
1
RECEPTION AS A STATISTICAL
DECISION PROBLEM

1.1 SIGNAL DETECTION AND ESTIMATION

As we have noted above, our aim in this chapter is to provide a concise review of Bayesian

decision methods that are specifically adapted to the basic problems of signal detection (D)

and estimation (E). From Fig. 1.1b we can express the reception situation concisely in a

variety of equivalent ways through the following operational relations:

A. Data Processing at the Receiver.

T̂D or T̂E

� �
X ¼ Y; or T̂DR̂ or T̂ER̂

� �
a ¼ Y ; ð1:1:1Þ

where X is the data input from the spatial processor R̂, that is, the receiving aperture

R̂ � T̂AR

� �
, to the temporal data processing elements T̂D; T̂E

� �
; Y represents the output

from these processors. In more detail from Fig. 1.1b we can also write the following.

B. Data Input to Processors.

X ¼ R̂a ¼ R̂T̂
ðNÞ
M T̂AT

� �
Sin; ð1:1:1aÞ

in which a is the propagating field in the medium, which contains ambient sources and

scattering elements embodied in the operator T̂
ðNÞ
M .
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C. Field in the Medium.

a ¼ T̂
ðNÞ
M T̂ATSin: ð1:1:1bÞ

The input or injected signal Sin and output “decisions” {v} are described operationally by

the following.

D. Input Signals and Decision Outputs.

Sin ¼ T̂modT̂e uf g; vf g ¼ T̂dY ¼ T̂d T̂D or T̂E

� �
X; ð1:1:1cÞ

where now {u} is a set of “messages” to be transmitted and the “decisions” {v} fall into

two (not necessarily disjoint) classes: (“yes”/“no”) for detection (D) and a set of numbers

representing measurements, namely estimates of received signal properties or para-

meters. Comparing Fig. 1.1a and bwe see that the “compact” channel operators T̂
ðNÞ
T , and

so on, in Eq. (1.1.1d) are

E. Components of the Compact Operators.

T
ðNÞ
T ¼ T̂ATT̂modT̂e; T̂

ðNÞ
M ¼ T̂

ðNÞ
M ; T̂

ðNÞ
R ¼ T̂dT̂D=ET̂AR: ð1:1:1dÞ

We emphasize here and subsequently (unless otherwise indicated) that when the signal

(if any) is present in X and therefore in the received data Y, Eq. (1.1.1), it is the received

signal SRecð¼ SÞ. The received signal is, or course, not the signal Sin originally injected
into themedium. This dichotomy occurs because the medium and canonical channel as a
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FIGURE 1.1 Signal and hypothesis classes in detection.

16 RECEPTION AS A STATISTICAL DECISION PROBLEM



whole modify and generally contaminate Sin, with additive and signal-dependent noise

(clutter and reverberation) as well as varieties of ambient noise and interference, in

addition to such inherent phenomena as absorption and dispersion. All this, of course, is

what makes achieving effective reception of the desired signals the challenging problem

that we seek to resolve in subsequent chapters. (We remark that SRec may be generated

either by the desired source, Sin, or by some undesired source, such as interference, or by a

combination of both.)

With this in mind we see that our goals in Chapters 1–7 are first to establish explicit

analytic connections between the received data X, the physical realities which affect them

(via T̂
ðNÞ
M ), and the successful extraction of the desired signal, initially as S ¼ SRecð Þ, and

eventually through attained knowledge of the medium (the inverse problem) to obtain

acceptable reproduction of the original signal Sin. This chapter introduces the formal

decision structure for achieving this, while Chapters 2–7 following provide the canonical

algorithms (operations on the input data) and performancemeasures to be used subsequently

for specific applications. We remark that the operations involving coding [ T̂d; T̂e

� �
in (1.1.1c), and shown in Figure 1.1] belong to the domain of Information Theory per

se [2], which is outside the scope of the present volume.1

1.2 SIGNAL DETECTION AND ESTIMATION

Webeginour decision—theoretic formulationwith a general descriptionof the twoprincipal

reception problems, namely detection and estimation (sometimes called extraction) of

signals in noise, expressed operationally above by Eq. (1.1.1). We first introduce some

terminology, taken partly from the field of statistics, partly from communication engineer-

ing, and review the problems in these terms.We shall also point out some considerations that

must be kept inmind concerning the givendata of these problems. Later, in Sections 1.3–1.4,

we generalize the reception problem, state it in mathematical language, and outline the

nature of its solutions.2

1.2.1 Detection

The problem of the detection of a (received)3 signal in noise is equivalent to one which, in

statistical terminology, is called the problem of testing hypotheses: here, the hypothesis that

noise alone is present is tobe tested, on thebasis of some receiveddata, against thehypothesis

(or hypotheses) that a signal (or one of several possible signals) is present.

Detection problems can be classified in a number of ways: by the number of possible

signals that need to be distinguished, by the nature of the hypotheses, by the nature of the data

and their processing, and by the characteristics of the signal and noise statistics. These will

now be described in greater detail.

1 However, through selected references we shall provide connections to these topics at appropriate points in this

book.
2 As an introduction to the methods of statistical inference, see, for example, the treatments of Kendall [3] and

Cram�er [4]; also Luce and Raiffa, [5].
3 Note the comment following Eq. (1.1.1d) above.
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1.2.1.1 The Number of Signal Classes to be Distinguished This is equal to the number

of hypotheses to be tested but does not depend on their nature. A binary detection system

can make but two decisions, corresponding to two hypotheses, while a multiple

alternative detection system [6, 7] makes more than two decisions. For the time

being, we deal only with the binary detection problem (the multiple alternative cases

are discussed in Chapter 4 ff.).

1.2.1.2 The Nature of the Hypotheses Here the received signal is a desired system input

during the interval available for observation of the mixture of signal and noise. Noise

(homogeneous—Hom-Stat stationary or nonstationary inhomogeneous — non-Hom-Stat)

is an undesired input, considered to enter the system independently4 of the signal and to

affect each observation according to an appropriate schemewhereby the two are combined.5

The class of all possible (desired) system inputs is called the signal class and is conveniently

represented as an abstract space (signal space) in which each point corresponds to an

individual received signal.

A hypothesis, which asserts the presence of a single signal at the input is termed a simple

hypothesis. A class (or composite) hypothesis, on the other hand, asserts the presence at

the input of an unspecified member of a specified subclass of signals; that is, it reads

“some member of subclass k (it does not matter which member) is present at the input.”

Such a subclass is called a hypothesis class. Hypothesis classes may or may not overlap

(cf. Fig. 1.1e and f).

Usually, one hypothesis in detection asserts the presence of noise alone (or the absence of

any signal) and is termed the null hypothesis. In binary detection, the other hypothesis is

called thealternative. If the alternative is a classhypothesis and the class includes all nonzero

signals involved in the problem, it is termed a one-sided alternative. It is a simple alternative

if there is but one nonzero signal in the entire signal space (which signal must therefore

contain nonrandom parameters only). Figure 1.1 illustrates some typical situations. In each

case, the class of all possible system inputs is represented by signal space W.

The hypothesis classes are enclosed by dashed lines and denoted as WðkÞ, where the

subscript refers to the hypothesis: that is, thekth hypothesis states that the signal is amember

of WðkÞ, or, symbolically, Hk : S«WðkÞ. In Fig. 1.1a and b are shown two binary cases

corresponding to the simple alternative (Wð1Þ contains one point) and the one-sided

alternative (Wð1Þ contains all nonzero system inputs). The latter would occur, for example,

if all signals in abinarydetectionproblemwere the sameexcept for a randomamplitude scale

factor, governed by, say, a Gaussian distribution. Figure 1.1c and d shows multiple

hypothesis situations where the hypothesis classes do not overlap, while Fig. 1.1e and f

represents situations where overlapping can occur, in (e) with single-point classes and in (f)

when the classes are one - sided or composite. Many different combinations can be

constructed, depending on the actual problems at hand. In the present treatment, we shall

confineour attention to the nonoverlapping cases, although the general approach is in noway

restricted by our so doing. [But see for example, Section 1.10.2 ff.]

4 In most applications, but, of course, scattered radiation is signal dependent (cf. Chapters 7 and 8 ff.).
5 There can be noiselike signals also, but these are not to be confused with the noise background. It is frequently

convenient to speak of “noise alone” at the input, and this is to be interpreted as “no signal of any kind” present. In

physical systems, which do not, of course, use ideal (i.e., noise-free) elements, noise may be introduced at various

points in the system, so that caremust be taken in accounting for themanner inwhich signal and noise are combined.
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1.2.1.3 The Nature of the Data and Their Processing The observations made on the

mixture of signal and noise during the observation period may consist of a discrete set of

values (discrete or digital sampling) or may include a continuum of values throughout the

interval (continuous, or analogue sampling) (cf. Fig. 1.2). Whether one procedure or the

other is used is a datum of the problem. In radar, for example, detection may (to a first

approximation) be based on a discrete set of successive observations, while, in certain

communication cases, a continuous-wave signal may be sampled continuously.

Similarly, it is a datum of the problem whether or not the observation interval, that is, the

interval overwhich the reception systemcan store the data for analysis, is fixedor variable. In

the latter case, one can consider sequential detection. A sequential test proceeds in steps,

deciding at each stage either to terminate the test or to postpone termination and repeat the

test with additional data. In applications of decision theory, it turns out that the analysis

divides conveniently at the choice between the sequential and nonsequential. The theory of

each type is complete in a certain sense, and additional restrictions on the tests may not be

imposedwithout compromising this completeness. It is, of course, true that since the class of

sequential tests includes nonsequential tests as a special subclass, a higher grade of

performance may be expected, on the average, under the wider assumption [8, 9].

1.2.1.4 The Signal and Noise Statistics The nature of these quantities is clearly of

central importance, as it is upon them that specific calculations of performance depend. In

general, individual sample values cannot be treated as statistically independent, and this

inherent correlation between the sample values over the observation period, in both the

continuous and discrete cases, is an essential feature of the problem.

We begin first with temporal waveforms, extending this signal class presently to space–

time signals, in Section 1.3.1 ff. Temporal signals may be described in quite general terms

involving both random and deterministic parameters. Thus, we write S tð Þ ¼ S t; «; a0; uð Þ.
Here, « is an epoch, or time interval, measured between some selected point in the “history”

of the signal S and, say, the beginning of the observation period t1; t1 þ Tð Þ, relating the

observer’s to the signal’s timescale, as indicated in Fig. 1.2; a20 is a scale factor, measuring

(relative) intensity of the signal with respect to the noise background; and u denotes all other
descriptive parameters, such as pulse duration, period, and so on, which may be needed to

specify the signal; S itself gives the “shape,” or functional form, here of the wave in time.

No restriction is placed on the received signal other than that it have finite energy in the

observation interval. It may be entirely random, partly random (e.g., a “square wave” with

random durations), or entirely causal or deterministic [e.g., a sinusoid, or a more complex

T
t

S(t)

S(tn)

ε

tn
t1 t1 T

Continuous
sampling
Discrete
sampling

tn

FIGURE 1.2 A temporal signal waveform, showing discrete and continuous time sampling, the

epoch «, and the observation period, T.
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structure that is nevertheless uniquely specified by SðtÞ]. Signals for which the epoch «
assumes a fixed value are said to be coherent (with respect to the observer), while if « is a
random variable, such signals are called incoherent. Coherent signals may have random

parameters and thus belong to subclasses ofW containing more than one member. Coherent

signals corresponding to subclasses containing but a single member will be called

completely coherent. From these remarks, it is clear that an incoherent signal cannot belong

to such anelementary class.Thedescriptionof thenoise is necessarily statistical, andherewe

distinguish between noise belonging to stationary and nonstationary processes [10, 11].

Generalizations of the noise structure to include partially deterministic waves offer no

conceptual difficulties.

1.2.2 Types of Extraction

We use the term extraction here to describe a reception process that calls for an estimate of

the received signal itself or one or more of its descriptive parameters.

Signal extraction, like detection, is a problem that in other areas has received

considerable attention from statisticians and has been known under the name of parameter

estimation. A certain terminology has become traditional in the field, which we shall

mention presently. We can classify extraction problems under three headings: the nature

of the estimate, the nature of the data processing, and the statistics of signal and noise.

Much of what can be said under these headings has already been mentioned above. A few

more comments may be helpful.

Information about the signal may be available in either of two forms: it may be given as

an elementary random process in time, defined by the usual hierarchy ofmultidimensional

distribution functions [12] or it may be a known function of time, containing one or more

random parameters with specified distributions. In the latter case, the random parameters

may be time independent, or, more generally, they may be themselves random processes

(e.g., a noise-modulated sine wave). Clearly there is, as in detection, a wide variety of

possible situations. They may be conveniently classified as follows:

1.2.2.1 The Nature of the Estimate A point estimate6 is a decision that the signal or one

ormore of its parameters have a definitevalue. An interval estimate6 is a decision that such a

value lies within a certain interval with a given probability. Among point estimates, it is

useful to make a further distinction between one-dimensional and multidimensional

estimates. An illustration of the former is the estimate of an amplitude scale factor

constant throughout the interval, while an estimate of the signal itself throughout the

observation period is an example of the latter.

1.2.2.2 The Nature of the Data Processing When the value of a time-varying quantity

XðtÞ, (1.1.1b) at a particular instant is being estimated, the relationship between the time tl
for which the estimate is valid and the times at which data are collected becomes important

(cf. Fig. 1.3). If tl coincides with one of the sampling instants, the estimation process is

termed simple estimation, or simple extraction. If, on the other hand, tl does not coincide

with any sampling instant, the process is called interpolation, or smoothing, when tl lies

within the observation interval t1; t1 þ Tð Þ and extrapolation, or prediction, when tl lies

outside t1; t1 þ Tð Þ. Systems of these types may estimate the value of the signal itself or

6 See Cram�er [4] op. cit., for a further discussion of conventional applications.
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alternatively that of a time-varying signal parameter or some functional of the signal, such as

its derivative or integral.

Frequently, a requirement of linearity may be imposed on the optimum system (which is

otherwise almost always nonlinear), so that its operations may be performed by a linear

network, or sometimes certain specific classes of nonlinearitymay be allowed.An important

question, then, is the extent to which performance is degraded by such constraints.

1.2.2.3 The Signal andNoise Statistics As indetection, thefinite sample uponwhich the

estimate is based may be discrete or continuous, correlated or uncorrelated, and the random

processes stationary or nonstationary, ergodic or nonergodic. In a similarway,wemay speak

of coherent and incoherent extraction according towhether the received signal’s epoch « is
known exactly or is a random variable. The signals themselves may be structurally

determinate, that is, the functions S have definite analytic forms; or they may be

structurally indeterminate, when the S are described only in terms of a probability

distribution. A sinusoid is a simple example of the former, while a purely random

function is typical of the latter. The case where the signal is known completely does not

arise in extraction.

1.2.3 Other Reception Problems

Reception itself may require a combination of detection and extraction operations. Extrac-

tion presupposes the presence of a signal at the input, and sometimes this cannot be assumed.

Wemay then performdetection and extraction simultaneously and judge the acceptability of

the estimate according to the outcome of the detection process. The problem here is that

estimation is performed under uncertainty as to the signal’s presence in the received data,

which in turn leads to biased estimates that must be suitably accounted for. The analytic

results for this new situation are developed and illustrated in detail in Chapters 5 and 6

following. The procedure is schematically illustrated in Figure 1.4, including possible

coupling between the detector and extractor.

In our reception problems here, the system designer usually has little control over the

received signal, since the medium, embodied in T̂
ðNÞ
T , is specified a priori. The present

definition of the problem states that each possible signal is prescribed, together with its

probability of occurrence, and the designer cannot change these data. However, a different

strategic situation confronts the designer of a system for transmittingmessages frompoint to

point through a noisy channel, since he is then permitted to control the way in which he

matches the signal to the channel. The encoding process ðT̂eÞ, Fig. 1.1 is accordingly

concernedwithfindingwhat class of signal ismost effective against channel noise ðT̂ðNÞ
M Þ and

T

ttλ tn= tλtλ≠ tn
tλt1 t1+ T

X(t)

(Extrapolation) (Simple
estimation) (Interpolation)

Prediction
(extrapolation)

tn

FIGURE 1.3 Simple estimation, interpolation (smoothing), and extrapolation (prediction).
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how best to represent messages by such signals (Sections 6.1, 6.5.5 [1]). It is not directly

a reception problem, except in the more general situation mentioned earlier (cf. also

Section 23.2 [1]), where simultaneous adjustment of the transmission and reception

operations T̂
ðNÞ
T ; T̂

ðNÞ
R is allowed. Decoding T̂d

� �
, of course, is a special form of reception

in which the nature of the signals and their distributions are intimately related to the noise

characteristics. Moreover, for the finite samples and finite delays available in practice, this

is always a nontrivial problem, since it is impossible in physical cases7 to extract messages

(in finite time) from a noisy channel without the possibility of error.

1.3 THE RECEPTION SITUATION IN GENERAL TERMS

Let us now consider the main elements of a general reception problem.We have pointed out

earlier that the reception problem can be formulated as a decision problem and that

consequently certain information must be available concerning the statistics of signal and

noise.We have also indicated that some assumptions are necessary concerning the nature of

the data and of the sampling interval and procedures. Finally,wemust prescribe a criterion of

excellence by which to select an optimum system and must specify the set of alternatives

among the decisions to be made.

In our present formulation, we shall make certain assumptions concerning these ele-

ments. For definiteness, these assumptions will not be the most general, but they will be

sufficiently unrestrictive to exhibit the generality of the approach. Later, in Section 1.4.3, we

shall discuss the reasoning by which some of these restrictions are removed.

1.3.1 Assumptions: Space–Time Sampling

Concerning the statistics of signal and noise, we shall assume for the present exposition that

both are known a priori and aswell as the discretely sampled received dataX. (In subsequent

chapters we shall consider various techniques for handling the problem of unknown or

unavailable priors.)

We further extend the sampling process here to space as well as time, since the array

operators T̂AR and T̂AT, cf. (1.1.1) et seq. sample the data field established in the medium by

the signal and noise sources. We further assume that the sampling intervals, or sample size,

in time are fixed and of finite duration T and similarly in space, that the array or aperture size

is likewise finite. Thus, in time n ¼ 1; . . . ;N data elements can be acquired, at each of

Detector

Extractor

H1 “yes”: (S and N)
or

H0 “no”: (N only)

Estimate of
S, a0, ε, θ  

Accept

Reject

X(t)

FIGURE 1.4 Reception involving joint signal detection and extraction.

7 Strictly speaking, there is always some noise, although in certain limiting situations thismaybe avery small effect

and hence to an excellent approximation ignorable vis-à-vis the signal.
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m ¼ 1; . . . ; M spatial points8. Accordingly, we obtain a total of J ¼ MN data components

in the received space–time sample.

We employ the following component designations: j ¼ mn ¼ ðspace� timeÞ, so

that j ¼ 11; 12; . . . ; 1N represents the N time samples at spatial point 1; j ¼ 21;
22; 23; . . . ; 2N similarly denotes the N time samples at spatial point 2, and so on. Thus,

j is a double indexnumeric, obeying the convention that thefirst index (m) refers to the spatial

point in question while the second (n) indicates the nth time sample point in T. Specifically,

we write Xj¼mn ¼ X rm; tnð Þ, Sj ¼ S rm; tnð Þ, Nj ¼ N rm; tnð Þ, respectively for the received

data X, the received signal S, and noise N, at point r ¼ rm in space and at time t ¼ tn
(see 1.1.1). Furthermore, it is sometimes convenient to introduce a single index numeric, k.

Thus, we write for j and k the following equivalent numbering systems:

j

k

� �¼
¼

1; 1
1

� �
;
;

1; 2
2

� �
; :::;
; :::;

ð1;NÞ
N

� �
;
;

2; 1
N þ 1

� �
;
;

2; 2
N þ 2

� �
; :::;
; :::;

2;N
2N

� �
; :::;
; :::;

M; 1
ðM � 1ÞN þ 1

� �
;
;

M; 2
ðM � 1ÞN þ 2

� �
; :::;
; :::;

M;N
MN

� �
: ð1:3:1Þ

The double index j is convenient when we need explicitly to distinguish the spatial from the

temporal portion of the received field, in processing. It is also useful when we impose the

constraint of space and time separability on operations at the receiver, such as array or

aperture design, independent of optimization of the temporal processing, a usual although

approximate procedure in practice. Of course, j may also be treated as a single index if we

order it according to the equivalent scheme (1.3.1), that is, let j ! k. This alternative form is

often requiredwhen quantitative, that is, numerical, results are desired. The formal structure

of the sampling process itself is described in detail at the beginning of Section 1.6.1,

cf. Eq. (1.6.2a).

