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Fourier analysis

It is often the case in the physical sciences, and sometimes the social sciences as well,

that measurements of a particular variable are collected over a period of time. The

collected values form a data set, or time series, that may be quite lengthy or otherwise

difficult to interpret in its raw form. We then may turn to various types of statistical

analyses to aid our identification of important attributes of the time series and their

underlying physical origins. Basic statistics such as the mean, median, or total

variance of the data set help us succinctly portray the characteristics of the data set as

a whole, and, potentially, compare it to other similar data sets.

Further insight regarding the time series, however, can be gained through the use

of Fourier, harmonic, or periodogram analysis – three names used to describe a single

methodology. The primary aim of such an analysis is to determine how the total

variance of the time series is distributed as a function of frequency, expressed either

as ordinary frequency in cycles per unit of time, for example, cycles per second, or

angular frequency in radians per unit of time. This allows us to quantify, in away that

the basic statistics named above cannot, any periodic components present in the data.

For example, outside air temperature typically rises and falls with some regularity

over the course of a day, a periodic component governed by the rising and setting of

the sun as the earth rotates about its axis. Such a periodic component is readily

apparent and quantifiable after applying Fourier analysis, but is not describedwell by

the mean, median, or total variance of the data.

In the first two sections of Chapter 1, we will learn some essential terminology of

Fourier analysis and the fundamentals of performing Fourier analysis and its inverse,

Fourier synthesis. Example data sets and their analyses are presented in Section 1.3 to

further aid in understanding the methodology.

As with other types of statistical analyses, statistical significance plays an impor-

tant role in Fourier analysis. That is, after performing a Fourier analysis, what if we
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find that the variance at one frequency is noticeably larger than at other frequencies?

Is this the result of an underlying physical phenomenon that has a periodic nature?

Or, is the larger variance simply statistical chance, owing to the randomnature of the

process? To answer these questions, in Section 1.4 we examine how to ascribe

confidence intervals to the results of our Fourier analysis.

In Section 1.5, we take a more detailed look at particular issues that may be

encountered when using Fourier analyses. Although not generally requisite to

performing a Fourier analysis, the concepts covered are often critical to correct

interpretation of the results, and in some cases may increase the efficacy of an

analysis. An understanding of these topics will allow an investigator to pursue

Fourier analysis with a high degree of confidence.

1.1 Overview and terminology

1.1.1 Obtaining the Fourier amplitude coefficients

The goal of Fourier analysis is to decompose a data sequence into harmonics

(sinusoidal waveforms) such that, when added together, they reproduce the time

series.Whatmakes sinusoidal waveforms an appropriate representation of the data is

their orthogonality property, their ability to successfully model waves in the

atmosphere, oceans, and earth, as well as phenomena resulting from solar forcing,

and the fact that the harmonic amplitudes are independent of time origin and time

scale (Bloomfield, 1976, p. 7).

Harmonic frequencies are gauged with respect to the fundamental period, the

shortest record length for which the time series is not repeated. In most practical

cases, this is the entire length of the available record, since the record typically

does not contain repeated sequences of identical data. The harmonic frequencies

include harmonic 1, which corresponds to one cycle over the fundamental

period, and higher harmonics that are integer multiples of one cycle. Thus each

harmonic is always an integer number of cycles over the length of the funda-

mental period.

To establish a sense of Fourier analysis, consider a simple example. The heavy line

in Figure 1.1 connects the average monthly temperatures at Oklahoma City over

the three-year period 2007–2009. By looking at the heavy line only, it is quite evident

that there is a strong annual cycle in temperature. It is equally clear that one sinusoid

will not exactly fit all the data, so other harmonics are required. The fundamental

period, or period of the first harmonic, is the length of the record, three years. The

third harmonic has a period one-third the length of the fundamental period, and

consequently represents the annual cycle. The thin line in Figure 1.1 shows the third

harmonic after it has been added to the mean of all 36 months, that is, the

0-th harmonic. As expected, the third harmonic provides a close fit to the observed

time series.
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1.1.2 Obtaining the periodogram

The computation of variance arises in elementary statistics as a defined measure of

the variability in a data set. When the computation of variance is applied to a time

series, it is similarly defined. Now, though, the variance in the data set can be

decomposed into individual variances, each one related to the amplitude of a

harmonic. Just as adding the sinusoids from all harmonics reproduces the original

time series, adding all harmonic variances yields the total variance in the time series.

How the decomposition is achieved and how variance is related to harmonic

amplitude are discussed in Section 1.2.

A periodogram is a plot of the variance associated with each harmonic (usually

excluding the 0-th) versus harmonic number and shows the contribution by each

harmonic to the total variance in the time series. Henceforth, the term periodogram

will be used to refer to the calculation of variance at the harmonic frequencies.

The term Fourier line variance spectrum is synonymous with periodogram, while

the generic term spectrum generally means the distribution of some quantity

with frequency.

The variance at each harmonic frequency is given by the square of its amplitude

divided by two, except at the last harmonic. Figure 1.2 shows the periodogram

(truncated to the first 10 harmonics) of the data in Figure 1.1 where we see that

harmonic 3 dominates the variability in the data. The small variances at harmonics 6

(period¼ 6 months) and harmonic 9 (period¼ 4 months) are easily observed in

Figure 1.2, but, in fact, there are nonzero variances at all 18 possible harmonics

(excluding the 0-th) and their sum equals the total variance of 75.23 �C2 in the

2007–2009 Oklahoma City mean monthly temperature time series.
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Figure 1.1 Mean monthly temperatures at Oklahoma City 2007–2009 (heavy line), and

harmonic 3 (light line) of the Fourier decomposition.
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The periodogram in Figure 1.2 was computed using the computer program

given in Appendix 1.A. This program, written in Fortran 77, performs a ‘fast’ Fourier

analysis of any data set with an even number of data and has been used throughout

this chapter to compute the periodograms we discuss.

1.1.3 Classification of time series

We can classify time series of data into four distinct types of records. The type

of record determines the mathematical procedure to be applied to the data to obtain

its spectrum.

The 36 values of temperature xn, in Figure 1.1, connected by straight-line segments

for ease in visualization, constitute a finite digital record. Digital time series arise in

twoways (Box and Jenkins, 1970, p. 23): sampling an analog time series, for example,

measuring continuously changing air temperature each hour on the hour; or

accumulating or averaging a variable over a period of time, for example, the previous

record of monthly mean temperatures at Oklahoma City. With respect to the latter

case, if N is the number ofmonths of data andDt the time interval between successive

values, the record length in Figure 1.1 isNDt¼ 36months. In this case, as well as with

all finite digital records, all data points can be exactly fitted with a finite number of

harmonics. This is in contrast to a finite analog record of length T, such as a pen trace

on an analog strip chart, for example, a seismograph, for which an infinite number of

harmonics may be required to fit the signal.

Figure 1.3 is an example of a finite analog record. Sampling the time series at

intervals ofDt yields the finite digital record shown in Figure 1.4. The sample values

again have been connected by straight-line segments to better visualize the variations
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Figure 1.2 Variance at each harmonic through 10 for the data in Figure 1.1.
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in xn. The sampling interval,Dt, associated with each datum can be shown on a time

series plot to the left or right of, or centered on, each datum – it is a matter of choice.

In Figure 1.4, Dt is to the right of each datum. One might think that there should

be a fifteenth sample point at the very end of the curve in Figure 1.3. However,

because of the association of each sampled value with oneDt, the length of the digital
record would be one sample interval longer than the analog record. Conceptually,

the fifteenth sample point is the first value of a continuing, but unavailable,

analog record.

The concept of an infinite analog record is often used in theoretical work.

An example would be the trace in Figure 1.3 extended indefinitely in both directions

of time. For this case a continuum of harmonics is required to fit the signal, thereby

resulting in a variance density spectrum. Note, however, that a variance density

spectrum can be created also with a finite digital record. How this comes about is

0
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Figure 1.3 An example of a finite analog data record.
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Figure 1.4 An example of a finite digital data record obtained by sampling the finite analog

record in Figure 1.3. There are N¼ 14 data.
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discussed in Chapter 5. An infinite digital record would be obtained by sampling the

infinite analog record at intervals of Dt. We will use infinite analog and digital

records in Section 3.1.4 (Chapter 3) to determine the effects on the mean value of a

time series after it is filtered.

By far the type of record most commonly observed and analyzed in science and

technology is the finite digital record. With a few exceptions, this is the type of data

recordwewill dealwith in the remainder ofChapter 1, and forwhich the formulas for

computing a periodogram are presented.

1.2 Analysis and synthesis

1.2.1 Formulas

If one of the data sets collected in your research is a time series of atmospheric

pressure, Fourier “analysis” can be used to derive its periodogram and to examine

which harmonics dominate the series. Conversely, once the analysis has been done,

the original time series of pressure can be reconstructed purely from knowledge of

the harmonic amplitudes. Thus Fourier “synthesis” is the inverse process of analysis.

Note that the title of this chapter employs the more generic meaning of analysis and

includes both the analysis and synthesis terms just described.

The formulas in Table 1.1 are those needed to perform analysis and synthesis. The

equations under Fourier Analysis are used to calculate the Fourier coefficients or

harmonic amplitudes. The equations under Fourier Synthesis express the time series

xn as the sum of products of cosines and sines with amplitudes Am and Bm,

respectively, or, alternatively, the sum of products of cosines only with amplitudes

Rm and phase angles qm. Notice that the expressions are slightly different depending
on whether the time series has an even or an odd number of data. The synthesis

equations are equivalent to the forms introduced by Shuster around 1900

(Robinson, 1982).

The arguments of the cosine and sine terms associated with the Am and Bm
coefficients are of the form

2pmnDt

NDt

where m is harmonic number and nDt a point in time along the time axis of total

length NDt. Thus, 2pm is the number of radians in them-th harmonic over the total

length of the time series. The product of 2pmand the ratio nDt/NDt provide location
along the sinusoid in radians. Because the time increments (Dt) cancel, they are not
shown in Table 1.1. In Fourier synthesis, the summation is over all harmonics at a

given location nDt, while in Fourier analysis the summation is over all data locations

for a given harmonic m.
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The variance at each harmonic for even and odd data lengths is given in Table 1.1

under the heading Variance at Harmonic m. Note that the only exception to the

general formula for harmonic variance occurs at m¼N/2 when N is even. The

cosine coefficient at N/2 is squared but not divided by two (the sine coefficient is

zero). The formulas for the total variance S2 under the heading Total Variance yield

the same variance estimates as the formula

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

for computing total variance directly from the data, in which x is the series mean.

The two formulas in Table 1.1 are nearly the same, the only difference being that the

Table 1.1 Formulas used in Fourier synthesis and analysis for an even or odd number of data.

Fourier Analysis

A0 ¼ 1
N

PN�1

n¼ 0

xn B0 ¼ 0

Am ¼ 2
N

PN�1

n¼ 0

xn cos
2pmn

N
Bm ¼ 2

N

PN�1

n¼0

xn sin
2pmn

N

m¼ 1;N
2
�1

� �
N evenð Þ; m¼ 1;N�1

2

� �
Noddð Þ

AN=2 ¼ 1
N

PN�1

n¼ 0

xn cosðpnÞ BN=2 ¼ 0 ðN evenÞ

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
qm ¼ tan�1 Bm

Am

� �

Fourier Synthesis

xn ¼
PN=2
m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN=2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN evenÞ

xn ¼
PN�1
2

m¼0

Amcos
2pmn

N
þBmsin

2pmn

N

� �
¼ PN�1

2

m¼0

Rmcos
2pmn

N
�qm

� �
; n¼ 0;N�1½ � ðN oddÞ

Variance at Harmonic m

S2m ¼ A2
m þ B2

m

2
m ¼ 1; N

2
�1

� � ðNevenÞ; m ¼ 1; N�1
2

� � ðN oddÞ

S2N=2 ¼ A2
N=2 ðN evenÞ

Total Variance

S2 ¼ PN=2
m¼ 1

S2m ðN evenÞ S2 ¼ PN�1
2

m¼ 1

S2m ðN oddÞ
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expression for the upper limit of each summation depends on whether N is even

or odd.

