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STRINGS, LANGUAGES,
AND COMPILERS

1.1 INFRODUCTION

Compiler construction is truly an engineering science. With this science, we can methodi-
catly—almost routinely—design and implement fast, reliable, and powerful compilers.
You should study compiler construction for several reasons:

* Compiler construction techniques have very broad applicability. The usefulness of
these techniques is not limited to compilers.

® To program most effectively, you need to understand the compiling process.

® [anguage and language translation are at the very heart of computing. You should
be famitiar with their theory and practice.

* Unlike some areas of computer science, you do not typically pick up compiler con-
struction techniques “on the job.” Thus, the formal study of these techniques is es-
sential.

To be fair, you should also consider reasons for not studying compiler construction.
Only one comes to mind: Your doctor has ordered you to avoid excitement.

1.2 BASIC LANGUAGE CONCEPTS

In our study of compiler design theory, we begin with several important definitions. An
alphabet is the finite set of characters used in the writing of a language. For example, the
alphabet of the Java programming language consists of all the characters that can appear
in a program: the upper- and lower-case letters, the digits, whitespace (space, tab, new-
line, and carriage return), and all the special symbols, such as =, +, and {. For most of the
examples in this book, we will use very small alphabets, such as {b, c} and {b, ¢, d}. We
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2 STRINGS. LANGUAGES, AND COMPILERS

will avoid using the letter “a™ in our alphabets because of the potential confusion with the
English article “a”.

A string over an alphabet is a finite sequence of characters selected from that alphabet.
For example, suppose our alphabet is {b, c, d}. Then

cbd
cbhec
c

are examples of strings over our alphabet. Notice that in a string over an alphabet, each
character in the alphabet can appear any number of times (including zero times} and in
any order. For example, in the string chec (a string over the three-letter alphabet {b, c,
d}), the character b appears once, c appears three times, and d does not appear.

The length of a string is the number of characters the string contains. We will enclose
a string with vertical bars to designate its length. For example, jcbec| designates the
length of the string cbece. Thus, [cbec| = 4.

A language is a set of strings over some alphabet. For exampie, the set containing just
the three strings cbd, cbee, ahd c is a language. This set is not a very interesting lan-
guage, but it is, nevertheless, a language according to our definition.

Let us see how our definitions apply to a “real” language—the programming language
Java. Consider a Java program all written on a single line:

class C { public static void main(String{] arags) {} }

Clearly, such a program is a single string over the alphabet of Java. We can also view a
multiple-line program as a single string—namely, the string that is formed by connecting
successive lines with a line separator, such as a newline character or a carriage
retum/newline sequence. Indeed, a multiline program stored in a computer file is repre-
sented by just such a string. Thus, the multiple-line program

class C

(
public static void main{String[] args)
{
}

!

is the single string
class CO{ O pubklic static void main(String{] args)O (DO (0}

where [ represents the line separator. The Java language is the set of all strings over the
Java alphabet that are valid Java programs,

A language can be either finite or infinite and may or may not have a meaning asso-
ciated with each string. The Java language is infinite and has a meaning associated with
each string. The meaning of each string in the Java language is what it tells the com-
puter to do. In contrast, the language {cbd, cbce, ¢} is finite and has no meaning as-
sociated with each string. Nevertheless, we still consider it a language. A language is
simply a set, finite or infinite, of sirings, each of which may or may not have an asso-
ciated meaning.
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Syntax rules are nules that define the form of the language, that is, they specify which
strings are in a language. Semantic rules are rules that associate a meaning to each string
in a language, and are optional under our definition of language.

Occasionally, we will want to represent a string with a single symbol very much like x
is used to represent a number in algebra. For this purpose, we will use the small letters at
the end of the English alphabet. For example, we might use x to represent the siring cbd
and y to represent the string chee.

1.3 BASIC COMPILER CONCEPTS

A compiler is a translator. It typically translates a program (the source program) written
in one language to an equivalent program (the fargef progran) written in another lan-
guage (see Figure 1.1). We call the languages in which the source and target programs are
written the source and target languages, respectively,

Typically, the source language is a high-level language in which humans can program
comfortably (such as Java or C++), whereas the target language is the language the com-
puter hardware can directly handle (machine language) or a symbolic form of it (assem-
bly language).

