|dentification

What you will learn: This chapter introduces the reader to the basic methods that are used in
system identification. It shows what the user can expect from the identification framework to
solve her/his modelling problems. For that purpose the following topics are addressed:

- An estimator is a random variable that can be characterized by its mean value and co-
variance matrix (see Exercises 1.a, 7).

- The stochastic characteristics of an estimator depend on the number of raw data, the
experiment design, the chotce of the cost function, ... (see Exercises 1.b, 8, 9).

- The estimates are asymptotically normally distributed when a growing amount of raw
data is processed (see Exercise 2).

- Noise disturbances on the regressor (e.g., the input data) can create a systematic error
on the estimate, and the choice of the regressor variable has an impact on the final result. Spe-
cific methods are needed to deal with that problem (see Exercises 3, 4, 12, 13).

- The choice of the cost function influences the properties of the estimator (see Exer-
cises 5.a, 3.b, 8, 9).

- The “optimal” choice of the cost function depends on the disturbing noise probability
density function (see Exercise 9.

- Least squares problems can be explicitly solved if the model is linear-in-the-parame-
ters (see Exercise 6).

- The numerical properties of the algorithms are strongly affected by the choice of the
model parameters (see Exercise 6).

- The modet complexity (number of unknown model parameters) should be carefully
selected. Systematic tools are available to help the wser to make this choice (see Exercise 10,
11).

1.1 INTRODUCTION
The aim of system identification is to extract a mathematical model M(8) from a set of measure-

ments Z. Measurement data are disturbed by measurement errors and process noise, described as
disturbing noise »,on the data:
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Z=Zy+n,. (1-1)

Since the selected model class M does not, in general, include the true system S, , model errors ap-
pear:

SeeM, and M, = M+ M, (1-2)

with M, the model errors. The goal of the identification process is to select M and to tune the model
parameters @ such that the “distance” between the model and the data becomes as small as possible.
This distance is measured by the cost function that is minimized. The selection of these three items
(data, model, cost function) sets the whole picture; all the rest are technicalities that do not affect the
quality of the estimates. Of course this is an oversimplification. The nurnerical methods used to min-
imize the cost function, numerical conditioning problems, model parameterizations, and so on are
all examples of very important choices that should be properly addressed in order to get reliable pa-
rameter estimates. Failing to make a proper selection can even drive the whole identification process
to useless results. A good understanding of each of these steps is necessary to find out where a spe-
cific identification run is failing: Is it due to numerical problems, convergence problems, identifia-
bility problems, or a poor design of the experiment?

In this chapter we will study the following issues:

@ What is the impact of noise on the estimates (stochastic and systematic errors)?
m What are the important characteristics of the estimates?

m How to select the cost function?

m How does the choice of the cost function affect the results?

m How to select the complexity of the model? What is the impact ou the estimates?

1.2 ILLUSTRATION OF SOME IMPORTANT ASPECTS OF
SYSTEM IDENTIFICATION

In this bock almost all the estimators that will be stadied and used are based on the minimiza-
tion of a cost function. It is a measure for the quality of the model and it is calculated starting
from the errors: the differences between the actual measurements and their modeled values.
We will use mostly a least squares cost function that is the sum of the squared errors.

In this section we present a simple example to illustrate some important aspects of sys-
tem identification. Specifically, the impact of the noise on the final estimates is illustrated. It
will be shown that zero mean measurement noise can result in systematic errors on the esti-
mates (the mean of the parameter errors is not equal to zero!). Also the uncertainty is studied.
Depending on the choice of the cost function, a larger or smaller noise sensitivity will be ob-
served. All these aspects are studied using a very simple example: the measurement of the
value of a resistance starting from a series of voltage and current measurements.

1.2.1 Least squares estimation: A basic approach to
system identification

Exercise 1.a (Least squares estimation of the value of a resistor} Goal: Estimate
the resistance value R, starting from a series of repeated current and voltage measurements:
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Ul = Roig(H), = 1,2,...,N (1-3)

with #,, {; the exact values of the voltage and the current.

Generate an experiment with N = 10, 100, 1000, and 10,000 measurements, The cur-
rent i, is uniformly distributed in [—i,,.,, fpme] Wwith i = 0.01 A (use the MATLAB® rou-
tine rand (N, 1}}, Ry = 1000 . The current is measured without errors; the voltage is dis-
turbed by independent, zero mean, normally distributed noise », with N{(0, 62 = 1}.

i) = i{t)
° ,t= 1,2, . N (1-4)
u(t) = w(®) + n(2)
To measure the distance between 1the j\gnoclel and the data, we select in this exercise a least
squares cost function: V(R) = N,Z{_}(u(t)—Ri(r})z. Notice that many other possible
choices can be made. h

The least squares ¢stimate R is defined as the minimizer of the cost function V(R):

k= arg énin VIR) {1-53)
m Show that the minimizer of (1-5} is given by

R N N
k=3 _lu(:)i(:)/sz(:)l. (1-6)

s Generaie 100 data sets with a length ¥ = 10, 100, 1000, and 10,000, and calculate
the estimated value X foreach .

» Plot the 100 estimates, together with the exact value for each N, and compare the re-

sults.

Observations (see Figure 1-1) From the figure it is seen that the estimates are scattered
around the exact value. The scattering decreases for an increasing number N. It can be shown
that under very general conditions, the standard deviation of the estimates decreases as
1/ J/N . This is further elaborated in the next exercise.

Exercise 1.b (Analysis of the standard deviation) In this exercise, it is verified how
the standard deviation varies as a function of & . Consider the resistance

u(t) = Ryig), t = 1,2, ... N. (1-7)

with a constant current i, = Q.01 A, and R, = 1000 Q. Generate 1000 experiments with
N = 10, 100, 1000, and 10,000 measurements. The cumrent is measured without errors, the
voltage is disturbed by independent, zero mean Gaussian distributed noise n, ~ N(0, 62 = 1)
(use the MATLAB® routine randn (M, 1))

Wy =i,

=12, ..,N (1-8}
u(®) = up(t) +n,(f)
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Figure 1-1 Estimated resistance valies R(¥ for N = 10, 100, 1000, and 10,000 for 100
repeated experiments. Gray line: exact value; dots: estimated value,

w Calculate for the four values of N the standard deviation of R using the MATLAB®
routine std {z). Make a loglogplot of the standard deviation versus ¥ .

a Compare it with the theoretical value of the standard deviation that is given in this
stmplified case (constant current) by

1 G,
Gy = (1-9)
¥ JN iy

Observations (see Figure 1-2) From the figure it is seen that the standard deviation de-
creases as 1/ /N . Collecting more data makes it possible to reduce the uncertainty. To get a
reduction with a factor 10 in uncertainty, an increase of the measurement time with a factor
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Figure 1-2 Experimental (black circles) and theoretical (gray dots) standard deviation on R as
a function of . The error drops with ,J{F} if the number of data ¥ grows with a

factor 10.
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100 is needed. This shows that the measurement time grows quadratically with the required
noise reduction, and hence it still pays off to spend enough time on a careful setup of the ex-
periment in order to reduce the level of the disturbing noise &, on the raw data.