1.2.2 Fourier coefficients

The method for obtaining the Fourier coefficients is based on the orthogonality of

cosine and sine functions at harmonic frequencies, where orthogonality means that

the sumof the products of two functions over some interval equals zero. Themethod

entails multiplying both sides of a Fourier synthesis equation by one of the cosine or

sine harmonic terms, summing over all n, and solving for the coefficient associated

with the harmonic term.

For example, consider multiplying both sides of the first Fourier synthesis equa-

tion in Table 1.1 (using the Am, Bm form) by cos 2pkn
N

and summing over all n. The

second summation on the right-hand side will have the form and result

XN�1

n¼ 0

sin
2pmn

N
cos

2pkn

N
¼ 0 ð1:2Þ

wherem and k are integers. That this sum is zero can be shown with two examples as

well as mathematically. The sine and cosine terms for m¼ k¼ 1 are shown in

Figure 1.5 and for m¼ 1 and k¼ 2 in Figure 1.6. The algebraic signs of the sum of

cross products within each quadrant are shown at the base of each figure. Because of

symmetry, the absolute magnitude of each sum is the same for each quadrant in

−1

−0.5

0

0.5

1

n = 0 n = N
+ +− −

sin(2πmn/N)

cos(2πkn/N)

Figure 1.5 Signs of sums of cross products of cosine and sine terms for m¼ k¼ 1.
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Figure 1.5 and similarly for Figure 1.6. Thus the waveforms are orthogonal because

the sum of their cross products is zero over the interval 0 to N in each illustration.

It can be surmised from these figures that the sumof the cross products is zero over

the fundamental period for any combination of the m and k integers. But how could

this be shown mathematically? Firstly, we put the sine and cosine terms in complex

exponential form, and then expand the summation above using Euler’s formula

to obtain

XN�1

n¼0

sinð2pmn=NÞ cosð2pkn=NÞ

¼
XN�1

n¼0

1

2i
ðei2pmn=N� e�i2pmn=NÞ 1

2
ðei2pkn=Nþ e�2pkn=NÞ

¼ 1

4i

XN�1

n¼0

ðei2pðmþkÞn=Nþ ei2pðm�kÞn=N� e�i2pðm�kÞn=N� e�i2pðmþkÞn=NÞ: ð1:3Þ

A procedure is developed in Appendix 1.B for finding the sum of complex

exponentials. The final two formulas, Equations 1.B.3 and 1.B.4, are very useful

for quickly finding the sums of sines and cosines over any range of their arguments.

An example of using the first formula follows.

Consider just the first summation on the right-hand side in Equation 1.3. Let

Q ¼
XN�1

n¼ 0

ei2pðmþkÞn=N: ð1:4Þ

cos(2πkn/N)

sin(2πmn/N)

−1

−0.5

0

0.5

1

n = 0 n = N

++ −− −+

Figure 1.6 Signs of sums of cross products of cosine and sine terms for m¼ 1 and k¼ 2.
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Using Equation 1.B.3, Q becomes

Q ¼ 1� ei2pðmþkÞ

1� ei2pðmþkÞ=N

¼ 1� cos½2pðmþ kÞ� � i sin½2pðmþ kÞ�
1� cos½2pðmþ kÞ=N� � i sin½2pðmþ kÞ=N�

¼ 0; mþ k 6¼ 0; N: ð1:5Þ

The numerator is zero for all integer values of m and k while the denominator is

nonzero except when (mþ k)¼ 0 or N, in which cases the denominator is 0 and

Equation 1.5 is indeterminate. To evaluate Equation 1.5 for these cases we can apply

l’Hopital’s rule. The result of taking the first derivative with respect to (mþ k) in

both the numerator anddenominator yields a determinate formwith valueN. That is

Q0 ¼ 2p sin½2pðmþ kÞ� � i 2p cos½2pðmþ kÞ�
ð2p=NÞ sin½2pðmþ kÞ=N� � i ð2p=NÞ cos½2pðmþ kÞ=N�

¼ N; mþ k ¼ 0; N: ð1:6Þ

The same result also can be obtained by substituting 0 or N for (mþk) in

Equation 1.4. We observe that the first and fourth summations in Equation 1.3

cancel each other for these values.

We can apply the above procedure to the second term in Equation 1.3. The

summation will be zero again, except when (m� k) is 0 or N. Employing l’Hopital’s

rule yields a determinate form with value N for these cases, similar to Equation 1.6.

And again, the same results can be obtained from Equation 1.4. Accordingly, when

(m� k)¼ 0 or N, the second and third summations in Equation 1.3 cancel. Thus

Equation 1.2 is valid for any integer k orm. This includes the possibility that (kþm)

is an integer multiple of N.

Now that we have shown that the summed sine–cosine cross product terms akin

to Equation 1.2 must be zero, let us consider the sums of sine–sine and cosine–

cosine products resulting from multiplying the first Fourier synthesis equation

by cos 2pkn
N

and summing over all n. Following the procedure in Appendix 1.B we

find that

XN�1

n¼0

sin
2pmn

N
sin

2pkn

N
¼

0 ; k 6¼m
N
2
; k ¼ m 6¼ 0; N

2
ðNevenÞ; k ¼ m 6¼ 0 ðNoddÞ

0 ; k ¼ m ¼ 0; N
2
ðNevenÞ; k ¼ m ¼ 0 ðNoddÞ

8>>><
>>>:

ð1:7Þ
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and

XN�1

n¼0

cos
2pmn

N
cos

2pkn

N
¼

0 ; k 6¼m

N
2
; k ¼m 6¼0; N

2
ðNevenÞ; k ¼m 6¼0ðNoddÞ

N; k ¼m¼ 0; N
2
ðNevenÞ; k ¼m¼ 0ðNoddÞ:

8>>><
>>>:

ð1:8Þ

Thusmultiplying the synthesis equation for N even by the k-th sine harmonic term

and summing yields

XN�1

n¼0

xn sin
2pkn

N
¼
XN=2
m¼0

Am

XN�1

n¼0

sin
2pkn

N
cos

2pmn

N
þBm

XN�1

n¼0

sin
2pkn

N
sin

2pmn

N

 !

ð1:9Þ

which reduces to

XN�1

n¼0

xn sin
2pkn

N
¼ BkN=2; k ¼ 1;

N

2
�1

� �
ð1:10Þ

so that

Bk ¼ ð2=NÞ
XN�1

n¼0

xn sin
2pkn

N
; k ¼ 1;

N

2
�1

� �
: ð1:11Þ

Observe that the sine coefficients for k¼ 0, N/2 (N even) are always zero.

The Fourier cosine coefficients, Ak, are obtained in a similar manner, but A0 and

AN/2 are, in general, nonzero. As is evident from Table 1.1, A0 is the mean of the time

series. For N odd, an expression similar to Equation 1.9 is used to obtain the Fourier

coefficients, the only difference being that the range of harmonics extends from 0 to

(N� 1)/2. Table 1.1 shows the resulting formulas for all Fourier coefficients.

The coefficients Am and Bm represent the amplitudes of the cosine and sine

components, respectively. As shown in the left-hand panel of Figure 1.7a, the cosine

coefficient is always along the horizontal axis (positive to the right), and the sine

coefficient is always normal to the cosine coefficient (positive upward). In the right-

hand panel we see how the cosine and sine vector lengths determine the associated

cosine and sine waveforms (ignore the dashed line for the moment). Figures 1.7b–d

show various possibilities of waveform relationships depending on the sign of Am

and the sign of Bm. More discussion of Figure 1.7 is given in Section 1.2.4.
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Figure 1.7 (a)–(d) The magnitude and sign of each Fourier coefficient determines the

quadrant in which the phase angle lies. Geometric vector lengths in the left hand panels are

twice the lengths of the Fourier coefficients in the right hand panels.

12 CH 1 FOURIER ANALYSIS



An alternative approach can be taken to solve for the Fourier coefficients.

As shown by Bloomfield (1976, p. 13), the As and Bs above are identical to the

coefficients from a least-squares fit of individual harmonics to the data.

1.2.3 Total and harmonic variances

The standard formula for the total variance of a time series of length N

S2 ¼ 1

N

XN�1

n¼ 0

xn � xð Þ2 ð1:1Þ

was given in section in Section 1.2.1. The total variance is identical to the sum of

the variances at the individual harmonics as shown in Table 1.1 for N even and

N odd. The variance at an individual harmonic can be derived from Equation 1.1

by first substituting the Fourier synthesis equations for N even or N odd in

Table 1.1 into Equation 1.1 for xn and x. The substitution for x is A0. After

expanding the synthesis equation inside the parentheses in Equation 1.1,

squaring the result, and performing the required summation, the cross product

terms vanish (see Equation 1.2) and, using Equations 1.7 and 1.8, the remaining

squared terms will reduce to the equations for variance at any harmonic seen in

Table 1.1. With one exception, a harmonic variance is the sum of the squares of

the Fourier cosine and sine coefficients divided by two. The exception occurs at

harmonic m¼N/2. The expansion of Equation 1.1 into the sum of harmo-

nic variances is a good exercise in the application of orthogonality in time

series analysis.

1.2.4 Amplitude and phase representation

Instead of representing a time series by the appropriate sums of both sines and

cosines, an alternative representation is to use either sines or cosines alone and

include phase angles, as seen in the right-hand equations in Table 1.1 under Fourier

Synthesis. Because of orthogonality, the cosine term is shifted by 90� or p/2 radians
from the sine term for any harmonic. As a result, a single sinusoid can be represented

by two amplitude coefficients (Am and Bm) or, equivalently, by a single amplitude

coefficient Rm and a phase angle qm. The advantages of the latter are a slightly more

compact representation of xn and only one waveform for each harmonic.

Figure 1.7a illustrates the connection between the two forms of Fourier synthesis.

The dashed sinusoid with amplitude Rm in the right-hand panel has been decom-

posed into a cosine term and a sine term. Their respective amplitudes Am and Bm
depend on the location of the dashed sinusoid relative to the origin n¼ 0, that is, its

1.2 ANALYSIS AND SYNTHESIS 13



phase angle qm. As noted earlier, the left-hand panel shows the vector relationship

among the three amplitudes and the phase angle. Thus

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
m þ B2

m

q
Am ¼ Rm cosqm

and

Bm ¼ Rm sinqm

so that

qm ¼ tan�1ðBm=AmÞ; �p � qm � p:

Substituting themiddle two equations above into a cosine–sine synthesis results in the

amplitude phase synthesis. We see that phase angle qm is determined by the sign and

magnitude of Am and Bm. The sign of each coefficient, not merely the sign of the

ratio, determines the quadrant in which the phase angle lies. The left-hand panels in

Figures 1.7a–d show the amplitude andphase angle in the quadrant associatedwith the

right-hand panels.Weobserve in each right-hand panel that, given the dashed line and

the origin, we can immediately determine the magnitudes of the cosine and sine

coefficients: the cosine coefficient is available at the origin and the sine coefficient 90�

to the right.

1.3 Example data sets

1.3.1 Terrain heights

Table 1.2 contains the data set for this example. The formulas in Table 1.1 are used

to perform a Fourier analysis and synthesis. Consider h to be the variation of

terrain height above some datum with distance d along a specified direction.

Furthermore, let the data in the table represent a finite digital subset of analog

periodic data. The data are plotted in Figure 1.8 and connected by straight-line

segments. After looking at Figure 1.8 and the tabled data, it should become

clear that the waveform repeats itself every 3000m. Thus one may as well

work with 15 values (n¼ 0, . . ., 14). Or should one use 16 values? Let us determine

the difference. Since Dd¼ 200m and the length of the fundamental period

L¼ 3000m, N¼ 15. Every datum must have a space increment Dd associated

with it. Although 16 points subtend L, the Dd associated with the sixteenth point

would make the fundamental period 3200, which it clearly is not. In short, the

sixteenth point is the first point of the next period and similarly for the thirty-first

point in the table.