At this point wemake no special assumption concerning the criterion of optimality, but

we do assume, for the sake of simplicity, that the decision to be made by the system is to

select among a finite number L of alternatives. Figure 1.5a and b illustrates the problem. A

set of decisions g are to be made about a received signal S, based on dataX, in accordance

FJ (X S)

X

Observation
space

Decision
rule

Decision
space

δ (γ  X)

σ (S)

λ(γ  X)

(a)

Γ Δ

Ω

Signal
space

Noise
space

(b)

WJ (N)

S X= S⊗
⊗

N

N

FIGURE1.5 The reception situation. (a) Observation and decision space; (b) signal space and noise

space. � indicates a combination, not necessarily additive, of received signal and noise.

8 The spatiotemporal structure of both discrete element arrays and continuous apertures are discussed in

“Chapter 8–9”. See [13, 14].
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with a decision rule d gjXð Þ, as shown at Fig. 1.5a. Here g ¼ g1; . . . ; gLð Þ, S ¼ Sj
� 	

;

X ¼ Xj

� 	
, and N ¼ Nj

� 	
are vectors, and the subscripts on the components of S and X

are ordered in time so that Smn ¼ S rm; tnð Þ; Xmn ¼ X rm; tnð Þ, and so on, with

0 � t1 � t2 . . . � tn � . . . � TN � T : (Ordering the spatial indexes is arbitrary, essen-

tially a convenience suggested by the structure of the array T̂RT

� �
sampling the input field

a, cf. (1.1.1b) and Fig. 1.1.) Thus, the components of X form the a posteriori data of the

sample upon which some decision gl is to be made.

Each of the quantities received signal S, noise N, received data X, decisions g can be

represented by a point in an abstract space of the appropriate dimensionality. The occurrence

of particular values is governed in each instance by an appropriate probability density

function. These aremultidimensional density functions, which are to be considered discrete

or continuous depending on the discrete or continuous nature of the spaces and of

corresponding dimensionality.

Here, we introduce s Sð Þ,WJ Nð Þ; and FJ X Sj Þð , respectively, as the probability–density

functions for the received signal, for noise, and for the data X when S is given. (Note that

FJ X 0j Þ ¼ WJð (X, by definition.)) As mentioned earlier, the possible (received) signals S

maybe represented as points in a spaceWoverwhich theaprioridistributions Sð Þ is defined.
Information about the signal and its distribution may be available in either of two forms: it

may be given directly as an elementary random process, that is, the distribution s Sð Þ is
immediately available, as a datum of the problem (stationary, Gaussian, nonstationary, non-

Gaussian, etc.). Or, as is more common, the signal S is a known function of one or more

random parameters u ¼ u1; . . . ; uM̂
� �

, and it is the distribution9 s uð Þ of these parameters

which is given rather than s Sð Þ itself. In fact, the reception problem may require decisions

about the parameters instead of the signals.

We can also raise the question of what to do when s Sð Þ is not known beforehand (or

perhaps only partially known), contrary to our assumption here. Such situations are in fact

encountered in practice, where it is considered risky or otherwise unreasonable to assume

that complete knowledge of s Sð Þ is available. This question is a difficult one, and a

considerable portion of decision theory is devoted to providing a reasonable answer to it.

[It is taken up initially in Sections 1.4.3 and 1.4.4 as well as discussed further in Section 23.4

of Ref. [1], and it is shown that even in this case the above formulation of the reception

problem can be retained in its essentials.]

We can further compound the complexity of the reception problem and inquire intowhat

to do when not only s Sð Þ, but also WJðNÞ, the distribution of the noise, is partially or

completely unknown a priori. In such a case, specification of S is not enough to determine

FJ X Sj Þð . In statistical terminologyFJ X Sj Þð is then said to belong to a nonparametric family.

Error probabilities, associated with possible incorrect decisions, cannot then be computed

directly and the system can no longer be evaluated in such terms, so that the question of

optimization is reopened. Nonparametric inference from the general point of view of

decision theory has been discussed previously by several investigators [15–17]10 butwill not

be considered further here.

The discussion of possible generalizations, which has so far dealt with the decision space

and with the statistics of signal and noise, can also be extended to one other topic, that is, the

method of data acquisition. In the line of reasoning that led to the above formulation of the

9 See Cramér [4] op. cit.
10 See Gibson and Melsa [18] for more recent telecommunication applications.
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reception problem, we assumed for convenience that the data were sampled discretely and

that the sampling interval was fixed and finite. Actually, neither of these assumptions is

strictly necessary. The sampling process can be continuous. Cases of this type are discussed

in Chapters 19–23 of Ref. [1].

We observe also that the length of the sampling interval need not be kept fixed. In fact, the

idea of a variable sampling interval leads to the notion of sequential decisions. A reception

system that is based on sequential principles proceeds in steps, deciding, after each sample of

data has been processed, whether or not to come to a conclusion or whether to extend the

sampling interval and to take another reading. The class of sequential reception systems is

broad and contains the nonsequential type discussed so far as a subclass.11

1.3.2 The Decision Rule

We begin by observing that the decision rule is represented as a probability. This may seem

somewhat surprising. A reception system operating according to such a decision rulewould

not function like a conventional receiver,whichgenerates a certain anddefiniteoutputg from
a given set of inputs X. Rather, it would contain a battery of chance mechanisms of a well-

specifiedcharacter.Agivenset of inputswould actuate the correspondingmechanism,which

in turn would generate one of the L possible outputs g with a certain probability, each

mechanism in general with a different probability. Arrangements such as this will probably

appearquite artificial but theyare necessary concepts, at least in principle, for it canbe shown

that devices with chancemechanisms as their outputs can be superior in performance, under

certain circumstances, to the conventional ones.

Accordingly, d gjXð Þ is the conditional probability of deciding g when X is given. More

specifically, since the space D is here assumed to contain a finite number of decisions g, the
decision rule d gjXð Þ assigns a probability between (or equal to) 0 and 1 to each decision

gl ðl ¼ 1; . . . ; LÞ, the distribution depending on X. In most cases of practical interest, d is
either 0 or 1 for each X and g in this case and is called a nonrandomized decision rule. The

opposite case, a randomized decision rule, is not excluded from this general formulation,

although, as we shall see in subsequent applications, the decision rules reduce to the

nonrandom case for all the systems treated here.

We note now that the key feature of the decision situation is that d gjXð Þ is a rule for

making the decisions g from a posteriori data X alone, that is, without knowledge of,

or dependence upon, the particular S that results in the dataX. The a priori knowledge of the

signal class and signal distribution, of course, is built into the optimum-decision rule, but the

probability of decidingg, givenX, is independent of theparticularS; that is,g is algebraically
independent of S, although statistically dependent upon it. This may be expressed as

d gjXð Þ ¼ d gjX; Sð Þ; ð1:3:1Þ

which states that the probability (density) of deciding g, given X, is the same as the

probability density of g, given both X and S. Thus, the decision rule d gjXð Þ is the

mathematical embodiment of the physical system used to process the data and yield

decisions.

11 Earlierwork on sequential detection is represented byRef. [8] and [9] here, andmore fully byRefs. [2, 32, 33, 36,

38–40] of Chapter 20 of [1]. For a recent, comprehensive treatment, see Chapter 9 of Helstrom [14].
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Both fixed and sequential procedures are included in this formulation, and in both cases

we deal with terminal decisions. We remark also that theWald theory of sequential tests [8]

introduces a further degree of freedom over the fixed-sample cases through the adoption of a

secondcost function, the “cost of experimentation” [8, 9]. In thegeneral theory,weare free to

limit the class of decision rules, in advance, to either of the above types without compromis-

ing the completeness of the theory of either type.

1.3.3 The Decision Problem

In order to give definite structure to the decision process, we must prescribe a criterion of

excellence, in addition to a priori probabilities sðSÞ and WJðNÞ. By this we mean the

following: The decisions that are to be made by the reception systemmust be based on the

given data X, which, because of their contamination with noise, constitute only incom-

plete clues to the received signal S. And, of course, as we have already noted at the

beginning of the chapter, the received signal S itself is already modified by the medium

through which it has been propagated, so that Sin 6¼ S, cf. Eqs. (1.1.1a–1.1.1c). Therefore,
whatever the decision rule d g Xj Þð that is finally adopted, the decisions to which it leads

cannot always be correct (except possibly in the unrealizable limit T!1). Thus, it is

clear that whenever there is a nonzero probability of error some sort of value judgment is

implied; in fact, the former always implies (1) a decision process and (2) a numerical cost

assignment of some kind to the possible decisions. The units in which such a cost, or

value, is measured are essentially irrelevant, but the relative amounts associated with the

possible decisions are not.

In order to formulate the decision problem, a lossF ðS; gÞis assigned to each combination

of decisions g and signal S (the latter selecting a particular distribution function of X, in

accordance with some prior judgment of the relative importance of the various correct and

incorrect decisions. Each decision rule may then be rated by adopting an evaluation or risk

function EðFÞ (for example, the mathematical expectation of loss), which takes into

consideration both the probabilities of correct and incorrect decisions and the losses

associated with them. There are, of course, many ways of assigning loss, and hence many

different risk functions. One example, which has been very common in statistics and in

communication theory, is the squared-error loss. This type of loss is used in extraction

problems in which the decision to be rendered is an estimation of a signal after it has been

contaminated with noise. In this case, the loss is taken to be proportional to the square of the

error in this estimation. Other examples are discussed in chapters 3–7.

We may now state the reception problem in the following general terms:

Given the family of distribution functions FJ X Sj Þð , the a priori signal probability

distribution sðSÞ, the class of possible decisions, and the loss and evaluation functions

F and EðFÞ, the problem is to determine the best rule d g Xj Þð for using the data to make

decisions.

In arriving at this statement we have introduced a number of somewhat restrictive

assumptions. We now give a brief heuristic discussion of what can be done to remove them.

To beginwith, the statement of the reception problem in these terms is actuallymore general

than the argument that led up to it, a fact that requires some comment. A quick review of that

argument shows, on the one hand, that the restriction of the decisionsg to a finite numberLof

alternatives g ¼ g1; g2; . . . ; gLð Þ is irrelevant and that a denumerably infinite number may

equallywell be used. In fact, the extension to a continuumof possible alternatives is simply a

matter of reinterpretation. The decision rule d g Xj Þð that was introduced above as a discrete
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probability distribution must in this case be interpreted as a probability–density functional;

that is, d g Xj Þ dgð is the probability that g lies between g and gþ dg, givenX. To represent
a nonrandomized decision rule in this case, we interpret d g Xj Þð as a Dirac d-function
[see Eq. (1.4.14) ff., for example]. Usually, the family of distribution functions is not given

directly andmust be found fromagivennoise distributionWJðNÞ and themodeof combining

signal and noise.

1.3.4 The Generic Similarity of Detection and Extraction

Figure 1.5 emphasizes that decision rules are essentially transformations that map observa-

tion space into decision space. In detection, each point of observation space G (or X) is

mapped into the various points constituting the space D of terminal decisions. For example,

the simplest form of binary detection is the same as dividing G into two regions, one

corresponding to “no signal” and the other to “signal and noise,” and carrying out the

operation of decision in one step, since only a single alternative is involved. The binary

detection problem is then the problem of how best to make this division. The extension to

multiple alternative detection situations is made in analogous fashion: one has now three or

more alternative divisions of G, with a corresponding set of decisions leading to a final

decision [7]. Similarly, in extraction each point of G is mapped into a point of the space D
of terminal decisions, which in this instance has the same structure as the signal space W.

If the dimensionality of D is smaller than that of G (as is usually the case in estimating

signal parameters), the transformation is “irreversible”; that is, many points of G go into

a single point of D. In this way, extraction may also be thought of as a division of G into

regions, so that, basically, detection and extraction have this common and generic

feature and are thus not ultimately different operations. It is merely necessary to group

the points of D corresponding to S 6¼ 0 into a single class labeled “signal and noise” to

transform an extractor into a detector. Conversely, detection systems may be regarded as

extractors followed by a threshold device that separates, say, S ¼ 0 from S 6¼ 0.

However, a system optimized for the one function may not necessarily be optimized

for the other, and it is in this sense, that we consider detection and extraction as separate

problems for analysis.

1.4 SYSTEM EVALUATION

In this section,we shall apply the concepts discussed above to a description of the problemof

evaluating system performance, including that of both optimum and suboptimum types. It is

necessary first to establish some reasonable method of evaluation, after which a number of

criteria of excellence may be postulated, with respect to which optimization may then be

specifically defined.

1.4.1 Evaluation Functions

Asmentioned in Section 1.3.3,F ðS; gÞ is a generalized loss function, adopted in advance of
any optimization procedure, which assigns a loss, or cost, to every combination of system

input and decision (system output) in a way which may or may not depend on the system’s

operation. Actual evaluation of system performance is now made as mentioned earlier,

provided that we adopt an evaluation function EðFÞ that takes into account all possible
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modes of system behavior and their relative frequencies of occurrence and assigns an over-

all loss rating to each system or decision rule. One obvious choice ofE is themathematical

expectation E, or average value, of F, and it is on this reasonable but arbitrary choicewhich
the present theory is based for the most part.12

At this point, it is convenient to define twodifferent loss ratings for a system, one ofwhich

is used to rate performance when the signal input is fixed and the other to take account of a

priori signal probabilities. For a given S, we have first:

The Conditional Loss Rating.13 L S; dð Þ of d is defined as the conditional expectation

of loss:

L S; dð Þ ¼ EXjS


F
�
S; g Xð Þ�� ¼

ð
G
dX

ð
D
dgF S; gð ÞFJ Xð jSÞd gð jXÞ: ð1:4:1Þ

By this notation we include discrete as well as continuous spaces D; for the former, the

integral over D is to be interpreted as a sum and d g Xj Þð as a probability, rather than as a

probability density. (See the remarks at the end of Section 1.3.3.)

Actually, as will be seen in Section 1.4.4, the conditional loss rating is most significant

when the a priori probability sðSÞ is unknown. However, when sðSÞ is known, we use this
information to rate the system by averaging the loss over both the sample and the signal

distributions:

The Average Loss Rating. L s; dð Þ of d is defined as the (unconditional) expectation of
loss when the signal distribution is sðSÞ :

L s; dð Þ ¼ EXjS


F S; gð Þ� ¼

ð
W
dS

ð
G
dX

ð
D
dg F S; gð Þs Sð ÞFJ Xð jSÞd gð jXÞ: ð1:4:2Þ

Some remarks are appropriate concerning the loss functionF. In the statistical literature,
F is usually a function that assigns to each combination of signal and decision a certain loss,

or cost, which is independent of d:

F1 ¼ C S; gð Þ: ð1:4:3Þ

In the present analysis, we restrict our discussion chiefly to systems whose performance is

rated according to simple loss functions14 of this nature. There exists a substantial body of

theory for this case, and certainvery general statements can bemade about optimumsystems

derived under this restriction (cf. Wald’s complete class theorem, admissibility [25], and so

on; see Section 1.5 ff.

12 Other linear or nonlinear operations for E are possible and should not be overlooked in subsequent general-

izations (see the comments in Section 1.5.4).
13 This quantity is called the a priori risk in Wald’s terminology [25].
14 We shall use the term risk, henceforth, as synonymous with this simple cost, or loss.
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We point out, however, that a more general type of loss function can be constructed. In

fact, one such function is suggested by information theory. For, if we let

F2 ¼ �log p S gj Þ;ð ð1:4:4Þ

where p S gj Þð is the a posteriori probability of S giveng, the average loss rating [Eq. (1.4.2)]
becomes the well-known equivocation of information theory [2, 26] (Section 6.5.2 of

Ref. [1]). This loss function can be interpreted as a measure of the “uncertainty” (or

“surprisal”) about S when g is known [26], (Section 6.2.1 of Ref. [1]). It is an example of a

more general type than the simple cost function [Eq. (1.4.3)]. For, unlike C S gj Þð , which

depends on S and g alone, Eq (1.4.4) depends also on the decision rule in use and cannot be

preassigned independently ofd. Loss functions likeEq. (1.4.4) aremoredifficult todealwith,

and some of the general statements (Section 1.5) that can be derived for Eq. (1.4.3) clearly do

not hold true for Eq. (1.4.4). In Chapter 22 of Ref. [1], however, it is shown that close

connections may exist between results based on the two types of loss function.

The conditional and average loss ratings of d may now be written, from Eqs. (1.4.1)–

(1.4.4), as

I. Conditional Risk:

r S; dð Þ ¼
ð
G
dXFJ Xð jSÞ

ð
D
dgC Sð jgÞd gð jXÞ: ð1:4:5Þ

II. Average Risk:

R s; dð Þ ¼ E


r S; dð Þ� ¼

ð
W
r S; dð Þs Sð ÞdS; ð1:4:6aÞ

or

R s; dð Þ ¼
ð
W
s Sð ÞdS

ð
G
dXFJ Xð jSÞ

ð
D
dgC Sð jgÞd gð jXÞ: ð1:4:6bÞ

III. Conditional Information Loss:

h S; dð Þ ¼ �
ð
G
dXFJ Xð jSÞ

ð
D
dg
�
log p Sð jgÞ�d gð jXÞ: ð1:4:7Þ

IV. Average Information Loss:

H s; dð Þ ¼ E


h S; dð Þ� ¼

ð
W
h S; dð Þs Sð ÞdS; ð1:4:8aÞ

or

H s; dð Þ ¼ �
ð
W
s Sð ÞdS

ð
G
dXFJ Xð jSÞ

ð
D
dg log p Sð jgÞ½ �d gð jXÞ: ð1:4:8bÞ
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The last of these is the well-known “equivocation” of information theory15 (cf. Sections

6.5.2 and 6.5.3 of Ref. [1].

As we have alreadymentioned in Section 1.1, S, when deterministic, is a function of a set

of random parameters16 u, and frequently it is the parameters u about which decisions are to
be made, rather than about S itself (see, e.g., Section 1.4.2). Similar to Eqs. (1.4.5) and

(1.4.6), the conditional and average risks for this situation may be expressed as17

r u; dð Þ ¼
ð
G
dXFJ Xð jS uð ÞÞ

ð
D
dgC uð jgÞd gð jXÞ; ð1:4:9Þ

and

R s; dð Þu ¼
ð
Wu

r u; dð Þs uð Þdu: ð1:4:10Þ

Here, of course, r u; dð Þ andR s; dð Þu are not necessarily the sameas rðs; dÞ;Rðs; dÞabove, nor
is the form of g either. Notice that the cost function CðujgÞ is usually a different function of
u from C SðuÞ; g½ � also. Considerable freedom of choice as to the particular conditional and

average risks is thus frequently available to the system analyst, although the appropriate

choice is often dictated by the problem in question. Finally, observe that rðS; dÞ and Rðs; dÞ
for decisions about S ¼ SðuÞ are still given byEqs. (1.4.5), (1.4.6) wheresðSÞdS is replaced
by its equivalent sðuÞdu in Eqs. (1.4.6a) and (1.4.6b), with a corresponding change from

W-space (for S) to Wu-space (for u) according to the transformations implied by S ¼ S uð Þ.
Similar remarks apply for the conditional and average information losses, Eqs. (1.4.7)

and (1.4.8), as well.