[f the source program violates a syntax rule of the source language, we say it has a syn-
tax error. For example, the following Java method has one syntax error (a right brace in-
stead of a left brace on the second lineg):

public void greetings (}

} // syntax error
System.out.println("hello®™);

}

A logic error is an error that does not violate a syntax rule but results in the computer
performing incorrectly when we run the program. For example, suppose we write the fel-
lowing Java method to compute and retum the sum of 2 and 3:

public int sum()
{

return 2 + 30; // logic error
}

This method is a valid Java method but it telis the computer to do the wrong thing—-to
compute 2 + 30 instead 2 + 3. Thus, the error here is a logic error.

A compiler in its simplest form consists of three parts: the token manager, the parser,
and the code generator (see Fig. 1.2).

The source program that the compiler inputs is a stream of characters. The foken man-
ager breaks up this stream into meaningful units, called tokens. For example, if a token
manager reads

Source program l:> Compiler :> Target program

Figure 1.1.
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|:{_‘::-| Token manager bl Parser I:pl Code generator |:::';>

Figure 1.2.

int x; // important example
X = b5;

it would output the following sequence of tokens:

int

e X

55

.
’

The token manager does not produce tokens for white space (i.e., space, tab, newline, and
carriage retumn) and comments because the parser does need these components of the
source program. A token manager is sometimes calted a lexical analyzer, lexer, scanner,
or tokenizer.

A parser in its simplest form has three functions:

1. It analyzes the structure of the token sequence produced by the token manager, If it
detects a syntax error, it takes the appropriate action (such as generating an error
message and terminating the compile).

2. Tt derives and accumulates information from the token sequence that will be needed
by the code generator.

3. 1t invokes the code generator, passing it the information it has accumulated.

The code generator, the last module of a compiler, outputs the target program based on
the information provided by the parser,

In the compilers we will build, the parser acts as the controller. As it executes, it calls
the token manager whenever it needs a token, and it calls the code generator at various
points during the parse, passing the code generator the information the code generator
needs. Thus, the three parts of the compiler operate concurrently. An alternate approach is
to organize the compiling process into a sequence of passes. Each pass reads an input file
and creates an output file that becomes the input file for the next pass. For example, we
can organize our simple compiler into three passes. In the first pass, the token manager
reads the source program and creates a file containing the tokens corresponding to the
source program. In the second pass, the parser reads the file of tokens and outputs a file
containing information required by the code generator. In the third pass, the code genera-
tor reads this file and outputs a file containing the target program.

1.4 BASIC SET THEORY

Since languages are sets of strings, it ts appropriate at this point to review some basic set
theory. One method of representing a set is simply to list its elements in any order. Typi-
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cally, we use the left and right braces, “f* and “}”, to delimit the beginning and end, re-
spectively, of the list of elements. For example, we represent the set consisting of the inte-
gers 3 and 421 with

{3,421} or {421,3}
Similarly, we represent the set consisting of the two strings b and bc with
{b, bcl or {bc, b}

This approach cannot work for an infinite set because it is, of course, impossible to list all
the elements of an infinite set. If, however, the elements of an infinite set follow some ob-
vious pattern, we can represent the set by listing just the first few elements, followed by
the ellipsis (. . .). For example, the set

{b, bb, bbb,...}

represents the infinite set of strings containing one or more b’s and no other characters.
Representing infinite sets this way, however, is somewhat imprecise because it requires
the reader to figure out the pattern represented by the first few elements.

Another method for representing a set—one that works for both finite and infinite
sets—is to give a rule for determining its elements. In this method, a set definition has the
form

{E : defining rule}

where £ is an expression containing one or more variables, and the defining rule general-
ly specifies the allowable ranges of the variables in £. The colon means “such that.” We
call this representation the set-huilder notation. For example, we can represent the set
containing the integers | to 100 with

{x:xisanintegerand t = x =< 100}

Read this definition as “the set of all x such that x is an integer and x is greater than or
equal to 1 and less than or equal o 100.” A slightly more complicated example is

{n? . nis an integer and n = 1}

Naotice that the expression preceding the colon is not a single variable as in the preceding
example. The defining rule indicates that » can be 1, 2, 3, 4, and so on. The corresponding
values of #? are the elements of the set—namely, 1, 4, 9, 16, etc. Thus, this is the infinite
set of integer squares:

11,4,9,16,...)