14 CH 1 FOURIER ANALYSIS



Further examination of the first 3000m in Figure 1.8 suggests odd symmetry in the

data. That is, if a vertical line were drawn at 1500m, the heights of any two points

equidistant from this line will appear to be a reflection about a horizontal line

at 100m elevation. Consequently, except for themean, only sine termswill be needed

in the Fourier synthesis. Lastly, we notice that the time series exhibits only

comparatively slow fluctuations, so that most of its variance should be

“explained” (i.e., accounted for) by low harmonic frequencies.

Based on this insight, we first compute the mean and find that A0¼ 100m. Over

the first 3000 meters we can easily identify three peaks and three troughs, indicating

we should calculate the magnitude of harmonic 3, that is

B3 ¼ ð2=15Þ
XN�1

n¼ 0

hn sinð2p3n=15Þ ¼ 20 m; N ¼ 15:
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Figure 1.8 Plot of terrain height data connected by straight-line segments.

Table 1.2 Height (h) versus distance (d¼ nDd¼ n200m).

n nDd(m) h(m) n nDd(m) h(m) n nDd(m) h(m)

0 0 100.00 10 2000 98.25 20 4000 101.75

1 200 129.02 11 2200 110.73 21 4200 117.30

2 400 127.14 12 2400 97.55 22 4400 110.59

3 600 102.45 13 2600 72.86 23 4600 89.41

4 800 89.27 14 2800 70.98 24 4800 82.70

5 1000 101.75 15 3000 100.00 25 5000 98.25

6 1200 117.30 16 3200 129.02 26 5200 110.73

7 1400 110.59 17 3400 127.14 27 5400 97.55

8 1600 89.41 18 3600 102.45 28 5600 72.86

9 1800 82.70 19 3800 89.27 29 5800 70.98

30 6000 100.00
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Thus, its variance is S23 ¼ B2
3=2 ¼ 200m2. The third harmonic added to themean is

plotted in Figure 1.9 from 0 to 3000m and then repeated to include the entire length

of the data set.

Since the average value of the height departures from A0 for the first 1500m is

positive and for the second 1500m is the same magnitude but negative in sign,

harmonic 1 should be nonzero. This is illustrated in Figure 1.10, in which it can be

seen that harmonic 1 will have to be a sine wave to account for heights above the

mean from 0 to 1500m and heights below the mean from 1500m to 3000m.

Using the formula for B1 we get B1¼ 10, so that S21 ¼ 50 m2. The first harmonic

added to the mean is plotted in Figure 1.11, again over the entire time series. The

accumulated variance from harmonics 1 and 3 is 250m2 in comparison to the total

variance of 282m2 computed from Equation 1.1. As there is no apparent high

frequency variance in Figure 1.8, wewould expectmuch of the remaining variance to

be at a low harmonic frequency. If we try harmonic 2 we find that B2¼ 8m and

S22 ¼ 32 m2. The waveform is shown in Figure 1.12. Since the first three harmonics
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Figure 1.9 Plot of the mean plus harmonic 3 fitted to the data in Figure 1.8 from 0 to 3 km

and repeated from 3 to 6 km.
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Figure 1.10 Harmonic 1 results from above average and below average heights as shown.
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account for 100% of the variance in the data, there is no need to make further

calculations (obviously, the data were generated using just the above coefficients!).

Figure 1.13 shows the sum of the three harmonics plus the mean, drawn as a smooth

curve that passes through all the observations in Figure 1.8.

It is interesting to consider what would happen if a 16-point data length (3200m)

were used, an earlier consideration. Instead of computing the three sine coefficients

above to explain 100% of the variance, it would take eight cosine and eight sine

nonzero coefficients to account for all the variance. The addition of the one point

destroys the symmetry present in the 15-point data length (3000m).

In Figures 1.9–1.13 the waveforms from 0 to 3000m were repeated over the

interval 3000–6000m. This is allowed since the data are periodic. By extending the

Fourier synthesis using the 15-point record, namely

hn ¼ 100þ 10 sinð2pn=15Þ þ 8 sinð4pn=15Þ þ 20 sinð6pn=15Þ

60

80

100

120

140

H
ei

gh
t (

m
)

Distance (km)
0 1 2 3 4 5 6

Figure 1.11 Same as Figure 1.9 except for harmonic 1.
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Figure 1.12 Same as Figure 1.9 except for harmonic 2.
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the series will exactly match that in Figure 1.8 for 15� n� 29, and, more generally,

repeat the observed data for any n replaced by n� 15k where k is an integer. With a

16-point record, values of the computed serieswill be repeated every�16kpoints but

will not match the observed record for k 6¼ 0. For example, the first value in the

extended series will be 100m compared to 129.02m in the observed series.

Clearly, it is important to determine the correct number of data points when

working with periodic data. Many observed variables in meteorology and other

physical sciences are externally forced by the sun, so that there are strong diurnal

and annual components in the data. These components serve to define the funda-

mental period.

1.3.2 Paradrop days

Table 1.3 shows themean number of days in January that “paradrop” criteria aremet

for each hour of the day at Seymour-Johnson Air Force Base, Goldsboro, North

Carolina. A paradrop is the insertion of troops or equipment into a site via parachute

from an airplane. For a safe paradrop, three meteorological criteria should prevail:

ceiling� 2000 feet (610 m), horizontal visibility� 3 miles (4.8 km) and surface

winds< 10 knots (5.1m/s). Although “ceiling” has a specific definition, it can be

taken here tomean there is good vertical visibility between the surface and the height

of the ceiling. As an example of paradrop days, from Table 1.3 we see that at 0700,

19.2 days of the 31 days in January meet the safety criteria, on average.

The results of performing a Fourier analysis of the data given in Table 1.3 are

shown in Table 1.4. Only the results for the three largest harmonics are presented as

they account for 97.8%of the total variance and the remaining variances are all small.

Figure 1.14 is a plot of the mean number of days of occurrence versus time, the three

largest harmonics (about the mean), and their sum. As expected, their sum provides

a good fit to the data.
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Figure 1.13 Plot of the mean plus harmonics 1, 2, and 3 fitted to the data in Figure 1.8 from

0 to 3 km and repeated from 3 to 6 km.

18 CH 1 FOURIER ANALYSIS



We can also establish the time or times of the peaks in each harmonic. To do this,

we use the formula

H ¼ F� ðphase angle q in degreesÞ

where H is the time in hours after 0000 local time and F is the ratio of the harmonic

period to 360�. Thus, from Table 1.4 for the second harmonic

H ¼ ð12=360Þ � ð�143:3Þ ¼ �4:78 h:

Converting this value to local time, we get 0713 and 1913. Similarly, the peaks for

the third harmonic are at 0223, 1023, and 1823 and for harmonic one at 2305.

In Problem 6 at the end of this chapter you are asked to write a Fourier analysis

computer program, apply it to the data in Table 1.3, compare your results with

those in Table 1.4 and Figure 1.14, and try to ascribe physical meaning to the

main harmonics.

Table 1.3 January paradrop days at Seymour-Johnson Air Force Base, North Carolina.

Hour Mean

number of days

Hour Mean

number of days

0000 21.6 1200 15.6

0100 21.1 1300 15.7

0200 21.2 1400 16.2

0300 20.8 1500 16.5

0400 20.3 1600 18.3

0500 20.4 1700 20.5

0600 20.0 1800 23.0

0700 19.2 1900 23.1

0800 19.5 2000 23.4

0900 18.0 2100 22.4

1000 17.4 2200 22.4

1100 17.5 2300 21.5

Table 1.4 Results of Fourier analysis of the data in Table 1.3.

Harmonic Cosine

coefficient

Sine

coefficient

Variance Percentage of

total variance

Phase angle

in degrees

0 19.817 0 0 0

1 2.8188 �0.6848 4.2072 74.9 �13.7

2 �1.1965 �0.8919 1.1136 19.8 �143.3

3 �0.1743 0.5623 0.1733 3.1 107.2
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1.3.3 Hourly temperatures

Even if there is a substantial amount of variance at a number of harmonics, one

should not believe, in general, that the variance at each harmonic is the conse-

quence of a different physical cause. Instead, often a band of harmonics can be

related to a physical phenomenon. Figure 1.15 is an example of a spectrum that

shows variance at particular harmonics and at broad bands of frequencies. The data

from which the spectrum was computed are hourly temperatures taken at the

Norman, Oklahoma Mesonet site (McPherson et al. 2007; http://www.mesonet.

org) from 1 December 2006 through 31 March 2007 at a height of 1.5m. Each

hourly temperature is a five-minute average at the top of the hour. The logarithmic

x-axis is in frequency in cycles/h converted from harmonic number and the y-axis is

proportional to the product of variance and frequency. In contrast to the period-

ogram with line variance in Figure 1.2, the spectrum amplitudes here are connected

by straight-line segments, the usual method of presentation. There are two broad

frequency bands of interest. One contains periods from about 12 to around 30 days

(0.0035–0.0014 cycles/h) and the other from about four to eight days

(0.0104–0.0052 cycles/h). The variances in these two bands are due to the passage

of long waves in the westerlies (major ridge–trough systems, i.e., Rossby-type

waves) and short waves (minor ridge–trough systems and fronts), respectively.

Their largely aperiodic nature results in the distribution of variance across a band of
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Figure1.14 Mean number of days thatmeet paradrop criteria versus time of day at Seymour-

Johnson Air Force Base, Goldsboro, North Carolina for the month of January. Three harmonics

explain 98% of the variance in the data.
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frequencies, the width of which can vary from year to year. Variance at periods

longer than 30 days is not shown because there are too few cycles over the 121 days

of data to yield satisfactory estimates.

The two well-defined peaks at periods of 24 and 12 hours are due to the daily cycle

of solar heating. Similar to the paradrop data in the previous section, the diurnal

temperature variation is a deformed sinusoid such that a semi-diurnal component is

also required. In fact, close inspection of Figure 1.15 shows a small amount of

variance at a period of six hours (0.1667 cycles/h), the fourth harmonic of the daily

cycle of temperature. Thus all three variances are required to explain the variance in

the daily cycle.

As a final comment about Figure 1.15, we point out that when the product of

variance density and frequency is plotted against the logarithm of frequency, the

result is an equal-area representation. Thus this is the plot design to usewhen the goal

is to compare variances from different frequency bands. Although we mentioned in

Section 1.1.3 that variance density would be discussed in Chapter 5, here it is only

necessary to know that variance and variance density are directly proportional to

each other to understand Figure 1.15.

1.3.4 Periodogram of a rectangular signal

Fourier analysis necessarily fits sinusoids to a time series; thus it is interesting to

observe what happens when data are intrinsically not comprised of sinusoids. The

heavy solid line in Figure 1.16a shows a periodic rectangular signal that might

represent, for example, whether it is raining or not or the occurrence and non-
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Figure 1.15 Temperature spectrum at 1.5m height for December 2006–March 2007 at

Norman, Oklahoma.
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occurrence of someperiodic phenomenon. Because of the locationof the time origin,

the signal is an even function and, therefore, only Fourier cosine coefficients will be

required. By analogy with Fourier analysis for digital data, the expression for the

Fourier cosine coefficients for this periodic analog record is

Am ¼ 2

T

ðT=2
�T=2

xðtÞ cosð2pmt=TÞdt; m ¼ 0; 1; 2; . . .

where T is the fundamental period. The periodogram in Figure 1.16b shows that only

odd-numbered harmonics are needed to synthesize the signal. The two light solid

lines and dashed line in Figure 1.16a are the waveforms of the first, third, and fifth

harmonics.

Given the waveform of the first harmonic, the waveforms of the third and fifth

harmonics serve to improve the Fourier synthesis. The positive and negative over-

shoots of the rectangular signal by the first harmonic are compensated by the

addition of the associated negative and positive peaks, respectively, in the third
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Figure 1.16 (a) A hypothetical rain – no rain analog signal, f(t), showing the first three

nonzero cosine harmonics. (b) Resulting periodogram with fundamental period shown in (a).
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harmonic. However, as can be seen in Figure 1.16a, the addition results in

overcompensation that, in turn, is compensated by the fifth harmonic. In this way,

adding the waveforms of successive odd harmonics better approximates the flat

peaks and troughs in the rectangular signal and sharpens the change in value from 1

to�1 and�1 to 1. In practice, if you computed a periodogram that showed evidence

of decreasing variance at alternate harmonics, you should bewary of the presence of a

rectangular wave. Other special signals (for example, triangular and saw-tooth) also

show characteristic spectra.

