PART |

INTRODUCTION TO
EVOLUTIONARY OPTIMIZATION

CHAPTER 1

Introduction

But ask the animals, and they will teach you, or the birds of the air, and they will tell
vou; or speak to the earth, and it will teach you, or let the fish of the sea inform vou.
—Job 12:7-9

This book discusses approaches to the solution of optimization problems. In
particular, we! discuss evolutionary algorithms (EAs) for optimization, Although
the book includes some mathematical theory, it should not be considered a math-
ematics text. It is mare of an engineering or applied computer science text. The
optimization approaches in this book are all given with the goal of eventual imple-
mentation in software. The aim of this book is to present evolutionary optimization
algorithms in the most clear yet rigorous way possible, while also providing enough
advanced material and references so that the reader is prepared to contribute new
madterial to the state of the art.

IThis book uses the common practice of referring to a generic third person with the word we.
Sometimes, the book uses we to refer to the reader and the author, Gther times, the book uses we
10 indicate that it is speaking on behalf of the general population of teachers and researchers in
the areas of evolutionary algorithms and optimization., The distinction should be clear from the
context. Do not read too much mnto the use of the word we; it is & matter of writing style rather
than a claim to authority.

Bwolutionary Optimization Algorithms, First Edition. By Dan J. Simon 1
(€2013 John Wiley & Sons, Inc.

2 CHAPTER 1: INTRODUCTION

Overview of the Chapter

This chapter begins in Section 1.1 with an overview of the mathematical notation
that we use in this book., The list of acronyms starting on page xxiii might also be
useful to the reader. Section 1.2 gives some reasons why I decided to write this book
about EAs, what I hope to accomplish with it, and why I think that it is distinctive
in view of all of the other excellent EA books that are available. Section 1.3 discusses
the prerequisites the are expected from a reader of this book. Section 1.4 discusses
the philosephy of the homework assignments in this book, and the availability of
the solution manual. Section 1.5 summarizes the mathematical notation that we
use in this book. The reader is encouraged to regularly remember that section when
encountering unfamiliar notation, and also to begin using it himself in homework
assignments and in his own research. Section 1.6 gives a descriptive outline of
the hook. This leads into Section 1.7, which gives some important pointers to
the instructor regarding some ways that he could teach a course from this book.
That section also gives the instructor some advice about which chapters are more
important than others.

1.1 TERMINOLOGY

Some authors use the terin eveolutionary computing to refer to EAs. This empha-
sizes the point that EAs are implemented in computers. However, evolutionary
computing could refer to algorithms that are not used for optimization; for exam-
ple, the first genetic algorithms ((GAs) were not used for optimization per se, but
were intended to study the process of natural selection (see Chapter 3). This book
is geared towards evolutionary optimization algorithms, which are more specific
than evolutionary computing.

Others use the term population-based optimization to refer to EAs. This empha-
sizes the point that EAs generally consist of a population of candidate solutions to
gsome problem, and as titme passes, the population evolves to a better solution to
the problem. However, many EAs can consist of only a single candidate solution at
each iteration (for example, hill climbing and evolution strategies). EAs are more
general than population-based optimization because EAs include single-individual
algorithms.

Some authors use the term computer intelligence or computational intelligence to
refer to EAs. This is often done to distinguish EAs from expert systems, which have
traditionally been referred to as ertificial intelligence. Expert systems model deduc-
tive reasoning, while evolutionary algerithms model inductive reasoning. However,
sometimes FEAs are considered a type of artificial intelligence. Computer intelligence
is a more general term than evolutionary algorithm, and includes technologies like
neural networks, fuzzy systems, and artificial life. These technologies can be used
for applications other than optimization. Therefore, depending on one’s perspec-
tive, EAs might be more general or more specific than computer intelligence.

Soft computing is another term that is related to EAs. Soft computing is a
contrast to hard computing. Hard computing refers to exact, precise, numerically
rigorous calculations. Soft computing refers to less exact caleulations, such as
those that humans perform during their daily routines. Soft computing algorithms

SECTION 1.1: TERMINOLOGY 3

calculate generally good (but inexact) solutions to problems that are difficult, noisy,
multimodal, and multi-objective. Therefore, EAs are a subset of soft computing.