1.4.2 System Comparisons and Error Probabilities

The expressions (1.4.1) and (1.4.2) for the loss ratings can be put into another and oftenmore

revealing form, which exhibits directly the rôle of the error probabilities associated with the

various possible decisions. Let pðg SÞj be the conditional probability18 that the system in

questionmakes decisionsgwhen the signal isS and a decision rule dðgjXÞ is adopted, so that

p gð jSÞ ¼
ð
G
FJðXjSÞd gð jXÞdX: ð1:4:11Þ

Comparison with the conditional risk (1.4.5) shows that the latter may be written

r S; dð Þ ¼
ð
D
dgp gð jSÞC S; gð Þ; ð1:4:12Þ

15 Note that when S can assume a continuum of values (as is usually the case), we must replace the probability

p S gj Þð in Eq. (1.4.4) by the corresponding probability density w S gj Þð and include in Eqs. (1.4.7) and (1.4.8) the

absolute entropy (cf. Section 6.4.1 of Ref. [1]).
16 For simplicity, these are assumed to be time-invariant here; the generalization to include timevariations u ¼ u tð Þ
is straightforward.
17 Here and henceforth, unless otherwise indicated, we adopt the notational convention that the principal argument

of a function distinguishes that function fromother functions: thus,s Sð Þ 6¼ s uð Þ, p Xð Þ 6¼ p uð Þ, and so on; however,
s S uð Þ½ � ¼ s Sð Þ and so on.
18 Or probability density, when g represents a continuum of decisions (as in extraction, cf. Chapter 5).
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which is simply the sum of the costs associated with all possible decisions for the given

S, weighted according to their probability of occurrence. In a similar way, we can obtain

the probability (density) of the decisions g by averaging Eq. (1.4.11) with respect to S,

for example,

p gð Þ ¼ p gð jSh ÞiS ¼
ð
W
s Sð ÞdS

ð
G
dXFj Xð jSÞd gð jXÞ: ð1:4:13Þ

Since we shall be concerned in what follows almost exclusively with nonrandomized

decision rules, particularly in applications, we see that d g Xj Þð may be expressed as

d g Xj Þ ¼ d g� gs Xð Þ½ �;ð ð1:4:14Þ

where the d of the right-hand member is now the Dirac d-function. Here it is essential to
distinguish between the decisions g and the functional operation gsðXÞ performed on the

data by the system. The subscript s reminds us that this operation depends in general on

signal statistics. With Eq. (1.4.14), the probability (density) of decisions g on condition S,

which may represent correct or incorrect decisions, can be written

p gð jSÞ ¼
ð
G
FJ Xð jSÞd g� gs Xð Þ½ �dX ¼

ð1
�1

� � �
ð
ei
~jg dj

ð2pÞL
ð
G
FJðXjSÞe�i~jgsðXÞdX;

ð1:4:15Þ

(cf. [1], Section 17.2.1). This reveals the explicit system operation. Equation (1.4.15) in

particular provides a direct way of calculating p g Sj Þð for any system once its system

structuregs Xð Þ is known.As for Eq. (1.4.13), we can also obtain the probability density ofg
itself by averaging pðg SÞj [Eq. (1.4.15)] over S.

Comparison of explicit decision systems now follows directly. For example, this may

be done by determiningwhich has the smallest average loss rating L s; dð Þ, which, in terms

of average risk Eq. (1.4.6a), involves the comparison of R s; d1ð Þ and R s; d2ð Þ for two
systems with system functions gs Xð Þ1 and gs Xð Þ2 [Eq. (1.4.14)]. In a similar fashion, one

can compare also H s; d1ð Þ and H s; d2ð Þ [Eq. (1.4.8)]. Note that not only optimum but

suboptimum systems may be so handled once gs Xð Þ is specified, so that now one has a

possible quantitative method of deciding in practical situations between “good,” “bad,”

“fair,” “best,” and so on, where the comparisons are consistently made within a common

criterion and where the available information can be incorporated in ways appropriate to

each system under study. We emphasize that this consistent framework for system

comparison is one of the most important practical features of the theory, along with its

ability to indicate the explicit structure of optimumand suboptimum systems, embodied in

the decision rule d g Xj Þð .

1.4.3 Optimization: Bayes Systems

In Section 1.4.1, we have seen how average and conditional loss ratings may be assigned to

any system, once the evaluation and cost functions have been selected. We now definewhat

we mean by an optimum decision system. We state a definition first for the case where
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complete knowledge of the a priori signal probabilities sðSÞ is assumed and in which, from

what has been said above, evaluation from the point of view of the average loss Rðs; dÞ is
most appropriate. Consider, then, that one system is “better” than another if its average loss

rating is smaller for the same application (and criterion), and that the “best,” or optimum,

system is the onewith the smallest average loss rating. (Thepreassigned costs, of course, are

the same.) We call this optimum system a Bayes system:

A Bayes system obeys a Bayes decision rule d*; where d* is
a decision rule whose average loss rating L is smallest for a

given a priori distribution s:

ð1:4:16Þ

For the risk and information criteria of Eqs. (1.4.6a) and (1.4.8a), this becomes

R* ¼ min
d

R s; dð Þ ¼ R s; d*
� �

: Bayes risk; ð1:4:16aÞ

and

H* ¼ min
d

H s; dð Þ ¼ H s; d*
� �

: Bayes equivocation: ð1:4:16bÞ

The formerminimizes the average risk (or cost), while the latterminimizes the equivocation.

Bayes decision rules (for thegivenF) formaBayes class, eachmember ofwhich corresponds

to a different a priori distribution19 sðSÞ.

1.4.4 Optimization: Minimax Systems

When the a priori signal probabilities are not known or are only incompletely given,

definition of the optimum system is still open. A possible criterion for optimization in such

cases is provided by the Minimax decision rule d*M , or Bayes rule associated with the

conditional risk rðS; dÞ. As indicated by our notation, there is one conditional risk figure

attached to each possible signal S. In general, these risks will be different for different

signals, and there will be a minimum among them, say rðS; dÞmax. The Minimax rule is,

roughly speaking, the decision rule that reduces this maximum as far as possible. More

precisely:

The Minimax decision rule d*M is the rule for which the

maximum conditional loss rating LðS;dÞmax; as the signal S ranges

over all possible values; is not greater than the maximum conditional

loss rating of any other decision rule d:

ð1:4:17Þ

Thus, in terms of conditional risk r, or conditional information loss h, we may write

max
S

rðS; d*MÞ ¼ max
S

min
d

rðS; dÞ � max
S

rðS; dÞ;
max

S

hðS; d*MÞ ¼ max
S

min
d

hðS; dÞ � max
S

hðS; dÞ: ð1:4:17bÞ

19 Of course, it is possible that different sðsÞ may lead to identical decision rules, but aside from this possible

ambiguitywe observe that a Bayes criterion is entirely appropriatewhensðsÞ is known, since it makes full use of all

available information.
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Wald has shown20 under certain rather broad conditions (see Sections 1.5.2 and 1.5.3 ff.) that

maxSmind rðS; dÞ ¼ mind maxS rðS; dÞ for the risk (i.e., simple cost) formulations, from

which the significance of the term “Minimax” becomes apparent. Whether or not a

corresponding result holds for the information-loss formulation remains to be established.

Wemay also express theMinimax decision process in terms of the resulting average risk.

From Section 1.5.3 ff., Theorems 1, 4, 5, 9, we have the equivalent Minimax formulation

R*
Mðs0; d

*
MÞ ¼ max

s

R*ðs; d*Þ ¼ max
s

min
d

Rðs; dÞ
¼ min

d

max
s

Rðs; dÞ
�

¼ Minimax average risk21

ð1:4:18Þ

this last from Eq. (1.4.16a) and Section 1.5.2 ff., definition 7a. Thus, the Minimax average

risk is the largest of all theBayes risks, consideredover the class ofapriori signal distribution

fsðSÞg. The distribution s0ð¼ s*
MÞ for which this occurs is called the least favorable

distribution. Accordingly, the Minimax decision rule d*M [obtained by adjusting the Bayes

rule d* as s is varied, cf. Eq. (1.4.18)] is one which gives us the least favorable, or “worst,”

of all Bayes — that is, “best” — systems. Geometrically, the Minimax situation of

s!s0; d! d*M; Rðs; dÞ!R*
Mðs0; d

*
MÞ is represented by a saddle point of the average-

risk surface over the ðs; dÞ plane, as Fig. 1.6 indicates. The existence of s0; d
*
M and this

saddle point follows from the appropriate theorems (cf. Section 1.5.3).

The Minimax decision rule has been the subject of much study and also of some adverse

criticism. It has been argued that it is often too conservative to be very useful. However, it is

also true that there are situations in which the Minimax rule is unquestionably an excellent

choice. Figure 1.7a illustrates these remarks.

Herewe have presented the casewhere themaximum conditional loss rating of all other

decision rules d1; d2; . . . exceeds that for d
*
M and where even most of the minimum loss

ratings are also noticeably larger than the corresponding minimum for d*M. Sometimes,

however, we may have the situation shown in Fig. 1.7b, where d*M leads to excessive loss

ratings, except for a comparatively narrow range of values of S. In the latter case, d*M is

perhaps too conservative, and a more acceptable decision rule might be sought.22 The

Minimax procedure does, at any rate, have the advantage of guarding against the worst

case, but also may be too cautious for the more probable states of the input to the system.

When the costs are preassigned and immutable, the possible conservatism of Minimax

20 The minimax theorem was first introduced and proved by Von Neumann, in an early paper on the theory of

games [27]. For a further account, see Von Neumann and Morgenstern [28], Section 17.6, p. 154; also Ref. [5].
21 This is the average risk associated with the Minimax decision rule.
22 These Minimax risk curves have a single distinct maximum. The least favorable a priori distribution s0 is this

case consequently concentrates all of its probability mass at the signal value corresponding to the maximum

conditional risk (a d-function distribution for continuous signal space), since by definition s0 must maximize

Bayes (average) risk. Existence of a least favorable distribution is here ensured by our assumptions A to D of

Section 1.5.3, which correspond toWald’s assumptions 3.1–3.7 [25]. Roughly speaking, the Minimax conditional

riskmust equal its maximumvalue for all signals towhich the least favorable distribution assigns a nonzero a priori

probability (seeWald’s theorems3.10 and 3.11). Thus, aMinimax conditional risk curvewith twodistinct and equal

maxima could have a corresponding s0 with probability concentrated at either of the two maxima or distributed

between them,while if onemaximumwere larger than the other, themasswould have to be concentrated only at the

larger, and so on. Or again, if s0 were nonzero over a finite interval, the corresponding Minimax conditional risk

would be constant over this range (but might take on other, smaller values outside).
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cannot be avoided without choosing another criterion.23 However, in many cases where

the actual values of the preassigned costs are left open to an a posteriori adjustment, it may

be possible by a more judicious cost assignment to modify d*M more along the lines of

Fig. 1.7a, where the “tails” of maxSrðS; d*MÞ are comparable to those of rðS; dÞ (all S), and
thus eliminate, at least in part, the conservative nature of the decision process.24

The Bayes decision rule makes the fullest use of a priori probabilities (when these are

known) and in a sense assumes the most favorable system outcome. The Minimax decision

rule, on the other hand,makes no use at all of these a priori probabilities (for the good reason

that they are not available to the observer) and in the same sense assumes the worst case [cf.

Eq. (1.4.18) and Fig. 1.7]. In practical cases, an important problem is to find d*M. No general
simple procedure is available, although d*M always exists in the risk formulation. From the

definitions of d* and d*M, however, it can be shown that a Bayes decision rule whose

r(S, δ )

max r (S, δ *
M) 

(δ *
M) 

(δ *
M) 

0

s

r(S, δ )

max r (S, δ *
M) 

s

(a)

SS' S'

δ 4 δδ 3 δ 2 δ 1

0

(b)

S

FIGURE 1.7 (a) An acceptable Minimax situation. (b) A Minimax situation that is possibly too

conservative.

R(σ, δ)

δ

(σ0,δ*
M)

0

σmax

σ δmin

R*
M

FIGURE 1.6 Average risk as a function of decision rule and a priori signal distribution, showing a

Minimax saddle point.

23 For example, the “Minimax regret” criterion or the Hurwicz criterion, and so on [29].
24 Hodges and Lehmann [30] have discussed some intermediate situations where sðsÞ is partially known on the

basis of previous experience. Also, see Section 1.5 ff.
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conditional loss rating L is the same for all signals is aMinimax rule (see Section 1.5.3 and

Theorem 7). Thus, if we can find a d* for which this is the case, we have also determined a

least favorable a priori distributions*
MðSÞ for this d* ¼ d*M

� �
, which follows from the above,

that is,

r S; d*
� �

or h S; d*
� �� 	 ¼ constant; all S: ð1:4:19Þ

Note that a non-Bayes rule whose conditional loss rating is constant for all S is not

necessarilyMinimax.When Eq. (1.4.19) holds, it furnishes a useful method for finding d*M
in each case.

1.5 A SUMMARY OF BASIC DEFINITIONS AND PRINCIPAL THEOREMS

We conclude this chapter now with a short summary of some of the principal results,

theorems, and so on which give decision theory its general scope and power in our present

application to communication problems. For proofs and further discussion, the reader is

referred to the appropriate sections of Wald [25] and other pertinent references.

1.5.1 Some General Properties of Optimum Decision Rules

The practical utility of an optimum procedure lies to a considerable extent in its uniqueness:

there is not a number of different reception systemswith the same optimal properties. For the

unique optimum, the problem of choosing the simplest (or least expensive) from the point of

view of design is automatically resolved. For this reason and for the central one of

optimization itself, it is important to know the properties of optimum decision rules and

when they may be expected to apply in physical systems. We state now two of the main

results on which subsequent applications are based:

1.5.1.1 Admissible Decision Rules We note, first, that the conditional loss rating of a

decision rule depends, of course, on the particular signal present at the input. One decision

rulemay have a smaller rating than another for some signals and a larger one for others. If the

conditional loss rating of d1 never exceeds that of d2 for any value of S, and is actually less
than that of d2 for at least one S, then d1 is said to be uniformly better than d2. This leads,
accordingly, to the notion of admissibility:

A decision rule is admissible if no uniformly better one exists: ð1:5:1Þ

Observe that with this definition an admissible rule is not necessarily uniformly better than

any other; other rules can have smaller ratings at particular S (Fig. 1.7a). However, they

cannot be better for all S.

It follows, then, that, if a Bayes orMinimax rule is unique, it is admissible. The converse

is not true, since an admissible rule is not necessarily Bayes or Minimax. Accordingly, no

system that does not minimize the average risk (loss rating) can be uniformly better than a

Bayes system [for the same sðSÞ], and no system that does not minimize the maximum

conditional risk (loss rating) can be uniformly better than a Minimax system. Admissi-

bility is an important additional optimum property of unique Bayes andMinimax decision

systems.
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1.5.1.2 The Complete Class Theorem This is Wald’s fundamental theorem ([25],

Theorem (3.20)) concerning complete classes of decision rules. We say first that a class D

of decision rules is complete if, for any d not in D, we can find a d* in D such that d* is
uniformly better than d. If D contains no subclass which is complete, D is a minimal

complete class. Wald has shown that for the simple loss functions [Eqs. (1.4.3), (1.4.5),

(1.4.6)] the class of all admissible Bayes decision rules is a minimal complete class, under

a set of conditions that are certainly satisfied for most if not all physical situations

(cf. Sections 1.5.2 and 1.5.3 ff.). For the same set of conditions, anyMinimax decision rule

can be shown to be a Bayes rule with respect to a certain least favorable a priori

distribution s*
MðSÞ, and the existence of s*

MðSÞ, as well as of the Bayes andMinimax rules

themselves, is assured. The complete class theorem thus establishes an optimum property

of the Bayes class as a whole. To the author’s knowledge no complete class theorem has as

yet been demonstrated for the information loss ratings of Eqs. (1.4.7) and (1.4.8), nor have

the general conditions for the existence of Bayes and Minimax rules for such measures

been established. However, some results on the characterization of Bayes tests with this

measure, for detection, are given in Ref. [1], Chapter 22.

1.5.2 Definitions25

It is assumed that decisions g are to bemade about a signalS, based on observationsXwhose

occurrence is governed by the conditional distribution–density function FjðX SÞj . The

decision rule d g Xj Þð is the probability (density) that gwill be decided when the observation
is X, regardless of S.

Risk theory is based on the following definitions:

(1) It is assumed that a cost CðS; gÞ is preassigned to every possible combination of

signal S and decision gl ; l ¼ 1; . . . ; L; in the problem.

(2) The conditional risk r S; dð Þ of using a decision rule d is the expected value of the

cost when the signal is S:

r S; dð Þ ¼
ð
G

ð
D
C S; gð Þd g Xj ÞFJ X Sj ÞdX dg:ðð ð1:5:2Þ

(3) The average risk R s; dð Þ of using d is the expected value of r S; dð Þ in view of the a

priori probability (density) s Sð Þ:

R s; dð Þ ¼
ð
W
r S; dð Þs Sð ÞdS: ð1:5:3Þ

(4) AMinimax decision rule d*M is one whose maximum conditional risk is not greater

than the maximum conditional risk of any other d:

max
s

r S; d*M
� � � max

s
r S; dð Þ; for all d: ð1:5:4Þ

25 Wald’s book [25] is referred to in the following as SDF.Wald’s paper [25a] is recommended as an introduction to

the subject.
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(5) A Bayes decision rule d* is one whose average risk is smallest for a given a priori

distribution s Sð Þ:

R s; d*
� � ¼ min

d
R s; dð Þ; for all d: ð1:5:5Þ

(6) A decision rule d1 is uniformly better than a decision rule d2 if the conditional risk
of d1 does not exceed that of d2 for any value of S and is actually less than that of d2
for some particular S.

(7) A decision rule is admissible if no uniformly better one exists.

a. An admissible rule is not necessarily uniformly better than any other; that is, other

rules can have smaller risks at a particular value of S. The point is that they cannot

be better at all values of S.

b. An admissible rule need not beMinimax. Clearly, d*M could have a larger risk than

d at some values of S and still have a smaller maximum risk.

(8) A class D of decision rules is complete if for any d not inDwe can find a d0* in D such

that d0* is uniformly better than d. If D contains no subclass which is complete, it is a

minimal complete class.

1.5.3 Principal Theorems

We assume that the following conditions are fulfilled:

A. FJ X Sj Þð is continuous in S.

B. C S; gð Þ is bounded in S and g.

C. The class of decision rules considered is restricted to either (1) nonsequential rules or

(2) sequential rules.

D. S and g are restricted to finite closed domains.

These conditions are more restrictive in some cases than those imposed by Wald but are

sufficient for our purposes. Specifically, Wald’s assumptions [25]: (3.1), (3.2), (3.3) are

covered by conditions A and B, (3.5) and (3.6) by condition C, and (3.4) and (3.7) by

condition D.

Under these assumptions the following theorems exist:

(1) The decision problem viewed as a zero-sum two-person game is strictly deter-

mined:

max
s

min
d

Rðs; dÞ ¼ min
d

max
s

Rðs; dÞ; ðSDF Theorem 3:4Þ ð1:5:6Þ

(2) For any a priori sðSÞ, there exists a Bayes decision rule d* relative to sðSÞ (SDF
Theorem 3.5).

(3) A Minimax decision rule exists (SDF Theorem 3.7).

(4) A least favorable a priori distribution s0ðSÞ exists:

min
d

Rðs0; dÞ ¼ max
s

min
d

Rðs; dÞ; ðSDF Theorem 3:14Þ ð1:5:7Þ
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(5) AnyMinimax decision rule is Bayes relative to a least favorable a priori distribution

(SDF Theorem 3.9).

(6) The class of all Bayes decision rules is complete relative to the class of all decision

rules for which the conditional risk is a bounded function of S (SDF Theorem 3.20).

(Kiefer [31] shows that the restriction of the set of decision rules to those for which

the conditional risk is a bounded function of S is unnecessary. He also shows that the

class of all admissible decision functions is minimal complete. See in addition

Wald’s remarks following Theorem 3.20 in SDF.)

The facts below follow from the definitions of Section 1.5.2:

(7) A Bayes decision rule d*M whose conditional risk is constant is a Minimax

decision rule. [This follows from definitions 4, 5, and 7. For suppose d*M were not

Minimax. Then there would exist a d0 with smaller maximum risk and smaller

average risk with respect to s0ðSÞ ¼ s*
MðSÞ. This contradicts the definition

of dM.]

(8) If a Bayes decision rule is unique, it is admissible. [For suppose d* were Bayes with

respect to sðSÞ and not admissible. Then a uniformly better d0 would exist; that is,

r
�
S; d0

� � r
�
S; d*

�
for all S, with equality for some S. But this implies that the

average risk of d0with respect tosðSÞ is less than that of d*with respect tosðSÞ. This
contradicts the definition of d*.]

(9) A Minimax decision rule has a smaller maximum average risk than any other.

[This follows from the fact that the average risk cannot exceed the maximum

conditional risk. Of course, for some particularsðSÞ another test might have smaller

average risk than the Minimax with the same sðSÞ.]

Finally, it is of considerable importance practically to be able to avoid randomized

decision rules.We have quoted one theorem due to Hodges and Lehmann [15] on this point.

Others may be found in some work of Dvoretzky et al. [32].

1.5.4 Remarks: Prior Probabilities, Cost Assignments, and System Invariants

From our discussion, it is clear that a priori probabilities play an essential part in the

formulation and application of decision theory. In a general waywemay say that Bayesian

methods of statistical analysis offer two main approaches to providing prior probabilities.