Remark: For the general situation with a varying current, the expression for the stan-
dard deviation &, for a given current sequence §y(f) is

S,

J3 i

Exercise 2 (Study of the asymptotic distribution of an estimate) The goal of this
exercise is to show that the distribution of an estimate is asymptotic for N — e» normally dis-
tributed, and this is independent of the distribution of the disturbing noise (within some regu-
larity conditions, like finite variance, and a restricted “correlation” length of the noise).

Oy = (1-10)

Consider the previous exercise for N = 1,2, 4, 8, and 10° repetitions. Use a constant cur-
rent iy = (.01 A, measured without errors, For the voltage we consider two situations. In the
first experiment, the voltage is disturbed by independent, zero mean Gaussian distributed
noise N(0, g% = 0.22) . In the second experiment the voltage noise is uniformly distributed in

[_‘chm ‘\/:_’;ou} .

m Verfy that the standard deviation of the uniformly distributed noise source also
equals G,.

m Calculate the least squares solution [see equation (1-6)] for ¥ = 1,2,4, 8 and re-
peat this 107 times for both noise distributions. Plot the estimated pdf for the eight
different simations. The pdf can be estimated by making a proper normalization of
the histogram of the estimates (use the MATLAB® routine hist (x)). The fraction
of data in each bin should be divided by the width of the bin.

m Calculate the mean value and the standard deviation over all realizations (repeti-
tions) for each situation, and compare the results.

O

Observations (see Figure 1-3) From the figure it is seen that the distribution of the esti-

mates depends on the distribution of the noise. For example, for N = 1, the pdf for the Gaus-
sian disturbed noise case is significantly different from that corresponding to the uniformly
disturbed experiment. These differences disappear for a growing number of data per experi-
ment (N increases), and for ¥ = 8 it is impossible to identify a different shape visually, The
uniform distribution converges to the Gaussian distribution for growing values of N. This is a
general valid result,
In this case, the mean value and the variance is the same for both disturbing noise distribu-
tions, and this for each value of M. This is again a general result for models that are linear in
the measurements {(e.g., ¥, = auy, is linear in w,, while y, = aug is nonlinear in the mea-
surements). The covariance matrix of the estimates depends only on the second-order proper-
ties of the disturbing nocise. This conclusion cannot be generalized to models that are
nonlinear in the measurements. In the latter case, the estimates will still be Gaussian distrib-
uted, but the mean value and variance will also depend on the distribution of the disturbing
noise.
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Figure 1-3 Evolution of the pdf of R as a function of N, for
N =1.248. Black: Gaussian distutbing noise; Gray:
vniform distorbing noise.

1.2.2 Systematic errors in least squares estimation

In the previous section it was shown that disturbing noise on the voltage resulted in noisy es-
timates of the resistor value, the estimated value of the resistor varies from one experiment to
the other. We characterized this behavior by studying the standard deviation of the estimator.
The mean value of these disturbances was zero: the estimator converged to the exact value for
a growing number of experiments, The goal of this exercise is to show that this behavior of an
estimator cannot be taken for granted. Compared with the Bxercises 1.a—2, we add in the next
two exercises also disturbing noise on the current. The impact of the current noise will be
completely different from that of the voltage noise, besides the variations from one experi-
ment to the other, a systematic error will arise. This is called a bias.

Exercise 3 (Impact of noise on the regressor (input) measurements) Consider Ex-
ercise 2 for N = 100, and 10° repetitions. The current i, is uniformly distributed between
[-10, 1}] mA. 1t is measured this time with white disturbing noise added to it:
ity = iy +nfn, with a normal distribution N(0, 67). The voltage measurerent is also dis-
turbed with normally distributed noise: N(0, 62 = 1),

m Repeat the simulations of the previous exercise once without and once with noise on
the current. Vary the current noise standard deviation in 3 successive simulations:
g, = 0, 0.5, 1 mA.

m Calculate the least squares solution [see eq. (1-6)] for N = 100 and repeat this 107
times for all situations and plot the pdf for each of them.

m Calculate the mean value and the standard deviation over all realizations (repeti-
tions) for each situation, and compare the resuits.

0
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Observations (see Figure 1-4) From the figure it is seen that the distribution of the esti-
mates depends strongly on the presence of the noise on the current measurement. Not only is
the standard deviation affected, but also a visible bias grows with the variance of the current
noise. This result is closely linked to the fact that the current is used as regressor or indepen-
dent variable that makes the voltage a dependent variable: We used a model where the current
is the input, and the voltage is the output. Whenever the measurement of the input variable is
disturbed by noise, bias problems will appear unless special designed methods are used.
These will be studied in Section 1.6,
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Figure 1.4 Evolution of the pdf of R as a function of the noise level at the
current. Black: Oaly noise on the voltage o, = 1 V. Gray:
Noise on the voltage &, =1V and the current
a; = {,0.5, | mA (top, middie, bottom),

Exercise 4 (Importance of the choice of the independent variable or input) In
Exercise 3 it became clear that noise on the input or independent variable creates a bias. The
importance of this choice is explicitly illustrated by repeating Exercise 2, where the disturb-
ing noise is only added to the voltage: i(f) = iy(t), wl(f) = wy+n,( with
(1)~ N(0, 62 = 1). In this exercise the same data are processed two times:

w Process the data using the current as independent variable, corresponding to the
function u(f) = Ri(r) and an estimate of R :

R = ZN | u(t)i(t)/Zi ] i, (1-11)

m Process the data using the voltage as independent variable, corresponding to
i(fy = Gulry, with G the conductance:

u N N R N
G = Zmlm(t)i(k)fzmlm(t)2 and R = 1/G. (1-12)

m Repeat each experiment 10° times for N = 100, then calculate and plot the pdf of
the estimated resistance for both cases.

