them. In fact, SPEs achieve their work only by following PPE
commands. The PPE can read and write the main memory and the local memories
of SPEs through the standard load/store instructions. However, data movement to
and from an SPE (LS) is achieved explicitly using DMA commands. The explicit
transfer of data and limited size of SPE LS poses a major challenge to software
development on the Cell/BE processor.

The PowerXCellTM 8i is a revised variant of the Cell/BE processor that was an-
nounced by IBM in 2008 and made available in IBM QS22 blade servers. The SPEs
in the new variant have a much better double-precision floating-point peak
performance (102.4 GFLOPS) compared to the previous one (14.64 GFLOPS). In
addition, it has support for up to 32 GB of slotted DDR2 memory. The PowerXCell
8i processor has been used in several supercomputers. For example, the Roadrunner
supercomputer, the world’s fastest in 2008–2009, has 12,240 PowerXCell 8i proces-
sors in addition to 6562 AMD Opteron processors. PoweXCell 8i supercomputers
have also occupied many of the top positions on the Green500 list of the most
energy-efficient supercomputers in the world [51].

1.4.2.2 NVIDIA(R)Fermi The GPU is a highly specialized PU dedicated to exe-
cute or accelerate video applications. Since

.

these applications have an increased

Figure 1.11

22 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

NVIDIA Fermi, simplified block diagram.

degree of parallelism, GPUs use tens to hundreds of cores to perform the advanced
floating-point operations specific to video rendering. With the introduction of
NVIDIA’s unified shader architecture in 2006 and CUDA in 2007, the potential
performance of GPU’s massively parallel architecture was also made available to
other fields, like high-performance computing (HPC) [19].

Fermi (or GeForce©R 400) is the latest architecture from NVIDIA 19[]. It has up
to 512 PUs distributed among 16 main cores, which NVIDIA calls streaming
multiprocessors. It has a two-level cache hierarchy and very fast double-precision
floating-point math operations [56]. Fermi is a good fit for some HPC applications,
and NVIDIA offers the Tesla line of products as dedicated GPGPUs to be used as
accelerators in HPC supercomputers. In October 2010, after being upgraded with
more than 7000 Fermi-based Tesla GPGPUs, Tianhe-1A became the fastest
supercomputer in the world, as ranked by the TOP500 list.

Fermi has a transistor count of more than 3 billions that are used to create 16 main
cores, a shared L2 cache, 6 memory (DRAM) controllers, a hardware thread
scheduler (called GigaThread) and the host interface (Fig 1.12). However, not all of .
these resources are always activated.

Each main core consists of 32 very simple PUs, capable of performing integer or
floating-point operations. All PUs share a single -register file, 16 load/store units, 4

Figure 1.12

HETEROGENEOUS MULTICORES 23

ARM Mali T604, simplified block diagram.

special function units (for advanced math like square root or sine), 2 thread sched-
ulers and dispatch units and an L1 cache. The main core can been seen as a 32-issue
superscalar processor. This main core design, coupled with the GigaThread sched-
uler, allows a Fermi-class GPU to switch very fast between threads and to handle
more than 24.000 parallel threads in an efficient way.

In order to improve the HPC performance, Fermi uses a more standard memory
hierarchy which includes a shared L2 cache. Since the memory penalty is greater
with GPUs than with CPUs, NVIDIA added new keywords to its CUDA imple-
mentation that allow a programmer to specify where data will be stored. Also, in
order to make it more programmer friendly, NVIDIA improved Fermi’s ISA (im-
proved atomic integer instructions [41]) and added support for C++ object-oriented
programming.

1.4.2.3 ARM(R) Mali TM -T604 GPU The ARM Mali-T604 GPU is a licensable,
low-power multicore GPU targeting system-on-chip (SoC) providers and a broad
range of applications including mobile, digital TV, gaming and navigation. It is the
first GPU from ARM with an architecture designed to enhance GPU computing
through, for example, the KhronosTM OpenCLTM API. This is in addition to graphics
standards such as Khronos OpenGL ESTM and OpenVGTM.