In summary, we are reminded that Fourier analysis fits sinusoids to data regardless

of the signal being generated by the physical (ormathematical) process. It is up to the

analyst to keep this in mind when interpreting a periodogram.

1.4 Statistical properties of the periodogram

Section 1.4.1 provides basic statistical concepts and terminology needed to under-

stand the remainder of Section 1.4. Section 1.4.2 discusses the term expectation and

shows how it is used to find statistical properties, for example mean, variance, and

covariance, of digital and analog data. Expectation is used in Appendix 1.C to derive

the formulas for the distribution of variances at the Fourier harmonics. Section 1.4.3

dealswith themain result ofAppendix 1.C, namely, that the frequencydistributionof

variance at any harmonic is proportional to a chi-square variable. This conclusion

requires that the datawe analyze come fromanormalwhite noise process. That is, the

data have a normal distribution and the periodogramof the data showsnopreference

for large or small variance at any harmonic. In practice,we assume the data are at least

approximatelynormallydistributedand, if thedataarenotwhitenoise, thedata length

is sufficiently long that the properties of the chi-square distribution of variance at a

harmonic and their independence fromone harmonic to the next are effectivelymet.

Knowing that the statistical distribution of variances at a harmonic is chi-square

opens the window to finding confidence limits for the underlying variance spectrum

from which a sample periodogram has been computed as well as testing the null

hypothesis that the periodogram came from awhite noise process. To put these ideas

into practice, we will deal with two data sets: one a 100-year record of autumn

temperatures; the other a five-year record of monthly mean temperature, both from

central Oklahoma, USA. The theory and application of confidence limits are

presented in Sections 1.4.4–1.4.6.

1.4.1 Concepts and terminology

The computation of a periodogram is purely an algebraic manipulation of the data.

The interpretation of a periodogramdepends on howone views the data. If one views

a data set as resulting from a physical phenomenon or mathematical process that
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produces an identical data set each time the phenomenon or process is initiated, the

data set is considered deterministic. Each data set produced is identical to every other

data set, and likewise for the associated periodograms. If one views a data set as

resulting from a physical phenomenon or mathematical process that produces a

different data set each time the phenomenon or process is initiated, however small

the differences, the data set is nondeterministic, or equivalently, the data are stochastic

or random. Because no two data sets are alike, there is, conceptually, a population of

data sets, with each data set a member or realization of the population. The

population can be finite or infinite. The periodogram of a nondeterministic data

set is also one realization of a population of periodograms. In this concept, each

realization, whether a data set or a periodogram, represents an equally valid statistical

representation of the physical phenomenon ormathematical process being analyzed.

Observed time series in natural science are typically nondeterministic, although

deterministic components can exist in the series. In Section 1.4 we focus our

attention on nondeterministic data sets and the statistical properties of the resulting

periodograms. As part of this effort, we need certain additional terminology.

A random variable (rv) is a variable that has associated with it a range of values and

either a probability distribution (pd) if the variable is digital, or a probability density

function (pdf) if thevariable is analog.For example, randomvariable (rv)Xmight take

on any integer value from151 to 250, inclusive. The probability distribution gives the

probability of occurrence assigned to each of the 100 possible values, with the sum of

the probabilities equal to one. Alternatively, rv Xmight take on any real value within

the range 151 to 250, of which there are infinitely many possibilities. In this case the

probability of X exactly assuming any particular value (say, exactly 200) is zero.

However, there exists a finite probability that X will lie within a range of values

(say, 199.99–200.01) that is a subset of the overall range of possibilities. Thus,

in the case of analog data, it is necessary to describe probabilities using pro-

bability densities, the relative likelihoods of the values within the overall range. The

probability density function describes these relative likelihoods and, in parallel with

thecaseofdigitaldata, the integralof theprobabilitydensity functionover the rangeof

rv X is one.

Nowwe develop the concept of a time series of random variables. Imagine a time

series of data from time t0 to time tT collected from an experiment. Continue to

repeat the experiment, thereby forming successive data sets (realizations) of x(t)

from t0 to tT. The values of x at, say, time t0, where t0� t0 � tT form random variable

X(t0). This concept is illustrated in Figure 1.17, which shows a selection of

realizations stacked one upon the other with t0 and tT lying beyond the ends of

the time axis shown. The intersection of the left-hand vertical dashed line with each

realization provides the range of values that comprise rv X at time t0. A random

variable also can exist at any other point along the time axis (for example, X(t00) at
t00). In the experiment above, the time axis was finite (t0 to tT). In general, both the

time axis and the number of realizations can be infinite. Whether the time axis X(t00)
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and number of realizations is finite or infinite t0 to tT, the collection of random

variables comprise a random process or stochastic process.

Before continuing with additional concepts we comment on the notation for

random variables. Throughout the text we will use only upper case letters to indicate

random variables. However, all upper case letters are not random variables; they can

be standard mathematical variables, parameters, or constants. We’ve seen this, for

example, with Fourier coefficients in Table 1.1. It is always easy to understand

whether or not an upper case letter represents a random variable by the context in

which it occurs.

Realizations

X(t'')

Time, t

...

...

xk+1(t)

xk(t)

x3(t)

x2(t)

x1(t)

X(t')

Figure 1.17 A selection of realizations from a random process. Function X(t0) denotes

random variable X at any time t0. The light horizontal lines have the same reference value of X
for each realization.
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When the data are nondeterministic, we need to consider another attribute:

whether the random process is stationary or nonstationary. If a time series is

stationary, the statistical properties of the pd or probability density function do

not change with time; a time series is nonstationary if the opposite is true. A simple

example of a nonstationary time series is a record of air temperature from winter to

summer at a typical middle latitude station. The nonstationarity results from the

increasing value of mean daily temperature, that is, a trend. In order to make the

series stationary, a low-order polynomial can be fitted to the data set and then

subtracted from it. Another common type of nonstationarity occurs when the

magnitude of the fluctuations, the population variance, changes with time. An

example is the greater variability (gustiness) of the surface wind speed during

daytime than nighttime due to the verticalmixing of air as the surface is differentially

heated during daylight hours.

If a time series is nonstationary and it is not clear how to remove nonstationary

effects, it may be necessary to resort to special analyses using many realizations,

divide the data into stationary segments, or apply other methods, such as wavelet

analysis (Daubechies, 1992). With the exception of Section 4.1, all mathematical

statistics in this text apply to stationary random processes; that is, the population

mean and population variance are independent of time. The data sets we analyze can

be considered realizations of a stationary random process or can be filtered in such a

way to make them stationary or approximately so.

An additional underlying concept needed to derive the statistical properties of a

periodogram is a particular random process calledGaussian (or normal)white noise.

There are two attributes of this process.With reference to Figure 1.17, the first is that

the probability density function of rv X(t0) (or X(t00)) is Gaussian. The second

attribute is that rv X(t0) and rv X(t00) are independent of each other. In practice, this

means that knowledge of the value of one member of the population at time t0

provides no predictability of the value of the same or any other member at any other

time. In statistical parlance, the covariability or covariance between X(t0) and X(t00),
t0 6¼ t00, is zero, a condition that implies the underlying randomprocess is white noise.

The equivalent mathematical statement is derived in the next section.

An examination of the periodogramof any selected time series (a realization) from

a Gaussian white noise process would indicate no preference for large or small

variances in any part of the spectrum. The average over all possible realizations of the

variances at any one harmonic would be identical to that at any other harmonic

(with the exception of the highest harmonic for an even number of data, where the

variance would be reduced by one-half relative to the other harmonics). That is,

the periodogram variances would be uniform with harmonic frequency (less the

exception), a condition referred to as “white” by loose analogy with white light

wherein no one of the component colors is preferred (there is also acoustic white

noise). It is through this connection that the process that produces the uniform

variance spectrum is referred to as “white.”When we subsequently deal with a white

26 CH 1 FOURIER ANALYSIS



noise process, it will be assumed to be normal or Gaussian, so that use of either

qualifier will be dropped.

1.4.2 Expectation

The term expectation is of fundamental importance to understanding the statistical

properties of the periodogram. The synonym for expectation is average. When

expectation is indicated, the average is taken over the entire population, whether it is

finite or infinite. The indicator for expectation is the symbol or operator E.When the

operator E is applied to a random variable (or a function of a random variable),

the question being asked is, “What is the average value of the random variable (or

the function of the random variable).” We will see examples of both in

subsequent sections.

In the first subsection formulas for the expectation of rv X and general function

g(X) for digital data are developed, followed by, in the second subsection, a parallel

development for analog data. In the third subsection the expectation of the product

of two random variables is developed. The results are formulas for the covariability

or covariance between these variables. For those readers familiar with expectation,

it may be necessary only to skim through this section to become familiar with

the notation.

1.4.2.1 Digital data

Let the sample space S in Figure 1.18 contain a population of N elements, some of

whichmay be the same. Denote distinct elements of S by x1, x2, . . ., xK. In Figure 1.18
N¼ 10 and K¼ 6; two x1 elements are alike, three x2 elements are alike, and two x4
elements are alike.

The symbol for expectation is E and the expectation of random variable X is

defined by

E X½ � ¼ mX ¼
PK
k¼ 1

xk nk

N
ð1:12Þ

where X is a digital random variable, nk is the number of elements with value xk, and

N ¼
XK
k¼ 1

nk:

The expectation operator asks the question – What is the mean value of the

quantity in brackets when the entire population is considered? Thus the summation
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in Equation 1.12must include all elements. Since the probability of getting value xk in

a random selection of one of the N elements in S is given by

pxk ¼
nk

N

an equation equivalent to Equation 1.12 is

E½X� ¼ mX ¼
XK
k¼ 1

xk pxk : ð1:13Þ

In the example above

N ¼
X6
k¼ 1

nk ¼ 2þ 3þ 1þ 2þ 1þ 1 ¼ 10

and

E½X� ¼ mX ¼
X6
k¼ 1

xk pxk

¼ 3:6� 2

10
þ 2:1� 3

10
� 2:4� 1

10
� 5:1� 2

10
� 0:1� 1

10
þ 0:8� 1

10

¼ 0:16:

X5 = −0.1
X2 = 2.1

X4 = −5.1

X1 = 3.6

X2 = 2.1

X1 = 3.6

X3 = −2.4

X4 = −5.1

X6 = 0.8

X2 = 2.1

S space

Figure 1.18 Sample space S with N¼ 10 elements, some of which are alike.
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Equation 1.13 is good for both finite and infinite populations. In the case of the

latter, no empirical determination of the probabilities can be made; they must be

known a priori.

Now replace digital rv X by a general function of X, namely, g(X). Then,

E½gðXÞ� ¼
XK
k¼ 1

gðxkÞ pxk : ð1:14Þ

Consider two example functions. Let g(X)¼Xi for i� 1. Then, by analogy with

Equation 1.12,

E½Xi� ¼
XK
k¼ 1

xik pxk ð1:15Þ

is the i-th moment of rv Xi about zero. Of course, i¼ 1 results in the mean mx. For
the second example function, let g(X)¼ (X� E[X])i for i� 1. The expectation

becomes

E
�ðX� E½X�Þi� ¼

XK
k¼ 1

ðxk � mXÞi pxk ð1:16Þ

which is the i-th moment about the mean, or the i-th central moment.