O
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Discussion (see Figure 1-3) Whenever the measurement of the variable that appears
squared in the denominator of (1-11) or (1-12} is disturbed by noise, a bias will become visi-
ble. This shows that the signal with the highest SNR should be used as independent variable
of input in order to reduce the systematic errors. The bias will be proportional to the inverse
SNR (noise power/signal power).
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Figure 1-5 Smdy of the impact of the selection of the independent variable for the
estimation of the resistance. Only the voltage is disturbed with noise. The
pdf of the estimated resistance is shown for the independent variable
being the current (black) or the voltage (gray).

1.2.3 Weighted least squares: optimal combination of
measurements of different quality

The goal of this section is to combine measurements with different quality. A first possibility
wounld be to throw away the poorest data, but even these poor data contain information, It is
better to make an optimal combination of all measurements taking into account their individ-
ual quality. This will result in better estimates with a lower standard deviation. The price to be
paid for this improvement is the need for additional knowledge about the behavior of the dis-
turbing noise. While the least squares (LS) estimator does not require information at all about
the disturbing noise distribution, we have to know the standard deviation {(or in general, the
covariance matrix) of the disturbing noise in order to be able to use the improved weighted
least squares (WLS) estimator, illustrated in this exercise.

Exercise 5.a (combining measurements with a varying SNR: Weighted least
squares estimation) Estimate the resistance value starting from a series of repeated current
and voltage measurements:

ug(t) = Ryiglt), t=1,2, ..., N (1-13)

with g, i the exact values of the voltage and the current. Two different voltmeters are used,
resulting in two data sets, the first one with a low noise level, the second one with a high noise
level.

m Generate an experiment with N measurements, i, uniformly distributed in
[-0.01,0.011 A, R; = 1000 £2. The current is measured without errors, the voltage
measured by the 2 voltmeters is disturbed by independent, zero mean, normally dis-
tributed noise n, with N(0,62 =1) for the first, good voltmeter and
N(0, 62 = 16) for the second, bad one.
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i = ik

=142, ...N (i-14)
w(t) = uo(#) + 1)

@ Calculate the weighted least squares solution as the minimizer of

™ (ult) - Ri®))?
Vs = 3 =200 (1-15)

using (1-16), given below:

N ulnyi)
- Z.I‘=] w(r)
G
r=1 w{r)

(1-16)

with w() the weighting of the sth measurement: w(f}) = ¢2; for the measurements
of the first voltmeter and w(f} = &2, for the measurements of the second one.

m Repeat this exercise 10° times for N = 100. Estimate the resistance also with the
least squares method of Exercise 1.a. Make an histogram of both results.

Observations (see Figure 1-6) From the figure it is seen that the estimates are scattered

pdf least squares estimate
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Figure -6 Estimated resistance values for & = 100, combining measurements of
a good and a bad voltmeter. Black: pdf of the least squares; gray: pdf of
the weighted least squares estimates.

around the exact value. However, the standard deviation of the weighted least squares is
smaller than that of the least squares estimate. It can be shown that the inverse of the covari-
ance matrix of the measurements is the optimal weighting for least squares methods.

Exercise 5.b (Weighted least squares estimation: A study of the variance) In this
exercise we verify by simulations the theoretical expressions that can be used to calculate the
variance of a least squares estimater and a weighted least squares estimator. It is assumed that
there is only noise on the voltage. The exact, measured current is used as regressor (input).
The theoretical variance of the linear least squares estimator (no weighting applied) for the
resistance estimate is given by

OO
Grs = Z‘“ I , (1-17)

(3 it
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and the variance of the weighted least squares estimator using the variance on the output (the
voltage) as weighting is

] _ 1
OwLs = 2”—1(!)2

=1 G2(f)

{1-18)

m Consider Exercise 5.a, calculate the theoretical value for the standard deviation, and
compare this with the results obtained from the simulations.

Observations A typical result of this exercise is:

theoretical standard deviation LS, 35.6; experimental standard deviation, 33.8

theoretical standard deviation WLS, 16.8; experimental standard deviation, 16.8

Remark: The expressions (1-17) and (1-18) for the theoretical values of the variance are
valid for a given input sequence. If the averaged behavior over all (random) inputs is needed,
an additional expectation with respect to the input current should be calculated,

1.2.4 Models that are linear-In-the-parameters

The least squares estimates of the resistor that have been studied thus far were based on the
minimization of the weighted cost function

_1&Y (W@ -RiOY
YR =82 T W

s (1-19)
with &, { the measured voltage (output) and current {input), respectively.

In general, the difference between a measured output »{(¥) and a modeled output
PO = ¢, uy, §) is minimized for a given input signal (). All model parameters are
grouped in B € R™. This can be formulated under a matrix notation for models that are lin-
ear-in-the-parameters. Define the signal vectors ¥, u, g € RY, for example:

y'= {1, ..., ¥} (1-20)

and a positive weighting matrix We R, Then the weighted least squares cost function be-
comes

Vs = (¥ — glug, 0)YW-1{y — gluy, 0))7. (1-21)
For a diagonal matrix W,, = w(), W; = 0 elsewhere, and equation (1-21) reduces to

1N ) - (2 uo, 8))°

Vs = N o W (1-22)

The estimate 8 is found as the minimizer of this cost fanction:

6 = arg énianLs(B). (1-23)



Section 1.2 M Illustration of Some Important Aspects of System Identification 11

In general it is impossible to solve this minimization problem analytically. However, if the
model is linear-in-the-parameters, then it is possible to formulate the solution explicitly, and
it is also possible to calculate it in a stable numerical way with one instruction in MATLAB®.
A medel is called linear-in-the-parameters if the output is a linear combination of the model
parameters:

y = K(ug)0 with Ke R"™, (1-24)

Note that X can be a nonlinear function of the input. The explicit solution of the linear
{weighted) least squares problem becomes

Bois = (K'WK) 'E™Wy and B85 = (K'K) K’y (1-25)

Solutions that are numerically stable for expression {1-25) exclude the explicit calculation of
the product K'W'K or K'K, thus improving the numerical conditioning. This can be done
with the MATLAB® solution given by

GWLS = (W”ZK}\(W'”?)}) with W = Wi2wi?
Bis = K\y. (1-26)

Exercise 6 (Least squares estimation of models that are linear in the
parameters) Consider the model y0 = tan(u0*0.9*pi/2), evaluated for the inputs
ul0 = linspace (0, 1,N). Use the model

30 =Y Butd) (1-27)

to describe these data. Note that this is a nonlinear model that is linear-in-the-parameters 8.

m Generate adataset y = y,. Put N = 100, and vary n = 1 to 20.