The ARM multicore design philosophy previously used with CPUs has been ap-
plied to ARM Mali GPUs, and the result is the Mali-T604. This multicore GPU has
a customer-configurable number of cores that share a coherent Level 2 memory sub-
system. A single job manager handles the host CPU interface and load balancing on
the GPU, while a hierarchical tiler (HT) accelerates the tile-based graphics pro-
cessing and a memory management unit (MMU) handles virtual address translation
and processes separation (see Fig. 1.13).

The Level 2 memory subsystem can maintain full coherency between cores thr-
ough a Snoop Control Unit (SCU). This approach is inspired by ARM multipro-
cessor CPUs and is different from traditional GPUs where local memory is
noncoherent. Each shader core is a multipipeline, multithreaded unit with the ability
to execute hundreds of threads simultaneously. This is particularly beneficial for
throughput-oriented computing with an abundance of data-level parallelism. The

Figure 1.13

24 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

processor supports a wide range of data types, including integer and IEEE-754
floationg point up to 64-bit allowing for algorithms requiring single and double
precision. Support for 64-bit integer arithmetic is provided.

Computing on the Mali-T604 GPU is highly efficient compared to high-end desk-
top or server GPUs. The moving of data between CPU and GPU memory is avoided
by the use of a unified memory system coherent between the GPU and CPU, such
as the ARM CortexTM-A15 CPU. Fast atomic operations with Mali-T604 mean that
algorithms requiring interthread communication will be much more efficient than on
a traditional GPU.

1.5 CONCLUDING REMARKS

Current trends in multi- and many-core architectures are increased parallelism, in-
creased heterogeneity, use of accelerators and energy efficiency as a first-order de-
sign constraint. The '5 P’s of parallel processing: performance, predictability,
power efficiency, programmability and portability' are all important goals that we
strive to meet when we build or program multicore systems. To meet the challenge
of partly conflicting goals, we need more research in parallel programming models
that adopts a holistic view – covering aspects from hardware and power consump-
tion through system software and up to the programmers wish for programmability
and portability.

A challenge is that optimizing for one of these goals very often will reduce the
possibility of achieving some of the others. The present state of the art is very di-
verse and dynamic and in many ways less stable than 10 years ago. As an example,
heterogeneous processors with explicitly managed memories like the Cell processor
have achieved outstanding results for power efficiency [51] at the cost of reduced
programmability. However, researchers are continuously looking for ways to
achieve many of these goals at the same time. Power efficiency innovations in
runtime systems is one of the many promising directions. Borkar and Chien [7]
outline a hypothetical heterogeneous processor consisting of a few large cores and
many small cores, where the supply voltage and frequency of each core are
controlled individually. This fine-grained power management improves energy
efficiency without burdening the application programmer, since it is controlled by
the runtime system. However, significant breakthroughs are needed on the software
level to make such systems practical.

To end the chapter, we would like to quote the recent and highly motivating paper
Computing Performance: Game Over or Next Level? [18]: the era of sequential
computing must give way to an era in which parallelism holds the forefront.

Trademark Notice

Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

REFERENCES 25

REFERENCES

1. J. Abeles et al. Performance Guide For HPC Applications On IBM Power 755 System.

2. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus IPC: the
end of the road for conventional microarchitectures. ACIM SIGARCH Computer
Architecture News, 28(2):248–259, 2000.

3. G. M. Amdahl. Validity of the single processor approach to achieving large scale com-
puter capabilities. In AFIPS Joint Computer Conference Proceedings, volume 30, pages
483–485, 1967.

4. ARM website. http://www.arm.com.

5. J. L. Baer and T. F. Chen. Effective hardware-based data prefetching for high–perfor-
mance processors. IEEE Transactions on Computers, 44:609–623, May 1995.

6. G. H. Barnes, R. M. Brown , M. Kato ,D. J. Kuck, D. L. Slotnick, and R. A. Stokes. The
ILLIAC IV Computer. IEEE Transactions on Computers, C-17(8):746 – 757, August 1968.