Other authors use terms like nature-inspired computing or bio-inspired computing
to refer to EAs. However, some EAs, like differential evolution and estimation
of distribution algorithms, might not be motivated by nature. Other EAs, like
evolution strategies and opposition-based learning, have a very weak connection
with natural processes. EAs are more general than nature-inspired algorithms
because EAs include non-biologically motivated algorithms.

Another oft-used term for EAs is machine learning. Machine learning is the
study of computer algorithms that learn from experience. However, this field often
includes many algorithms other than EAs. Machine learning is generally considered
to be more broad than EAs, and includes fields such as reinforcement learning,
neural networks, clustering, support vector machines, and others.

Some authors like to use the term heuristic algorithms to refer to EAs. Heuristic
comes from the Greek word nupiokw, which is transliterated as euriske in English.
The word means find or discover. It is also the source of the English exclamation
eureka, which we use to express triumph when we discover something or solve a
problem. Heuristic algorithms are methods that use rules of thumb or common
sense approaches to solve a problem. Heuristic algorithms usually are not expected
to find the best answer to a problem, but are only expected to find solutions that
are “close enough” to the best. The term meteheuristic is used to describe a
family of heuristic algorithms. Most, if not all, of the EAs that we discuss in this
book can be implemented in many different ways and with many different options
and parameters. Therefore, they can all be called metaheuristics. For example,
the family of all ant colony optimization algorithms can be called the ant colony
metaheuristic.

Most authors separate EAs from swarm intelligence. A swarm intelligence algo-
rithm is one that is based on swarms that occur in nature (for example, swarms
of ants or birds). Ant colony optimization (Chapter 10) and particle swarm opti-
mization (Chapter 11) are two prominent swarm algorithms, and many researchers
insist that they should not be classified as EAs. However, some authors consider
swarm intelligence as a subset of EAs. For example, one of the inventors of particle
swarm optimization refers to it as an EA [Shi and Eberhart, 1999]. Since swarm
intelligence algorithms execute in the same general way as EAs, that is, by evolving
a population of candidate problem solutions which improve with each iteration, we
consider swarm intelligence to be an EA.

Terminology is imprecise and context-dependent, but in this book we settle on
the term evolutionary algorithm to refer to an algorithm that evolves a problem so-
lution over many iterations. Typically, one iteration of an EA is called a generation
in keeping with its biclogical foundation. However, this simple definition of an EA
is not perfect because, for example, it implies that gradient descent is an EA, and
no one is prepared to admit that. So the terminology in the EA field is not uniform
and can be confusing. We use the tongue-in-cheek definition that an algorithm is
an EA if it is generally considered to be an EA. This circularity is bothersome at
first, but those of us who work in the field get used to it after a while. After all,
natural selection is defined as the survival of the fittest, and fitness is defined as
those who are most likely to survive,

4 CHAPTER 1: INTRODUCTION

1.2 WHY ANOTHER BOOK ON EVOLUTIONARY ALGORITHMS?

There are many fine books on EAs, which raises the question; Why yet another
textbook on the topic of EAs? The reason that this book has been written is to
offer a pedagogical approach, perspective, and material, that is not available in any
other single book. In particular, the hope is that this book will offer the following:

» A straightforward, bottom-up approach that assists the reader in obtaining
a clear but theoretically rigorous understanding of EAs is given in the book.
Many books discuss a variety of EAs as cookbook algorithms without any
theoretical support. Other books read more like research monographs than
textbooks, and are not entirely accessible to the average engineering stu-
dent. This book tries to strike a balance by presenting easy-to-implement
algorithms, along with some rigorous theory and discussion of trade-offs.

e Simple examples that provide the reader with an intuitive understanding of
EA math, equations, and theory, are given in the book. Many books present
EA theory, and then give examples or problems that are not amenable to an
intuitive understanding. However, it is possible to present simple examples
and problems that require only paper and pencil to solve. These simple
problems allow the student to more directly see how the theory works itself
out in practice.