A common central moment is the second moment or variance. Accordingly, for

i¼ 2 we have

E ðX� E½X�Þ2� � ¼
XK
k¼ 1

ðxk � mXÞ2 pxk ð1:17Þ

or, what is the same,

VarðXÞ ¼ s2X ¼ E ðX� E½X�Þ2� � ¼ E½X2� � 2E½X� 	E½X� þ ðE½X�Þ2

¼ E½X2� � ðE½X�Þ2: ð1:18Þ

The last form for the variance in Equation 1.18 shows that it is equivalent to the

“mean of the squares minus the square of the mean.”
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For the S space example, substituting Equation 1.13 and Equation 1.15 into

Equation 1.18 yields

s2X ¼ ½ð3:6Þ2 � 2þð2:1Þ2 � 3þð�2:4Þ2 � 1þð�5:1Þ2 � 2þð�0:1Þ2 � 1þð0:8Þ2 � 1�
10

�ð0:16Þ2

¼ 9:732:

1.4.2.2 Analog data

The expected value of analog random variable X is given by

E½X� ¼ mX ¼
ðþ1

�1
x fðxÞ dx ð1:19Þ

where f(x) is the probability density function of rv X. Integration is involved for an

analog variable as opposed to discrete summation for a digital variable. The limits on

X extend over the range �1 to þ1 and include the case in which the probability

density function is zero over some portion of this range. For the general analog

function g(X),

E½gðXÞ� ¼
ðþ1

�1
gðxÞ fðxÞ dx: ð1:20Þ

Consider two analog example functions following those for digital data. Let

g(X)¼Xi for i� 1. Then

E½Xi� ¼
ðþ1

�1
xi fðxÞ dx ð1:21Þ

is the i-th moment of rv Xi about zero. Again, when i¼ 1, we obtain the population

mean mX. Now let g(X)¼ (X� E[X])i for i� 1. Parallel to Equation 1.16,

E ðX� E½X�Þi
h i

¼
ðþ1

�1
ðx� mXÞi fðxÞ dx ð1:22Þ

is the i-th central moment. The second moment, i¼ 2, is the variance. Thus, for

analog data

VarðXÞ ¼ s2X ¼ E ðX� E½X�Þ2� � ¼
ðþ1

�1
ðx� mXÞ2 fðxÞ dx: ð1:23Þ
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1.4.2.3 Covariance

Consider two analog random variables X1 and X2. We can find the variance of each

using Equation 1.23. We now inquire about how these two random variables covary

in time. That is, do they tend to track each other? When X1 increases, does X2 also

tend to increase (or decrease), or does X2 just as likely increase as decrease? The

measure of this relationship is called covariance. If, when X1 increases (decreases)

X2 also tends to increase (decrease), the sign of the covariance (or covariability) will

be positive; if, when X1 increases (decreases) X2 tends to decrease (increase), the

sign of the covariance (or covariability) will be negative; and, lastly, if, when X1

increases or decreases X2 is just as likely to increase as decrease, the expected

covariance is zero and the variables are independent of each other. Stated math-

ematically, we have

E ðX1�m1ÞðX2�m2Þ½ � ¼ Cov½X1;X2� ¼
ðþ1

�1

ðþ1

�1
ðx1�m1Þðx2�m2Þfðx1;x2Þdx1 dx2

ð1:24Þ
where Cov[X1,X2] means covariance between random variables X1 and X2 and

f(x1, x2) is the joint probability density function between random variables X1 and X2.

If X1 and X2 are independent, f(x1, x2)¼ f(x1) 	 f(x2); that is, the joint probability
density function is equal to the product of the individual probability density

functions. With this condition,

Cov½X1;X2� ¼
ðþ1

�1
ðx1 � m1Þ fðx1Þ dx1

ðþ1

�1
ðx2 � m2Þ fðx2Þ dx2

¼ E½X1 � m1� E½X2 � m2� ¼ 0: ð1:25Þ

Because the expectation operator is linear, it can be taken inside the brackets of

each term in the product on the right, so that E[X1� m1]¼ m1�m1¼ 0, and similarly

for the second term. The expected value of a constant is, of course, the same constant.

The formulas for digital data similar to Equations 1.24 and 1.25 are

E½ðX1�m1ÞðX2�m2Þ� ¼ Cov½X1;X2� ¼
XK
k¼1

XM
m¼1

ðx1k �m1Þ ðx2m�m2Þpx1k ;x2m
ð1:26Þ

where K¼M and, for independent variables,

Cov½X1;X2� ¼
XK
k¼1

ðx1k �m1Þpx1k
XM
m¼1

ðx2m�m2Þpx2m

¼ E½X1�m1�E½X2�m2� ¼ 0: ð1:27Þ
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1.4.3 Distribution of variance at a harmonic

Let us now shift our focus from comparing variances among harmonics in

Section 1.4.1 to examining how variance is distributed at a single harmonic across

the population of realizations. The detailed and somewhat lengthy derivation of

this distribution is the subject of Appendix 1.C. In this section we present only the

results. Our recommendation is that readers complete this section before studying

Appendix 1.C.

Basic knowledge of the properties of a chi-square distribution is essential from this

point forward. Sufficient background usually can be found in an undergraduate text

in statistics. We will expand on this basic knowledge as needed.

In Appendix 1.C it is shown that, for a normal white noise process, the covariance

between the sine and/or cosine coefficients at any two harmonics is zero (a result that

might have been anticipated from Equations 1.4 and 1.5) and the coefficients are

normally distributed. Squaring the coefficients and standardizing them by dividing

by their variances yields random variables with a chi-square distribution. Using the

additive property of chi-square variable results in harmonic variances that are

independent and proportional to a x22-distribution (a chi-square distribution with

two degrees of freedom) except at the frequency origin (harmonic 0) and, for an even

number of data N, at harmonic N/2.

In analyzing geophysical data, we are usually concerned with an underlying

stochastic process that is other than white noise. For this situation, the sinusoids at

the harmonic frequencies are likewise orthogonal (see Equations 1.4 and 1.5) but it

is only in the limit as the number of data N in a realization becomes infinite

that their variances are independent and have a chi-square distribution. Koop-

mans (1974, Section 8.2) provides further discussion of the properties of

nonwhite noise.

In obtaining the frequency distribution of variance for a general stochastic

process, we will assume N is sufficiently large that it is reasonable to apply the

results for white noise given in Appendix 1.C. The magnitude of N required to make

this assumption reasonable depends on the departure of the random process from

white noise. The greater the departure, the larger the value of N, but no specific value

can be given. Thus, in accepting a conclusion from statistical analysis of a realization

that depends on it being from a normal white process, it is important to express some

caution. Assuming that N is sufficiently large, the variances at the interior harmonics

are independently distributed according to

CðfmÞ
CðfmÞ )

x22
2
;

0 < m < N=2; N even

0 < m � ðN� 1Þ=2; N odd

	
ð1:28aÞ

where random variable C(fm) is the variance at the m-th harmonic frequency fm,

C(fm) is the process variance at fm, the arrow indicates “is distributed as,” and,
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therefore, the above variance ratio is distributed as a chi-square variable with two

degrees of freedom divided by two. In general, the value of C(fm) is unknown. The
next section showshow to determine a confidence interval forC(fm). The twodegrees
of freedom (dof) at each harmonic are a consequence of a sine and a cosine being

fitted to the data. There is only one dof at the 0-th harmonic (the mean), regardless

of whether N is even or odd. In cases where N is even, there also is only one dof at the

N/2-th harmonic. As Table 1.1 shows, the calculations at these harmonics require

only a cosine term. That is,

Cðf 0Þ
Cðf 0Þ ) x21; N even or odd ð1:28bÞ

and

CðfN=2Þ
CðfN=2Þ

) x21; N even: ð1:28cÞ

For N odd, the variance at the highest frequency [(N� 1)/2] has two dof as noted

in Equation 1.28a. For N even or odd the total number of dof in the periodogram

equals the number of data N.

It should be noted that C(fm) is analogous to S2m in Table 1.1. One reason for

changing notation is because C(fm), unlike S
2
m, is a random variable. Another reason

is that in Section 1.5.6wewill be calculating variance at any frequency, f, and it will be

convenient to simply drop the subscript m. For now, our interest remains in dealing

with variance at the harmonic frequencies, fm, only.

1.4.4 Confidence intervals on periodogram variances

In this and the following section, the underlying stochastic process is unspecified.

It may or may not be white noise, but we assume that the number of data, N, is

sufficiently large to justify application of independent chi-square distributions

derived from a white noise process to the harmonic variances, as discussed in the

previous section. In addition, we assume the data follow a normal distribution.

Given that the variance ratio C(fm)/C(fm) follows a chi-square distribution

according to Equation 1.28a, we can determine a confidence interval for the ratio

using the probability expression

Pr
x22ða=2Þ

2
�CðfmÞ
CðfmÞ �

x22ð1�a=2Þ
2

	 

¼ 1�a; m 6¼ 0 ðallNÞ; m 6¼N=2 ðNevenÞ

ð1:29Þ
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where a is the level of significance. In this equation observed values of C(fm)/C(fm)

vary between confidence limits x22ða=2Þ=2 and x22ð1�a=2Þ=2 in 100(1�a)% of the

observations. The term x22ða=2Þ is a particular value of the randomvariable such that

the area beneath its probability density function to the left of this value is a/2.
We consider the case in which we have an observed value of C(fm) and the

objective is to find the limits of the confidence interval for the population variance

C(fm). By rearranging Equation 1.29, the 100(1�a)% confidence interval for C(fm)
can be obtained from the probability statement

Pr
CðfmÞ

x22ð1� a=2Þ=2 � CðfmÞ � CðfmÞ
x22ða=2Þ=2

	 

¼ 1� a; m 6¼ 0; N=2 ðN evenÞ:

ð1:30Þ

The interval between 2C(fm)/x
2
2(1�a/2) and 2C(fm)/x

2
2(a/2) is the 100(1�a)%

confidence interval for C(fm). By taking the logarithm of the limits of the confidence

interval for log C(fm), the lower and upper limits become, respectively,

log CðfmÞ þ logð2=x22ð1� a=2ÞÞ and log CðfmÞ þ logð2=x22ða=2ÞÞ:

The logarithmic form of expressing the confidence interval is particularly useful in

graphical representations of the periodogram. The reason is that the width of the

confidence interval will be fixed regardless of frequency when the variances are

plotted on a logarithmic axis.

We now apply Equation 1.30 to a set of data. Figure 1.19 is a plot of the data in

Table 1.5 covering 100 consecutive years (1906–2005) of average autumn (Septem-

ber, October, November) temperatures from Climate Division 5 in Oklahoma.

Climate Division 5 comprises 13 counties in central Oklahoma. Temperatures are in

their original units of degrees Fahrenheit.
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Figure 1.19 One hundred years of mean autumn temperature (September, October,

November) for central Oklahoma (Climate District 5) from 1906 to 2005.
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The periodogram is shown by the solid line in Figure 1.20 and was computed

using subroutine Foranx in Appendix 1.A. The 95% confidence interval for the

population variance is shown on the right-hand side of the figure (solid line) where

the dot is to be placed over each sample variance c(fm) as shown, for example, at

harmonic 39. Note that c(fm) is used to denote a sample value of the rv C(fm). That

the dot with constant width confidence interval around it may be placed at any

harmonic is a direct consequence of the logarithmic plot, as described above.

Because the periodogram varies wildly, it is not easy to discern bands of small or

large variance or a trend in variance with harmonic number. Correspondingly, the

95% confidence interval (a¼ 0.05) for C(fm) is very wide. The variability in c(fm)

seen here is typical of periodograms of many kinds of geophysical data and is the

chief reason that periodograms of observed data are often smoothed, as discussed

in the next section.

1.4.5 The smoothed periodogram

To better distinguish bands of large and small variance or a trend in the spectrum, a

common practice is to smooth the spectrum by weighting together a number of

contiguous variances. The simplest smoothing is the runningmean of length n (odd)

given by

CðfmÞ ¼ 1

n

Xmþðn�1Þ=2

j¼m�ðn�1Þ=2
Cðf jÞ ð1:31Þ

Table 1.5 One hundred years (1906–2005) of autumn mean temperature (�F) for Oklahoma
Climate Division 5 (central part of the state). (Source: Oklahoma Climatological Survey.)