7. S. Borkar and A. A. Chien. The future of microprocessors. Communications of the
ACM, 54:67–77, May 2011.

8. A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O. Storaasli. State-of
-the-art in heterogeneous computing. Scientific Programming, 18:1–33, January 2010.

9. S. Byna, Y. Chen, and X. H. Sun. Taxonomy of data prefetching for multicore proces-
sors. Journal of Computer Science and Technology, 24:405–417, 2009.

10. D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proceedings of
the 4th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS-IV, pages 40–52, New York, NY, USA, 1991. ACM.

11. H. Dybdahl. Architectural Techniques to Improve Cache Utilization. PhD thesis, Norwe-
gian University of Science and Technology, Trondheim, Norway, 2010.

12. H. Dybdahl, P. Stenstrom, and L. Natvig. A cache-partitioning aware replacement policy
for chip multiprocessors. In Y. Robert et al., editor, High Performance Computing –
HiPC 2006, volume 4297 of LNCS, pages 22–34. Springer Berlin / Heidelberg, 2006.

13. A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto. Maximizing power efficiency with
asymmetric multicore systems. Communications of the ACM, 52:48–57, December 2009.

14. M. J. Flynn. Very high-speed computing systems. In Proceedings of the IEEE, volume 54,
pages 1901–1909, December 1966.

15. M. J. Flynn. Some computer organizations and their effectiveness.
Computers,

 IEEE Transactions
on C-21(9):948 –960, September 1972.

16. H. Franke, J. Xenidis, C. Basso, B. M. Bass, S. S. Woodward, J. D. Brown, and C. L.
Johnson. Introduction to the wire-speed processor and architecture. IBM Journal of
Research and Development, 54(1):3:1 –3:11, January–February 2010.

17. J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in scalar proces-
sors. In Proceedings of the 25th annual International Symposium on Microarchitecture,
MICRO 25, pages 102–110. IEEE Computer Society Press, Los Alamitos, CA, USA,

1992.

http://power.org, 2010.

26 MULTI- AND MANY-CORES, ARCHITECTURAL OVERVIEW FOR PROGRAMMERS

19. P. N. Glaskowsky. NVIDIA’s Fermi: The First Complete GPU Computing Architec-
ture. http://www nvidia com/content/PDF/fermi white papers/P.. . _ _
Glaskowsky_NVIDIA’s_Fermi-The_First_Complete GPU Architecture._ _

pdf 2009.

20. M. D. Godfrey and D.F.Hendry. The computer as von Neumann planned it. Annals
of the History of Computing,

IEEE
15(1):11–21, 1993.

21. M. Grannaes. Reducing Memory Latency by Improving Resource Utilization. PhD thesis,
Norwegian University of Science and Technology, Trondheim, Norway, 2010.

22. A. Halaas, B. Svingen, M. Nedland, P. Saetrom, O. Snoeve Jr., and O.R. Birkeland. A
recursive MISD architecture for pattern matching. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 12(7):727 – 734, July 2004.

23. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, fourth edition, 2006.

24. M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Computer, 41(7):33 –38,
July 2008.

25.

26. K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Programmability.
McGraw-Hill Higher Education, first edition, 1992.

P. G. Howard. Six-Core AMD Opteron Processor Istanbul. http://www.microway.
com/pdfs/microway_istanbul_whitepaper_2009-07.pdf, 2009.

27. Intel corp. 2nd Generation Intel Core Processor Family Desktop. http://download.
intel.com/design/processor/datashts/324641.pdf.

28. Intel corp. First the Tick, Now the Tock – Intel Microarchitecture (Nehalem) . http://
www.intel.com/technology/architecture-silicon/next-gen/
319724.pdf.

29. ITRS. International Technology Roadmap for Semiconductors. http://www.itrs.
net/, 2006.

30. M. Jahre. Managing Shared Resources in Chip Multiprocessor Memory Systems. PhD
thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2010.

31. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Intro-
duction to the cell multiprocessor. IBM Journal of Research and Development., 49:
589–604, July 2005.

32. D. B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. Morgan Kaufmann Publishers Inc., first edition, 2010.

33. P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: a 32-way multithreaded sparc
processor. IEEE Micro, 25(2):21 – 29, 2005.