One approach, the “subjective” approach, treats probability as the measure of confidence,

or plausibility, which we are willing to assign to a proposition or event. The other

approach, the so-called “objective” approach, is based on the classic “frequency of

occurrence” or prior history of the event in question. Both are, and have been, open to

criticism: the subjective viewpoint, of course, introduces the observer’s judgment, albeit

quantitatively as a probability assignment. On the other hand, the “objective” alternative is

limited by its dependence on a “history,” or frequency of occurrence, whichmay not exist.

If the event has no history up to the present but can be conceived as a physical possibility,

one possible way out is to create an ensemble of virtual event outcomes, and hence

generate a resulting “prior” probability measure of this physically possible event. An

important pragmatic justification of the subjective viewpoint is that it couples the

observer’s probabilistic models and decision making to the real world. And this is
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accomplished by providing the “plausible” priors, which the Bayesian formulation

requires26.

Both viewpoints offer the needed coupling of the observer’s models to real-world

applications, although the subjective approach appears to be the one more favored by

scientists and engineers. In either case, statistical decision theory (SDT) can be used with

various methods (Minimax among them) to provide the needed distributions. For these

reasons, the quantification of a priori distributions is usually one of the chief problems to be

faced in practical situations. In any case, the rôle of a priori information cannot be shrugged

off or avoided [33–35].

The problem of cost assignment also must be carefully examined, since it provides

another important link to the actual situation and its significance in the larger world of

events. In this way, the connection between, say, the design of an optimum or near-

optimum system and the operational aspects of the original problem is made with a

theory of values, which seeks some over-all raison d’être for cost assignments in the

particular case. Similar remarks apply for other loss functions. Thus, an ongoing task is

to seek out other meaningful criteria (besides F1 and F2) and establish (if this be possible)

similar optimal properties, such as admissibility and the complete class theorem for

them also.

Another problem of general importance is to discover the “invariants” of various

classes of detection and extraction systems. Perhaps the most important example here is

threshold or weak-signal reception, and in particular, reception in non-Gaussian noise.

This is because predicting the level of acceptable weak-signal reception provides limiting

lower bounds on performance, expressed for instance in terms of “minimum detectable

signal,” or minimum acceptable estimation error. A canonical theory of threshold

reception is not only generally possible, under benign constraints, but has been evolving

for general noise and signals over the last four decades27 in the Bayesian statistical

decision theory (BSDT) formulation. This approach provides optimal processing algo-

rithms, probability measures of performance, and permits evaluation and comparisons

with suboptimum procedures.

Finally, it is evident that typesof optimizationother thanBayes andMinimaxarepossible:

one can take as a criterionminimumaverage riskwith constraints, say, onhighermoments of

the risk function for example, or other evaluation functions like F2 [Eq. (1.4.4)]. However,

an analytical theory for uniqueness, admissibility, and so on, comparable to Wald’s for the

simple cost function remains to be developed in such instances.

We turn now to the further development of Sections 1.1–1.5. Having presented the

underlying theory above, let us reserve the detailed treatment of estimation to Chapter 6

and proceed to the detection problem and some of its more explicit consequences in

Sections 1.6–1.10. Examples on estimation are presented in Chapter 5. Extensions are given

26 Closely related to, and supported by, the Bayesian idea of probability measures of the plausibility assigned to an

event or hypothesis, is the very old principle ofOckham’s razor, which for our scientific purposes may be stated in

contemporary terms as “choose, or favor, the simplest hypothesis over more complicated competing alternatives,”

which in Bayesian terms means selecting the simpler hypothesis as being more likely (i.e., having a larger

probability) of being correct. These ideas are discussed more fully, with physical examples, in Refs. [33–35]; see

also the Introduction here.
27 Earlier attempts at a canonical treatment are given by the author in Ref. [19], Sections 19.4 and 21.2.5 (1960).

Along similar lines we also note Section 2.7 of Ref. [36].
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in Chapters 3 and 4. Newmaterial in Chapters 6 and 7 considers the related problem of joint

detection and estimation.

1.6 PRELIMINARIES: BINARY BAYES DETECTION [19, 21, 36–38]

In this chapter so far we have described the main elements of space–time signal processing,

namely, detection, estimation, and related applications, from a general Bayesian viewpoint.

This includes employing statistical decision theoretic methods and parametric statistical

models. Here we shall focus in more detail on general formulations of optimal and

suboptimal detection. Specifically, in the context of the generic structures presented in

Sections 1.1–1.5 above, we shall outline a general theory of single-alternative detection

systems T
ðNÞ
R ¼ ðT ðNÞ

R Þdet; for the common and important cases where the data acquisition

period (or, as we shall somewhat more loosely call it, the observation period) is fixed at the

outset.28 Since the decisions treated here have only two possible outcomes, we call them

binary decisions, and the corresponding detection process, binary detection, in order to

distinguish them from the multiple-alternative situations examined later in Chapter 4.

There are two types of binary detection processes, depending on whether the hypothesis

classes refer to a decision between one or two possible signals. Thus, from Section 1.2

previously, we write symbolically

I: H1 : S� N versusH0 : N ð1:6:1aÞ

for the situation where we are asked to decide between H1: received signal of class S with

noise, versus H0: noise alone. For the second situation we write

II: H2 : S2 � N versusH1 : S1 � N ð1:6:1bÞ

in which the decision is between the choice of a received signal of class S2 versus one from

class S1, where both signals are accompanied [�] by noise, not necessarily additive. In both

instances the decision is to be made from the received dataX. We can further anatomize the

structure representedby I and II above, according to theirgeneral application, as summarized

in Table 1.1.

In the radar and sonar cases the received signal (S) represents a target. In a telecommu-

nications environment S is the desired, received communication waveform and the ambient

noise NA embodies the (usually) similar signals or “interference,” while NREC is receiver

noise. Here NAþREC ¼ NA þ NREC. In nonadditive situations such as envelope detection,

signal and noise are combined ðS� NÞ nonlinearly, including the receiver noise as well as
any ambient noise and interference (i.e. unwanted signals). Here and subsequently unless

otherwise indicated, the term “signal” shall refer to the received (desired) signal at the output

of the receiving aperture or array, R̂0. (see, the Introduction.)

We begin our discussion with a Bayesian formulation of the one-signal or “on–off”

cases (I), Sections 1.6–1.8, including performance measures and a structure of system

28 Variable observation periods are referred to in Section 1.8.5.
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comparisons (Section 1.9). This is followed by the formal extension of the theory to the two-

signal cases (II), Section 1.10. (A summary is given in Chapter 2 of some illustrative exact

results.) We observe, moreover, that exact results are the exception rather than the rule in

practical applications, so that approximate methods must be employed if we are to achieve

useful analytical and numerical results.

1.6.1 Formulation I: Binary On–Off Signal Detection

Binary detection problems in communication systems have been studied probabilistically in

terms of tests of hypotheses since the 1940s. The original formulation in terms of statistical

decision theory stems from the 1950s ([1], Chapter 18 [19]).29 The principal objectives of

the following sections here are to obtain (1) a formulation of the binary detection problem

itself and (2) by so doing, to indicate how these different viewpoints can not only be

reëstablished by the decision theoretical approach but extended to include situations of

general practical significance. Specifically, we first derive a general class of Bayes systems

and the rather well-known result that several other detection systems considered previously

are special cases of this.

Before we begin to develop the elements of statistical communication theory (SCT)

outlined in Sections 1.1–1.5, let us establish the effects of sampling of the input fields at the

receiver. We have considered principal modes of sampling the continuous input field: (1) a

continuous procedure, which essentially reproduces the original field and (2) a discrete

sampling procedure that produces a series of sampled values, at the space–time points

rm; tnð Þ, where both are obtained during a finite (or infinite) interval D (or D¼1). These

operations are respectively represented by

TS a r; tð Þð ÞC ¼ X r; tð Þ; and TS a r; tð Þð ÞD ¼ X rm; tnð Þ ¼ Xj; on D ¼ jR0jT � 1;

ð1:6:2aÞ

where explicitly

TSð ÞC �
ðD=2

�D=2

d
�
r0 � r

�
d
�
t0 � t

�ð Þdr0dt0; TSð ÞD ¼
ðD=2

�D=2

d
�
r0 � rm

�
d
�
t0 � tn

�� �
dr0dt0

ð1:6:2bÞ

and dr0 ¼ dx0dy0dz0 ¼ drx0dry0drz0 or a lesser dimensionality, depending on the sampling

process employed. The effects of these two sampling procedures on the input field, as we

shall see later in Sections 2.3.1 and 2.3.2, are quite different when applied to ordered data

streams in the discrete and continuous cases, for example, in the formation of apertures,

arrays and beam patterns (Section 2.5).

29 For the earlier studies, based for the most part on a second-moment theory (e.g., signal-to-noise ratios, etc.), see

the references at the end of Chapters 19 andReference Supplements, pp. 1103–1109 (1960); pp. 1111–1120 (1996),

of Ref. [1]. Somewhat later studies, also included therein, employing a more complete statistical approach and,

leading up to and in some instances coinciding with certain aspects of the present theory, are described more fully

here and in Ref. [1], Part 4 and Ref. [19]. Formore recent work see the references at the end of this chapter [21, 37].

42 RECEPTION AS A STATISTICAL DECISION PROBLEM



1.6.2 The Average Risk

First we use F1 [Eq. (1.4.3)] as our loss function and determine optimum systems of

the Bayes class, which, as we have seen [Eq. (1.4.6b)], are defined by minimizing the

average risk

R s; dð Þ ¼
ð
W
dss Sð Þ

ð
G
FJ XjSð ÞdX

ð
D
dgC S; gð Þd gjXð Þ ð1:6:3Þ

We recall that in binary detectionwe test the hypothesisH0 that noise alone is present against

the alternative H1 of a signal and noise, so that there are but two points g ¼ g0;g1ð Þ,
respectively, in decision space D. For the moment, allowing the possibility that the decision

rule dmay be randomized, we let d g0 Xj Þð and d g1 Xj Þð be the probabilities thatg1 and g0 are

decided,30 givenX. Since definite, terminal decisions are postulated here, some decision is

always made and therefore

d g0jXð Þ þ d g1jXð Þ ¼ 1: ð1:6:3aÞ

Denoting by S the input signal that may occur during the observation interval, we may

express the two hypotheses concisely asH0 : S«W0 andH1 : S«W1, whereW0 andW1 are the

appropriate nonoverlapping hypothesis classes, as discussed in Section 1.2.1.2. In binary

detection, the null classW0 usually contains only one member, corresponding to no signal.

The signal class W1 may consist of one or more nonzero signals. It is now convenient to

describe the occurrence of signals within the nonoverlapping classes W0, W1 by density

functions w0ðSÞ; w1ðSÞ, normalized over the corresponding spaces, for example,ð
W0

w0ðSÞds ¼ 1

ð
W1

w1ðSÞds ¼ 1: ð1:6:4Þ

If q and p ð¼ 1� qÞ are respectively the a priori probabilities that some one signal fromW0

and W1 will occur, the a priori probability distribution sðSÞ over the total signal space

W ¼ W0 þW1 becomes

sðSÞ ¼ qw0ðSÞ þ pw1ðSÞ ¼ qdðS� 0Þ þ pw1ðSÞ; ð1:6:5Þ

this last when there is but one (zero) signal in classW0. Equation (1.6.5) represents the one-

sided alternativementioned in Section 1.2.1.2, while if there is only a single signal in class

W1 aswell, Eq. (1.6.5) becomess Sð Þ ¼ qd S� 0ð Þ þ pd S� S1ð Þ; S1 6¼ 0ð Þ, andwe have an
example of the simple alternative situation. In both cases,

Ð
sðSÞds ¼ 1, by definition of

p, q, and w.

1.6.3 Cost Assignments

The next step in our application of risk theory is to assign a set of costs to each possible

combination of signal input and decision. For this we chose F1 ¼ CðS; gÞ, Eq. (1.4.3), as our
cost function. We illustrate the discussion with the assumption of one-sided alternatives,

30 Since the number of alternatives is finite and discrete, the decision rule is represented by a probability (cf. the

remarks following the statement of the general reception problem in Section 1.3.3).
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noted above, and uniform costs, although themethod is not restricted by such choices. Thus,

for the binary on–off cases considered here there are four cost assignments: two for possible

correct decisions and two for possible incorrect decisions. It is convenient to represent these

by a ð2� 2Þ cost matrix CðS; gÞ:

CðS; gÞ ¼ C1�a Ca

Cb C1�b

h i
� C

ð0Þ
0

C
ð0Þ
1

C
ð1Þ
0

C
ð1Þ
1


 �
; ð1:6:6Þ

where the rows represent costs associatedwith the hypothesis statesH0;H1, and the columns

costs assigned to the various decisions g0; g1. Thus, we write

“failure”

Ca � C
ð0Þ
1 ; cost of deciding ðincorrectlyÞ that a signal is present;

when actually only noise occurs; the decisionH1 is false:

Cb � C
ð1Þ
0 ; cost of deciding ðincorrectlyÞ that a signal is not present;

when it actually is; the decisionH0 is false:

8>>><
>>>:

“success”

C1�a � C
ð0Þ
0 ; cost of deciding ðcorrectlyÞ that there is no signal;

only noise; that is; the decisionH0 is true:

C1�b � C
ð1Þ
1 ; cost of deciding ðcorrectlyÞ that a signal is present;

the decisionH1 is true:

8>><
>>:

Consistentwith themeaningof “correct” and “incorrect”, that is, equivalently, “success” and

“failure,” with respect to the possible decisions, we require that

C1�a < Ca;C1�b < Cb : “failure”costs more than “success”;
;detC ¼ C1�aC1�b � CaCb < 0:

ð1:6:6aÞ

Here observe that the costs are assigned vis-à-vis the possible signal classes (hypothesis

states) and not with respect to any one signal in a signal class, which in the case of composite

hypotheses, contains more than one member, (Section 1.2.1.2). Similarly, H0 here refers to

noise only, representing a specified class of noise processeswhere,without loss of generality,

we can also postulate thatC1�a ¼ 0; C1�b ¼ 0; that is, there is no net gain or “profit” from a

correct decision.31Thebestwecan expect in this situation, ifweare forced to adjust the costs,

in that success may cost us nothing: C1�a ¼ C1�b ¼ 0.

We specify next that FJðXjSÞ is continuous in S, that fixed-sample tests only are

considered, and that the assumptions needed for the validity of risk theory (Section 1.5.3)

are applicable to the receiveddataX and signalsS in the following, and that these are random

or deterministic quantities. Thus, the average cost or riskmay nowbe found from (1.4.6b) by

integrating over the two points ðg1; g2Þ in the decision space D. The result is

R s; dð Þ ¼ ÐG qC1�aFJ Xj0ð Þ þ pCb FJ XjSð Þh iS
� 	

d g0jXð Þ

þ qCaFJ Xj0ð Þ þ pC1�b FJ XjSð Þh iS
� 	

d g1jXð ÞgdX; ð1:6:7Þ

31 This is achieved by setting Ca !Ca0 ¼ Ca � C1�a;Cb !Cb0 ¼ Cb � C1�b:
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and

p FjðXjSÞ
� �

S
¼
ð
W1

sðSÞFJðXjSÞds ¼ p

ð
S

w1ðSÞFJðXjSÞds; ð1:6:7aÞ

from (1.6.5).When the signal processes owe their statistical natures solely to a set of random

parameters u, that is, when the signals are deterministic (a usual case is practice), then

(1.6.7a) has the equivalent form

p
�
FJðXjSðuÞÞ

�
h
¼ p

ð
q
w1ðuÞFJðX SðuÞÞdu:j ð1:6:7bÞ

In detail, we have accordingly from [(1.6.7a) and (1.6.7b)] the defining relations

FJ XjSð Þh iS ¼
ð
S

w1 Sð ÞFJ XSð ÞÞds; FJ XjSðuÞð Þh iu ¼
ð
u

w1 uð ÞFJ X SðuÞj Þduð ð1:6:7cÞ

where the dimensionality of w1 is wJ or wL.

1.6.4 Error Probabilities

The average cost (1.6.7) can be more compactly expressed in terms of the conditional error

probabilities and conditional probabilities of correct decisions. To see this, let us begin by

introducing the conditional and total error probabilities:

a � a g1jH0ð Þ ¼ conditional probability of incorrectly deciding that a signal is

present when only noise occurs: This is known in statistics as a

Type I error probability: Here in SCT it is called the false alarm

probability; for example; a ¼ aF � pF
b � b g0jH1ð Þ ¼ conditional probability of incorrectly deciding that only noise

occurs; when a signal ðin class H1Þ is actually present:
Analogously to the above; this is often called a Type II error

probability; or in SCT; the false rejection probability of the signal:

8>>>>>>>>>><
>>>>>>>>>>:

ð1:6:8Þ

The corresponding total error probabilities are qa and pb, where a and b are now specified

in detail by

a ¼
ð
G
FJ Xð j0Þd g1ð jXÞdX and b ¼

ð
G

FJ Xð jSh ÞiSd g0ð jXÞdX: ð1:6:8aÞ

Alternatively, the conditional and total probabilities of correct decisions are

1� a ¼
ð
G
FJ Xð j0Þd g0ð jXÞdX � 1� pF; 1� b ¼

ð
G

FJ Xð jSh ÞiS d g1ð jXÞdX � pD;

ð1:6:9Þ

where we have used (1.6.3). The quantity 1� b, (1.6.9), is then the conditional probability
of (correct) signal detection pD or in statistical terminology, the power of the test, while

a ¼ pFð Þ, (1.6.8a), is called the significance level, or test size.
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Applying (1.6.5) to (1.6.9) for the total probability of a decision g ¼ g0 ¼ H0: no signal,

or g ¼ g0 ¼ H1: a signal in noise, we find respectively that

p g0ð Þ ¼ q 1� að Þ þ pb ¼
ð
G

qFJ X 0j Þ þ p FJ X Sj Þð iS
� 	

d g0 Xj ÞdX;ð�� ð1:6:10aÞ

p g1ð Þ ¼ qaþ p 1� bð Þ ¼
ð
G

q FJ X 0j Þð i þ p FJ X Sj Þð iS
� 	

d g1 Xj ÞdX;ð�� ð1:6:10bÞ

from which we note that

p g0ð Þ þ pðg1Þ ¼ 1; ðp 6¼ q ¼ 1Þ; ð1:6:10cÞ

as expected. Using (1.6.8)–(1.6.10), we readily obtain a more compact form for the average

risk (1.6.7), namely,

R s; dð Þ ¼ qC1�a þ pCb


 �� q Ca � C1�af gaþ p Cb � C1�b


 �
b ð1:6:11Þ

in terms of the Types 1 and 2 error probabilities, cf. Eqs. (1.6.8 and 1.6.9). In terms of the

probabilities of correct decisions this becomes

R s; dð Þ ¼ qCa þ pCb


 �� q Ca � C1�af g � p Cb � C1�b


 �
1� bð Þ ð1:6:11aÞ

¼ R0 � q Ca � C1�að Þ 1� pFð Þ � p Cb � C1�b

� �
pD ð1:6:11bÞ

cf. (1.6.8 and 1.6.9) above. The quantity

R0 � qC1�a þ pC1�bð	 0Þ; ð1:6:12Þ
is called the irreducible risk, here a quantity that is prefixed once the costs and a priori

probabilities p1 ¼ 1� qð Þ are established. Thus, the corresponding average risk Rðs; dÞ
here deals with all signals in H1, as well as the noise ðH0Þ.

From Eq. (1.4.5), the conditional risk becomes similarly

r Sð Þ ¼ 1� a0ð ÞC1�a þ a0Ca; S ¼ 0; 1� b0 Sð Þ½ �C1�b þ b0 Sð ÞCb; S 6¼ 0; ð1:6:13Þ
where now the simple conditional error probabilities a0 and b0 are distinguished from the

class conditional error probabilities a and b, Eq. (1.6.8a) above, according to

a0 �
ð
G
FJ Xð j0Þd g1ð jXÞdX ¼ að Þ; b0 Sð Þ ¼

ð
G
FJ Xð jSÞd g0ð jXÞdX 6¼ b: ð1:6:13aÞ

Finally, note that all of the above go over directly into analogous expressions in the case of

random signal parameters.

1.7 OPTIMUM DETECTION: ON–OFF OPTIMUM PROCESSING

ALGORITHMS

The criterion of optimization here (and subsequently) is chosen to be the minimization of

average risk (1.6.11). Thus, by suitable choice of decision rule d0 [or d1, since d0 and d1 are
related by Eq. (1.6.3) in these binary cases], the average risk Rðs; dÞ, Eq. (1.6.7) or (1.6.11),
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is minimized by making the error probabilities as small as possible, consistent with

Eq. (1.6.3) and the constraints (1.6.6) et seq. on the preassigned costs.32 We assume here,

for the moment, that the cost function CðS; gÞ is chosen so that overlapping hypothesis (or
signal) classes are not included.33Here and in Sections 1.8 and 1.9wefirst derive theoptimal

processing or detection algorithms in their various generic binary forms. In Section 1.9, we

shall then consider the evaluation of performance, as measured by the Bayes risk, or its

equivalent probabilities of error and correct signal detection.