e Calculate the least squares solution (W = M) for the different values of #, using
the stable MATLAB® solution (1-26) and the direct implementation (1-25).

m Compare the sclutions, and calculate the condition nwmber of K and K7X.
This can be done with MATLAB® instruction cond { )

s Compare the modeled output with the exact output and caiculate the rms value of the

eITor.
g

Observations (see Figure 1-7) From this figure, it can be seen that the condition num-
ber of the numerical unstable method {1-25} grows two times faster on a logarithmic scale
than that of the stable method (1-26). The number of digits required to make the equations is
given by the exponent of the condition number. From order 10 or larger, more than 15 digits
are needed which is more than the calculation precision of MATLAB®. As a result, the ob-
tained models are no longer reliable, even if there was no disturbing noise in the experiment.
This shows that during system identification procedures, it is always necessary to verify the
numerical conditions of the calculations. The condition number of the stable numerical im-
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Figure 1-7 Identification of a polynomial model that is linear-in-the-parameters using a
method that is numerical stable Swes = K\y (gray lines} or numerical unstable
s = (KTK)"'K v {black lines}. Left; Condidon number as a function of the
mode! order. Right: The rms error a3 a fanction of the model order,

plementation grows slower, making it possible to solve higher order polynomial approxima-
tions.

Remark: If very high order polynomial approximations are needed, other more robust
pelynomial representations can be applied using orthogonal polynomials. The nature of these
polynomials will depend upon the applied input signal.

1.2.5 Interpretation of the covariance matrix & Impact
on experiment design

In this section, a one- and a two-parameter made] wilk be considered. It is shown that: (1) The
variance of a set of parameters is not enough to make conclusions on the model uncertainty;
the full covariance matrix is needed. (2) The covariance matrix (and the correlation between
the parameters) is strongly influenced by the design of the experiment.

Exercise 7 (Characterizing a 2-dimensional parameter estimate) Generate a set
of measurements:

@y = aud) +n,. (1-28)

In the first experiment, wy(f) is generated by linspace (-3, 3, N}, distributing N points
equally between -3 and 3. In the second experiment, u(f) is generated by
linspace {2, 5, N}.
a Choose @ = 0.1, N = 1000, and n, ~ N(0, 6;) with &, = 1.
m Use as amodel y = au, + b, and estimate the parameters (a, b) using the method
of Exercise 6.
m Repeat this experiment 10° times,
m Estimate the LS-parameters fqr both experiments, calculate the covariance matrix,
and plot &(i) as a function of (i) .

m Plot also the estimated lines for the first 50 experiments.

Observations ( Figure 1-8) In Figure 1-8 top, the parameters are plotted against each
other. For the second experiment (# ~ uniform in [2,5]), the parameters are strongly corre-
lated, as can be seen from the linear relation between the estimated values a(}) and b(i).
This is not so for the first experiment (# = [-3, 3]}, the black cloud has its main axis paral-
lel to the herizontal and vertical axis which is the typical behavior of an uncorrelated vari-
able. This can also be seen in the covariance matrices:
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Modeled output

Time (s) Time (s)

Figure 1-8 Black: Experiment in time interval [-3, 3] . Gray: Experiment in time interval
[2, 5] . Top: Scatter plot (slope, offset). Middle: Modeled output. Bottom: Error on
modeled output (left) and its standard deviation (right).

3 4 -2 2
C“pl = 3.2)(10' 0-85)(10 , al‘ld Cexpz - 1-3]><10 “4.6)('0 , (1_29)
0.85x107* 10.5x10™ ~4.6x107 16.9x107
or even better from the correlation matrices
Rop = | 1 002 and Ry = | 1 097 (1-30)
0.02 1 -097 1

The correlation in the first matrix is almost zero, while for the second experiment it is almost
one, indicating that a strong linear relation between the offset and slope estimate exists. This
means that both variables vary considerably (a large standard deviation), but they vary to-
gether (a large correlation) so that the effect on the modelled output is small in the input range
that the experiment was made (see Figure 1-8, middle and bottom). In that range, the varia-
tions of & are mostly canceled by those of & . Outside this range, the standard deviation of
the modeled output will be larger compared to that obtained with the first experiment because
there the offset-slope compensation is no longer valid. This shows that the covariances play
an important role in the model uncertainty.
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1.2.6 What have your learned In Sectlon 1.2? Further
reading

In this section we studied the properties of linear (weighted) least squares estimators. Be-
cause these models are linear-in-the-parameters, it is possible to calculate the weighted least
squares solution explicitly.

It is important to use numerical stable algorithms to calculate this explicit solution be-
cause otherwise the numerical noise can jeopardize the theoretical properties. The bias and
covariance matrix of the estimates can be explicitly calculated provided that the covariance
matrix of the disturbing noise is known,

The parameter uncertainty is directly influenced by the choice of the input signals. Ex-
periment design methods provide systematic tools to get the best results within user specified
constraints, for example for a given input power the determinant of the covariance matrix of
the parameter estimates should be minimized.

The selection of the weighting matrix in the weighted least squares method influences
the covariance matrix of the parameters. The smallest covariance matrix is obtained by
choosing the weighting matrix as the inverse of the disturbing noise covariance matrix.

The parameter estimates are asymptotically Gaussian distributed under very weak con-
ditions of the disturbing noise.

The books of Sorenson (1980) and van den Bos (2007) provide a general introduction
to system identification, spending a lot of attention to weighted least squares estimation. Also
the first chapter of the book of Pintelon and Schoukens (2001) introduces the reader to the
general ideas of identification theory. More information on the numerical issues can be found
in Golub and Van Loan (1996). Experiment design is covered in the books of Federov (1972),
Goodwin and Payne (1977), and Zarrop (1979). Recently a new interest in this topic
emerged, for example in the work of Hjalmarsson (2009), Gevers et al. (2009), and Bombeois
et al. (2006). The new design methods aim for an integrated design that optimizes the model
for its final purpose, like, for example, the design of a controller,

1.3 MAXIMUM LIKELIHOOD ESTIMATION FOR GAUSSIAN

AND LAPLACE DISTRIBUTED NOISE

In Sections 1.2 and (.3, Gaussian distributed noise was added as disturbances to the measure-
ments. It is shown in theory that least squares estimators, where the cost function is a qua-
dratic function of the errors, perform optimal under these conditions. The smallest
uncertainty on the estimators is found if a proper weighting is selected. This picture changes
completely if the disturbing noise does not have a Gaussian distribution. In the identification
theory it is shown that for each noise distribution, there corresponds an optimal choice of the
cost function. A systematic approach to find these estimators is through the maximum likeli-
hood theory, which is not within scope of this book, but some of its results will be illustrated
on the resistance example. The disturbances will be selected once to have a normal distribu-
tion, and once to have a Laplace distribution. The optimal cost functions corresponding to
these distributions are a least squares and a least absolute value cost function,

Exercise 8 (Dependence of the optimal cost function on the distribution of the
disturbing noise} Consider a set of repeated measurements:

ult) = Reig(n), t=1,2,...N (1-31)
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with uy, §; the exact values of the voltage and the cumrent. Two different voltmeters are used,
resulting in two data sets, the first one is disturbed by Gaussian (normal) distributed noise, the
second one is disturbed with Laplace noise.