Decade down/

Year across

0 1 2 3 4 5 6 7 8 9

1900–1909 58.1 60.8 59.8 63.2

1910–1919 63.2 61.9 60.5 60.7 62.6 62.6 61.1 59.7 59.7 60.1

1920–1929 60.7 64.2 62.9 59.6 62.2 59.3 61.1 63.8 61.8 58.3

1930–1939 62.4 67.3 59.5 63.6 62.2 58.8 60.7 60.1 63.2 64.1

1940–1949 60.9 62.1 61.2 60.6 62.6 62.0 61.6 64.0 60.7 60.7

1950–1959 61.2 59.3 60.3 62.5 65.1 61.6 63.7 57.9 62.6 58.4

1960–1969 63.5 59.9 61.6 65.5 61.3 63.3 61.1 59.7 59.9 60.3

1970–1979 60.1 62.2 60.1 63.0 59.1 60.9 56.9 63.8 63.8 61.1

1980–1989 62.1 61.5 61.2 62.9 60.9 60.7 60.5 60.0 60.5 60.9

1990–1999 63.6 59.3 60.1 57.7 61.6 60.8 59.1 61.2 65.7 63.0

2000–2009 61.3 61.9 59.5 60.7 62.6 63.8
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in which average variance is calculated only for those harmonics that do not include

f0 and fN/2 (N even) in the summation. Random variable C is used in Equation 1.31

to indicate we are determining the effects of smoothing on the distribution of

variances; in application, however, harmonic variances from a single realization

would be smoothed, and lower case variable c would be used as in the previous

section. Because of the inability to include the correct number of terms, there will

be a loss of (n� 1)/2 harmonic variances at either end of the smoothed

periodogram.

If we assume, as prescribed earlier, that the number of data in a realization is

sufficiently large that the variance ratios C(fj)/C(fj) can be approximated by inde-

pendent x2 variables with two dof divided by two and, furthermore, that C(fj) is
effectively constant over the length n, then, using Equation 1.31, the smoothed

variance ratios C fmð Þ=C fmð Þ are approximately x2 random variables with 2n dof

(Hoel, 1962, p. 268) divided by 2n and are independent every n harmonics.

The dashed line in Figure 1.20 is the result of a five-point running mean and

provides an improved picture of the structure of the variance. There are now

2n¼ 10 dof associatedwith each variance ratio. For this realization, periods from5 to

10 years contain more variance than periods shorter than five years except near the

two-year period. This comparison suggests the data should comprise sharp year-to-
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Figure 1.20 Periodogram of the data in Table 1.5 and Figure 1.19 (solid line). Averaged

periodogram using 5-point running mean (dashed line). The respective 95% confidence

intervals for the population mean variance at each harmonic are shown to the right and the

respective bandwidths at the top of the figure.
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year fluctuations superimposed on long-period fluctuations. The plot of the data in

Figure 1.19 clearly indicates that there are short period variations; long period

variations, though, are less obvious. Thus the need for a periodogram to show the

not-so-obvious.

By analogy with the limits of the confidence interval for log C fmð Þ, the limits for

log C fmð Þ are

logCðfmÞ þ logð2n=x22nð1� a=2ÞÞ and logCðfmÞ þ logð2n=x22nða=2ÞÞ:

For n¼ 5 and a¼ 0.05, the values for the constant terms above are�0.31 and 0.49.

The 95% confidence interval is shown by the dashed vertical line on the right of

Figure 1.20 and its reduced length relative to that for no smoothing (n¼ 1) reflects its

application to an averaged spectrum, namely, to log CðfmÞ, which, by our previous
assumption, is approximately logC(fm).

To take into account smoothing of the periodogram by other than a running

mean, an approximate general formula for the dof r in x2 distributions is, for n odd,

r ¼ 2
Xðn�1Þ=2

j¼�ðn�1Þ=2
K2ðf jÞ

2
4

3
5
�1

ð1:32Þ

where K(fj) is a symmetric weight function centered at frequency f0 such that the

sum of the weights is unity (Koopmans, 1974, p. 273). Maintaining unity

preserves the total variance in the spectrum. When K(fj)¼ 1/n, the running

mean, r¼ 2n.

Associated with dof is bandwidth b, the frequency interval between independent

adjacent estimates of variance. In the case of a periodogram with no smoothing it is

b ¼ 1

NDt
ð1:33Þ

which is the frequency difference between harmonics i and iþ 1. Rewriting Equa-

tion 1.33 in the form

bNDt ¼ 1 ð1:34Þ

we see that the product of b and NDt is constant. This means that as the length N of

a time series increases (Dt remains fixed), the bandwidth of each independent

periodogram estimate will proportionately decrease and the total number of

spectrum estimates will proportionately increase. Because there are two dof asso-

ciated with each spectrum estimate, increasing the length of a time series in and of

itself does not reduce the variability of periodogram estimates.
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Equation 1.33 is exact forwhite noise and approximate for nonwhite noisewhenN

is large. For a five-point running mean the bandwidth would be five times as wide.

The bandwidths are shown in Figure 1.20 for their associated spectra. An approx-

imate general formula for the bandwidth is (Koopmans, 1974, p. 277)

b ¼ r

2NDt
¼ NDt

Xðn�1Þ=2

j¼�ðn�1Þ=2
K2ðf jÞ

2
4

3
5
�1

ð1:35Þ

which reduces to b¼ n/NDt for a running mean of length n.

As an example of a simple nonrunning mean filter, consider a three-point

smoother (a triangular filter) whose weights are 1/4, ½, 1/4 (sum of weights¼ 1).

From Equation 1.32 the dof will be 51/3 whereas the number of dof for a three-point

running mean is six. From Equation 1.35 the bandwidth of the former is 8/9 as wide

as that of the latter. It is of interest to know that the periodogramused to produce the

spectrum of hourly temperatures in Figure 1.15 was smoothed with this triangular

filter prior to creating the product of variance density and frequency. The purpose

was to magnify the two broad frequency bands that were discussed relative to the

main peak of the daily cycle of temperature.

1.4.6 Testing the white noise null hypothesis

In this section we examine the problem of testing the null hypothesis that a sample of

data comes from a random process that is white noise. This is equivalent to the null

hypothesis that the expected values of the spectrum variances are uniform with

frequency. A white noise test can be an important tool in analyzing spectra of

geophysicaldata. Ifweobserve inagivenspectrumasinglevariance,multiple variances,

or a band of variance that seems to be unexpectedly large, the question arises whether

these features are a consequence of an underlying physical process or whether they

occurred by chance. If the white noise null hypothesis applied to the spectrum cannot

be rejected, there is then doubt that the observed large variance or variances are

anything more than natural fluctuations in a realization from a white noise process.

In the previous section a method was developed to place a confidence interval for

the population variance surrounding each sample variance (variance at a harmonic

from a single realization). In contrast, in this section we will place confidence

intervals for the sample variances about the estimated population variance, hypoth-

esized to be uniform with frequency. Here, however, it is necessary to consider two

types of confidence intervals. Thesewill be demonstratedwith two examples, the first

of which employs the 100-year record of central Oklahoma temperature data seen in

the previous two sections. How these confidence intervals are used inmaking a white

noise test requires some background knowledge, to which we now turn.
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Figure 1.21 shows the probability density function (or, equivalently, the frequency

distribution) of a x2 random variable with two dof. The probability density function

is given by:

fðx22Þ ¼
exp � x22

2

� �
2

: ð1:36Þ

The two vertical dashed lines encompass what is called the a priori 95% confidence

interval. Figure 1.21 is the typical way of presenting a probability density function or

frequency distribution with confidence limits. When a confidence interval is applied

to a spectrum, the width of this interval is oriented in the vertical, as we did in

Figure 1.20.

Let us imagine successivelywithdrawing 29 samples fromapopulation that has the

distribution shown in Figure 1.21. Prior to the first withdrawal, the probability that

its value will lie outside the interval (0.05, 7.38) is 0.05. Prior to the second

withdrawal, the probability that its value will lie outside the same interval is also

0.05. Repeat this 27 more times. Because each withdrawal is independent of any

other, the probability is 0.05 that any sample value of x22 will lie outside the interval
(0.05, 7.38).

Now arrange the sample values of x22 as shown in Figure 1.22, except that each

value withdrawn is divided by two (with this adjustment we can apply the results

of this section directly to the distribution of periodogram variance ratios). Before

even looking at the sample values of x22=2, we would not be surprised to find one

or two lying outside the confidence interval. This follows from the calculation
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Figure 1.21 The probability density function (pdf) of a random variable that has a chi-

square distribution with two degrees of freedom. Confidence limits for the 95% a priori

confidence interval are shown by the vertical dashed lines. The area under the curve has

unit value.
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29� 0.05¼ 1.45, where 29 is the number of withdrawals and 0.05 is the level of

significance or the probability of rv x22=2 being greater than 3.69 (7.38/2 from

Figure 1.21) or less than 0.025 (0.05/2) per withdrawal. (If we had 100 such data

sets we would expect 145 of the 2900 values to lie outside the confidence interval.)

In fact, Figure 1.22 shows that one value or point lies very close to the upper

confidence limit (withdrawal 1 is 3.501) and the value of withdrawal 24 (0.038) is

slightly above the lower confidence limit.

To show the probability, a, of observing one or more values from a x22=2
distribution outside the a priori confidence interval, we make use of the binomial

distribution

M!

Z!ðM� ZÞ!� pZð1� pÞM�Z

where: p¼ probability that the value of a randomly selected point will lie outside the

a priori confidence interval (0.05 for a 95% confidence interval); M¼ total number

of points (29 in this example); and Z¼ the number of the M points that lie outside

the a priori confidence limits.

The probability of one or more points lying outside the confidence interval is one

minus the probability of no points lying outside the confidence interval, or, in

general, a¼ 1� (1� p)M. Thus, if p¼ 0.05 and M¼ 29, then a¼ 1� (0.95)29¼
1� 0.2259¼ 0.7741. Instead of having a 5% chance of finding at least one value of

x22=2 outside the confidence interval, we actually have a 77% chance when consid-

ering the group of 29 values or points.

0.01

0.1

1

10

5 10 15 20 25

withdrawal

a 
po

st
er

io
ri

 9
5%

 c
on

f 
in

t

a 
pr

io
ri

 9
5%

 c
on

f 
in

t

7.06

3.69

0.025

1 29(0.00086)

2
2/2

Figure 1.22 A plot of 29 random withdrawals from a chi-square distribution with 2 degrees

of freedom after dividing the value of each withdrawal by 2. The chi-square distribution

function is shown in Figure 1.21. 95% a priori and a posteriori confidence intervals are

also shown.
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In practice, we are sometimes faced with the following dilemmas. In a given data

set the number of values that lie outside the a priori confidence interval is about as

expected, but one of the values is very large. Is the very large value significantly greater

than expected? In another case, a few more values than expected lie outside the

confidence interval. Is the difference between the expected number and observed

number significant?

The solution to both dilemmas is as follows. We really want a to be 0.05. That is,

whenwe consider all the points in the group (29 in this example), wewant to find the

two particular values of x22=2 such that there is only a 5% chance that any one or more

points will lie outside the associated interval. This is called the a posteriori confidence

interval. With the meaning of p the same as that given previously, except that it now

applies to the confidence interval for the group of points, the determination of the

limits of this interval follows.

From above, and using the binomial theorem, for p
 1

a ¼ Mp;

so that

p ¼ a=M:

With

a ¼ 0:05; M ¼ 29;

then

p ¼ 0:00172:

If we now integrate the probability density function (Equation 1.36) between 0

and x2�2 and between x2��2 and 1 where � and �� indicate particular values of x22,
and equate both results to p/2, we obtain x2�2 =2 ¼ 0:00086 and x2��2 =2 ¼ 7:06.
These are the lower and upper limits for the a posteriori 95% confidence interval

and are plotted in Figure 1.22 (however, the lower limit is off the graph). The a

posteriori confidence interval deals with all 29 values at one time and the a priori

confidence interval deals with one value at a time. There is only one chance in 20

that any one or more of the 29 values would lie outside the 95% a posteriori

confidence interval, and as Figure 1.22 shows none do. This result is in accord

with our withdrawal of 29 random samples from a x2 distribution with two dof

divided by two.

In periodogram analysis we typically use a posteriori confidence limits because we

want to observe the entire spectrum of harmonic variances after the fact of calculating
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the spectrum. If we wanted to know whether the variance at a particular harmonic

exceeded the confidence limits before the fact of observing the variance at the

harmonic in question, we would use the a priori confidence interval. Interest in

the latter approach is uncommon. Nevertheless, obtaining a priori confidence limits

is always a natural first step because if none of the spectrum variances exceed these

limits, there is no need to proceed to the next step of computing a posteriori

confidence limits.