Eliminating dðg1 XÞj with the help of Eq. (1.6.3a), we may express Eq. (1.6.9) as

R s; dð Þ ¼ R0 þ p Cb � C1�b

� �ð
G
d g0 Xj Þ L Xð Þ � K½ �FJ X 0j ÞdXðð ð1:7:1Þ

where

L Xð Þ � p

q

FJ XjSð Þh i
FJ X 0j Þð ð1:7:2Þ

is a generalized likelihood ratio GLR34 and K is a threshold:

K � Ca � C1�a

Cb � C1�b
ð> 0Þ; ð1:7:3Þ

with R0 ¼ qC
ð0Þ
0 þ pC

ð1Þ
1 the irreducible risk(1.6.12). Since d0, FðX 0Þj , Cb � C1�b, and so

on, are all positive (or zero), we see directly that R can be minimized by choosing

dðg0 XÞ! d*ðg0 XÞjj to be unity when L< 0 and zero when L 	 K. Thus, we decide

g0 : H0 if L Xð Þ < K
namely, we set d*ðg0 XÞ ¼ 1j for any X that yields this inequality. From

Eq. (1.6.3) this means also that

d*ðg1 XÞ ¼ 0:j ð1:7:4aÞ
The acceptance region ofX for which d*0 ¼ 1; d*1 ¼ 0 isG0, that is,G0 contains

all X satisfying the inequality L Xð Þ < K:

g1 : H1 if LJ Xð Þ 	 K;
that is, we choose d*ðg1 XÞ ¼ 1j for all X satisfying this inequality (and

equality) and consequently require that

d*ðg0 XÞ ¼ 0:j ð1:7:4bÞ
Here G1 denotes the acceptance region of G for which

d*0 ¼ 0; d*1 ¼ 1:

32 Equivalently, Rðs; dÞ is minimized by maximizing the probabilities of correct decisions; cf. Eq. (1.6.11a).
33 For the generalization to include overlapping classes, including stochastic as well as deterministic signals, see

Section 1.10 ff.
34 We note that L is more general than the classical likelihood ratio FJ X Sj Þ=FJ X 0j Þðð , that is, the ratio of the

conditional probability densities ofXwith and without S fixed. The generalized likelihood ratio (1.7.2) reduces to

this formwhen the a priori probabilities p and q are equal and the signal space contains but one point, corresponding

to the very special case of a completely deterministic signal.
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We remark that d*1;0 are nonrandomized decision rules directly deduced from the

minimization process itself. From Eq. (1.6.8) for these optimum rules we may write the

Bayes or minimum average risk specifically as

R* s; d*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*


 �
; m � p=q: ð1:7:5Þ

The procedures described above in (1.7.4a and 1.7.4b) present a form of generalized

likelihood-ratio test (GLRT). This general Bayesian definition must be distinguished from

GLRT alternatives when the a priori probability distributions of the signal or signal

parameters are replaced by their conditional maximum likelihood estimates. [As optimal

likelihood-ratios, albeit constrained, these conditional GLRTs are a special subset of the

general Bayes class of likelihood-ratio detectors minimizing average risk.]

1.7.1 The Logarithmic GLRT

In actual applications it is usuallymuchmore convenient to replace the likelihood-ratioL by

its logarithm, as we shall see presently.35 This in no way changes the optimum character of

the test, since any monotonic function of L may serve as test function. Thus, the optimum

decision process [Eqs. (1.7.4a and 1.7.4b)] is simply reëxpressed as

Decide

g0 : H0 if logLðXÞ < log K with or g1 : H1 if logL Xð Þ 	 logK with

d*ðg0 XÞ ¼ 1 d*ðg0 XÞ ¼ 0jj
d*ðg1 XÞ ¼ 0; d*ðg1 XÞ ¼ 1:jj ð1:7:6Þ

The likelihood ratio, and equivalently here its logarithm, embody the actual receiver

structure T
ðNÞ
R ; namely, the operation the detector must perform on the received data X in

order to reach an optimal decision as to the presence or absence of a signal (of class S) in

noise. The optimum detection situation is schematically illustrated in Fig. 1.8.

Thus, choosing d0 ! d*0; d1 ! d*1(1.7.4a and 1.7.4b) or (1.7.6), may be stated

alternatively: Make the decision for which the a posteriori risk (or cost) is least. It

is important to observe that this is clearly a direct extension of the original Theorem of

Bayes, or Bayes’ Rule, namely, “chose that hypothesis with the greatest a posteriori

probability, given the (data) X,” to include now the various costs associated with the

decision process.

1.7.2 Remarks on the Bayes Optimality of the GLR

The complete class theorem (see Section 1.2.1) for the risk formulation assures us that we

have an optimum test and that all such tests based on the likelihood ratio [Eq. (1.7.2)] are

35 In fact, any monotonic function of the likelihood ratio (1.7.2) is potentially suitable as an optimal (Bayes) test

statistic, since (1.7.2), and Fmono Lð Þ, are sufficient statistics because L, and Fmono Lð Þ, contain all the relevant

information for deciding H1 versus H0. [See Section 1.9.1.1. for a more detailed discussion of sufficiency.]
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Bayes tests (see Section 1.5.1). The Bayes risk R*(1.7.5) and the average risk R

[Eqs. (1.6.11)] for general (not necessarily optimum) systems become, respectively,

R* ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*

� �
; m � p

q
; ð1:7:7aÞ

R ¼ R0 þ p Cb � C1�b

� � K 0

m
aþ b

� �
ð1:7:7bÞ

withKgivenbyEq. (1.7.3),whileR0 ¼ qC1�a þ pC1�b in either instance [Eq. (1.6.12)].The

threshold K0 for the nonideal cases36 may or may not be equal to K.

Note, incidentally, from Eq. (1.7.7a) that if we differentiate Rð*Þ � R0

� �
=p Cb � C1�b

� �
with respect to a* or a we have at once

db*=da* ¼ �K=m; db=da ¼ �K 0=m; ð1:7:8aÞ

relations that are of use in describing a receiver’s performance characteristics. In fact, since

1� b* ¼ p*D, (1.6.9), (1.6.11a), and since a* ¼ p*F, the (conditional) probability of “false

alarm,” use have

dp*D
dp*F

¼ K=m; and
d pp*D
� �
d qp*Fð Þ ¼ dP*

D

dP*
F

¼ K; ð1:7:8bÞ

where P*
D and P*

F are respectively the unconditional probabilities of correct detection and

false alarm. In terms of the conditional probability, K=m is the slope of the curve

p*D ¼ F* p*F . . .j Þ�
, for example, dp*D=dp

*
F ¼ K=m when one plots b*

D ¼ 1� b* versus

p*F ¼ a*
F. This latter case is generally called the receiver operating characteristic (ROC)

of theBayes systemhere. Similarly,with 1� b ¼ pD;a ¼ pF for suboptimumsystems,with

slope dpD=dpF ¼ K=m; pD versus pF is the corresponding (suboptimum) ROC curve.

Γ = Γ0 ÷ Γ1

Γ1; γ1 : H1

Γ1; γ0 : H0

log K

δ∗
0 = 1

δ∗
1 = 0

δ∗
0 = 0

δ∗
1 = 1

FIGURE 1.8 Optimum binary on–off detection.

36 One always has a definite (nonzero) threshold when a definite decision is made.
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Variants of the relations between p
ð*Þ
D and p

ð*Þ
F are noted in practice, with analogous relations

involving p*D; P
*
F or PD and PF. [See Section 1.9 and Eq. (1.9.10a) et seq.]

1.8 SPECIAL ON–OFF OPTIMUM BINARY SYSTEMS

Avariety of important special cases of the optimum general (fixed-sample) binary detection

procedures discussed in Section 2.2 now requires our attention. These are all characterized

by one or more constraints on the error probabilities in minimizing the average risk. We

begin with the well known Neyman–Pearson detector.

1.8.1 Neyman–Pearson Detection37 Theory

Here the constraint is on the false alarm probability aF ¼ pFð Þ. We require it to remain fixed,

hence the alternative designation of constant false alarm (CFA) detector or constant false

alarm rate detector (CFAR), for sequences of decisions. Moreover, from the viewpoint of

decision theory, we require the total Type I error probability qaF to remain fixed, while

minimizing the total Type II error probability pb. This is expressed as

R*
NP � min

d
pbþ lqað Þ ¼ pb*

NR þ lqa; ð1:8:1Þ

where l is an as yet undetermined multiplier. Minimization is with respect to the decision

rule, in the usual way cf. (1.7.4a and 1.7.4b), (1.7.6) and subject to the fact of a definite

decision. From Eq. (1.6.8a), we write explicitly

R*
NP ¼ min

d
p

ð
G

FJ Xð jSh ÞiG d g0ð jXÞdXþ lq
ð
G
FJ Xð j0Þd g1ð jXÞdX


 �

¼ min
d

ð
G
dXd g0ð jXÞ�p FJ Xð jSh ÞiS � lqFJ Xð j0Þ

� ��
þ lq: ð1:8:2Þ

For this to be a minimum it is clear that we must choose the d’s such that when

p Fn X Sj Þð iS 	 lqFn X 0j Þ; we set d*ðg1 XÞ ¼ 1; d*ðg0 XÞ ¼ 0jjð�
and decide signal and noise;

or when ð1:8:3Þ

p Fn X Sj Þð iS < lqFn X 0j Þ; we set d*ðg0 XÞ ¼ 1; d*ðg1 XÞ ¼ 0jjð�
and decide noise alone,

cf. (1.7.4a and 1.7.4b). Thus, we have the GLRT

TðNÞ X½ �NP ¼ DNP ¼ p Fn XjSð Þh iS
qFn Xj0ð Þ

	 l decide g1; or
< l decide g0;

�
ð1:8:4Þ

which establishes the likelihood nature of the detection system [cf. Eq. (1.7.2)].

37 See Section 19.2.1 and Ref. [26] therein of Ref. [1] for additional remarks regarding the classical Neyman–

Pearson hypothesis test.
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Comparison with Eq. (1.7.2) et seq. shows that the undetermined multiplier l here plays
the role of thresholdK, andR*

NP is (except for a scale factor) the correspondingBayes risk for

this threshold l � KNP. (The decision regionsG1;G0 forX are pictured in Fig. 1.8, for logL.
However, l is not arbitrary but is determined by the constraint of a preassigned value of the

conditional Type I error probability a, for example,

aNP ¼
ð
G
FJ X 0j Þd* g1 Xj ÞdX ¼ aNP l ¼ KNPð Þð� ð1:8:5Þ

from Eq. (1.6.8a) and the nature of the optimum decision rule [Eq. (1.8.4)].

We can also write Eq. (1.8.4) in the more classical form, either by an obvious modifica-

tion, or from a computation of min dðbþ laÞ by precisely the same sort of argument given

above, namely,

LNP � Fn XjSð Þh iS
Fn Xj0ð Þ ¼ l

m
¼ K 0

NP; ð1:8:6Þ

with m � p=q (1.7.7a), and where now K 0
NP is a new threshold or significance level, into

which have been absorbed the a priori probabilities (p, q) and the cost ratio l. Thus, in the
subclass of Neyman–Pearson tests the significance level K 0

NP is set by choosing aNP, or,

equivalentlyaNP is specified for a predetermined levelK 0
NP. In either instance, it is clear from

the preceding remarks that such a formulation implies a specific set of a priori probabilities

(p, q¼ 1�p) and a cost ratio KNP if we are to apply this optimum detection procedure to

physical situations. In practice, as has been noted in Section 1.7.1 above, the logarithmic

form of the GLRT (1.8.4), with l! log l now, is the usually preferred form. CFAR (i.e.,

Neyman–Pearson) detectors are commonly used in radar and sonar applications, where the

practical constraint is keeping the false alarm rate (for sequences of decisions) suitably low,

for operational reasons.

1.8.2 The Ideal Observer Detection System

Anotherway of designing a fixed-sample one-sided alternative test is to require that the total

probability of error qaþ pb be minimized, instead of just pb as above. An observer who

makes a decision in this way is called an Ideal Observer [40]. As in the Neyman–Pearson

case, this may be set up as a variational problem and shown to yield a likelihood-ratio test

with K ¼ KI ¼ 1. Specifically, we want

R*
I ¼ min

d
qaþ pbð Þ ¼ qa*

I þ pb*
I ð1:8:7aÞ

where now a and b are jointly minimized in the sum by proper choice of the decision rule.

Using Eqs. (1.7.7a and 1.7.7b) again, we can write Eq. (1.8.7a) as

R*
I ¼ min

d

ð
G
d g0 Xj Þ p FJ X Sj Þð iS � qFJ X 0j Þð �dX� �þ q:

���
ð1:8:7bÞ

From this it follows at once that the decision procedure for the Ideal Observer is
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Decide signal andnoisewhenL 	 1, that is, set Decide noise alonewhenL < 1, that is, set

d*ðg1 XÞ ¼ 1 d*ðg0 XÞ ¼ 1jj
or

d*ðg0 XÞ ¼ 0; d*ðg1 XÞ ¼ 0:jj ð1:8:8Þ

Accordingly, the Ideal Observer system TðNÞ X½ �I is a Bayes detector with threshold KI

of unity. The fact that both the Neyman–Pearson and Ideal Observer systems yield

likelihood-ratio tests of the type (1.7.2) follows from the optimum performance they

require. Since they are likelihood-ratio tests, they belong to the Bayes risk class and

accordingly share the general optimum properties possessed by that class, including

uniqueness and admissibility (cf. Section 1.5.1). Unlike the Neyman–Pearson detec-

tors (1.8.1), which are particularly appropriate to radar, sonar, and similar hypothesis

situations where the decision costs are unsymmetrical, that is, K 6¼ 1; > 0, (1.8.2), the

Ideal Observer is the usual choice in many telecommunication applications (e.g.,

telephone, wireless telephony, etc.) where the costs associated with each class of decision

are equal, so that now K ¼ 1, cf. (1.8.8). Note, finally, that both these special classes of

optimum detection system employ nonrandomized decision rules.

1.8.3 Minimax Detectors

There is yet another possible solution to the detection problem that, like the two just

discussed, is optimum in a certain sense andwhich leads to a likelihood-ratio test. This is the

Minimax detection rule.

When theapriori signal probabilitiessðSÞare unknown, theMinimax criteriondiscussed

in Section 1.4.4 provides one possible definition of optimum system performance. As we

have seen, a Minimax system for binary detection (and the disjoint hypothesis classes of

the present chapter) can be regarded as a likelihood-ratio system for some least favorable

distribution s ¼ s0 ¼ s*
M. Once this distribution is found, the Bayes system is completely

determined. Now, in order to find it, wemay take advantage of the fact that a likelihood-ratio

system with the same conditional risks for all signals is Minimax in consequence of the

definitions of Bayes and Minimax systems (Section 1.4.4). The procedure is briefly

described below.

First, we require the conditional probabilities a0;b0 a0 ¼ b0 Sð Þj [cf. Eq. (1.6.13a)] to be

the result of a Bayes decision rule, which here means a likelihood-ratio test, with s as yet

unspecified. Then, as different s are tried, different a0;b0 result (for the same threshold K,

which depends only on the preassigned costs). The conditional risks [Eq. (1.6.13)] for S ¼ 0

and for S 6¼ 0 (all S) will vary. As one increases, the other must decrease, in consequence of

the admissibility and uniqueness of the particular Bayes rule corresponding to our choice of

s. If, then, there exists a s for which the conditional risks [Eq. (1.6.13)] are equal38 for all S,

we have the requiredMinimax rule d*M and associated least favorable prior distribution s*
M.

We remember, moreover, that, if the equation between conditional risks has no solution, this

does not mean that a Minimax rule or least favorable distribution does not exist, only that

other methods must be discovered for determining it.

38 There can be no system for which both conditional risks together can be less than this, since this is a Bayes test.
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As an example, suppose we have the simple alternative detection problem, when p

and q are unknown, and w1ðSÞ ¼ dðS� SIÞ here. From Eq. (1.7.2), we have for the

Bayes test

L ¼ pFJ XjSIð Þ
qFJ Xj0ð Þ 	< K ð1:8:9Þ

where a0ð¼ aÞ; b0ð¼ bÞ are the corresponding error probabilities [cf. Eq. (1.6.8a)]. The
a;b are functions of p and q since the decision rule d ¼ d*M depends on p and q throughL.
Thus, as p and q are varied,a;b also are changed, as the boundary between the critical and

acceptance region varies. Equating the conditional risks [Eq. (1.6.7)] in order to deter-

mine the least favorable p ¼ p*M; q ¼ q*M ¼ 1� p*M
� �

, we have

1� a p*M; q
*
M

� �� 	
C1�a þ a p*M; q

*
M

� �
Ca ¼ 1� b p*M; q

*
M

� �� 	
C1�b þ b p*M; q

*
M

� �
Cb;

ð1:8:10Þ

provided that a solution exists.

Alternatively, the least favorable a priori distribution s*
M, and therefore the Minimax

decision rule, may be found in principle from the basic definitions (see Section 1.5.3,

Theorems 1–5). That is, s0 ¼ s*
M is the a priori distribution that maximizes the Bayes risk

(cf. Fig. 1.6). Since every Bayes decision rule is associated with a specific a priori

distribution, however, the Bayes rule changes as this distribution is varied for maximum

risk. As a result, this method of finding the extremum may be technically difficult to

implement. It is applicable, however, when the previous method (based on uniform

conditional risk) fails.

In the case of the one-sided alternativewherew1ðSÞ is knownbut againp and q are not, the
same procedure may be tried when now Eq. (1.7.2) is used in place of Eq. (1.8.9). Finally, if

w1ðSÞ is unspecified, or if neither p, q, nor w1ðSÞ is given [i.e., if sðSÞ is completely

unavailable to the observer], Eq. (1.8.10)with Eq. (1.7.2) still applieswhen a solution exists,

although the task of finding s*
M may be excessively formidable. In any case, an explicit

evaluationof ða0Þ*M and b0ð Þ*M fromEq. (1.6.13a)whend ¼ d*M therein,maybecarriedout by

methods outlined in Section 1.8.1 and illustrated in succeeding sections.

We observe that the Minimax error probabilities ðaÞ*M; bð Þ*M are fixed quantities,

independent of the actual a priori probabilities p; q; w1 Sð Þ chosen by nature. The average
Minimax risk R*

M is given formally by writing R*
M for R* in Eq. (1.7.7a) and replacing p, q,

and so on, and a*; b* by p*M; q
*
M; . . . and a

*
M; b

*
M therein. The difference R*

M � R* 	 0
� �

between the Bayes (s known) and Minimax average risk (s unknown) is thus one useful

measure of the price we must pay for our ignorance of nature’s strategy (i.e., here nature’s

choice of p, q, etc.). For further discussion, see Section 20.4.8 of Ref. [1].

1.8.4 Maximum Aposteriori (MAP) Detectors from a Bayesian Viewpoint

Another approach to treating unknown, or unavailable a priori pdfs that are exceedingly

difficult to evaluate in the likelihood-ratio L (1.7.2) (usually of random signal parameters u
or waveform S), is to employ a suitably optimized estimate of u, or S. “Suitably optimized”

means here that an appropriate likelihood ratio results and hence belongs in the family of

Bayes tests, that is, one which yields a minimum average risk, R*
MAP consistent with the

available prior information and the constraints imposed by the receiver’s ignorance and/or
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simplifications. For the latter reason, of course, R*
MAP � R* 	 0 : R*

MAP is larger than (or at

best equal to) theBayes orminimumaverage riskwith all prior information used, for reasons

similar to the Minimax cases discussed above.