Generate an experiment with N = 100 measurements, with i, uniformly distributed in
[0, i =0.01 A, and R, = 1000 . The current is measured without errors. The voltage
measured with the first voltmeter is disturbed by independent, zero mean, normally distrib-
uted noise #, ~ N(0, 62 = 1}, the second voltmeter is disturbed by Laplace distributed noise
with zero mean, and 62 = 1.

i(t) = ig(f

® = 40 Lt=12..,N. (1-32)
u(t) = ug(t) + n#

For the Gaussian neise the maximum likelihood sclution reduces to a least squares (LS) esti-

mate as in (1-6); for the Laplace distribution the maximum likelihood estimator is found as

the minimizer of

N -
Viav(R) = %VZ _Iiu(f)—Rf(f)l and Rpay = arg}?]i“VLAV(R)s (1-33)

called the least absolute values (LAV) estimate.
m Repeat this exercise 10,000 times for N = 100,
m Apply both estimators also to the other data set,
m Calculate the mean value, the standard deviation, and plot for each case the histo-
gram.
Help I' Laplace distributed noise with zero mean and standard deviation stdu can be gener-
ated from uniformly distributed noise [0, 1] using the following MATLAB® implementa-
tion:
x = rand{(NData, 1l}); % generate uniform distributed noise
nlap = zeros(size{x)) % vector used to store Laplace noise
nLap{x<=0.5) = log(2*x(x<=0.5))/sqrt{2) *stdy;
nLap{x>0.5) = - log(2*(1-x(x>0.5)))/sqrt (2} *stdU;
Help 2: to minimize Vi ,(R)}, a simple scan can be made over R belonging to {800:0.1:1200]
Observations (see Figure 1-9) From Figure 1-9, it is seen that the estimates are scat-
tered around the exact value. For the Gaussian case, the LS squares estimate is less scattered

Gaussian noise Laplace noise
0.04 0.04 )
0.02 A 0.02| f\
L\ SN
900 1?:?0 1100 900 1(;(;.)0 1100

Figure 1-9 PDF of the Gaussian Rig and Laplace Riav Maximum Likelihood
estimators, applied to a Gaussian (left) and Laplace (right) noise disturbance.
Black line: Ry g gray line: Ryav.
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than the LAV estimate. For the Laplace case the situation is reversed. The estimated mean
values |L and standard deviations ¢ are given in Table 1-1. This shows that the maximum

TABLE 1-1 Mean and standard deviation of the Gaussian and Laplace maxiraum likelikood
estimators, applied to a Gaussian and Laplace noise disturbance

}lLs aLS ﬁLAV &LAV
Gaussian noise 1000040 173 999.94 220
Laplace noise 1000.002 17.3 996.97 13.7

likelihood estimator is optimal for the distribution that it is designed for. If the noise distribu-
tion is not known a priori, but the user can guarantee that the variance of the noise is finite,
then it can be shown that the least squares estimate is optimal in the sense that it minimizes
the worst possible situation among all noise distributions with a finite variance.

Further reading: The books of Sorenson (198() and van den Bos (2007) give an intro-
duction to maximum liketihood estimation, including illustrations on non-Gaussian distribu-
tions. The properties of the maximum likelihood estimator (consistency, efficiency, asymp-
totic normal distribution) are studied in detail,

1.4 IDENTIFICATION FOR SKEW DISTRIBUTIONS WITH

OUTLIERS

In Section 1.3, it was shown that the optimal choice of the cost function depends on the distri-
bution of the disturbing noise. The maximum likelihood theory offers a theoretical frame-
work for the generation of the optimal cost function. In practice a simple rule of thumb can
help to select a good cost function. Verify if the disturbing noise has large outliers: large er-
rors appear to be more likely than expected from a Gaussian noise distribution.

In Exercise 9, the LS and the LAV estimates are applied to a %? distribution with 1 de-
gree of freedom; this is nothing other than a squared Gaussian distributed variable. Compared
to the corresponding Gaussian distribution, the extremely large values appear too frequently
{due to the squared value). Neither of both estimates (LS, LAV) is the MLE for this situation.
But from the rule of thumb we expect that the LAV will perform better than the LS estimator.
It will turn out that a necessary condition to get good resuits is to apply a proper calibration
procedure for each method, otherwise a bias will become unavoidable.

Exercise 9 (Identification in the presence of outliers) Consider a set of repeated
measurements:

“0(0 = Rnfg(f), t = 1, 2, ,N (1-34)

with u,, i, the exact values of the voltage and the current. The voltage measurement is dis-
turbed by noise, generated from a x2 -distribution with 1 degree of freedom (= squared Gaus-
sian noise).

Generate an experiment with N measurements, #, uniformly distributed in [0, i ,..= 0.01 A]
{use the MATLAB® routine ra nd), R, = 1000 Q. The current is measured without errors.
The measured voltage u(f) is disturbed by %? distribution distributed noise n, with



Section 1.4 B Tdentification for Skew Disiributions with Qutliers 17

n, = p*, with n generated as N(0, 62 = 1).
Note that the mean value of (E{#,}) is 1, and median(n,} 1s 0.455.

1) = i) Lt= L2 ., N (1-35)
H(I) = u(}l(t) +nu(t)

m In order to reduce the systematic errors, calibrate the data first. To do so, the mean
value or the median of the noise should be extracted from the measurements, First,
perform a measurement with zero current, so that u() = »,{¢}). The calibration is
done using this record.

m Repeat the exercise 10,000 times and estimate, each time, the LS and the LAV esti-
mate for both data sets.

a Estimate the pdf of the estimates, and calculate their mean value and standard devia-
tion.