In set notation, the mathematical symbol € means “is an element of.” A superimposed
slash on a symbol negates the condition represented. Thus, € means “is not a element of.”
For exampte, if = {2,3, 4}, then3 € P,but 5 & P.

The empiy set [denoted by either {} or ¢] is the set that contains no elements. The uni-
versal set (denoted by U) is the set of all elements under consideration. For example, if
we are working with sets of integers, then the set of all integers is our universe. If we are
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waorking with strings over the alphabet {b, ¢}, then the set of all strings over {b, c} is our
universe.

The set operations union, intersection, and complement, form new sets from given sets.
The union operator is most often denoted by the special symbol . We, however, use the
vertical bar | to denote the union operator. The advantage of | is that it is available on stan-
dard keyboards. We will use m and ~ to denote the intersection and complemeni opera-
tors, respectively. m, the standard symbol for set intersection, unfortunately is not avail-
able on keyboards. However, we will use set intersection so infrequently that it will not be
necessary to substitute a kevboard character for M.

Set union, intersection, and complement are defined as follows:

Union of P and @: PlOg={x:xEPorxE Q}
Intersectionof Pand : P~ @ ={x:x € Pandx € O}
Complement of P: ~P=f{x:x€ Uandx & P}

Here are the definitions in words of these operators;

P | @ is the set of all elements that are in either P or  or both.
P m @ is the set of elements that are in both P and {.
~P is the set of all elements in the universe {/ that are not in P.

For example, if P= {b, bk}, 0= {bk, bbb}, and our universe {/ = {b, bb, bbb, . . .}, then

PO = {b,bb, bbb}

PnQ ={bb}
~P = {bbb, bbbb, bbbbb, . . .}
~( = {b, bbb, bbbbb, ...}

A collection of sets is disjoint if the intersection of every pair of sets from the collec-
tion is the empty set (i.e., they have no elements in common). For example, the sets {b},
{bk, bbb}, and {bbbb} are disjoint since no two have any elements in common.

The set P is a subset of O (denoted P C Q) if every element of P is also in . The set P
is a proper subset of the set O (denoted P C (J) if P is a subset of (, and ( has at least one
element not in P. For example, if P = {b, bb}, 0 = {b, bb, bbb}, and R = {b, bb}, then P
is proper subset of (, but P is not a proper subset of R. However, P is a subset of R, Two
sets are equal if each is the subset of the other. With P and R given as above, PC Rand R
€ P. So we can conclude that P = R. Note that the empty set is a subset of any set; that is,
{} € S for any set S.

We can apply the set operations union, intersection, and complement to any sets. We
will soon see some additional set operations specifically for sets of strings.

L5 NULL STRING

When prehistoric humans started using numbers, they used the natural numbers 1, 2,3,....
It was easy to grasp the idea of oneness, twoness, threeness, and so on. Therefore, it was
natural to have symbols designating these concepts. In contrast, the number 0 is hardly a
natural concept. After all, how could something (the symbol 0} designate nothing? Today,
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of course, we are all quite comfortable with the number 0 and put it to good use every day.
A similar situation applies to strings. It is natural to think of a string as a sequence of one or
more characters. But, just as the concept zero is useful to arithmetic, sc is the concept of a
null string—the string whose length is zero—useful to language theory. The null string is
the string that does not contain any characters.

How do we designate the null string? Normally, we designate strings by writing them
down on a piece of paper. For example, to designate a string consisting of the first three
small letters of the English alphabet, we write abc. A null string, however, does not have
any characters, so there is nothing to write down. We need some symbol, preferably one
that does not appear in the alphabets we use, to represent the null string. Some writers of
compiler books use the Greek letter € for the null string. However, since e is easily con-
fused with the symbol for set membership, we will use the small Greek letter A (lambda)
to represent the null string.

One common misconception about the null string is that a string consisting of a single
space is the null string. A space is a character whose length is one; the null string has
length zero. They are not the same. Another misconception has to do with the empty set.
The null string is a string. Thus, the set {A} contains exactly one string—namely the null
string. The empty set {}, on the other hand, does not contain any string.