To see how such Bayes tests are obtained, we begin by considering the situation where

the a priori pdf wL uð Þ, of the L signal parameters u ¼ u1; . . . ; umð Þ, is available but is

difficult to treat inL, (1.7.2). Using Bayes’s theoremwemaywrite for the integrand of the

numerator of L,

wL uð ÞFJ X S uð Þj Þ ¼ wL u Xj ÞWJ Xð Þ � WJ�L X; uð Þð Þ;ðð ð1:8:11Þ

withWJ Xð Þ ¼
ð
u

wL uð ÞWJ X uj Þdu:ð ð1:8:11aÞ

Consequently, we have the conditional pdf of u given X, namely the a posteriori pdf of u
represented by

wL u Xj Þ ¼ wL uð ÞFJ X S uð Þj Þ=WJ Xð Þ:ðð ð1:8:11bÞ

Next, we use (1.8.11b) in (1.6.9) for the (conditional) Bayes average probability of correct

signal detection, namely,

1� b* ¼
ð
G
dX d g1jXð Þ

ð
u

wL u Xj ÞWJ Xð Þdu;ð ð1:8:12Þ

which we now maximize by choosing that estimate û* which in turn maximizes the

integrand (in u). Thus, we seek that estimate û* which maximizes the average value of

correct signal detection, for example, 1� b̂*. The estimate û is found from the u 2 W0 for

which the a posteriori probability wL u Xj Þð is maximum, namely, from

wL û
*
Xj Þ 	 wL u Xj Þ;ð

�
ð1:8:13aÞ

or equivalently from ð1:8:11bÞ : wL û
*

� �
FJ X S û

*
� ���� �

	 wL uð ÞFJ X S uð Þj Þ; all u 2 W0;ð
�

ð1:8:13bÞ

HereWJ Xð Þ is dropped as irrelevant to the estimation process because it does not contain u.
Accordingly, it is customary to call û

* ¼ û Xð Þ* here a MAP, or maximum a posteriori

probability estimate, which depends, of course, on the received data X. [Note that the a

posteriori probability wL u Xj Þð depends explicitly on the prior probability wL uð Þ, as a
consequence of (1.8.11b) in (1.8.12a and 1.8.12b).]

Our next step in obtaining the desiredMAP detector LMAP is to replace the pdf wL uð Þ in
the GLR (1.7.2) by the new pdf39

ŵL uð Þ* � d u� û
*
Xð Þ

� �
; ð1:8:14Þ

39 For a Bayes formulation of estimation and associated Bayes risk, see chapter 5.
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which corresponds to the maximizing operation (1.8.13a and 1.8.13b) for the integrand of

the GLR (1.7.2). The result is directly the classical MAP test

Classical MAP Test : LMAPjclassical ¼ mFJ X S û
*

� ���� �
=FJ Xj0ð Þ 	

<
K

: decide S� N

: decide N

� �
:

�
ð1:8:15Þ

Several important points need to be emphasized regarding the maximizing condition

(1.8.13a and 1.8.13b) for û
*
. First, as we shall see in Chapter 5 ff., (1.8.13a) defines an

unconditionalmaximum likelihood estimate (UMLE), because of the presence of the apriori

pdf wL uð Þ. The conditional pdf wL u Xj Þð must be determined from (1.8.11b), which in turn

depends explicitly on wL uð Þ. Accordingly, MAP detectors cannot avoid the requirements of

an explicit knowledge of wL uð Þ, which limits their use when wL uð Þ, or s uð Þ(1.6.5), is not
available. A second and more serious difficulty with the classical result (1.8.15) above, and

onewhich appears to be universally unacknowledged, is with the estimation process itself, as

embodied in (1.8.13aand1.8.13b).Thepointhere is thatp ¼ p H1ð Þð Þ is less thanunity: there is
a detection procedure indicated. The data X do not always contain the desired signal S uð Þ:
100q% of the time the data sample X contains no signal, only noise. As such the result of

employing (1.8.13a and 1.8.13b) which assumes p ¼ 1, yields a biased-estimate u* ¼ û
*

p¼1,

with an averagepositivebias in themagnitude of the estimates, cf.Chapter 6.However, as the

analysis there shows, this situation can be remedied by using the unbiased estimate

û
*

p<1 ¼ pû
*

p¼1, appropriate to the UMLE process when p < 1 (and for p ¼ 1). (It is shown

in Chapters 5 and 6 that in the context of the Bayes risk formulation for detection and

estimation, the UMLEs are derived byminimization of so called “simple cost” functions [cf.

Sections 21.2.2 and 21.2.3 [1] andChapter 5. ff.]40). Accordingly, the classical result (1.8.15)

needs to be replaced by the correct result:

MAP Test ð p < 1Þ : LMAPjp<1 ¼ mFJ X S pû
*
Xð Þp¼1

� ���� �
=FJ Xj0ð Þ 	

<
K

: decide S� N

: decideN

� �
:

�
ð1:8:16Þ

As we shall see in Chapter 5 even û
*
Xð Þp¼1, is itself not always easily obtained.

Finally, there is a variant of the MAPjp<1 detector that can be used when the a priori pdf

wL uð Þ is essentially uniform or is at least slowly varying over the range of values of u in

FJ X S uð Þj Þð where FJ is significant. Thus our maximization of the (conditional) average

probability of correct signal detection is accomplished by maximizing u according to the

condition

F X S û
� ���� �

	 F X S uð Þ ;j Þ all u 2 Wu:ð
�

ð1:8:17Þ

Although û is now apparently a conditional estimate (no a priori pdf wL uð Þ), from the

unconditional Bayes viewpoint (1.8.17) implies that wL uð Þ is uniform, consistent with

our requirement (1.8.17) represents the only significant variation of the integrand with u.

40 For these maximum likelihood cases, including (1.8.18) below, the effective part of the maximizing estimation

procedure is simply p. The relation (1.8.13a and 1.8.13b) is used when p � 1. See the analysis for Eqs. (6.3.24)–

(6.3.30).
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Thus, wL uð Þ ¼_ woL, a constant, and now the integrand of L, (1.7.2), from (1.8.17),

can be written

ð
u

woL uð ÞF X S û Xð Þ
� ���� �

du ¼ F X S û Xð Þ
� ���� �

;
��

ð1:8:18Þ

since
Ð
u wL uð Þð¼ w0LÞdu ¼ 1.Of course, the conditions onwL uð Þ leading to (1.8.17)must be

obeyed for the results to be acceptably accurate. The resulting MAP Test, p < 1, here must

also take into account the proper estimator for p < 1. Again, this is pûp¼1 Xð Þ, where
ûp¼1 ¼ û

*

p¼1juniform;which is the equivalent UMLE nowwith a uniform a priori pdf u 2 Wu.

The MAP test here becomes from (1.8.15) and the above

MAP Testjuniform : LMAPjp<1; uniform ¼ mFJ X S pû
*

p¼1; uniform

� ���� �
=FJ Xj0ð Þ 	

<
K

� �
: decide S� N

: decide N:

�
ð1:8:19Þ

Once more, this procedure maximizes the average probability of correct signal detection,

now without detailed knowledge of a parametric a priori pdf wL uð Þ, except again that it be
effectively uniform over values of u where F is significant and with recognition of the fact

that p< 1.

The associated Bayes risk for these MAP detectors has the form of (1.7.7a), namely,

R*
MAP ¼ R0 þ pðCb � C1�bÞ K

m
a*
MAP þ b*

MAP

� �
: ð1:8:20Þ

We remark once more that R*
MAP 	 R*, the minimum average risk for the fully known prior

pdf’s, including p ð¼ 1� qÞ. For quantitative results we must of course evaluate the

conditional error probabilities a*
MAP;b

*
MAP, and for comparison, a*; b*, as well. General

expansions for a*; b*;a*
MAP, and so on are derived in Section 1.9 ff., from which, in turn,

explicit results can be obtained either exactly or approximately by a variety of analytical

methods. In any case, the relation R*
MAP 	 R* is basically attributable to the fact that R*

MAP

employs only partial information regarding the prior pdfs of (here) the parameters u, in the
form of estimates, whereas the Bayes risk R* uses the true and entire pdfs for u.

Similar arguments for MAP detection of received signal waveforms S give at once the

desired counterparts to (1.8.16) and (1.8.19):

MAP Test ðp < 1Þ: LMAPjp<1 ¼ mFJ X
���pŜ* Xð Þp¼1

� �
=FJ Xj0ð Þ

MAP Testjuniform : LMAPjp<1; uniform ¼
mFJ X

���pŜ* Xð Þp¼1juniform
� �

FJ Xj0ð Þ

	
<
K
: decide S� N

: decide N

� �
;

ð1:8:21Þ

where (1.8.13a and 1.8.13b) and (1.8.18), with u replaced by S, now provide the maximiz-

ing condition for Ŝ
*ðXÞp¼1 in (1.8.21).

Finally, an alternative way of handling the MAP estimators in detection is discussed

in Chapter 6. Here the biased nature of the estimator is handled by a strongly coupled
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estimator — a detector system that does not require explicit a priori knowledge of

p ¼ p H1ð Þð Þwhen p< 1. This is accomplished by the application of appropriate thresholds

on the estimators and detector, along with feedback of the detector’s decision H1 orH0ð Þ
regarding acceptance or rejection of theseMAP estimators as well as presence or absence of

the signal. Nevertheless, it should be remembered that in the Bayesian formulation prior

probabilities (among them p or q¼ 1� p), are always at least implied. An extensive

discussion of the pros and cons of these methods is given in Section 23.4 of Ref. [1].

1.8.5 Bayesian Sequential Detectors

Other variations in the form of the likelihood detector are also possible. In all of the above,

sample size (J) is fixed andminimization of the average risk, generally, involvesminimizing

the appropriate error probabilities. In sequential detection, however, the false alarm and

Type II error probabilities are preset and the aim is to reach a decision ðS� N or NÞ in the
shortest time, that is, for the smallest sample size, on the average. Thus, sample size J is now

the random variable (as well as the data X). Minimization of the average risk is now

minimization of the “average cost of experimentation,” defined as being proportional to

sample size. This Bayes risk can be expressed as

R*
seq ¼ qaCa þ pbCb þ pCo min

d! d*
J X S; dj Þ*
� E

X
; j! J* terminationð Þ

D
ð1:8:22Þ

where Co is the cost per unit trial (per unit of j¼ 11, 12, . . ., J). In many (but not all) cases,

d! d*seq yields a likelihood detector for the optimum structure. If ys � logLJ�seq

� �
is this

likelihood detector, then the best procedure involves a double threshold, instead of the single

threshold (log K) characteristic of the fixed-sample tests described above. The detection

process is described by

Sequential ðBinaryÞ Test : If B ¼ b= 1� að Þð Þ < ys < A ¼ 1� bð Þ=að Þ : continue test j! j þ 1

If ys 	 A : test terminates j! JðX S; dseqÞ* decideH1 : S� N
��

If ys < B : test terminates j! JðX S; dseqÞ* decideH0 : N:
�� ð1:8:23Þ

The theory of sequential tests is due primarily to Wald [8], with its application to signal

detection subsequently initiated by Bussgang and Middleton [9], with further development

by Blasbalg [22] and others; see also Basseville and Nikiforov [23]. Chapter 9 of

Helstrom [14] provides a comprehensive account of the subject with additional references.

Further discussion here is outside the scope of this book.

1.9 OPTIMUM DETECTION: ON–OFF PERFORMANCE MEASURES

AND SYSTEM COMPARISONS

A second and equally significant task of Bayes SCT, along with the determination

and practical interpretation of the optimal data processing algorithms L Xð Þ;ð
logL Xð Þ; LMAP Xð Þ; etc:Þ; is the evaluation of optimum system performances and perfor-

mance comparisons with suboptimum receivers G(X). The latter is particularly important

because practical systems are themselves never strictly optimum: optimality is an ideal,
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to be approached under the inevitable constraints of usually limited knowledge of the

environment and bounded economic resources. Nevertheless, optimality and its explicit

formulations provide a guide to the key elements of (1) effective practical system design,

(2) limiting measures of performance against which the practical system can be compared

and often improved, and (3) insights regarding the critical channel structures that inhibit

performance. Accordingly, modeling the communication environment, that is, translating

the physics of the channel T̂
ðNÞ� �

into relevant mathematical relationships becomes a third

major task. This will be treated in detail in Chapters 8 and 9, but it needs to be borne in mind

here, because of its ultimate influence on the actual probability measures that constitute the

elements of the (Bayes) risks by which performance is evaluated.

Useful measures of performance all depend in some way on the conditional error

probabilities a*;b*;a;b; . . . ; and so on, cf. Sections 1.6.2 and 1.7 above. Since the

error probabilities are also functions of the received signal and of the parameters of

the accompanying noise, comparisons of systems performance can also be made in terms

of such quantities as well, under a variety of conditions, involving both optimality and

suboptimality.

1.9.1 Error Probabilities: Optimum Systems

Our first problem is to provide some way of determining the error probabilities

að*Þ; bð*Þ ; aMAP; bMAP; and so on, which occur for Bayes and non-Bayes (suboptimum)

systems.

We begin with the Bayes class, namely, those described in Sections 1.7 and 1.8 above,

where the decision rules d*ðg0 XÞ; d*ðg1 XÞj�� are determined according to (1.7.4a

and 1.7.4b). With the help of the transformation x ¼ logLðXÞ, cf. (1.7.7a and 1.7.7b), we
can write the following expressions for the conditional class probabilities of the Types I and

II errors in the Bayesian cases

a* ¼
ð1
log K

dx

ð
G
FJ Xj0ð Þd x� logL Xð Þ½ �dX ¼

ð1
log K

Q1 xð Þdx ð1:9:1aÞ

and

b* ¼
ðlog K

�1
dx

ð
G

FJ XjS uð Þð Þh iS or ud x� logL Xð Þ½ �dX ¼
ðlog K

�1
P1 xð Þdx; ð1:9:1bÞ

Here Q1 and P1 are respectively given by

Q1 xð Þ ¼
ð
G
FJ Xj0ð Þd x� logL Xð Þ½ �dX; P1 xð Þ ¼

ð
G

FJ X S uð Þj Þð iS or ud x� logL Xð Þ½ �dX:�
ð1:9:2Þ

From the fact that FJ X 0j Þð and FJ X S uð Þj Þð ih are themselves probability densities and that

x� logLðXÞ is also a random variable when considered over the ensemble of possible

values ofX, it follows that theQ1,P1 of (1.9.1a) and (1.9.1b) are the probability densities of

x with respect to the distributions associated with the hypothesis states H0 and H1,

respectively. We shall elaborate on this further below, cf. Eq. (1.9.4a) et. seq.
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1.9.1.1 Sufficient Statistics andMonotonicMapping Themapping forX- tox-space by

means of the transformation x� logL Xð Þ is mathematically quite arbitrary; (see

Section 1.7.1). Any monotone function x ¼ FðLÞ can be used without altering the

values of the error probabilities. This is to be expected, since FðLÞ, like L here, remains

a sufficient statistic.41 The analytic consequences of monotonicity in turn are readily

demonstrated by the relations

a* �
ð1
K

q1 yð Þ*dy ¼
ð1
K

Q1 F yð Þð ÞF0 yð Þdy ¼
ð1
Knew¼FðKÞ

Q1 xð Þdx; x ¼ F yð Þ: ð1:9:3Þ

Since y ¼ L and x ¼ FðyÞ ¼ FðLÞ ¼ logL here, F0ðyÞdy ¼ dx ¼ dL=L with F Kð Þ ¼
log K, so that (1.9.1a) results. A similar procedure gives b*(1.9.1b). In fact, for any

monotonic relation z ¼ GðXÞ, where x ¼ FðGÞ ¼ FðzÞ it follows that the general (not

necessarily optimum) conditional error probabilities a and b can be represented by

a � Ð1
K

q1 zð Þdz ¼ Ð1
K

Q̂1 Fð Þ dF

dz

0
@

1
Adz ¼ Ð1

Knew¼FðKÞ Q1 xð Þdx;

etc: for b � Ð K�1 p̂1 zð Þdz ¼ Ð Knew¼FðKÞ
�1 P̂1 xð Þdx:

ð1:9:3aÞ

Although a new threshold Knew ¼ F Kð Þ is established by the transformation F, the key

result is that the error probabilities a *ð Þ;b *ð Þ remain unchanged under any monotonic

mapping. Moreover, a*
F;b

* ! 0 and P*
D ! 1 as the signal S!1 vis-à-vis the accompa-

nying noise, and likewise a*
F;b

*
� �! 1 when S! 0. In the optimum cases this also means

that Knew ¼ Knew Sð Þ½ � depends on the signal in such a way that these limiting results are

achieved. The resulting decision process is consistent as S!1. For suboptimum systems

similar results will occur, depending on our choice of test statistic z¼G(X): however, not all

choices lead to consistency.

Similarly, if several successivemonotonicmappings are carriedout, that isx ¼ G1 yð Þand
z ¼ G2 xð Þ ¼ G21 yð Þ, then (1.9.3a) becomes generally

a ¼
ð1
K

q1 yð Þdy ¼
ð1
K1¼G1 Kð Þ

Q1 xð Þdx ¼
ð
K2¼G2 K1ð Þ¼G21 Kð Þ

Q2 zð Þdz; etc:; ð1:9:3bÞ

and for the optimum cases a!a*; y ¼ L, and so on. As noted above, monotonicity

guarantees that a *ð Þ and b *ð Þ remain unchanged in value, although their analytic forms are

now different from the original expressions. The practical importance of this is that it very

often allowsus to evaluateperformanceanalytically,without recourse tonumericalmethods,

by suitable simplifying choices of monotonic transformations (e.g., x¼ log L instead of L
itself).We shall see several examples employing these general results in Sections 3.2–2, 3, 5

subsequently.

41 We recall thatL(X) is a sufficient statistic if specifyingX in addition tox¼L(X) does not in anyway increase our
knowledge of the signal S (which is implicit in L, cf. FJ X Sj Þð ih (1.7.2)). Analytically, [Section 22.1.1 of Ref. [1]

and, p. 1010] the n.þ s. condition that L is a sufficient statistic is the requirement that the pdf

wJ S Lj Þ ¼ Fmono f Sð Þg Lð Þ½ �ð , that is, that wJ is a monotonic function of the factors f, g here.
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In any case, we see that the d-functions in (1.9.1a) and (1.9.2) pick out the regionG* inX-

space for which d*ðg1 XÞ ¼ 1j in the case of a*, with a similar interpretation for b* when

d*ðg0 XÞ ¼ 1:j Figure 1.9 shows the two regions in x-space when x ¼ logLðXÞ, with the

dotted line at x ¼ log K separating the decision regions for H0 and H1.

1.9.1.2 Error Probabilities and Contour Integration [24] Returning to Eqs. (1.9.1a

and 1.9.1b) and (1.9.2) and using the integral exponential form for the d-functions therein,
we can write at once the characteristic functions (c.f.s) associated with the pdfs Q1, P1

F1 ijð ÞQ ¼ EH0
eijlog L Xð Þ
n o

¼
ð
G
eijlog L Xð ÞFJ X 0j ÞdXð ð1:9:4aÞ

F1 ijð ÞP ¼ EH1
eijlog L Xð Þ
n o

¼
ð
G
eijlog L Xð Þ FJ X S uð Þj Þð idX;h ð1:9:4bÞ

for which the corresponding pdfs are, from (1.9.2)

Q1 xð Þ ¼ F�1 F1 ijð ÞQ
n o

¼
ð1
�1

e�ijx dj

2p

ð
G
eijlog L Xð ÞFJ X 0j ÞdXð ð1:9:5aÞ

P1 xð Þ ¼ F�1 F1 ijð ÞP

 � ¼

ð1
�1

e�ijx dj

2p

ð
G
eijlog L Xð Þ FJ X S uð Þj Þð idX:h ð1:9:5bÞ

As noted earlier [[1], Eq. (19.32a) and Problem 17.8] there is a simple formal relation

between P1 and Q1, which follows from the identity

ð
G
e�ijxFJ Xj0ð ÞdX � m

ð
G
e ij�1ð Þx FJ XjSð Þh idX; x ¼ logL ¼ m FJ XjSð Þh iu

FJ X 0j Þð ð1:9:6Þ

(which is readily established on using x ¼ logL explicitly in (1.9.6)). Thus, from (1.9.4a

and1.9.4b) it is seen at once thatF1ðizÞQ ¼ me�xF1ðijÞP, so that using this relation in (1.9.5a
and 1.9.5b) gives the desired relation

Q1ðXÞ ¼ me�xP1ðxÞ ð1:9:7Þ

H0 : Q(X) H1 : P(X)

α*

β*

Γ' in X

–x x = log Λ

log K Γ'' in X

FIGURE 1.9 Probability densities and decision regions for x ¼ logL; Eq. (1.7.6).
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which is sometimes useful in the explicit evaluation of error probabilities, particularly when

the (sometimes) easier to evaluate Q1ðxÞ can be found.