34. R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen. Single-ISA
heterogeneous multicore architectures: the potential for processor power reduction.
IEEE/ACM International Symposium on Microarchitecture, pages 81–92, 2003.

35. R. Kumar, D. M . Tullsen, N.P. Jouppi, and P. Ranganathan. Heterogeneous chip multi-
processors. Computer, 38(11):32 – 38, November 2005.

36. H .T. Kung. Why systolic architectures? Computer, 15:37–46, 1982.

37. K. Olukotun and L. Hammond. The future of microprocessors. Queue, 3:26–29, Sep-
tember 2005.

18. S. H. Fuller and L. I. Millett. Computing performance: game over or next level? Com-
puter, 44(1):31–38, January 2011.

REFERENCES 27

38. K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a
single-chip multiprocessor. In Proceedings of the 7th International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS-
VII, pages 2–11. ACM, New York, NY, USA, 1996.

39. Oracle Unveils SPARC T3 Systems and Storage Appliances. http://www.oracle.
com/us/corporate/features/sparc-t3-feature-173454.html.

40. D. A. Patterson. Latency lags bandwith. Communications of the ACM , 47:71–75, October 2004.

41.

42. J. Psota and A. Agarwal. rMPI: message passing on multicore processors with on-chip
interconnect. In P. Stenstrom et al., editor, High Performance Embedded Architectures
and Compilers, volume 4917 of LNCS, pages 22–37. Springer Berlin Heidelberg, 2008.

43. M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill Book
Company, New York, 1987.

44. S. Schneider, J. S. Yeom, and D. S. Nikolopoulos. Programming multiprocessors with
explicitly managed memory hierarchies. Computer, 42:28–34, 2009.

D. A. Patterson. The Top 10 Innovations in the New NVIDIA Fermi Architecture, and
the Top 3 Next Challenges. http://www.nvidia.com/content/PDF/fermi_
white_papers/D.Patterson_Top10InnovationsInNVIDIAFermi.pdf,
2009.

45. M. Shah et al. UltraSPARC T2 – a highly-threaded, power-efficient, SPARC SOC. In
Solid-State Circuits Conference, ASSCC ’07. IEEE Asian , pages 22 –25, November 2007.

46. G. Shi, V. V. Kindratenko, I. S. Ufimtsev, T. J. Martinez, J. C. Phillips, and S. A. Gottlieb.
Implementation of scientific computing applications on the cell broadband engine.
Scientific Programming, 17:135–151, January 2009.

47. M. Snir et al. MPI – The Complete Reference, Volume 1, The MPI Core, volume 1. The
MIT Press, second edition, 1999.

48. A .C.Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh. Parallelism via
multithreaded and multicore CPUs. Computer, 43(3):24 –32, march 2010.

49. F. Soltis. When Is PowerPC Not PowerPC? http://systeminetwork.com, 2002.

50. L. Spracklen and S.G. Abraham. Chip multithreading: opportunities and challenges. In
11th International Symposium on High-Performance Computer Architecture, HPCA-11,
pages 248 – 252, 2005.

51. The Green 500 List. http://www.green500.org/.

52. M. E. Thomadakis. The Architecture of the Nehalem Processor and Nehalem-EP SMP
Platforms. http://www.ece.tamu.edu/~tex/manual/node24.html, 2011.

53. Tilera website. http://www.tilera.com.

54. UltraSPARC T2 architecture and performance modelings software tools.
http://www.opensparc.net/opensparc-t2/index.html.

55. D. W. Wall. Limits of Instruction-Level Parallelism. Technical report, Digital Western
Research Laboratory, 1993.

56. White paper. Looking Beyond Graphics. http://www.nvidia.com/content/
PDF/fermi_white_papers/T.Halfhill_Looking_Beyond_Graphics.pdf.

57. W. Wolf, A. A. Jerraya, and G. Martin. Multiprocessor system-on-chip (MPSoC) tech-
nology. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 27(10):1701 –1713, october 2008.

		2018-06-06T10:02:09-0400
	Certified PDF 2 Signature