Observations (see Figure 1-10) From the figure it is seen that the estimates are no

Calibration with mean value Calibration with median

0.04! 0.04
g :6 N
0.02 it 2 0.02 j’i |
A-_ﬂ_ 0 II / A_ :

800 1000 1200 800 1000 1200
R R

pdf

Figure 1-10 PDF of the Gaussian Rus and Eaplace Buav applied to 7(_2 disturbed data.
Left: Calibration with the mean valpe. Right: Calibration with the median
value. Black line: R.q. Gray line: Riav.

longer scattered around the exact value 8 = 1000 £ . Only the combinations (LS estimate,
mean value calibration) and the (LAV estimate, median value calibration) work well. The
other combinations show a significant bias.

The mean and standard deviations are given in Table 1-2. Observe that the standard deviation
of the LAV estimate is smaller than that of the LS estimate. LAV estimates are less sensitive
to outliers! Note that the mean value of the LAV estimator, combined with the median cali-
bration has still a small systematic error of 1.85, which is larger than the uncertainty on the
mean value: 18.62/sqrt(10,000) = 0.18. If instead of using the mean, the median value is se-
lected to average the 10,000 estimates, the bias disappears completely.

TABLE 1.2 Mean and standard deviation of the Gaussian and Laplace maximum likelihood estimators,
applied to a Gaussian and Laplace nofse disturbance

His OLs MrLav Trav

Calibr.: mean value 599,54 24.30 92429 16.26

Calibr.: median 1081.86 24.43 1001.85 18.62
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Conclusion: The LS estimate should be combined with a calibration based on the mean, and
the mean should be used to average the results. It is sensitive to outliers.

The LAV estimate should be combined with a calibration based on the median, the median
should be used to average the results, and it is less sensitive to the presence of outliers.

1.5 SELECTION OF THE MODEL COMPLEXITY

1.5.1 Influence of the number of parameters on the
uncertalnty of the estimates

In this exercise it will be shown that, once the model inciudes all important contributions, the
nncertainty grows if the number of model parameters is still increased.

Exercise 10 (Influence of the number of parameters on the model uncertainty)
In order to measure the flow of tap water, the height yq(f) = agf of the water level in a mea-
suring jug is recorded as a function of time ¢, However, the starting point of the measure-
ments is uncertain. Hence two models are compared:

¥(f) = at and ¥(r) = at+b. (1-36)

The first model estimates only the flow, assuming that the experiment started at time zero,
while the second one also estimates the start of the experiment.
Generate a set of measurements:

Y(f) = agt+n(H), with ¢ = [0:N]/N. (1-37)

» Choose g, = 1, N = 1000, and n,~N(0,0,) with . = 1.

m Repeat this experiment 107 times.

a BEstimate the LS parameters of both models, and compare 4 for the one parameter
model (1) = at and two-parameter model (1} = at + b, by estimating the pdf of
a.

m Calculate the mean value and the standard deviation of the slope.

m Plot also the error y, () — #) for the first 50 experiments, for z € [0, 2], with $(1)

the modeled output.
O

TABLE 1-3 Mean and standard deviation of & in the one- and two-parameter model

One-Parameter Model Two-Parameter Model
mean 0.996 .987
std. dev. 0.057 0.113

Observations  The results are shown below in Table 1-3 and Figure 1-11. From the table
it is seen that the uncertainty of the one-parameter estimate is significantly smaller than that
of the two-parameter model. The mean values of both estimates are unbiased; the error equals
the exact value within the uncertainty after averaging 100 experiments. Also in Figure 1-11
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the same observations can be made. Note that due to the prior knowledge of the one-parame-
ter model (at time zero the height is zero), a significantly smaller uncertainty on & is found
for small values of ¢, and the one-parameter model is less scattered than the two-parameter
madel. If prior knowledge is incorrect, systematic errors would be made on the flow estimate;
if it is correct, better estimates are found. An analysis of the residuals can guide the user to
find out which of both cases s/he is faced with.

1.5.2 Model selection

The goal of this section is to show how to select an optimal model for a given data set. Too
simple a model will fail to capture all important aspects of the output, and this will result in
errors that are too large in most cases. Too complex models use too many parameters. As was
illustrated in the previous section, such models also result in a poor behavior of the modeled
output because the model becomes too sensitive to the noise. Hence, we need a tool that helps
us to select the optimal complexity that balances the model errors against the sensitivity to the
noise disturbances. It is clear that this choice will depend on the quality of the data. All these
aspects are illustrated in the next exercise where we propose the Akaike information criterion
(AIC) as a tool for model selection.

Consider a single input single output linear dynamic system, excited with an input
uy(f) and cutput yo(f) = gy(t)*ult). The system has an impulse response gy(#) that is infi-
nitely long (infinite impulse response or IIR system). For a stable system, gq{f} decays expo-
nentially to zero, so that the TIR system can be approximated by a system with a finite length
impulse response g(#), t = 0, 1, ..., I (finite impulse response or FIR system). For 1> T, the
remaining contribution can be considered to be negligible. The choice of I will depend not
only on g(#), but also on the signal-to-noise-ratio (SNR) of the measurements as well as on
the length of the available data record.

!

50 = B0*u) = Y §0ur—R), with u,(k) = 0 for k<0. (1-38)
k=0

In (1-38) it is assumed that the system is initially at rest. If this is not the case, transient errors
will appear, but these disappear in this model for 1> (why?).

The model parameters 8 are, in this case, the values of the impulse response. 8 is esti-
mated from the measured data ug(#), ¥(¢}, t = 0, 1, ..., N, with y(#) the output measurement
that is disturbed with i.i.d. (independent and identically distributed) noise v{f) with zero
mean and variance 62;

Distribution of the estimated slope Error modeled water level
107 1
iy [\ Ly r—
oL— J._A_L .......... i 1
0.5 1 1.5 0
Slope Time (s)

Figure 1-11 Tmpact of the number of parameters on the uncertainty of the slope estimate
and the varighility of the model. Black: One-parameter model y = aqu.
Gray: Two-parameter model y = au+ b, Left: The pdf of the estimated
stope. Right: The error on the modeled output as a function of time.
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M = ) + (). (1-39)

The estimates © are estimated by minimizing the least squares cost function:
| - “ A n n
V8, 2%) = NZ (1) - 302, with 5(6) = BO*ug(n) = ug®)*§(0). (1-40)
t=0

Note that this model is linear-in-the-parameters, and solution {1-26) can be used.

In order to find the *best” model, a balance is made between the model errors and the
noise errors using a modified cost function that accounts for the complexity of the model.
Here we propose to use of, amongst others, the AIC criterion:

(1-41)

Vare = VN(B)(] +2di£9).

