
  Chapter   1 

Introduction     

     Sooner or later, any discussion of basic electromagnetic theory is certain to come to 
the issue of how best to categorize the vectors   B, the magnetic induction, and   H, 
the magnetic fi eld strength. Polar or axial is the central issue  [2] . From an elementary 
physical perspective, taking   B as an axial vector seems appropriate since, as far as 
we know, all magnetism originates from currents (see Appendix  14.2 ). From a 
mathematical standpoint, however, taking   H as a polar (or true) vector seems a 
better fi t with an integral equation such as Ampere ’ s law,   ∫ =⋅H ld Iµ0 , particularly 
in relation to the subject of differential forms  [3 – 5] . But taking the view that   B 
can be one sort of vector while   H is another seems to be at odds with an equation 
such as   B H= µ  in which the equality implies that they should be of the same char-
acter. A separate formal operator is required in order to get around this problem, for 
example, by writing   B H= ∗µ  where   * converts a true vector to an axial one and 
vice versa, but for most people, any need for this is generally ignored. 

 Geometric algebra provides a means of avoiding such ambiguities by allowing 
the existence of entities that go beyond vectors and scalars. In 3D, the additional 
entities include the bivector and the pseudoscalar. Here the magnetic fi eld is repre-
sented by a bivector, which cannot be confused with a vector because it is quite a 
different kind of entity. Multiplication with a pseudoscalar, however, conveniently 
turns the one into the other. But the new entities are far from arbitrary constructs 
that have simply been chosen for this purpose, they are in fact generated inherently 
by allowing a proper form of multiplication between vectors, not just dot and cross 
products. 

 Using geometric algebra, Maxwell ’ s equations and the Lorentz force are 
expr essed in remarkably succinct forms. Since different types of entities, for 
example vectors and bivectors, can be combined by addition, the fi eld quantities, 
the sources, and the differential operators can all be represented in a way that goes 
quite beyond simply piecing together matrices. While multiplication between entities 
of different sorts is also allowed, the rules all stem from the one simple concept of 
vector multiplication, the geometric product. Multiplication of a vector by itself 
results in a scalar, which provides the basis for a metric. Inner and outer products 
are very simply extracted from the geometric product of two vectors, the inner 
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2  Chapter 1 Introduction

product being the scalar part of the result whereas the outer product is the bivector 
part. Given that the product of a vector with itself is a scalar, inner and outer products 
are directly related to the ideas of parallel and perpendicular. The bivector therefore 
represents the product of two perpendicular vectors and has the specifi c geometric 
interpretation of a directed area. The pseudoscalar in 3D corresponds to a trivector, 
the product of three vectors, and can be taken to represent a volume. This hierarchy 
gives rise to the notion that a geometric algebra is a graded algebra, scalars being 
of grade 0, vectors grade 1, bivectors grade 2, and so on. Crucially, objects of 
different grades may be added together to form a general form of object known as 
a multivector. Just how this is possible will be explained in due course, but an 
example is   t + r, which has pretty much the same meaning as writing   t,r( ) in normal 
vector algebra where, for example, this is the way we would normally write the 
time and position parameters of some given variable, for example,   E rt,( ). Why 
not   E rt +( )? 

 In the geometric algebras we shall be dealing with, pseudoscalars always have 
a negative square, a property that leads to complex numbers being superfl uous. It is 
also found that the inner and outer products may generally be considered to be step -
 down and step - up operations, respectively. Provided the results are nonzero, the 
inner product of an object of grade  n  with another of grade  m  creates an object of 
grade   m n− , whereas their outer product creates an object of grade   m n+ . 

 In addition to the novel algebraic features of geometric algebra, we also fi nd 
that it is easy to turn it to calculus. In fact, the vector derivative   � provides all the 
functions of gradient, divergence, and curl in a unifi ed manner, for, as the name 
suggests, it behaves like other vectors and so we can operate not only on scalars but 
also on vectors and objects of any other grade. While the inner and outer products 
with   � relate respectively to divergence and curl, the salient point is that we can use 
  � as a  complete entity  rather than in separate parts. Although the time derivative 
still requires to be dealt with separately by means of the usual scalar operator   ∂ t, 
this no longer needs to stand entirely on its own, for just as we can combine time 
and position in the multivector form   t + r, we can do the same with the scalar and 
vector derivatives, in particular by combining the time and space derivatives in the 
form   ∂ t + �. The everyday tools of electromagnetic theory are based on standard 
vector analysis in which time and space are treated on separate 1D and 3D footings, 
but here we have a more unifi ed approach, which though not quite 4D may be 
appropriately enough referred to as (3 + 1)D where 