Potentially useful alternative relations for the error probabilities, now in terms of the

characteristic functions (1.9.4a and 1.9.4b), can be obtained as follows. Applying (1.9.4a

and 1.9.4b) to (1.9.5a and 1.9.5b), and then in (1.9.1a and 1.9.1b), we first extend the

domain of j by analytic continuation to appropriate regions of the complex j-plane, in order
to ensure convergence of the integrals

Ð1
log K

e�ijxdx;
Ð log K

1 e�ijxdx in the reversal of the

orders of integration which we employed in the above. The results are then the inverse

Fourier transforms

a* ¼
ð1�ic

�1�ic

e�ijlog K

2pij
F1 ijð ÞQdj ¼

ð
Cð�Þ

e�ijlog K

2pij
F1 ijð ÞQdj; ð1:9:8aÞ

and

b* ¼
ð1þic

�1þic

e�ijlog K

�2pij
F1 ijð ÞPdj ¼

ð
CðþÞ

e�ijlog K

�2pij
F1 ijð ÞPdj; ð1:9:8bÞ

whereCð�Þ;CðþÞ are respectively contours extending from�1 toþ1 along the real axis,

indented downward and upward about any singularities on this axis, usually at j ¼ 0, as

shown in Fig. 1.10. (We note the equivalence of the contours ð�1 
 icÞ; ð1 
 icÞ½ � and
Cð�Þ;CðþÞ, since the contributions of the paths A0A

0; A1A
00
; B

00
;B1;B

0B0 vanish at 
1:.)
Simple poles on the j-axis or within the rectangular paths Cð�Þ þ B0B

0 þ A0A0 and

CðþÞ þ B1B
00 þ A

00
A1 are handled in the usual way with the help of Cauchy’s theorem,42

extended to include any branch points by appropriate modification of the contours.

For example, Fig. 1.11 shows some equivalent contours when the integrands (1.9.8a

and 1.9.8b) contain a branch insert at ð¼ 0Þ.43 Equivalent contours are also obtained by

– ∞ – ic

– ∞ + ic

ic
C(+) 0

C(–)

– ic

A'' B''

A' B'

A1 B1

A0 B0

∞ + ic

∞ – ic

∞

FIGURE 1.10 Equivalent contours of integration for the error probabilities a*;b*
� �

, (1.9.8a and

1.9.8b).

42 We cannot use circular arcs j ¼ peifj since r!1 and �p � fj � 0 or 0 � fj � p generally, and have their

contributions vanish, leavingCð
Þ. This depends on F1=j ¼ F ¼ exp �j2=2
� �

; A1 > 0, is a case in point. We can,

however, eliminate A1A
00
by letting 0 ! þ1, etc., withCðþÞ indented upward by «, about any singularities on the

Re z-axis, and so on.
43 A rather extensive discussion of Fourier and Laplace transforms is available in Sections 2.2.4 and 2.2.3 of

Ref. [1], including extensive references, along with applications to filters (Chapter 2), rectification, modulation

(Chapters 5, 12, 13, 15), andBayes detection results (Chapters 19, 20, 23), also in Ref. [1]. SeeRefs. [24] and [41] as

well, along with [42, 43] for related analytical tools.
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setting j ¼ s=i in the above. The result is a rotation by �i ¼ e�pi=2 of the j-plane
contours.42

Finally, it is useful for subsequent applications to provide explicit results for determining

the (class) error probabilities a*;b*
� �

for thevarious types of binaryBayes, that is, optimum

detectors discussed in Chapter 3, along with general expressions of their associated risks

or costs. For this we shall formally employ the c.f.s (1.9.4a and 1.9.4b) to be used in (1.9.8a

and 1.9.8b) directly:

a* ¼
ð
Cð�Þ

e�ijlog K

2pij
F1 ijð ÞQdj b* ¼

ð
CðþÞ

e�ijlog K

�2pij
F1 ijð ÞPdj; ð1:9:9Þ

with the general Bayes case:

(1) General On–Off Bayes.

Section 1:7½ � F1 ijð ÞQ ¼
ð
G
eijlog LFJ Xj0ð Þdx;L Xð Þ ¼ m FJ XjS uð Þð Þh iu

FJ Xj0ð Þ ; ð1:7:2Þ; ð1:7:6Þ;

ð1:9:9aÞ

F1 ijð ÞP ¼
ð
G
eijlog L FJ X S uð Þj Þð iudx;

� ð1:9:9bÞ

R* s; d*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a* þ b*

� �
; ð1:7:1Þ; ð1:7:5Þ; ð1:9:9cÞ

with a*;b* given by (1.9.1a), via (1.9.4a and 1.9.4b) in (1.9.5a and 1.9.5b).

(2) Neyman–Pearson.

Section 1:8:1½ � a* ¼ aF ¼
ð
Cð�Þ

e�ijlogKNP

2pij
F1 ijð ÞQdj;

F1Q ¼ ðEq:1:9:9aÞ;K ¼ KNP aFð Þ
ð1:9:10aÞ

0

ξ = |x|e
π i

ξ = 0 ξ = 0

ξ = 0
ξ = 0

ξ = |x|e
–π i

ξ = |x|e
–2π i

ξ = |x|

+π

–2π

–π
(= –2π + π)

–π

–π

–π
Γ

Γ

Branch line

0 C

0 0 C

FIGURE 1.11 Some equivalent contours of integration when F1ðijÞ=j contains a branch point at

j ¼ 0; [24, 41].
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b*
NP ¼

ð
CðþÞ

e�ijlogKNP aFð Þ

�2pij
F1 ijð ÞPdj; F1P ¼ Eq:ð1:9:9bÞ; ð1:9:10bÞ

R*
NP s; d*NP
� � ¼ C0 pb*

NP þ KNP aFð ÞqaF

� 	
; Eqs:ð1:7:7a and 1:7:7bÞ; ð1:8:5Þ:

ð1:9:10cÞ

(3) Ideal-Observer.

Section 1:8:2½ � a*
I ¼

ð
Cð�Þ

F1 ijð ÞQ
dj

2pij
; ð1:9:9aÞ for F1 ijð ÞQ; K ¼ 1ð Þ; ð1:9:11aÞ

b*
I ¼

ð
CðþÞ

F1 ijð ÞP
dj

�2pij
; ð1:9:9bÞ for F1 ijð ÞP; ð1:9:11bÞ

R*
I s; d*I
� � ¼ C0 qa*

I þ pb*
I

� �
; Eqs: ð1:8:7a and 1:8:7bÞ: ð1:9:11cÞ

(4) Minimax.

Section 1:8:3½ � F1 ijð ÞQM
¼
ð
G
eijlogLMFJ Xj0ð Þdx; L ¼ LM ¼ mM FJ XjS uMð Þð Þh iuM

FJ X 0j Þð
ð1:9:12aÞ

F1 ijð ÞPM
¼
ð
G
eijlogLM FJ XjS uMð Þð Þh iuMdx; cf: ð1:9:9a and 1:9:9bÞ ð1:9:12bÞ

R* s*
M; d

*
� � ¼ R0 þ p Cb � C1�b

� � K

m
a*
M þ b*

M

� �
; ð1:9:12cÞ

a* !a*
M; b* !b*

M fixed and determined from (1.9.12a and 1.9.12b) in (1.9.9a

and 1.9.9b).

(5) MAP Detectors, MAP1,2.

½Section 1:8:4� F1 ijð ÞQ�MAP1
¼
ð
G
eijlogLMAP1FJ Xj0ð Þdx;

L Xð ÞMAP1
¼

mFJ XjS pû
*

p¼1

� �� �
FJ Xj0ð Þ ; cf:Eq: ð1:8:16Þ

ð1:9:13aÞ

F1 ijð ÞP�MAP1
¼
ð
G
eijlogLMAP1 FJ X S uð Þj Þð iudx

� ð1:9:13bÞ

[Here the actual or “true” pdf wL uð Þ is known, in order to obtain û* in the maximization

process, cf. (1.8.13a) et. seq. Hence h iu involves wL uð Þ in FJh iu(1.9.13b): pû
*
Xð Þp¼1 is

the required unbiased estimate of S.]
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We observe that a*
MAP1

; b*
MAP1

, follow from (1.9.13a and 1.9.13b) in (1.9.8), cf. (1.9.9c).

Also, that

R*
MAP1

¼ R* s; d*MAP1

� �
¼ R0 þ p Cb � C1�b

� � K

m
a*
MAP1

þ b*
MAP1

� �
; cf: ð1:8:7Þ and ð1:9:13cÞ;

MAP2.

F1 ijð ÞQ�MAP2
¼
ð
G
eijlogLMAP2FJ Xj0ð Þdx; L Xð ÞMAP2

¼
m FJ XjS pû

*

p¼1juniform
� �� �D E
FJ Xj0ð Þ

cf: ð1:8:19Þ : here wL uð Þ � uniform u 2 Wu

;

8>><
>>:

ð1:9:14aÞ

F1 ijð ÞP�MAP2
¼
ð
G
eijlogLMAP2 FJ X S uð Þj Þð iu: uniformdX;

� ð1:9:14bÞ

ða*;b*Þp�MAP2
follow from (1.9.5a and 1.9.5b) in (1.9.8).

R*
ðuniform;d*MAP2

Þ ¼ R0 þ pðCb � C1�bÞðK
m
a* þ b*ÞMAP2

ð1:9:14cÞ

(6) Sequential Detection. Here a;b are preset: the test statistic is

Section 1:8:5½ �L ¼ L XjJð Þ ¼ m
FJ XjS uð Þð Þih u

FJ Xj0ð Þ ð1:9:15aÞ

b

1� a
< L Xj jð Þ < 1� b

a
: continue test; j! J þ 1;

L XjJ*ð Þ 	 1� b

a
: decideH1; L XjJ*� �

<
b

1� a
: decideH0

j! J* : terminating sample size:

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð1:9:15bÞ

R*
seq s; d*seq

� �
¼ qaCa þ pbCb þ pC0 min

d! d*seq

J X S; Jj Þ*
� E*

X
:

�
ð1:9:15cÞ

In all of the above (except (6)) we observe that the various error probabilities a*;b*
� �

are

also functions of the prior probabilities (p, q), as well as the parameters u of the signal and of
the noise, through logLð Þ of the various optimal detectors above. When it is the signal

waveform S with which we are directly concerned, rather than its parameters u, we simply

replace S(u), and so on, with S, or pŜ
*
and so on, cf. (5) for the MAP detectors. All of the

detectors are optimal within the general Bayesian framework here. However, since they all

provide likelihood-ratio tests representativeof the level of optimumperformancewhich they

demand, they differ in their average costs of decision (Bayes risk). This occurs primarily

because of the various constraints imposed upon the signal parameters and their distribu-

tions: themore constrained and themore approximative of the actual distributions, the larger

the Bayes risk. Thus, ignorance of the true distribution imposes an average risk penalty,
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cf. remarks in Section 1.8.3, which can be determined by comparing R*, (1.9.9c), with the

other average risks, (1.9.10c), (1.9.11c), and so on.

1.9.2 Error Probabilities: Suboptimum Systems

TheapproachofSection1.9.1 is in noway restricted to optimumsystems. For example, in the

case of an actual preselected detection system, with a threshold K 0 (implying at least a cost

ratio), and a structure represented by GðXÞ [ 6¼ LðXÞ usually] the conditional probabilities
of the Type I and Type II errors are now described by analogues of (1.9.1a,b), namely,

a ¼
ð1
logK0

dz

ð
G
FJ Xj0ð Þd z� logG Xð Þ½ �dX ¼

ð1
logK0

q1 zð Þdz ð1:9:16aÞ

b ¼
ðlogK 0

�1
dz

ð
G

FJ XjS uð Þð Þh iu or Sd z� logG Xð Þ½ �dX ¼
ðlogK 0

�1
p1 zð Þdz: ð1:9:16bÞ

The conditional error probabilities a0;b0, Eq. (1.6.13a), are again obtained on omitting the

average h iu or S over parameters or waveform. The distributions (pdfs) of y ¼ logGðXÞ are
respectively given by (1.9.2), with LðXÞ replaced byGðXÞ underH0,H1. The c.f.s of q1, p1
are likewise described by

F1 ijð Þq1 ¼ EH0
eilog G Xð Þ
n o

¼
ð
G
eijlog G Xð ÞFJ X 0j ÞdXð ð1:9:17aÞ

F1 ijð Þp1 ¼ EH1
eilog G Xð Þ
n o

¼
ð
G
eijlog G Xð Þ FJ X S uð Þj Þð iu or SdX;

� ð1:9:17bÞ

cf. (1.9.4a and 1.9.4b). [Figure 1.9 applies here also, provided that we replace K by K 0, a*

by a0, Q1 by q1, etc.]

The same procedure used to obtaina* andb*, (1.9.8a and 1.9.8b) et. seq., applies directly

here for a and b. We have directly

a ¼
ð1�ic0

�1�ic0

e�ijlogK 0

2pij
F1ðijÞq1dj ¼

ð
Cð�Þ0

e�ijlogK 0

2pij
F1ðijÞq1dj ð1:9:18aÞ

b ¼
ð1þic0

�1þic0

e�ijlogK0

�2pij
F1ðijÞp1dj ¼

ð
CðþÞ0

e�ijlogK 0

�2pij
F1ðijÞp1dj; ð1:9:18bÞ

where c0;Cð�Þ0 are similar to c;Cð�Þ in (1.9.8a and 1.9.8b) and in Fig. 1.10. Note, however,
that the relation (1.9.7) connecting the pdfsQ1 andP1 ofx ¼ logLðXÞunderH0 andH1 does

not hold for q1 and p1, cf. (1.9.16a and 1.9.16b). On the other hand, it is still true if

u ¼ FðzÞ; z ¼ GðXÞ; that for anymonotonic functionFðzÞ;a andb remainunchanged: here

F ¼ log z ¼ logGðXÞ specifically, (1.9.3a) above.
Accordingly, with (1.9.16a and 1.9.16b) or (1.9.18a and 1.9.18b), we are able, at least

in principle, to determine the average risk Rðs; dÞ

½ð1:6:11Þ� : R s; dð Þ ¼ R0 þ q Ca � C1�að Þaþ p Cb � C1�b

� �
b ð1:9:19Þ
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cf. (1.6.11a and 1.6.11b), and then compare the performance of the suboptimum system

GðXÞ, or logG, with that of the corresponding Bayes detectors (Sections 1.8 and 1.9.1), as
outlined below.

1.9.3 Decision Curves and System Comparisons

The relations (1.9.1a and 1.9.1b) with the Bayes riskR*, (1.7.7), and with the average riskR,

enable us to compare the performance of actual and optimum systems for the same purpose

and of course for the same input signals and noise statistics.

We note first that the error probabilities a*;b* and a;b, which appear in R* and in R,

are functions of a0, the input signal-to-noise [(rms) amplitude] ratio44, defined according to

a0 ¼ S2
� �

= N2
� �� �1=2

. Curves of average risk as a function of a0 (or of any other pertinent

signal parameters such as sample size J, and other structure parameters) are called decision

curves. It is in terms of these that specific system comparisons may be made. Figure 1.12

illustrates a typical situation, involving an ideal and an actual detection system for the same

purpose.44 Thus, if we choose the same threshold (K¼K0) and assign the same costs

[Eq. (1.6.6)] to each possible decision, then the average risk R for all a0 will exceed the

corresponding Bayes risk R*, as indicated.

One definition ofminimum detectable signal45is that input signal-to-noise ratio a0ð Þmin

that yields an average risk R0 that is some specified fraction of the maximum average risk,

that is, the a0 for which R0 ¼ hRmax 0 < h < 1ð Þ. (Rmax, in physical situations at least,

occurs for a0 ¼ 0.) System comparison can now be carried out in a variety of ways,

of which the following are some examples (Fig. 1.12):

(1) a0ð Þ*minh, versus a0ð Þminh (in general, R0 6¼ R*
0 for the same h);

(2) a0ð Þ*minh1
, versus a0ð Þminh1

(for R*
0 ¼ R

00
0, which determines h1;h2);

(3) R*
0 versus R

0 [for the same a0ð Þ*minh].

Another definition of the minimum detectable signal, a20
� �*

min
6¼ a20
� �2

minh

� �
which is

explicitly related to detector structure and performance and easier to calculate, is obtained

Average cost

0

R
Rmax

R*
max

R*
0(R'' )

(a0
*)min –η

(=a0
*)min –η1

(a0
  )min –η2

a0
  

(a0
  )min –η

R'
R0

R*(Bayes)

FIGURE 1.12 Typical situations of comparison, showing average and Bayes risks and minimum

detectable signals.

44 Frequently,a0 is randomover the signal class, so that the appropriate ratio is �a0, or a20 , and so on, depending on the

system. See the examples in Section 3.2 ff.
45 See Sections 19.3.3, 20.3.1, 20.4 of Ref. [1] and Refs. [1, 2] of Chapter 19, Ref. [1] for more details.
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from the detection parameter. This quantity, in turn, explicitly determines the performance

probabilities P
ð*Þ
D , or P

ð*Þ
D and P

ð*Þ
F in the optimum and suboptimum cases. It is defined and

discussed in detail in Section 3.1.2 and is employed throughout this book.46

1.9.3.1 Betting Curves Another decision curve, also useful for comparison, is the

betting curve, introduced originally by Siegert [40], which relates the probability

W1 a0; Jð Þ of a correct decision (Section 19.3.3 [1]) to the input signal-to-noise ratio a0.

This is defined by

W1 a0; Jð Þ ¼ 1� aqþ bpð Þ ¼ 1� PF þ PDð Þ: ð1:9:20Þ

For optimum systems Eq. (1.9.20) thus becomes

W1 a0; Jð Þ ¼ 1� a*qþ b*p
� � ¼ 1� P*

D þ P*
F

� 	
: ð1:9:20aÞ

For the Neyman–Pearson and Ideal Observer we may replace a and b by the appropriate a*

and b* [Eqs. (19.4.1a and 19.4.1b) in [1]], since these systems were shown in Sections 1.8.1

and 1.8.2 to be Bayes with suitable assumptions on the cost ratio (Fig. 1.13).

It is often convenient to use normalized betting curves, defined by ((20.135a and

20.135b) of Ref. [1]), which for the Neyman–Pearson and Ideal Observer become

specifically here

W1 a0; Jð ÞNP ¼ W1jNP � qa*
F

� �
= 1� qa*

F

� �
; ð1:9:21aÞ

W1 a0; Jð ÞI ¼ W1�I � p or qð Þ½ �= 1� p or qð Þ½ �; ð1:9:21bÞ

where (p or q)means that the larger of the two is to be used, andW1 is given by (1.9.20). The

Bayes risks (1.8.2) and (1.8.7a) can be expressed more compactly in terms of the betting

curve (1.9.20a) by

R*
NP ¼ C0 1�W1�NP þ aNPq KNP � 1ð Þf g; ð1:9:22aÞ

R*
I ¼ C0 1� W1�Ið Þf g; ð1:9:22bÞ

46 Examples of a20
� �

min
are also noted in Sections 20.3 and 20.4 of Ref. [1].

Probability of correct decisions

(Bayes)
1.0

0.5

0
0

(v)

a0
(a0

*)min – v

(a0
  )min – v

FIGURE 1.13 Betting curves and associated minimum detectable signals.
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with more involved forms when theW1s are replaced by their normalized representation.

The conditional probabilities may be calculated as before [cf. Eqs. (1.9.1a and 1.9.1b)

and (1.9.16a and 1.9.16b)] and may be used in a similar way for system comparison, with

the minimum detectable signal defined now in terms of an input which leads to a given

percentage n of successful decisions at the output (cf. Fig. 1.9). Each point on the betting
curve, considered as a function ofa andb, corresponds to a point on the risk curve,which is
also a function of these a; b. Thus, comparisons in terms of “success” are equivalent to

those on a risk basis (except for the scale that sets the absolute cost).

1.9.3.2 Performance versus Sample Size An additional description and comparison of

systemperformance, often of considerable interest, is given by the behavior of theminimum

detectable signal as a function of the acquisition, or integration time T (�J, the sample size).

This relationship is found from the set of average risk curves [Eq. (1.6.11)] (cf. Fig. 1.12)

or the betting curves [Eqs. (1.9.20 and 1.9.20a)], as J assumes all allowed values. The

examples considered in Section 20.4, [1] provide some further illustrations.

1.9.3.3 Other Performance Measures Still another variant of the general average risk

curve is given by the probability of successfully deciding that a signal is present (i.e., the

alternative hypothesis H1), as a function of input signal-to-noise ratio or other significant

system parameters, for example, the decision or “deflection” parameter. Thus, one may use

the conditional probability P*
D ¼ 1� b*, or the total probability P*

D ¼ pp*D ¼ p 1� b*
� �

,

versus a0, T (or J), and so on, for optimum systems. Here, usually,a ¼ a*
F

� �
is fixed, so that a

Neyman–Pearson system is essentially employed. For suboptimum systems, one has

similarly PD ¼ ppD ¼ p 1� bð Þ, versus a0, and so on, for the desired performance curve

and system comparisons.