1.6 CONCATENATION

We call the operation of taking one string and placing it next to another string in the order
given to form a new string concatenation. For example, if we concatenate bed and efg,
we get the string bede £g. Note that the concatenation of any string x with the null string
A yields x, That is,

XA=A=x

1.7 EXPONENT NOTATION

A nonnegative exponent applied to a character or a sequence of characters in a string
specifies the replication of that character or sequence of characters. For example b is a
shorthand representation of bbbb. We use parentheses if the scope of the replication is
more than one character. Hence, b(cd)’e represents bcdede. A string replicated zero
times is by definition the null string; that is, for any string x, x? = A.

We can use exponent notation along with set-builder notation to define sets of strings.
For example, the set

b:l=i=3
is the set
{o!, b2, %} = {b, bb, bbb}

The exponent in exponent notation can never be less than zero. If we do not specify its
lower bound in a set definition, assume it is zero. For example, the set

{bfii= 3}
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should be interpreted as

b0 =i=3t={p%Db' b b* = {A b, bb, bbb}

Exercise 1.1
Describe in English the tanguage defined by {bic? : i = 0},
Answer:

The set of all strings consisting of b’s followed by c’s in which the number of c’s is twice
the number of b’s. This set is {A, bee, bbecece, bbbecceeceg, .. .}
|

1.8 STAR OPERATOR (ALSO KNOWN AS THE ZERO-OR-MORE
OPERATOR)

We have just seen that an exponent following a character represents a single string (for
example, b* represents bbb). In contrast, the star operator, *, following a character (for
example, b*) represents a set of strings. The set contains every possible replication (in-
cluding zero replications) of the starred character. For example,

b*={b% b b4 b ...} ={b":n=0}={A bbb, bbb,...}

Think of the star operator as meaning “zero or more.”

The star operator always applies to the item immediately preceding it. [ a parenthe-
sized expression precedes the star operator, then the star applies to whatever is ingide the
parentheses. For example, in (bcd)*, the parentheses indicate that the star operation ap-
plies to the entire string bed. That is,

{bcd)* = {A, bed, bedbed, bedbedbed, . . .

The star operator can also be applied to sets of strings. If A is a set of strings, then A* is
the set of strings that can be formed from the strings of 4 using concatenation, allowing
any string in 4 to be replicated any number of times (including zero times) and used in
any order. By definition, the null string is always in A*.

Here are several examples of starred sets:

{b}*={A, b, bb, bbb, ...} =b*

foo, c}* = {A, b, ¢, bb, be, eb, ce, bbb, ., .}
{Ab*={A}

PF={

ibb, cc}* = {A, bb, cc, bbbb, bbce, cebb, cecc, .. .}
{b, cc}*={A, b, bb, cc, bbb, bee, ccb, bbbb . . .}

Notice that {b} * = b*. That is, starring a set that contains just one string yields the same
set as starring just that string,

Here is how to determine if a given string is in A*, where 4 is an arbitrary set of
strings: If the given string is the null string, then it is in A¥ by definition. If the given
string is nonnull, and it can be divided into substrings such that each substring is in A,
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then the given string is in A*. Qtherwise, the string is not in A*. For example, suppose 4 =
{b, cc}. We can divide the string bccbb into four parts: b, cc, b, and b, each of which is
in 4. Therefore, becbb € A*. On the other hand, for the string becc the required subdi-
vision is impossible. If we divide beee into b, cc, and <, the first two strings are in 4 but
the last is not. All other subdivisions of beee similarly fail. Therefore, becc & 4*.

We call the set that results from the application of the star operator to a siring or set of
strings the Kleene closure, in honor of Stephen C. Kleene, a pioneer in theoretical com-
puter science.

Let us now use the star operator to restate two important definitions that we gave earli-
er. Let the capital Greek letter = (sigma) represent an arbitrary alphabet. A string over the
alphaber %, is any string in Z*. For example, suppose % = {b, c}. Then

3*={A b, c,bb, be, cb, cc, bbb,. . .}

Thus, A, b, ¢, bb, be, cb, cc, bbb,. . . are strings over 2. [t may appear strange to view A
as a string over the alphabet = = {b, c}. Actually, this view is quite reasonable since A has
no characters nof in {b, c}. A is always a string over X regardless of the content of 3, be-
cause, by definition, A is always in £*. A language over the alphabet X is any subset of
2*. For example {A}, (b}, and {b, cc} are each languages over % = {b, c}. Even the
empty set is a language over . because it is a subset of Z*.