   ( ) ( ) ( )3 1 3 1+ = +D D space D time  

 For example, we can write novel - looking equations such as 
  ∂ t t+( ) +( ) = +� r v4  and   ∂ t +( ) = +( )⋅� r r r v2 2 , and many more besides, but we 
do have to be careful about what such equations might mean. Note however that 
(3 + 1)D properly refers to the physical model, where vectors represent space and 
scalars represent time, whereas the geometric algebra itself is 3D and should be 
strictly referred to as such. For the same reason, (3 + 1)D cannot be equated to 
4D — time is treated as a scalar here, whereas it would properly require to be a vector 
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in order to contribute a fourth dimension. When we do opt for a full 4D treatment, 
however, this is found to provide a very elegant and fully relativistic representation 
of spacetime. This has even more signifi cance for the representation of electromag-
netic theory because it unravels the basic mystery as to the existence of the magnetic 
fi eld. It simply arises from a proper treatment of Coulomb ’ s law so that there is no 
separate mechanism by which a moving charge produces a magnetic fi eld. In fact, 
this was one of the revolutionary claims put forward in 1905 by Albert Einstein (see, 
e.g., Reference  2 ). 

 The aim of this work is to give some insight into the application of geometric 
algebra to electromagnetic theory for a readership that is much more familiar with 
the traditional methods pursued by the great majority of textbooks on the subject to 
date. It is our primary intention to focus on understanding the basic concepts and 
results of geometric algebra without attempting to cover the subject in any more 
mathematical detail than is strictly necessary. For example, although quaternions 
and the relationship between a 2D geometric algebra and complex numbers are 
important subjects, we discuss them only by way of background information as they 
are not actually essential to our main purpose. 

 We have also tried to avoid indulging in mathematics for its own sake. For 
example, we do not take the axiomatic approach; rather, we try to make use of exist-
ing ideas, extending them as and when necessary. Wherever it helps to do so, we 
draw on the intuitive notions of parallel and perpendicular, often using the symbols 
  ⊥ and   // as subscripts to highlight objects to which these attributes apply. On the 
whole, the approach is also practical with the emphasis being on physical insight 
and understanding, particularly when there is an opportunity to shed light on the 
powerful way in which geometric algebra deals with the fundamental problems in 
electromagnetic theory. 

 The reader will fi nd that there are some excellent articles that give a fairly simple 
and clear introduction to basic geometric algebra, for example, in Hestenes  [6, 7]  
and in the introductory pages of Gull et al.  [8] , but in general, the literature on its 
application to electromagnetic theory tends to be either limited to a brief sketch or 
to be too advanced for all but the serious student who has some experience of the 
subject. The aim of this work is therefore to make things easier for the novice by 
fi lling out the bare bones of the subject with amply detailed explanations and deriva-
tions. Later on, however, we consider the electromagnetic fi eld of an accelerating 
point charge. While this may be seen as an advanced problem, it is worked out in 
detail for the benefi t of those readers who feel it would be worth the effort to follow 
it through. Indeed, geometric algebra allows the problem to be set up in a very 
straightforward and elegant way, leaving only the mechanics of working through the 
process of differentiation and setting up the result in the observer ’ s rest frame. 

 Even if the reader is unlikely to adopt geometric algebra for routine use, some 
grasp of its rather unfamiliar and thought - provoking ideas will undoubtedly provide 
a better appreciation of the fundamentals of electromagnetics as a whole. Hopefully, 
any reader whose interest in the subject is awakened will be suffi ciently encouraged 
to tackle it in greater depth by further reading within the cited references. It is only 
necessary to have a mind that is open to some initially strange ideas. 
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 We start with a brief examination of geometric algebra itself and then go on to 
take a particular look at it in (3 + 1)D, which we may also refer to as the Newtonian 
world inasmuch as it describes the everyday intuitive world where time and space 
are totally distinct and special relativity does not feature. In his  Principia  of 1687, 
Newton summarized precisely this view of space and time which was to hold fast 
for over two centuries:  “ I will not defi ne time, space, place and motion, as being 
well known to all ”   [9] . We then embark on fi nding out how to apply it to the foun-
dations of basic electromagnetics, after which we briefl y review what has been 
achieved by the process of restating the traditional description of the subject in terms 
of geometric algebra — what has been gained, what if anything has been lost, what 
it does not achieve, and what more it would be useful to achieve. This then leads to 
exploring the way in which the basic principles may be extended by moving to a 
4D non - Euclidean space referred to as spacetime, in which time is treated as a vector 
in an equivalent but apparently somewhat devious manner to spatial vectors in that 
its square has the opposite sign. The concept of spacetime was originated by Hermann 
Minkowski in a lecture given in 1909, the year of his death.  “ Raum und Zeit, ”  the 
title of the lecture, literally means  “ space and time ”  whereas the modern form, 
spacetime, or space - time, came later. After covering the basics of this new geometric 
algebra, we learn how it relates to our ordinary (3 + 1)D world and in particular what 
must be the appropriate form for the spacetime vector derivative. 