It is also sometimes convenient to use a normalized decision curve for definingminimum

detectable signals and making system comparisons. However, since normalization is an

arbitrary procedure, there is no unique or compelling general reason for doing it. In any case,

for system comparison care must be taken that common criteria be used under identical

conditions. This usually means that comparisons should be made on the basis of the

unnormalized or absolute risk curves instead, since normalization may sometimes disguise

or diminish significant differences.

We remark, finally, that in the construction, operation, and evaluation of these binary

detection processes we have assumed that the signal parameters, or their average values, if

they are originally random, are known or preset beforehand from a decision curve and that

they are then inserted intoL [Eq. (1.7.2)] so that the scale ofL can be fixed and an actual test

[Eq. (1.7.4a)] carried out with the same parameter values. However, it may be that these

“true” parameters, that is, the values actually occurring when a signal is present or average

values appropriate to the signal class in question, are not given beforehand, inwhich case the

test ofEq. (1.7.4) can still be carriedout, butweare unable to specify the error probabilitiesa,
b uniquely and so cannot determine the Bayes or average risk uniquely. We note some

examples of this in the case of the Bayes sequential detectors referred to in Section 1.8.5.

For themost part, however, it is not unrealistic to assume at least a knowledge of the required

moments of the signal parameters or by some such process as Minimax, to define a class of

Bayes receivers for the problem at hand which guards against least favorable situations in

some operationally meaningful sense. Unless otherwise indicated, we shall assume hence-

forth that the appropriate statistics of the signals (and noise) parameters are specified

and used.
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1.10 BINARY TWO-SIGNAL DETECTION: DISJOINT AND

OVERLAPPING HYPOTHESIS CLASSES

The previous on–off analysis here in this chapter is readily extended to the binary two-signal

detection cases, where the hypothesis situation is now H1 : S1 � N versusH2 : S2 � N. The

two-signal cases are important in many telecommunications applications (Chapter 3 ff.) and

when S1 or S2ð Þmay represent an interfering or otherwise unwanted signal in radar and sonar

environments. It is therefore both useful and instructive to generalize the on–off formalism to

include thepresenceofa signalofclassS2 (innoise)vis-à-visa signalofClassS1 (also innoise).

Unlike the on–off cases of the preceding sections, where the hypothesis classes are required

always to be disjoint [cf. Fig. 1.1b and remarks after Eq. (1.6.3)], there is the additional

possibility that the two-signal classes may overlap and thus be nondisjoint. For this latter

situation, however, a more sophisticated viewpoint is required [44], as will be seen below.

1.10.1 Disjoint Signal Classes

We consider first the simpler case of disjoint signal classes, where now W ¼ W1 þW2 and

W1 \W2 is empty. In place of (1.6.5), we have

s Sð Þ ¼ p1w1 S1ð Þ þ p2w2 S2ð Þ; and
ð
W
s Sð ÞdS ¼ 1; ð1:10:1Þ

this last as before (cf. remarks after Eq. (1.6.5)), since p1 þ p2 ¼ 1, with p1 and p2,

respectively, the a priori probabilities of a signal of Class 1 (or 2) occurring in the data

sample X. Equation (1.6.4) becomesð
W1

w1 S1ð ÞdS1 ¼
ð
W2

w2 S2ð ÞdS2 ¼ 1; ð1:10:2Þ

withw1; w2 the pdfs of S1 and S2, or their respective randomparameters u1; u2 in S1;2 u1;2
� �

.

Equation (1.6.3) and cost matrix (1.6.6) are modified in an obvious way to

d g1jXð Þ þ d g2jXð Þ ¼ 1; C S; gð Þ ¼ C
ð1Þ
1 C

ð1Þ
2

C
ð2Þ
1 C

ð2Þ
2

" #
; g ¼ g1; g2½ �: ð1:10:3Þ

now with C
ð1Þ
1 < C

ð1Þ
2 ; C

ð2Þ
2 < C

ð2Þ
1 to ensure again that “failure” is more expensive than

“success” cf. (1.6.6a), andwhere the upper index as before designates the true state of affairs

and the lower the associated decision. The average risk (1.6.7) is accordingly modified to

R s; dð Þ ¼ ÐG p1C
ð1Þ
1 FJ XjS1ð Þh i1 þ p2C

ð2Þ
1 FJ X S2j Þð i2
� 	

d g1jXð Þ
hn

þ p2C
ð1Þ
2 FJ XjS1ð Þh i1 þ p2C

ð2Þ
2 FJ XjS2ð Þh i2

h i
d g2jXð ÞgdX ð1:10:4Þ

in which

pi FJ XjSið Þh ii ¼
Ð
G s Sið ÞFJ XjSið ÞdSi ¼ pi

Ð
Si or ui

wi Si or uið ÞFJ X Sij ÞdSi or duið Þ; i ¼ 1; 2;ð
ð1:10:4aÞ

for averages over signal waveform Si, or parameters ui in Si uið Þ.
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The error probabilities are similarly modified:

a!b
ð1Þ
2 � b

ð1Þ
2 g2jH1ð Þ ¼ conditional probability of incorrectly deciding that a Class 2

signal is present; when actually a Class 1 signal occurs;

)
b!b

ð2Þ
1 � b

ð2Þ
1 g1 H2j Þ ¼ the reverse of the above:ð

ð1:10:5aÞ

Similarly, the respective conditional probabilities of correct decisions are

b
ð2Þ
2 ¼ b

ð2Þ
2 g2 H2j Þ; b

ð1Þ
1 ¼ b

ð1Þ
1 g1 H1j Þ;ð

�
ð1:10:5bÞ

with p2b
ð2Þ
2 ; p1b

ð1Þ
1 ; p2b

ð2Þ
1 ; p1b

ð1Þ
2 the corresponding total probabilities of correct and

incorrect decisions.

The average risk takes the compact forms:

R s; dð Þ ¼ p1C
ð1Þ
1 þ p2C

ð2Þ
2

� �
þ p2 C

ð1Þ
2 � C

ð2Þ
1

� �
b
ð1Þ
2 þ p2 C

ð2Þ
1 � C

ð2Þ
2

� �
b
ð2Þ
1 ; or

ð1:10:6aÞ

R s; dð Þ ¼ p1C
ð1Þ
2 þ p2C

ð2Þ
1

� �
� p1 C

ð1Þ
2 � C

ð1Þ
1

� �
b
ð1Þ
1 � p2 C

ð2Þ
1 � C

ð2Þ
2

� �
b
ð2Þ
2 ; ð1:10:6bÞ

the former in terms of the error probabilities, the latter in terms of the probabilities of

correct decision.

1.10.2 Overlapping Hypothesis Classes (F. C. Ogg Jr. [44])

When the signal classes S1; S2 are not disjoint but overlap (i.e., S1 [ S2 6¼ 0), the usual

definitions of correct and incorrect decisions are no longer valid, since it is no longer certain

whether or not an error has been made. Let us suppose, for example, that signal class S1
consists of deterministic signals of the type S u1ð Þ and signal class S2 of the type S u2ð Þ, where
the waveforms (S) of the two classes are the same and each has the same type of random

parameter(s); for example, u1; u2 ¼ u in both instances represent a common set of random

parameters, butwith different distribution densities,w1 uð Þ 6¼ w2 uð Þ. Anygiven signalSmay

belong to either signal class, but S will usually belong to one class with greater probability

than to the other. It is reasonable to assign to the more probable decision a lesser cost. Thus,

if u ¼ a represents a random amplitude, for instance, and if the amplitude a of a particular S

lies close to the mean value of w1 að Þ but well out on the “tail” of w2 að Þ, a larger value is
assigned to the loss functionF S; g2ð Þ than to the loss functionF S; g1ð Þ for themore probably

correct decision.

Accordingly, it is clear that the cost assignment shouldbe related to theprobability that the

signal belongs to each of the classes. This can be accomplished in a variety of ways, but the

simplest is to require specifically that (1) F S; gð Þ be continuous in the prior probabilities

p1; p2;w1;w2ð Þ and (2) thatF S; gð Þ reduce to the usual cost assignmentswhenever the signal

belongs to a disjoint signal class S1 \ S2 ¼ 0ð Þ. For the systems considered here, based on

constant preset costs, an extension of the “constant” cost functionF1, Eq. (1.4.3), satisfying
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these conditions is [44]

C S; gið Þ ¼ C
ðiÞ
1 p1w1 uð Þ þ C

ðiÞ
2 p2w2 uð Þ

h i
=s uð Þ i ¼ 1; 2 ð1:10:7Þ

where s uð Þ ¼ p1w1 uð Þ þ p2w2 uð Þ is the prior of u for deterministic signals S uð Þ. In general,
we have for signal waveforms

C S; gið Þ ¼ C
ðiÞ
1 p1w1 Sð Þ þ C

ðiÞ
2 p2w2 Sð Þ

h i
=s Sð Þ ð1:10:8Þ

with s Sð Þ given by Eq. (1.10.1). Thus, by a similar argument Eq. (1.10.8) applies for the

case of completely stochastic signals S, where now w1 Sð Þ 6¼ w2 Sð Þ. With Eq. (1.10.7)

and (1.10.8) the average risk R s; dð Þ reduces to the original expression (1.10.4) for disjoint
classes. Overlapping classes that involve the null signal (S¼ noise alone) are handled in

the same way, now with

C S; gið Þ ¼ C
ðiÞ
0 qw0 Sð Þ þ C

ðiÞ
1 pw1 Sð Þ

h i
=s Sð Þ i ¼ 0; 1; ð1:10:9Þ

where s Sð Þ is given by (1.6.5) and R s; dð Þ by (1.6.7), and so on. In this way we unite the

treatment of overlapping and nonoverlapping signal classes, employing the formalismof the

latter as before but now including all the signal types of practical interest.

Let us next calculate the average risk, based on (1.6.7), and determine the minimum

average (i.e., Bayes) risk.We observe first that the average risk (1.6.7) must first contain the

component exhibited in (1.6.7), here for the two original cases obeying (1.10.7), namely,

R s; dð Þ ¼ ÐG p1C
ð1Þ
1 FJ X Sð1Þ

�� �� E
þ ð Þ

D o
þ p2C

ð2Þ
2 FJ X Sð2Þ

�� �� E
þ ð Þ

D on i
d g1jXð ÞdX

nh
þ p1C

ð1Þ
2 FJ X Sð1Þ

�� �� E
þ ð Þ

D o
þ p2C

ð2Þ
2 FJ X Sð2Þ

�� �� E
þ ð Þ

D on i
d g2 Xj ÞdX;ð

nh
ð1:10:10aÞ

where the components of the disjoint (i.e., nonoverlapping) component are explicitly given.

The quantities
�
FJ

�
X SðiÞ

�� ¼ ÐWwi

�
u
�
FJ

�
X SðiÞ

�
u
��
du; i ¼ 1; 2

���� , here. The overlap con-

tributions are seen to be from (1.10.7):

coefficient of d
�
g1jX

�
: C

ð1Þ
2 p2 FJ

�
X
��Sð2Þ�D E

; C
ð1Þ
2 p1 FJ

�
X
��Sð1Þ�D E)

:
coefficient of d

�
g2jX

�
: C

ð2Þ
1 p2 FJ

�
X
��Sð2Þ�D E

; C
ð2Þ
1 p1 FJ

�
X
��Sð1Þ�D E

ð1:10:10bÞ

Using the relation d
�
g1 X

� ¼ 1� d
�
g2 X

�
:

���� a decision is always made, and dividing

(and multiplying) each term in (1.10.10a) by qF
�
X 0
��� , we obtain

R
�
s; d

�¼ð
G
qFJ

�
X
��0��Cð1Þ

1 Lð1Þ þ C
ð1Þ
2 Lð2Þ þ C

ð2Þ
1 Lð2Þ þ C

ð1Þ
2 Lð1Þ �dX

þ
ð
G
qFJ

�
X
��0���Cð1Þ

2 Lð1Þ þ C
ð2Þ
1 Lð2Þ þ C

ð2Þ
2 Lð2Þ þ C

ð2Þ
1 Lð1Þ�

��Cð1Þ
1 Lð1Þ þ C

ð1Þ
2 Lð2Þ þ C

ð2Þ
1 Lð2Þ þ C

ð1Þ
2 Lð1Þ�� � d�g2 X

�
dX;

�� ð1:10:11aÞ
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where Lð1Þ ¼ p1
Ð
W FJ

�
X Sð1Þ

�
w1

�
u
�
du; Lð2Þ ¼ p2

Ð
W FJ

�
X Sð2Þ

�
w2

�
u
�
du:

���� The first term

of (1.10.11a) reduces to the irreducible risk

R02 � p1C
ð1Þ
1 þ p2C

ð1Þ
2 þ p2C

ð2Þ
1 þ p1C

ð1Þ
2 ¼ p1

�
C
ð1Þ
1 þ C

ð1Þ
2

�þ p2
�
C
ð1Þ
2 þ C

ð2Þ
1

�
> 0;

ð1:10:11bÞ
Since FJ

�
X 0
� 	 0

�� , the second term is clearly minimized when d
�
g2 X

� ¼ 1
�� , that is a

(nonrandom) decision is made that signal Sð2Þ is present, where the expression in [ ] is set

equal to zero. This latter gives us the result (collecting Lð2Þs and Lð1Þs)

Lð2Þ�Cð2Þ
1 þ C

ð2Þ
2

�þ Lð1Þ�Cð1Þ
2 þ C

ð2Þ
1

� � Lð1Þ�Cð1Þ
1 þ C

ð1Þ
2

�þ Lð2Þ�Cð1Þ
2 þ C

ð2Þ
1

�
;

;Lð2Þ�Cð2Þ
2 � C

ð1Þ
2

� � Lð1Þ�Cð1Þ
1 � C

ð2Þ
1

�
;

and since “failure” is more expensive than “success;” that is; C
ð1Þ
2 � C

ð2Þ
2 ; C

ð2Þ
1 � C

ð1Þ
1 > 0; we

have finally

d
�
g2jX

� ¼ 1; ;d
�
g1jX

� ¼ 0; if Lð2Þ >

 
C
ð2Þ
1 � C

ð1Þ
1

C
ð1Þ
2 � C

ð2Þ
2

!
Lð1ÞorLð2Þ 	 K12Lð1Þ; K12 > 0

ð1:10:12Þ
For the decisions d

�
g1 X

� ¼ 1;
�� we have d

�
g2 0

� ¼ 0
�� and Lð2Þ � K12Lð1Þ. It is to be noted

that the effects of overlap Eq. (1.10.10b) leave the decision process unchanged: they are the

same as for the nonoverlapping cases. This is a direct consequence of the choice of cost

function (1.10.7), which now unites the treatment of both types of signal class (overlapping

and nonoverlapping), as stated above. We observe, however, that the irreducible risk R02

(1.10.11b) contains four terms rather than two
�
p1C

ð1Þ
1 þ p2C

ð2Þ
1

�
. Figure 1.14 shows the

decision regions for (1.10.12), in logarithm forms, that is, logL2 versus logL1 þ logK12.

The case of overlapping classes involving the null signal (1.10.9) follows at once. Setting

2 equal to 1, and 1 equal to 0 in the above gives the result

decide d
�
g1jX

� ¼ 1 : Lð1Þ 	 �Cð1Þ
0 � C

ð0Þ
0

C
ð0Þ
1 � C

ð1Þ
1

�
; orLð2Þ 	 K01;K01 > 0

�
and d

�
g0jX

� ¼ 0
�

decide d
�
g0jX

� ¼ 1 : Lð1Þ < K01�
and d

�
g1jX

� ¼ 0
�

9>>>>=
>>>>;
: ð1:10:13Þ

0

logΛ2

logΛ1

Λ1 > Λ2

Λ 2 
> Λ 2

log K12 > 0

FIGURE 1.14 Decision regions for L1 and L2, for K12 > 1; for 0 < K12 � 1 the boundary lies

below the dotted line.
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The irreducible risk, however, remains unchanged, namely, (1.10.11b). For stochastic

signals (S), S replaces the deterministic S(u) in (1.10.10a)–(1.10.13). Finally, we observe

fromSection 4.2 following that these results are extendable to the (Kþ1)-ary orK-ary signal

classes: the decision process remains the disjoint result, but the irreducible risks and Bayes

risks are themselves different.

The error probabilities, average, and Bayes risks, are obtained here from (1.6.8) and

Section 1.6.2 generally. The results are

bð1Þ ¼
ð
G

F
�
X Sð1Þ

��� E
d
�
g2jX

�
dX; bð2Þ ¼

ð
G

F
�
X Sð2Þ

��� E
d
�
g1 X

�
dX

��D�
ð1:10:14Þ

R
�
s; d

� ¼ p1
�
C
ð1Þ
1 þ C

ð1Þ
2

��
1� bð1Þ�þ p2

�
C
ð1Þ
2 þ C

ð2Þ
1

�
bð2Þ

þ p1
�
C
ð1Þ
2 þ C

ð2Þ
1

�
bð1Þ þ p2

�
C
ð2Þ
1 þ C

ð2Þ
2

��
1� bð2Þ�

¼ p1
�
C
ð2Þ
1 � C

ð1Þ
1

�
bð1Þ þ p2

�
C
ð1Þ
2 � C

ð2Þ
2

�
bð2Þ þ R02

ð1:10:15aÞ

and47 for optimality, we have

R
�
s; d

�* ¼ p1
�
C
ð2Þ
1 � C

ð1Þ
1

�
bð1*Þ þ p2

�
C
ð1Þ
2 � C

ð2Þ
2

�
bð2*Þ þ R02: ð1:10:15bÞ

The evaluation of bð1*Þ; bð2*Þ associated with the Bayes risk, and in the suboptimum cases,

is formally accomplished in Section 1.9. In the case of the null signal, we have

R
�
s; d

�* ¼ p0
�
C
ð1Þ
0 � C

ð0Þ
0

�
a* þ p1

�
C
ð0Þ
1 � C

ð1Þ
1

�
b* þ R01 ð1:10:16Þ

with
�
a*;b*

�! �
a;b

�
in the average (nonoptimal) risk.

1.11 CONCLUDING REMARKS

In this first chapter we have obtained some of the principal concepts and techniques used in

SCT,based on the fundamental viewpoint of aBayesian statistical decision theorydeveloped

mainly in the mid-twentieth century. A concise topical description of the major elements of

both may be gleaned from Sections 1.1–1.10 above, which in turn contain the guiding

principles and definitions as well as generic examples. Their implementation is one of the

principal aims of the present book, along with the extension to random space-time fields.

Another is the general use of discrete sampling methods, in conjunction with the physical

world of four-dimension, namely space and time, as distinct from earlier analyses devoted to

stochastic time processes alone. Thus, to summarize briefly, we employ Sections 1.1–1.5 to

provide the formal structure of SDT, basically, a concise description of the fundamental

concepts involved. Sections 1.6–1.8 are an illustrative introduction to binary detection and a

variety of optimization procedures, with the extension in Section 1.10 to a two-signal binary

formulation, in which disjoint and overlapping signal classes are treated.

Optimality, and its approximation, is another goal of the analysis, in conjunction with the

Bayesian philosophy used here, with possible constraints imposed by system demands and

always subject to the specifics of the physical environment. As will be seen (in Chapters 8, 9

47 Here we require “failure” always to be more expensive than “success,” so that C
ð2Þ
1 > C

ð1Þ
1 ;C

ð1Þ
2 > C

ð2Þ
2 :
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particularly), the propagation physics needs to be specifically introduced, as it is in many

ways a major controlling factor in successful operation. Thus, the physics of the channel in

pertinent detail is required. The convenient “black box” approach of additive Gaussian and

(often) deterministic interference, with ad hoc statistics, loosely based on a postulated

randomprocess, inmanycasesdoesnot represent a full or realisticmodel of the environment.

In Chapter 9, we shall quantitatively describe non-Gaussain noise (fields and processes)

based on the underlying noise mechanisms, with attention to their spatial as well as their

temporal properties. Here our aim is to provide probability distributions (or densities), not

just the lower order moments.

In Chapter 2 following, we shall begin this journey from generality to statistical detail by

considering first the space–time covariance of a noise field and various conditions that

determine its properties. Other relations then follow, in particular the four-dimensional

Wiener–Khintchin (W–Kh) theorem.
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