o MATLAB®-based source code for all of the examples in the book is available
at the author's web site.? A number of other texts supply source code, but
it is often incomplete or outdated, which is frustrating for the reader. The
author’s email address is also available on the web site, and I enthusiastically
welcome feedback, comments, suggestions for improvements, and corrections.
Of course, web addresses are subject to obsolescence, but this book contains
algorithmic, high-level pseudocode listings that are more permanent than any
specific software listings. Note that the examples and the MATLAB code are
not intended as efficient or competitive optimization algorithms; they are
instead intended only to allow the reader to gain a basic understanding of the
underlying concepts. Any serious research or application should rely on the
sample code only as a preliminary starting point.

¢ This book includes theory and recemtly-developed EAs that are not avail-
able in most other textbooks., These topics include Markov theory mod-
els of EAs, dynamic system models of EAs, artificial bee colony algorithms,
biogeography-based optimization, opposition-based learning, artificial fish swarm
algorithms, shuffled frog leaping, bacterial foraging optimization, and many
others. These topics are recent additions to the state of the art, and their
coverage in this book is not matched in any other books. However, this book
is not intended to survey the state-of-the-art in any particular area of EA
research. This book is instead intended to provide a high-level overview of
many areas of EA research so that the reader can gain a broad understanding
of EAs, and so that the reader can be well-positioned to pursue additional
studies in the state-of-the-art.

?See http://acadenic. csuohio.edu/simond/Evolutionary0ptimization - if the address changes,
it should be easy to find with an internet search.

SECTION 1.3 PREREQUISITES 5

1.3 PREREQUISITES

In general, a student will not gain anything from a course like this without writing
his own EA software. Therefore, competent programming skills could be listed as a
prerequisite. At the university where 1 teach this course to electrical and computer
engineering students, there are no specific course prerequisites; the prerequisite
for undergraduates is senior standing, and there are no prerequisites for graduate
students. However, I assume that undergraduates at the senior level, and graduate
students, are good programmers,

The notation used in the bock assumes that the reader is familiar with the
standard mathematical notations that are used in algebra, geometry, set theory,
and calculus. Therefore, another prerequisite for understanding this book is a
level of mathematical maturity that is typical of an advanced senior undergraduate
student. The mathematical notation is described in Section 1.5. If the reader can
understand the notation described in that section, then there is a good chance that
he will also be able to follow the discussion in the rest of the book.

The mathematics in the theoretical sections of this book (Chapter 4, Section 7.6,
much of Chapter 13, and a few other scattered sections) require an understanding
of probability and linear systems theory. It will be difficult for a student to follow
that material unless he has had a graduate course in those two subjects. A course
geared towards undergraduates should probably skip that matertal.

1.4 HOMEWORK PROBLEMS

The problems at the end of each chapter have been written to give flexibility to
the instructor and student. The problems include written exercises and computer
exercises. The written exercises are intended to strengthen the student’s grasp
of the theory, deepen the student’s intuitive understanding of the concepts, and
develop the student’s analytical skills. The computer exercises are intended to help
the student develop research skills, and learn how to apply the theory to the types
of problems that are typically encountered in industry. Both types of problems
are important for gaining proficiency with EAs. The distinction between written
exercises and computer exercises is not strict but is more of a fuzzy division. That is,
some of the written exercises might require some computer work, and the computer
exercises require some analysis. The instructor might have EA-related assignments
in mind based on his own interests. Semester-length, project-based assignhments are
often instructive for topics such as this. For example, students could be assigned
to solve some practical optimization problem using the EAs discussed in this book,
applying one EA per chapter, and then comparing the performance of the EAs and
their variations at the end of the semester.

A solution manual to all of the problems in the text (both written exercises
and computer exercises) iz available from the publisher for instructors. Course
instructors are encouraged to contact the publisher for further information about
how to obtain the solution manual. In order to protect the integrity of the homework
assigniments, the solution manual will be provided only to course instructors.

6 CHAFTER 1: INTRODUCTION

1.5 NOTATION

Unfortunately, the English language does not have a gender-neutral, singular, third-

person pronoun. Therefore, we use the term he or him to refer to a generic third

person, whether male or fernale. This convention can feel awkward to both writers

and readers, but it seems to be the most satisfactory resolution to a difficult solution.
The list below describes some of the mathematical notation in this book.