To better understand white noise testing we examine two applications to

real data.

1.4.6.1 White noise test: Example 1

We revisit the 100-year record of mean autumn temperatures for central Oklahoma

(Climate Division 5) given in Table 1.5 and plotted in Figure 1.19. Figure 1.20

showed confidence intervals for the population variance C(fm) and smoothed

population variance CðfmÞ at each harmonic given samples of CðfmÞ and CðfmÞ,
respectively. The underlying random process was unspecified, but the number of

data was assumed sufficiently large to justify using independent chi-square dis-

tributions of the harmonic variances derived for a normal white noise process. In this

example we will use the same data to find a different kind of confidence interval; that

is, we will find confidence limits for observations of rv CðfmÞ common to all

harmonic frequencies given an estimate ĈðfmÞ of the population variance under the
white noise hypothesis. Because a white noise process is hypothesized, there is no

restriction on the size of a data set.

The variance of the data set in Table 1.5 is 3.4201�F2. As a consequence, our

estimate of the population variance at each of the 49 interior harmonics (m¼ 0

and m¼ 50 excluded) in the periodogram under the white noise hypothesis is

ĈðfmÞ¼ 3.4201�F2/49.5¼ 0.0691�F2. The symbol ^ means “estimate of” and the

reason we make this distinction is that variance of the realization (3.4201�F2) is
just an estimate of the population variance. In general, we do not test the

variance at the highest harmonic for N even, here m¼ 50, because its variance,

under a white noise hypothesis, is one-half the interior variances; it is a unique

harmonic. The reason for its uniqueness is that its bandwidth is one-half the

bandwidth associated with each of the interior harmonics. That the divisor is 49.5

instead of 49 is because the variance of the data set included the variance at

m¼ 50. Thus, for the general case of an even number of data, N, the white noise

variance at the interior harmonics is determined from the total variance in the

data set divided by (N/2� 1)þ 0.5¼ (N/2)� 0.5. In the general case of an odd

number of data, N, the white noise variance at all the harmonics (except m¼ 0) is

the total variance in the data set divided by (N� 1)/2. The highest harmonic has

full bandwidth.
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To find the a priori confidence interval for the sample variances about their

estimated expected value, we rewrite Equation 1.29 to obtain the form

Pr
CðfmÞ x22ða=2Þ

2
� CðfmÞ � CðfmÞ x22ð1� a=2Þ

2

	 


¼ 1� a; m 6¼ 0 ðall NÞ; m 6¼ N=2 ðN evenÞ: ð1:37Þ

To be consistent with Figure 1.20, we take logarithms of the limits of the

confidence interval and obtain

log CðfmÞ x22ða=2Þ=2
� �

and log CðfmÞ x22ð1� a=2Þ=2� �
which, for a¼ 0.05 and ĈðfmÞ¼ 0.0691�F2, are �2.76 and �0.59, respectively.

We expect, on average, 2½ (0.05� 50) variances to exceed these limits; in Figure 1.23

we note that the variances at three harmonics (12, 42, and 47) fall outside either the

upper or lower limit. Should the white noise null hypothesis be rejected? This is a

good example in which the answer can be found by calculating the a posteriori

confidence limits.
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Figure 1.23 Periodogramof the data in Table 1.5 and Figure 1.19 (see also Figure 1.20). The

inner two dashed lines are the 95% a priori confidence limits; the upper dashed line is the

upper 95% a posteriori confidence limit. The lower 95% a posteriori confidence limit is located

below the graph and has value �4.45.
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The a posteriori confidence interval is determined by replacing a/2 in Equa-

tion 1.37 and the expressions for the limits of the confidence interval by p/2 where

p�a/M and M¼ 49. Therefore, the parallel equations for a posteriori confidence

limits are

Pr
CðfmÞ x22ðp=2Þ

2
� CðfmÞ � CðfmÞ x22ð1� p=2Þ

2

	 


¼ 1� p; m 6¼ 0 ðall NÞ; m 6¼ N=2 ðN evenÞ ð1:38Þ

and logarithms of the limits of the confidence interval are

log CðfmÞ x22ðp=2Þ=2
� �

and log CðfmÞ x22ð1� p=2Þ=2� �
:

Equation 1.36 can be integrated, as in the previous example, to obtain the values of

x22 for area p/2¼ 0.0005102 at the left and right extremes of the chi-square

distribution (refer to Figure 1.21). The results are x22ðp=2Þ ¼ 0:0010207 and

x22ð1� p=2Þ ¼ 15:161, so that the logarithms of the lower and upper limits of the

95% a posteriori confidence interval are�4.45 and�0.28. We observe in Figure 1.23

that no variance lies outside this range and, therefore, we cannot reject the null

hypothesis that the data are a realization from a white noise process. Thus there

appears to be no useful statistical predictability of mean autumn temperature at

Oklahoma City other than using its long-term mean as the predictor.

1.4.6.2 White noise test: Example 2

For our second example, we investigate five years of mean monthly temperature at

Oklahoma City from 2003–2007. The data are given in Table 1.6 and plotted in

Figure 1.24a. As expected, the time series shows a strong annual solar influence.

We can consider the annual solar cycle for each year to vary in a different way about a

long-termmean annual temperature cycle. Ideally, it is the long-term cycle wewould

like to remove from the time series before we apply awhite noise test. The best we can

do, however, is to estimate this cycle using the five years of data available to us. Except

for the solar cycle, the approach to obtain confidence limits is similar to that in the

first example.

We can estimate the long-term annual cycle by averaging the five years of data

month-by-month and then subtracting the appropriate five-year average from each

observedmonthlymean. The set of residuals, also given in Table 1.6, form a sequence

of 60 values from January 2003 throughDecember 2007 and comprise the time series

for which the white noise null hypothesis will be tested. The time series is shown in

Figure 1.24b.
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Before applying the test, a few comments are in order concerning the method of

removing the annual cycle. The total variance of the annual cycle is the sum of

variances from harmonics with periods of 12, 6, 4, 3, 2.4, and 2 months. When the

periodogram of the residuals is computed (an exercise we recommend), one will

discover the variance is zero at these six harmonics. The reason is that we have

removed the variances at all harmonics of the annual cycle from the original time

series. In fact, had we computed a periodogram of the original data, it would

have included the identical variances at the harmonics corresponding to the periods

of the estimated annual cycle. In this example, we will replace the zero variances at

periods of 12, 6, 4, 3, and 2.4 months by the average of the two adjacent variances.

While these replacement values are artificial and are not part of the white noise test,

for the sake of appearance they will provide a smoothly varying periodogram in the

vicinity of the harmonics of the annual cycle. From Equation 1.28c, the distribution

of the variance ratio at the harmonic corresponding to a period of two months is x21.
As in Example 1, the white noise test is applied only to the interior harmonics.

The variance of the residual data shown in Figure 1.24b is 2.3160 �C2. Under the

null hypothesis that this data set is a realization of a white noise process, we can

Table 1.6 (a) Monthly mean temperatures (�C) at Oklahoma City Will Rogers Airport

from 2003 to 2007. The bottom row shows monthly means averaged over the five-year

period. (b) Monthly mean residuals, i.e., the appropriate five-year monthly average has been

subtracted from each monthly mean. (Note: All monthly means in (a) have been converted

to Celsius from the original monthly means in Fahrenheit. Source: National Climatic Data

Center, Asheville, NC.)

(a)

Month/

Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 2.67 3.17 9.72 15.78 20.61 23.28 29.06 28.22 20.78 17.56 10.28 6.17

2004 4.39 4.39 12.94 16.22 22.17 24.11 26.06 24.78 23.94 18.11 10.33 6.39

2005 4.22 8.22 10.94 16.28 20.67 25.56 26.89 27.22 25.06 17.50 12.11 3.83

2005 8.72 5.39 12.83 19.61 22.56 26.67 30.11 29.94 21.83 17.11 11.61 6.39

2007 2.67 5.61 15.67 14.11 21.67 25.06 27.06 29.00 24.50 18.61 11.61 3.94

Mean 4.53 5.36 12.42 16.40 21.53 24.93 27.83 27.83 23.22 17.78 11.19 5.34

(b)

Month/

Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 �1.87 �2.19 �2.70 �0.62 �0.92 �1.66 1.22 0.39 �2.44 �0.22 �0.91 0.82

2004 �0.14 �0.97 0.52 �0.18 0.63 �0.82 �1.78 �3.06 0.72 0.33 �0.86 1.04

2005 �0.31 2.87 �1.48 �0.12 �0.87 0.62 �0.94 �0.61 1.83 �0.28 0.92 �1.51

2006 4.19 0.03 0.41 3.21 1.02 1.73 2.28 2.11 �1.39 �0.67 0.42 1.04

2007 �1.87 0.26 3.24 �2.29 0.13 0.12 �0.78 1.17 1.28 0.83 0.42 �1.40
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estimate the population variance C(fm) at each of the 29 interior harmonics

(harmonics m¼ 0 and m¼N/2 are excluded) in the Fourier spectrum using the

equation ĈðfmÞ¼ (2.3160/24) �C2¼ 0.0965 �C2. The reason for dividing by 24 is that

the residual variance does not include any variance from the six harmonic frequen-

cies previously discussed. Since there are a total of 30 harmonic frequencies

(60 samples of data), and the variance has been removed from the six harmonics

associated with the annual cycle, the residual variance is distributed equally among

the remaining 24 harmonics to estimate the population variance.

Upon replacingC(fm) by its estimate ĈðfmÞ, we conclude fromEquation 1.28a that

the variance ratio CðfmÞ=ĈðfmÞ varies approximately as x22=2. Figure 1.25 shows the
sample variance ratios versus harmonic number where the ratios at harmonics 5, 10,

15, 20, and 25 are the averages of adjacent ratios. Since no ratio lies outside the a

posteriori confidence interval, the null hypothesis that the sample data come from a

random process that is white noise cannot be rejected at the 5% level of significance.

Stated another way, this realization can be viewed as a member of a population of

similar random time series, the totality of which comprises a white noise random

process. In this particular example, computing the a posteriori confidence interval

was not necessary since none of the variance ratios lie outside the a priori confidence

interval. The goal of this example was to derive the 95% a posteriori confidence limits

for variance ratios as opposed to variances in the first example.

0

10

20

30

0 12 24 36 48 60M
on

th
ly

 M
ea

n 
Te

m
p 

(°
C

)

Month

2003 2004 2005 2006 2007

average

Oklahoma City Will Rogers Airport

(a)

–4

–2

0

2

4

0 12 24 36 48 60

R
es

id
ua

ls
 (

ºC
)

Month

(b)

Figure 1.24 (a) Meanmonthly temperatures at Oklahoma CityWill Rogers Airport from 2003

to 2007 (solid line) and averagemeanmonthly temperatures (dashed line). (b) Residual mean

monthly temperatures (actual – average).
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A keen observer will recognize that the plot in Figure 1.22 is identical to that in

Figure 1.25. In fact, the same data set was used to produce the plot in Figure 1.22.

Thus withdrawing 29 values from a chi-square distribution in the discussion in

Section 1.4.6 was a little “white” lie! But whether one literally withdrew samples from

a chi-square distribution was immaterial to developing an understanding of the

mechanics of a white noise test.

Practically speaking, if the data set in this example is representative of other five-

year intervals at Oklahoma City, then there is no skill in attempting to forecast mean

monthly temperature beyond what can be accomplished by employing the average

annual cycle. Had the white noise hypothesis been rejected, there would have been

potentially useful skill inmeanmonthly temperature forecasts apart from the average

annual cycle. In conclusion, if there is interest on the part of an investigator to make

statistical forecasts of any variable represented by a time series, a good first step is to

perform a white noise test of the original data or, if appropriate, the residual data,

that is, the original data less the deterministic components.