Exercise 1.2

a) List all the strings of length 3 in {b, cc}*.
b) Is ccbhec € {b, cc}*?

Answer:

a)} bbb, bee, cch.
b) Yes. To confirm this, subdivide ccbec into cc, b, and cc, all of which are elements

of (b, cc}.
]
1.9 CONCATENATION OF SETS OF STRINGS

Concatenation can be applied to sets of strings as well as individual strings. If we let 4
and B be two sets of strings, then AB, the concatenation of the sets A and B, is

{xy.xE Aandy € B}

That is, 48 is the set of all strings that can be formed by concatenating a string 4 with a
string 8. For examptle, if 4 = {b, cc} and B = {d, dd}, then

AB = {bd, bdd, ccd. ccdd}
BA = {db, dcc, ddb, ddec}

As an example of concatenation, consider the set b*c*, the concatenation of the sets
b* and c*. Each string in b*c* consists of some string from b* concatenated to some
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string in c*. That is, each string consists of zero or more b’s followed by zero or more
c’s. The number of bb’s does not have to equal the number of ¢’s, but all b’s must precede
all c’s. Thus, b*c* = {A, b, ¢, bb, be, cc, bbb, bbe, bec, cec, . . .}. In exponent nota-
tion, b*c* = {b'/ iz Bandj = 0},

A string can also be concatenated with a set. If x is a string and 4 is a set of strings,
then xA, the concatenation of x with 4 is

{xy:y € A4}

Similarly, Ax is
{x:y € 4}

For example, bbc*, the concatenation of the string bb and the set c*, is the set of all
strings consisting of bb followed by a string in c*. Thus,

bbc* = {bbA =bb, bbe, bbee, bbeee, . . .}

Notice that it follows from our definitions that x4 = {x}4, where x is an arbitrary string
and 4 is a set of strings. That is, we get the same result whether we concatenate x (the
string) or {x} (the set containing just x) to a set A.

Exercise 1.3

a) List all strings in b*cb* of length less than 3,

b) Write an expression using the star operator which defines the same set as {bPc?d” : p
=0, gz=1,r=2}.

Answer:

a) ¢, be, ¢b,
b} b*cc*ddd*.
n

The union operator implies a choice with respect to the makeup of the strings in the
language specified. For example, we can interpret

{b} ({c} 1{dh

as the set of strings consisting of a b followed by a choice of ¢ or d. That is, the set con-
sists of the strings be and bd.

Exercise 1.4
Describe in English the set defined by b*({c} | fd})e*.
Answer:

The set of all strings consisting of zero or more b's, followed by either c or d, followed
by zero or more e’s.
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1.10 PLUS OPERATOR (ALSO KNOWN AS THE ONE-OR-MORE
OPERATOR)

The plus operator is like the star operator, except that the former means “one or more” in-
stead of “zero or more.” We can apply it either to an individual string or a set of strings. [t
appears as a + following the item to which it applies. For example,

b+
b, cit

{Bheiph . =iz 1
{b, ¢, bb, bc, cb, cc, bbb, ... }

A+, where 4 is a set of strings, contains the null string only if the set A itself contains
the null string, 4*, on the other hand, always contains the null string for any set 4.

Consider the set bb*. Each string in bb* consists of a single b followed a string in b*.
Because the shortest string in b* is A, the shortest string in bb* is bA = b. Thus, every
string in bb* contains one or more b’s. That is, bb* = b+, In general, for a string x and a
set of strings A,

xx* =x¥yr=ux+
and
AA* = A*4 = A+

We call the set that results from the application of the plus operator to a string or a set
of strings the positive closure.

Exercise 1.5
Show that {A} | b+ = b*.
Answer:

§A} 1 b+ ={A} | {b, bb, bbb, ...} = {A, b, bb, bbb, . ..} = b*,

LI1 QUESTION MARK OPERATOR (ALSO KNOWN AS ZERO-OR-ONE
OPERATOR)

The question mark operator specifies an opticnal item. We can apply it to either an indi-
vidual string or a set of strings. [t appears as a2 ? following the item to which it applies.
For example, bc? specifies a b foliowed by an optional c—that is, a b foltowed by zero
ot one c. Thus bc? is the set {b, be}. Think of c? as representing the set {A} | {c} = {A,
c}. Thus, be? = b{A, c} = {b, bc}.