« y is a computational notation that indicates that y is assigned to the
variable z. For example, consider the following algorithm:

a = coefficient of z2
b = coefficient of !
¢ = coefficient of z°

z* — (=b+ Vb — dac)/(2a)

The first three lines are not assignment statements in the algorithm; they
simply describe or define the values of o, b, and ¢. These three parameters
could have been set by the user, or by some other algorithm or process. The
last line, however, is an assignment statement that indicates the value on the
right side of the arrow is written to z*.

o df{-)/dz is the total derivative of f(-} with respect to x. For example, suppose
that ¥ = 2z and f(z,y) = 2z + 3y. Then f(z,y) = 8z and df(-)/dx = 8.

+ f2(.}, also denoted as 9f(-)/0x, is the partial derivative of f(-) with respect
to x. For example, suppose again that ¥ = 2x and f(x,y) = 2o + 3y. Then
[l y) =2

¢ {z :z € S} is the set of all such that x belongs to the set 5. A similar
notation is used to denote those values of & that satisfy any other particular
condition. For example, {x : ¢ = 4} is the same as {r : z € {-2,+2}},
which is the same as {-2, +2}.

e [a,b] is the closed interval between a and b, which means {z : ¢ < = < b}.
This might be a set of integers or a set of real numbers, depending on the
context.

s (a,b) is the open interval between g and b, which is {2 : @ < = < b}. This
might be a set of integers or a set of real numbers, depending on the context.

e If is it understood from the context that ¢ € S, the {z;} is shorthand for
{z; 1 i € §}. For example, if i € [1, N], then {z,} = {=1, 22, -, 2N5]}.

e 57 U S5 is the set of all x such that x belongs to either set S; or set Sz. For
example, if §; = {1,2,3} and S = {7,8}, then §; USs = {1,2,3,7,8}.

¢ |5 is the number of elements in the set S. For example, if § = {i :{ € [4, 8]},
then |S| = 5. If § = {3,19,7,v/2}, then |§| = 4. f S = {a:1 < o < 3},
then | 5| = cc.

¢ B is the empty set. |§] = 0.

SECTION 1.6: QUTLINE OF THE BOOK 7

e z mod y is the remainder after z is divided by y. For example, 8 mod 3 = 2.

[x] is the ceiling of z; that is, the smallest integer that is greater than or
equal to . For example, [3.9] =4, and [5] =5.

|z] is the foor of z; that is, the largest integer that is less than or equal to &
For example, [3.9] = 3, and |5] = 5.

* min, f{x) indicates the problem of finding the value of that gives the small-
est value of f{z). Also, it can indicate the smallest value of f(z). For exam-
ple, suppose that f(z) = {z — 1)2. Then we can solve the problem min, f{x)
using calculus or by graphing the function f{z) and visually noting the small-
est value of f{z). We find for this example that min, f(z) = 0. A similar
definition holds for max; f(z).

o argmin, f(z) is the value of z that results in the smallest value of f{x). For
example, suppose again that f(z) = {2 — 1)2. The smallest value of f(x) is
0, which occurs when & = 1, so for this example arg min, f{z) = 1. A similar
definition holds for arg max, f(x).

e 17 is the set of all real s-element vectors. It may indicate either column
vectors or row vectors, depending on the context.

o R*P ig the set of all real s x p matrices.

o [}, is the set of all g, where the integer k ranges from L to U. For
example, {yk}iaz = {v2. v, ¥4, 8}

o {yy} is the set of all yg, where the integer k ranges from a context-dependent
lower limit to a context-dependent upper limit. For example, suppose the
context indicates that there are three values: 4, y2, and y3. Then {y} =

{v1, 92,12}

e J means “there exists,” and 7 means “there does not exist.” For example, if
Y = {6,1,9}, then 3y < 2:y € Y. However, By > 10:y e Y.

s A == B means that 4 implies B. For example, {z > 10) = {z > 5).

o [is the identity mairix. Its dimensions depend o the context.