Exercise 11 (Model selection using the AIC criterion) Consider the discrete time
system g,(f) given by its transfer function:

H

Gol2) = Z:_Ubkz_k/z:_uakz'k , (1-42)

Generate the filter coefficients a;, b, using the MATLAB® instruction
[b,a] = chebyl(3,0.5,[2%0.15 2*0.31]) (1-43)

This is a band pass system with a ripple of 0.5 dB in the pass band. Generate two data sets
D., and D, , the former with length &, being used to identify the model, the latter with
length N, to validate the estimated model. Note that the initial conditions for both sets are
zero! Use the MATLAB® instruction

y0 = filter{b,a,ul), y = yO0+ny {1-44)
with #, zero mean normally cl1str1buted nolse with O, = 1, and #, ~ N(O, o =05 fora
first experiment, and n, ~ N(0, o = 0.05") fora second experiment. Put N_, = 1000, and

N, = 10,000 in both experiments,

m Use the linear least squares procedure (1-26) to estimate the model parameters of an
approximating FIR model, for varying orders from 0 to 100.

m Calculate for each of the models the simulated output § = filter(#, 1, i) , and calcu-
late the cost function (1-40) on D, and on D,,;.

m Calculate V..

Noul
a Calculate V, = NLZ [¥o(H — $(H|? on the undisturbed output of the validation
set. val (=0
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m Plot V. Vie V. as a function of the model order. Normalize the value of the cost
function by ©; to make an easier comparison of the behavior for different noise lev-
els. '

m Plot [V,/ Gﬁy as a function of the model order.
O

Observations The results are shown in Figure 1-12, and the following observations can
be made:
(i) Increasing the model order results in a monotonically decreasing cost function V.. This
result was to be expected because a simpler medel is always included by the more complex
model, and the linear LS always retrieves the absolute minimum of the cost function, so that
no local minima of the cost function as a function of the model order exist. Hence, increasing
the complexity of the model should reduce the value of the cost function (it is a monotonic
not increasing function of the model complexity).
(ii) On the validation data we observe first a decrease and then an increase of V... In the be-
ginning, the additional model complexity is mainly used to reduce the model errors, a steep
descent of the cost function is observed. From a given order on, the reduction of the model er-
rors is smaller than the increased noise sensitivity due to the larger number of parameters, re-
sulting in a deterioration of the capability of the modetl to simulate the validation output. As a
result the validation cost function V,, starts to increase,
(iif) Ve gives a good indication, starting from the estimation data only, where V,,; will be
minimum. This reduces the need for long validation records, and it allows us to use as much
data as possible for the estimation step.
(iv) The optimal model order increases for a decreasing disturbing noise vartance. Since the
plant is an IIR system with an infinite long impulse response, it is clear that in the absence of
disturbing noise <, = (@, the optimal order would become infinite. In practice this value is
never reached due to the presence of calculation errors that act also as a disturbance.
(v) A fair idea about the quality of the models is given by V,. The normalized rms value
JVo/0? is plotted on the right side of Figure 1-12. This figure shows that a wrong selection
of the model can result in much larger simulation errors. The good news is that the selection
of the best model order is not so critical, the minimum is quite flat and all model orders in the

Noisy data Noiseless data
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Figure 1-12 : Comparison of the normalized cost function V., the AIC criterion Ve,
and the validation V,,, for &, = .5 (top) and o, = 0.05 (bottom).
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neighborhood of the minimum result in good estimates. Note that in real-life experiments, V,
is not available.

Remark: In practice the validation set is chosen always (much) smaller than the test
data. The data should be primaly used to estimate a good model. In this exercise we selected
an extremely large data set to eliminate the noise variation in the validation to better visualize
the quality of the AIC maodel selection. The AIC method makes it possible to select the model
on the test data without using a validation set. In practice it is however still advisable to test
the final model on a validation test to verify if the model can explain also fresh data that were
not used to build it.

1.5.3 What have we learned In Section 1.57 Further
reading

In this section we learned that the choice of the model complexity is an important issue. Too
simple models lead to bias errors, while models with too many parameters suffer from an in-
creased variability. Model selection tools balance the bias and variance errors. A first possi-
bility is to verify the identified model on a data set that was not used during the parameter
estimation step, this is called & validation set. Instead of saving a part of the available data for
this test it is also possible to predict the behavior of an identified model on a new data set. We
have learned that the Akaike information criterion AIC is able to predict the value of the cost
function on the validation set. This allows the user to use all the data in the estimation step,
leading to a smaller variance. In the literature a lot of results are published on this topic. Be-
sides the original paper of Akaike (1974), we refer the reader to the classical textbooks on
system identification, — for example, Ljung (1999), Séderstrém and Stoica (1989), and Jo-
hansson (1993) — to learn more about this topic.

1.6 NOISE ON INPUT AND OUTPUT MEASUREMENTS: THE

IV METHOD AND THE EV METHOD

In Section 1.2.2 it was shown that the presence of disturbing noise on the input measurements
creates a systematic error. In this set of exercises, more advanced identification methods are
illustrated that can deal with this situation. Two methods are studied: The first is called the in-
strumental variables method {TV), the second is the errors-in-variables (EIV) method. The
major advantage of the IV method is its simplicity. No additional information is required
from the user. The disadvantage is that this method does not always perform well. Both situa-
tions are illustrated in the exercises. The EIV performs well in many cases, but in general ad-
ditional information from the user is required. The covariance matrix of the input-output
noise should be known. All methods are illustrated again on the resistance example with mea-
sured current and voltage 1), u(f), ¢t = 1,2, ..., N. Both measurements are disturbed by
mutually uncorrelated Gaussian noise, (), n,(f)

i)+ v},
“G(I) + nrf(f)'

in

1-45
() (1-45}

The least squares estimate is given by
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N
R Z w(OI
Ris = ’}]— (1-46)

H 2
Z{ y D

the instrumental variables estimator (IV) is

ZN u(Dit + 5)
By=—-2L - (1-47)

N

Y it +s)
1

t=

with 5 a user selectable shift parameter. Note that the IV estimator equals the LS estimator
fors = 0.
The EIV estimator is given by

Tu? Yi? Tuer Fioh)  (Fuis)

e @ Yo et ) Ve

Rew = : (1-48)
2Zu(r)i(z)

2
S

with o2, ¢? the variances of the voltage and current noise respectively, the covariance is as-
sumed to be zero in this expression: 62, = 0.