If 4 is a set of strings, then bA? specifies a b optionally followed by any single string
in A, which is the set {b} |bA. For example, bib, ¢}? is the set {b, bb, bel,

Exercise 1.6

Show that (b+)? =¥,
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Answer;

(b+)?={A} |bt={A} | {b,bb, bbb, ...} = {A, b, bb, bbb, ...} =b*

1.12 SHORTHAND NOTATEION FOR A SET CONTAINING A SINGLE
STRING

(b} andb are not the same. The former is a set containing one string; the latter is a string—
not a set containing a string. In spite of this distinction, it is common practice to represent
the former (the set) by writing the latter (the string). We follow this practice only when the
context clearly implies the correct interpretation, or where it does not make a difference. For
example, instead of writing {c} (bd*, we can write ¢ | bd* (recall we are using | to repre-
sent the set union). The union operator clearly implies that the c to its left must represent the
set {c} and not the string c. In some expressions, it does not matter which interpretation we
use. For example, whether we interpret b as a string or as a set makes no difference in the
Kleene closure b*. Similarly, in b+ and bA, our interpretation makes no difference.

1.13 OPERATOR PRECEDENCE

If an expression contains more than one kind of operator, then the operations are per-
formed in an order determined by their precedence. Specifically, operations with higher
precedence are performed before operations with lower precedence. Qur string opera-
tions, ordered from highest to lowest precedence, with equal precedence operations listed
on the same line, are

Complementation

Star, Plus, Question Mark
Concatenation
Intersection

Union

For example, in ¢ | bd*, we first apply the star to the d, then we concatenate b and d*,
and last, we take the union of c and bd* . We can override this order by using parentheses.
For example, in ({c |b)d)*, we perform the union first, then the concatenation, and the
star operation last.

If the star, plus, or question mark operators appear consecutively, we perform their
corresponding operations left to right. For example, in (bb)?+, we perform the question
mark operation first, then the plus operation. Thus, (bb)?+ = {A, bb}+ = (bb)*.

Exercise 1.7

Write an expression without using ~ that defines the same set as ~(b*). Assume comple-
mentation is with respect to the set 3.*, where 3, = {b, c}.

Answer:

b* is the set of all strings over the alphabet with no c’s. Therefore, its complement is the
set of strings that have at least one c. Thus, every string in ~(b*) must be of the form xcy,
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where x and y are arbitrary strings over {b, c}. Thus, ~b*} = (b| c)*c(b( c}*. Another
expression that defines the same set is b*c(b | c)*.
|

1.14 REGULAR EXPRESSIONS

Let us use our convention of designating a set containing a single string by writing just
the string. For example, let us write b to represent the set {b} . Then each of these follow-
ing expressions designates a set of strings:

&

b*c*
bl(cc)*
(blc)*

For example, ¢, A, b, c, and Ab designate, respectively, the sets {}, {A}, (b}, {c},
and {A, b}. In every expression above, the only operations that appear, if any, are union,
concatenation, and star. We call such expressions regular expressions. We can use regu-
lar expressions to define languages—that is, to define sets of strings.

Let us look at a precise definition of a regular expression: A regular expression over
the alphabet % is any of the following:

P
A

any single symbol in 2

These expressions are the base regular expressions. In addition, we can construct addi-
tional regular expressions using the following construction rule:

If ¥ and s are arbitrary regular expressions, then the following expressions are also reg-
ular:

(r)
Hs
S

r*

Cur construction rule allows us to construct new regular expressions, using union, con-
catenation, star, and parenthesis, from our base regular expressions or expressions previ-
ously constructed using the construction rule. For example, since kb and ¢ are regular ex-
presstons, so are (b), b | ¢, be, and b* by our construction rule. We can continue applying
our construction rule, producing ever more complex regular expressions. For example,
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using our previously constructed regular expressions be and b*, we can now, in tum,
construct be | b* with our construction rule, We are not allowed to apply our construction
tule an infinite number of times when building a regular expression. This restriction im-
plies that any regular expression must be of finite length.