 Once we have established the requisite toolset of the spacetime geometric 
algebra, we turn once again to the basic electromagnetic problems and show that 
not only are the results more elegant but also the physical insight gained is much 
greater. This is a further illustration of the power of geometric algebra and of the 
profound effect that mathematical tools in general can have on our perception of 
the workings of nature. It would be a mistake to have the preconception that 
the spacetime approach is diffi cult and not worth the effort; in fact, the reverse 
is true. Admittedly, many relativity textbooks and courses may give rise to such 
apprehensions. Even if the reader is resolutely against engaging in a little special 
relativity, they need not worry since the spacetime approach may simply be taken 
at face value without appealing to relativity. Only a few simple notions need to 
be accepted:

    •      Time can be treated as a vector.  

   •      The time vector of any reference frame depends in a very simple way on its 
velocity.  

   •      The square of a vector may be positive, zero, or negative.  

   •      An observer sees spacetime objects projected into (3 + 1)D by a simple opera-
tion known as a spacetime split that depends only on the time vector of the 
chosen reference frame.    

 Again we draw on the notions of parallel and perpendicular, and, as a further 
aid, we also introduce a notation whereby underscoring with a tilde,   ∼  , indicates that 
any vector marked in this way is orthogonal to some established time vector. That 
is to say, given  t  as the time vector, we can express any vector  u  in the form   utt u+  
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where   utt t//  and   u t⊥ . As a result,   u may be interpreted as being a purely spatial 
vector. This has many advantages, an obvious one being that   u t x y z= + + +u u u ut x y z  
can be written more simply as   u t u= +ut . 

 It is quite probable that many readers may wish to skip the two chapters that 
mainly cover themes from special relativity, but it is also just as probable that they 
will refer to them later on if and when they feel the need to look  “ under the lid ”  and 
investigate how spacetime works on a physical level. This may be a useful approach 
for those readers who do initially skip these chapters but later decide to tackle the 
radiated fi eld of an accelerating charge. On the other hand, those intrepid readers 
who wish from the outset to embark on the full expos é  will probably fi nd it best to 
read through the chapters and sections in sequence, even if this means skimming 
from time to time. With or without the benefi t of special relativity, it is to be hoped 
that all readers should be about to put geometric algebra into practice for themselves 
and to appreciate the major themes of this work:

    •      The electric and magnetic fi elds are not separate things, they have a common 
origin.  

   •      The equations governing them are unifi ed by geometric algebra.  

   •      In general, they are also simplifi ed and rendered in a very compact form.  

   •      This compactness is due to the ability of geometric algebra to encode objects 
of different grades within a single multivector expression.  

   •      The grade structure is the instrument by which we may  “ unpack ”  these multi-
vector expressions and equations into a more traditional form.  

   •      Coulomb ’ s law    +    spacetime    =     Σ  classical electromagnetic theory.    

 While SI units are used throughout this book, in the later stages we introduce 
a convention used by several authors in which constants such as   c,   ε0, and   µ0 are 
suppressed. This is often seen in the literature where natural units have been used 
so that   c = 1. As a result, the equations look tidy and their essential structures are 
clearer. However, this need not be taken as a departure from SI into a different set 
of units; in our case, it is just a simple device that promotes the key points by 
abstracting superfl uous detail. Restoring their conventional forms complete with the 
usual constants is fairly straightforward. 

 We use the familiar bold erect typeface for 3D vectors; for example, the normal 
choice of orthonormal basis vectors is   x y z, , , whereas for spacetime, we switch to 
bold italic simply to make it easier to distinguish the two when they are side by side. 
The usual spacetime basis is therefore taken as   t x y z, , , . Vectors may be expressed 
in component form as   u ux yx y+ … and so on. While this is a departure from the 
notation typically seen in the literature, in our view, many readers will be more 
comfortable with this rather than having to deal with the use of indexed basis 
elements and the same typeface for scalars and vectors alike. When indexed 
basis elements are required, we use   e ex y, … to mean the same thing as   x y,  and 
so on. This is no different from using numerical indices since, after all, indices 
are only labels. This makes it possible to use the summation sign, for example, 
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  u e= ∑ =k x y z k ku, , . Other notational forms and symbols are kept to a minimum, being 
introduced as and when necessary either because they are standard and need to be 
learned or simply because they fulfi ll a specifi c purpose such as readability; for 
example, we use the less familiar but neater form   ∂u rather than   ∂ ∂ u for derivatives. 
Finally, the glossary of Appendix  14.1  provides an  aide memoire  to key terms and 
notation, and the other appendices provide a little more detail on some issues that, 
though of interest, would have simply been a digression in the main text.        

 