See the list of acronyms on page xxiii for more notation.

1.6 OUTLINE OF THE BOOK

This book is divided into six parts.

1. Part I consists of this introduction, and one more chapter that covers in-
troductory material related to optimization. It introduces different types of
optimization problems, the simple-but-effective hill climbing algorithm, and
concludes with a discussion about what makes an algorithm intelligent.

8 CHAPTER 1: INTRODUCTION

2. Part IT discusses the four EAs that are commonly considered to be the classics:

¢ Genetic algorithms;
+ Evolutionary programmming;
o Evolution strategies;

& Genetic programming,.

Past IT also includes a chapter that discusses approaches for the mathematical
analysis of GAs. Part II concludes with a chapter that discusses some of the
many algorithmic. variations that can be used in these classic algorithms.
These same variations can also be used in the more recent FAs, which are
covered in the next part.

3. Part III discusses some of the more recent EAs. Sorme of these are not really
that recent, dating back to the 1980s, but others date back only to the first
decade of the 21st century.

4. Part IV discusses special types of optimization problems, and shows how the
EAs of the earlier chapters can be modified to solve them. These special types
of problems include:

¢ Combinatorial prohlems, whose domain consists of integers;
o Constrained problems, whose domain is restricted to a known set;

s Multi-objective problems, in which it is desired to minimize more than
one objective simultaneously; and

¢ Problems with noisy or expensive fitness functions for which it is diffi-
cult to precisely obtain the performance of a candidate solution, or for
which it is computationally expensive to evaluate the performance of a
candidate solution.

5. Part V includes several appendices that discuss topics that are important or
interesting.

e Appendix A offers some miscellaneous, practical advice for the EA siu-
dent and researcher.

¢ Appendix B discusses the no-free-lunch theorem, which tells us that, on
average, all optimization algorithms perform the same. It also discusses
how statistics should be used $0 evaluate the differences between EAs.

e Appendix C gives some standard benchmark functions that can be used
to compare the performance of different EAs.

1.7 A COURSE BASED ON THIS BOOK

Any course based on this book should start with Chapters 1 and 2, which give an
overview of optimization problems. From that point on, the remaining chapters
can be studied in almost any order, depending on the preference and interests of
the instructor. The obvious exceptions are that the study of genetic algorithms
{Chapter 3) should precede the study of their mathematical models (Chapter 4).

SECTION 1.7: & COURSE BASED ON THIS BOOK 9

Also, at least one chapter in Parts II or III (that is, at least one specific EA) needs
to be covered in detail befare any of the chapters in Part IV.

Most courses will, at a minimum, cover Chapters 3 and 5-7 to give the student
a background in the classic EAs. If the students have suflicient mathematical
sophistication, and if there is time, then the course should alse include Chapter 4
somewhere along the line. Chapter 4 is important for graduate students hecause it
helps them see that EAs are not only a qualitative subject, but there can and should
be some theoretical basis for them also. Too much EA research today is based
on minor algorithmic adjustments without any mathematical support. Many EA
practitioners only care about getting resultg, which is fine, but academic researchers
need to be involved in theory as well as practice.

The chapters in Parts IIT and IV can be covered on the basis of the instructor’s
or the students’ specific interests.

The appendices are not included in the main part of the book because they
are not about EAs per se, but the importance of the appendices should not be
underestimated. In particular, the material in Appendices B and C are of critical
importance and should be included in every EA course. I recommend that these
two appendices be discussed in some detail immediately after the first chapter in
Parts 1T or III.

Putting the above advice together, here is a proposed outline for a one-semester
graduate course.

o Chapters 1 and 2.
e Chapter 3.
¢ Appendices B and C.

Chapters 4-8. I recommend skipping Chapter 4 for most undergraduate stu-
dents and for short courses.

o A few chapters in Part III, based on the instructor's preference. At the risk
of starting an “EA war” with my readers, I will go out on a limb and claim
that ACO, PSO, and DE are among the most important “other” EAs, and
s0 the instructor should cover Chapters 10-12 at a minimum.

» A few chapters in Part IV, based on the instructor’s preference and the avail-
able time.