Every regular expression defines (i.e., represents) a language. For example, b|c de-
fines the language {b, c}. We call any language that can be defined with a regular expres-
sion a regular language.

Every regular language has more than one regular expression that defines it. For exam-
ple, bb*, Abb*, and b*b all define the language consisting of one or more b’s.

An assumption we have made about regular expressions over an alphabet % is that £
does not contain [, *, {, or }. Thus, when we see b| ¢, we know the vertical bar is the
union operator. However, if the vertical bar were in 3, then b | ¢ would be ambiguous. It
could represent either the set {b, ¢} (if we regard | as the union operator) or the set con-
taining the single string “b | ¢” (if we regard | as a symbol from ). A simple way to dis-
ambiguate an expression like b| ¢ is to quote the symbols in a regular expression that
come from Z. Accordingly, we would write “b(c” or “b” “|” “c™ to represent the single
string “b{ ¢”. Here, the vertical bar is a symbol from . We know this because the vertical
bar is in quotes. But we would write “b” | “c” to represent the set {b, c}. Here, the verti-
cal bar is the union operator. We know this because here the vertical bar is not in quotes.

Exercise 1.8
Give the strings in the set specified by “b™ | “¢” | “d”,
Answer:

Two strings: “b” and “c | d”.

Let us look at some expressions that are not regular expressions:

bix |bkb {bbbb | ... (theellipsis“. .. is not allowed)

(co)+ (the plus operator is not allowed)

(ce)? (the question mark operator is not allowed)
{bf:i=0} {exponent and set-builder notation is not allowed)

Because we do not allow the ellipsis, the plus operator, the exponent notation, or the set
builder notation in regular expressions, the expressions above are not regular expressions.
The languages they represent, however, are regular because we can represent them with
regular expressions, namely bbb*, cc(cc)¥, Alce, and b*, respectively.

When we analyze regular expressions, it is often helpful to think of the union operator
as indicating a choice. For example, we can think of the regular expression (blc)d as
representing the set of strings consisting of the choice b or ¢ followed by d—that is, as
the set consisting of bd and cd.

If we allow our regular expressions to include the ~, +, and 7 operators in addition to |,
*, and concatenation, we get the class of expressions called extended regular expressions.
Any language defined by an extended regular language can also be defined by a nonex-
tended regular language. In other words, extended regular expressions are no more pow-
erful than nonextended regular expressions in defining languages. Thus, every extended
regular expression necessarily has a nonextended equivalent. For example, the extended
regular expression (b | ¢)? has the nonextended equivalent Alb | c,
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Although extended regular expressions are no more powerful than nonextended regu-
lar expressions, they are, nevertheless, useful because they are often easier to use and un-
derstand than their nonextended equivalents.

1.15 LIMITATIONS OF REGULAR EXPRESSIONS

Regular expressions have limitations. They cannot represent every language. For exam-
ple, consider the following language that we call PAIRED:

PAIRED = {bict 1 i = 0} = {A, b, bbee, bbbeee, bbbbecce, | . .}

Each string in PAIRED consists of some number of b’s followed by the same number of
c’s. With a regular expression, it is possible to capture the condition that all b’s precede
all ¢'s (as in b*c*). But there is no way to capture the condition that the number of b’s
equals the number of ¢’s unless we limit the length of the string (we give a proof for this
in Chapter 17). The language represented by b*c* includes strings in which the number
of o's is equal to the number of ¢’s (for example, bbcc). But it also includes strings in
which the number of b’s is not equal to the number of c’s (for example, bec). PAIRED,
on the other hand, contains only strings in which the number of b’s is equal to the number
of c's. PAIRED is not equal to b*c* but is, in fact, a proper subset of it.
Another attempt at a regular expression for PAIRED is the infinite-length expression

Albe Ibbec | bbbeec | bbbbeeg]|. ..
Although this expression does represent PAIRED, it is not a regular expression because
regular expressions cannot be of infinite length,

Let us place an upper bound on the exponent { in the preceding definition of PAIRED .
We then get a new language that is, in fact, regular. For example,

(bef:0=i=2}
ts a regular language represented by the regular expression

Albc |bbee

That a regular expression cannot represent the language P4IRED is a serious limita-

tion since similar constructs frequently appear in programming languages. For example,
in Java, arithmetic expressions may be nested with parentheses to an arbitrary depth:

(e, . M
Similarly, blocks of code may be nested to an arbitrary depth with braces:

(. . 1)}
We cannot describe either of these constructs with regular expressions unless we place an
upper limit on the depth of nesting.