Exercise 12 (Noise on input and output: The instrumental variables method
applied on the resistor estimate) Generate the current i{y(k) from a Gaussian white noise
source e, filtered by a first order Butterworth filter with cutoff frequency fo.,

'EO = filter(bﬁen! Qe el) * (]-49)

with [ Bge s Geen ] = butter {1, 2*fs. ). Next this filtered sequence is scaled to get a
signal i, with standard deviation &, .

Generate the measured current and voltage (1-45), where n,(k) is white Gaussian
noise: N(O, cfu) . The current noise n{k) is obtained from a Gaussian white noise source fil-
tered by a second-order Butterworth filter with cut-off frequency fiq.

f;, = filter(bNm&e, ﬂNﬂiﬁe’ €y ); (1"50]

with [ Proise r Onoise | = butter (2, 2* fuu. ), and e, white Gaussian noise. Its variance is
scaled to cr,%‘_ .
s Experiment 1: Generate three sets of 1000 experiments with N = 5000 measure-
ments each on a resistor R, = 1000 £2, and the following parameter settings:

Four = 0.05, Fume = [0.4995,0.475, 0.3],
¢,=01, ¢,=01, ¢, = 1. (1-51)
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m Process these measurements with the LS estimator, as well as with the IV-estimator
with the shift parameter s = 1.

» Experiment 2: Generate 1000 experiments with ¥ = 5000 measurements each, and
the following parameter settings:

foem = 0.05, fauee = 03, 0, = 0.1, o, =01, 6, = 1. (1-52)

) ¥

m Process these measurements with the LS estimator, and with the I'V estimator with
the shift parameter s = 1,2, 5.

Plot for both experiments:

n the pdf of Ris and Ry,

m the awtocorrelation function of i, and n; (hint use the MATLAB® instruction
XCOrr),

m the FRF of the generator and the noise filter.
g

Observations The results are shown below in Figure 1-13 and Figure 1-14. In Figure

1-13, the results are for a fixed generator filter and a varying noise filter. The shift parameter
for the IV is kept constant at 1. From this figure it is clearly seen that the LS results are

Auto-correlation
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o
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fifs fifs
Figure 1-13 Study of the LS and [V estimate for a varying noise filter bandwidth and fixed shift v = |. Top:

The LS (black line) and TV estimate {black or gray line). IV(1), I¥(2}, and IV(3) correspond to the
first, second, and third filter. Middle: The aute correlation of i, (black) and », {gray) for the
different noise filters. Bottom: The filter characteristics of i, (Plack) and the noise »; (gray).
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Figure 1-14 Study of the LS and IV estimate for a fixed noise filter bandwidth and a varying shift s=1, 2, 5.
Top: The LS (black) and IV (black and gray) estimate. IV(1), IV(2), and [V(3) correspond to a
shift of 1,2, and 5 tabs, Middle: The aute correlation of i, (black) and n; (gray). Bottom: The
filter characteristics of i, (black) and the noise n; (gray).

strongly biased. This is due to the noise on the input, the relative bias is in the order of
63!/ cr,?ﬂ . For the IV results, the situation is more complicated. For the white noise situation,
no bias is visible. However, once the output noise is filtered, a bias becomes visible. The rela-
tive bias is proportional to the ratio of the autocorrelation functions of the noise and the cur-
rent R, .(s)/R; ;(s).

The same observations can also be made in Figure 1-14. In this figure, the shift parameter is
changed while the filters are kept constant. It can be seen that the bias becomes smaller with
increasing shift s, becanse R,,‘_,,'_(s)/ R,—o,-o(s) is getting smaller. At the same time the dispersion
is growing, mainly because R, ; (s} is getting smaller. Observe also that the sign of the bias
depends on the sign of R, , (s) . The IV method works well if the bandwidth of the generator

signal is ruch smaller than that of the noise disturbances.

Exercise 13 (Noise on input and output: the errors-in-variables method} In this
exercise the EIV method is used as an alternatives for IV method to reduce/eliminate the bias
of the least squares estimate. This time no constraint is put on the power spectra (bandwidth)
of the excitation and the disturbing notse, but instead the variance of the input and output dis-
turbing noise should be given in advance (prior information). This is illustrated again on the
resistance example with measured current and voltage i(#), ulfy, t = 1,2, ..., N.

The least squares estimate is given in (1-46), the EIV-estimator is given in (1-48), where the
sum runs over £ = 1, ..., N. It is shown to be the minimizer of the following cost function:
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(1-33)

{(u(t) uf)? | (r(r}—so(rnz}

Vv = N Z po)

r=1

with respect to uy, iy, Ry under the constraint that uy(r) = Ryig(f).

m Setup: Generate the current iy(¢) from a white zero mean Gaussian noise source
N0, G,f-;).
Generate the measured current and voltage as

!’O(t) + ni( t) .
“U(t) + nu('r);

1]

i(t)

1-34
u(r) (154

n, () and n(f) are white Gaussian noise sources with zero mean and variance o}
and G, , respectively.

s Generate a set of 1000 experiments with N = 5000 measurements each, and the
following parameter settings:

R, = 1000, o, = 001, o, = 0.001, o, = 1. (1-55)

Calculate the LS and EIV estimate. Plot the histogram with Ry s and Rer .
Observations  The results are shown below in Figure 1-15, From this figure it is clearly

0.2

QL= . 24 RS-
980 990 1000 1010
R

Figure 1-13 Comparison of the pdf of the LS (black) and the EIV estimate (gray), calculated
with prior known variances.

seen that the LS estimates are strongly biased (mean value is 990.15), This is due to the noise
on the input, the relative bias is in the order of 07 /7 . No systematic error can be observed
in the EIV results (mean value is 999.96). The [V estimate would fail completely in this situ-
ation (why?).

Discussion We learned that noise on the input (regressor) results in a bias on the esti-
mates that depends on the inverse SNR of the input (regressor). Both methods, the IV and the
EIV method, have pros and cons. While the IV method requires a lot of insight of the user
(are the tight experimental conditions met?), the EIV method needs knowledge of the covari-
ance mafrix of the input and output noise. In the literature, alternative methods are proposed
to deal with this problem. A first possibility is to use repeated experiments. From the varia-
tions from one experiment to the other, it is possible to estimate the noise covariance matrix
from the data. This is later illustrated in this book; see, for example, Exercise 47 (Schoukens
et al., 1997). Alternative methods estimate at the same time a parametric plant and noise
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model (Stderstrom, 2007). This allows to relax the experimental conditions (no repeated ex-
periments are required), at a cost of more difficult optimization problem to be solved (esti-
mate the plant- and noise model parameters).