When we assert that the two regular expressions are equal, we are asserting that the
languages defined by those regular expressions are equal. For example, when we write
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Albb* =b*

we are asserting that the language defined by Albb* is equal to the language defined by
b*.

Although regular expressions are too limited to fully describe the typical programming
language, they are still quite useful to the compiler designer. Their usefulness appears in
the design of the token manager. [n particular, we can use regular expressions to describe
the various tokens that the token manager provides to the parser. For example, if we let D
represent any digit 0 through 9, then the regular expression DD* represents an unsigned
integer token. We will see in Chapter 13 how regular expressions in conjunction with the
software tool JavaCC can automate the implementation of the token manager.

PROBLEMS

How long is the shortest possible Java program?

What is the advantage of organizing a compiler into a sequence of passes?
Describe in words the set {b, c}*.

What does the set {}* contain?

Is it true that x* = {x}* for any string x?

Under what circumstances are P and ~P disjoint?

What does P | O = P imply?

What does P Q= P imply?

IfP={b} and Q= {bb, c}, then what does P* ~ O* equal?

10. 14 = {A, b}, how many distinct strings arc in 44? List them.

11. Is x* always an infinite set? 1f not, give an example for which it is not infinite,
12. Does b*c* = {b, c}*? Justify your answetr.

13. Represent the set ¢|{ A} bbbc{bbbc)* with a regular expression that does not use the
| operator.

14. Using exponent notation, represent the set b¥*c*o*,

15. Write a regular expression for the set of all strings over the alphabet {b, ¢} contain-
ing exactly one b,

16. Write a regular expression for the set of all strings over the alphabet {b, ¢} contain-
ing at least one b,

17. Write an expression using exponent notation for the set (b’c’'d (i = 0,720}
{bPcéd? : p = 0 and ¢ = 0} without using the M operator.

18, Is (b*c*)* = {b, c}*? If not, provide a counterexample.

9. List all the strings in {b, cc}* that are of length 3.

20. Does (b*|b*ccc)* = {b, ccc}*? Justify your answer.

21. Is concatenation distributive over a union. That is, for all sets of strings 4, B, C, does
AB|Cy=AB]AC?

22, Is the star operation distributive over a union. That is, for all sets of strings 4, B, does
(A|B)Y* = A*|B*?

23. Suppose X, A, and B are sets of strings, A & B, and X = A|XB. What can be concluded
about X7 Hint: does X contain AB?

24. Does x4 always equal {x}4, where x is a string and A is a set of strings?
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PROBLEMS 17

The parser in a compiler does not need the tokens corresponding to white space and
comments. Yet, syntax errors may occur if white space and comments are removed
from the source program. Explain this apparent contradiction.

Write a regular expression that defines the same language as b*c* m c*d*,
Write a regular expression that defines the same language as {b, cc}* m c*.
Write a regular expression that defines the same language as (bb)* M (bbb)*.

Write a regular expression for the set of all strings over the alphabet {b, c} contain-
ing an even number of b’s.

Write a nonextended regular expression that defines the same language as (~b)*,
where the universe is (b| ¢ | d)*.

Write a nonextended regular expression that defines the same language as ~({b, c}*),
where the universe is (b | c | d)*,

Prove that any finite language is regular,

Describe in English the strings in (bb | ccl{(be | cbXbb{ cc)*{(be | ch)))*.

Is {((>))) a regular expression over the alphabet {b, ¢}?

Is {) a regular expression over the alphabet {b, c}?

Give three regular expressions that define the empty set.

Suppose the alphabet for regular expressions consists of the symbols b, c, the back-
slash, the vertical bar, the single quote, and the double quote. Give an unambiguous
regular expression that specifies the set consisting of b, c, the backslash, the vertical
bar, the single quote, and the double quote.

Convert (b | c?)+ to an equivalent nonextended regular expression.

Show that extended regular expressions are not more powerful than regular expres-
sions. That is, show that any language that can be defined by an extended regular ex-
pression can also be defined by a nonextended regular expression.