1.5 Further important topics in Fourier analysis

At this juncture, we are able to (i) compute the Fourier coefficients of a data set,

(ii) calculate its spectrum or periodogram, (iii) determine a confidence interval for

the population variance at each harmonic frequency, and (iv) perform a priori and a

posteriori white noise tests. Now we consider selected topics that will extend our

understanding of Fourier analysis. As we have already seen in Table 1.1, the number

of harmonics at which variance is computed is directly related to the number of data.
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Figure 1.25 Observed variance ratio versus harmonic frequency for the residuals in

Figure 1.24b. The population varianceC(fm) is estimated from the sample variance. Harmonic

frequency fm has been converted to harmonic number. 95% a priori and a posteriori confidence

intervals are also shown.
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Section 1.5.1 explains why. The second topic, covered in Section 1.5.2, shows,

mathematically, why variance calculated at a given harmonic frequency includes not

only the variance at that harmonic but also variance from frequencies between

nearby harmonics. Thus variance in one part of a spectrum can “bleed” or “leak” to

another part of the spectrum. In short, we always view a spectrum through

a “window.”

Sometimeswe are facedwith a signal andnoise problem. For example, wemight be

suspicious that there is a 60Hz signal, say, from a power source, corrupting a data set

we collected. That is, a deterministic signal may be embedded in otherwise random

data. In Section 1.5.3 we investigate how averaging spectra from a number of data

records, each of which contains the deterministic signal, smooths the averaged

spectrum so the deterministic signal is more easily discernible. Another approach is

discussed in Section 1.5.4, where we examine the effect that increasing the length of a

time series has on discriminating a sinusoid from random components. The fifth

topic shows how to convert the formulas in Table 1.1 for Fourier synthesis and

analysis to complex form; this is developed in Section 1.5.5. Because of trigonometric

symmetry, a complex representation is very compact. Using complex formsmakes it

easy to compute variance at frequencies between harmonics. This is the subject of

Section 1.5.6. One interesting result is that the variance at a nonharmonic frequency

is uniquely related to the variances at all the harmonic frequencies. The seventh and

last topic, in Section 1.5.7, is concerned with adding zeroes to a data set, why we

might do that, and how to interpret the resulting spectrum

1.5.1 Aliasing, spectrum folding, and the Nyquist frequency

Aliasing is a direct consequence of digitally sampling an analog signal. Aliasing has no

relevance to purely analog data records. To show how aliasing works, consider the

three cases in Figure 1.26. In example (1) an analog sinusoidal wave with frequency

10Hz is sampled at intervals of 0.1 s as indicated by the arrowheads. The dashed line

connects the sample values. Based on just the sample values, we would likely

(mistakenly) conclude the underlying signal has constant value. In example (2)

there is a 9Hz sinusoid sampled every 0.1 s. After fitting the sample values with a

smooth line, we would likely (mistakenly) conclude that the underlying signal is a

1Hz sinusoid. Example (3) indicates that for 0.1 s sampling, a 6Hz sinusoid could

just as well be interpreted as a 4Hz sinusoid. These examples show that in digital

sampling there is an inherent ambiguity in the frequency at which the true

fluctuations are occurring. This is reflected in their line spectra shown in Figure 1.27.

In example (1), all the variance in the true spectrum (solid bar) is at 10Hz, but the

observed spectrum indicates a nonvarying signal, that is, no variance at all.

In example (2), the variance in the true spectrum is at 9Hz while the observed

spectrum (open bar) shows variance at 1Hz. The true and observed spectra in
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example (3) follow the same pattern as above. Another way to look at aliasing is that

more than two observations per cycle are required to unambiguously define a sinusoid.

Otherwise, it can be interpreted also as a sinusoid of lower frequency.

The picture that emerges fromFigure 1.27 is that the calculated value of variance is

folded about 5Hz. This frequency is called the folding or Nyquist frequency, fu, the

latter named after Harry Nyquist who did pioneering work in signal analysis

(Nyquist, 1928). In general, the Nyquist frequency is determined by the sampling

interval Dt, that is, fu¼ 1/(2Dt); in the example just discussed, fu¼ 5Hz.
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Figure 1.26 Three examples of aliasing indicated by dashed lines. (1) A 10Hz sinusoid is

sampled as a constant signal. (2) A 9 Hz sinusoid is sampled as a 1 Hz sinusoid. (3) A 6 Hz

sinusoid is sampled as a 4 Hz sinusoid.
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Furthermore, it is easy to conclude that the spectrumwill repeat itself at frequency

intervals of �i/Dt, i¼ 1, 2, . . . . As an illustration, consider time series 1 given by

x1n ¼ cosð2pfmnDtþ wÞ ð1:39Þ

in which the series represents digital sampling of a sinusoid with frequency fm, data

point number n, and phase shift w at intervals of Dt. Then define time series 2 as

x2n ¼ cos½2pðfm � i=DtÞ nDtþ w�: ð1:40Þ
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Figure 1.27 The true and observed spectra corresponding to the three examples in

Figure 1.26. In each example above, the true spectrum is indicated by a solid bar and the

observed spectrum by an open bar.
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That is, time series 2 is digitally sampled in the same way as time series 1, except

the frequency of the signal being sampled has been increased or decreased by

integer multiples of twice the Nyquist frequency. Time series 2 can be expanded as a

standard trigonometric angle-sum relation and then, because cos(2pin)¼ 1 and

sin(2pin)¼ 0, reduced to

x2n ¼ cosð2pfmnDtþ wÞ ð1:41Þ

the same formula as for time series 1. As a consequence of digital sampling, the x1n
and x2n time series are identical, despite the fact that the underlying signals being

sampled are different. Thus the same variance will be computed at fm, fm� 1/Dt,
fm� 2/Dt, and so on.Wenotice that negative frequencies are allowed. This is purely a

mathematical convenience. While employing a spectrum that has both positive and

negative frequencies is especially helpful in understanding aliasing, the “two-sided”

spectrum concept also will be used later in Sections 1.5.5–1.5.7. In these sections we

will find that mathematical formulas for spectra are more compact and easier to

interpret when they include variance at both positive and negative frequencies.

Figure 1.28a summarizes aliasing from a schematic viewpoint. The aliased

spectrum extends across all negative and positive frequencies with the spectrum

repeated at intervals of 2fu¼ 1/Dt. In the jargon of spectrum analysis, the band of

Figure 1.28 (a) The complete aliased spectrum and its principal part. fn is the Nyquist

frequency. (b) In a two-sided spectrum, one-half the variance appears at f0 and one-half at�f0

and each is aliased to frequencies �i/Dt from �f0 where i is an integer.
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frequencies between�fu andþfu is called the principal part of the aliased spectrum.

In practice, only the principal part is needed because the spectrum is repeated every

2fu or 1/Dt; that is, the principal part contains all the variance in the time series.

Further insight into aliasing can be obtained by considering an input sinusoid with

frequency greater than fu. Let us use the same frequency scale in Figure 1.28b and

place the variance at f 0 between 2fu and 3fu. Because we are using both positive and

negative frequencies, the total variance at f0 is split so that one-half the variance of the
sinusoid is at f 0 and one-half at�f 0. Figure 1.28b shows the solid vertical bars; their

sum is the total variance. From Equations 1.40 and 1.41 the variances will be

distributed to the open bars at frequencies�i/Dt relative to�f 0 as shown by the lines
and pointers. If the input frequency happens to be a multiple of fu, no variance will

appear at any frequency in accord with example (1) in Figure 1.27.

The repetition of the variance distribution in the principal part of the aliased

spectrum in the remainder of the aliased spectrum is evident. If your preference is to

deal only with variances at positive frequencies from0 to fu, simply fold the spectrum

from 0 to �fu around the origin from 0 to fu and add the variances.

It should be clear by now that it is important to know whether you are working

with a two-sided (�fu to fu) spectrum or a one-sided spectrum (0 to fu) to get the

correct total variance of the time series. In the former the total variance resides

between �fu and fu while in the latter between 0 and fu. The variances at positive

and negative frequencies in the former spectrum are one-half those in the latter.

In the periodogram or Fourier analysis in previous sections, including Table 1.1,

the harmonic variances were calculated at positive frequencies only, that is, from

0 to fu.

Let us return to example (2) in Figure 1.26 to create a new analog time series that

is the sum of the original 9Hz sinusoid and the 1Hz aliased sinusoid (dashed line)

and sample it at Dt¼ 0.1 s as shown. The value at each sample point will be twice as

large (negative or positive) as in the original 9Hz sinusoid. As a consequence, the

observed variance at 1Hz in the principal part of the aliased spectrum will be four

times larger than that with only the original 9Hz sinusoid.With a 180� phase shift of
either wave (flip either sinusoid about the horizontal axis), the value at each Dt of
the sum waveform is zero, and thus the variance is zero. In a word, this is why we

have to be concerned with the effects of aliasing; variance at frequencies greater than

fu will alter the true variance present at frequencies less than fu and produce an

erroneous picture of variance. The seriousness of aliasing is in proportion to the

ratio of the variance at frequencies outside the principal part to the true variance in

the principal part.

Consideration of the potential for aliasing is critical to effective experiment design

and proper analysis of results. To minimize aliasing, the sample rate should be such

that practically all the variance will be at frequencies less than 1/(2Dt). If the general
structure of the spectrum is unknown before sampling, experimentation may be

required with different sampling rates to observe spectrum changes. If, for a given
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sampling rate, the potential exists for serious aliasing and the sampling rate cannot be

increased, then onemust filter the variance at frequencies>1/(2Dt) before sampling.

There is no effect on aliased variance if filtering is performed after digitizing. That is,

the analog signal must be filtered.

A visual example of aliasing as seen in Western cowboy movies is the familiar

changing of the direction of rotation of a wagon wheel as the wagon increases its

speed from rest. The digital sampling is done by the camera shutter opening and

closing 24 times each second.

Consider the four-spoke wheel in Figure 1.29. One cycle means rotation of the

wheel 1/4 revolution. When the wheel turns slowly, we see a continued forward

rotation of the set of four spokes because there are many samples (shutter openings

and closings) for the small angular rotation. As the wheel rate of rotation increases,

the angular separation between successive samples also increases until the separation

reaches a¼ 45�, or ½ cycle or fu¼ 0.5 cycle/Dt, where Dt¼ (1/24) s. This is the

maximum observable frequency or rate of rotation of the wheel and is shown in

Figure 1.30a. As the rate of rotation or actual frequency f increases beyond fu, the

observed frequency will be negative. This can be understood by referring to

Figure 1.30b, keeping in mind that the sampling rate is fixed. Since a> 45�, it is
apparently easier for our brain to think the wheel has rotated not through angle a

1 cycle

Figure 1.29 A four-spoke wagon wheel.
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Figure 1.30 Successive positions of the four-spoke wagonwheel at times t¼ 1 and t¼ 2 for

an increasingly higher rate of rotation from case (a) to case (d).
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from position t¼ 1 to position t¼ 2, but through smaller angle b fromposition t¼ 1

to position t¼ 20. (Of course, the appearance of the wheel is identical at t¼ 2 and

t¼ 20.) In the spectrum in Figure 1.31 this corresponds to the variance at frequency B

aliased to frequency B0. As thewheel rotates faster,a¼ 90� and it appears that there is
no motion (Figure 1.30c). Each spoke advances 1/4 revolution or one cycle each time

the shutter opens. In the spectrum this corresponds to variance at frequencyC aliased

to frequency C0 (the origin). From B0 to C0 it appears that the wheel rotation rate is

decreasing, that is, becoming less negative.

An increasing forward rate of rotation occurs for a> 90�. For example, the

variance at frequency D in Figure 1.31 is aliased to D0. As seen in Figure 1.30d, it

is, again, apparently easier for our brain to accept rotation of the wheel through

angle b at apparent time t¼ 20 rather than larger angle a at real time t¼ 2. As the

wheel rotates still faster, say at rate E in the spectrum, the rotation rate will be

aliased back to frequency E0 ¼B0, as shown by the heavy lines. Thus, as the rate of

rotation of the wheel increases from zero it reaches a maximum forward rate,

which instantaneously becomes the maximum backward rate, which then

decreases to zero and the cycle starts all over again – all because of digitally

sampling an analog signal.

1.5.2 Spectrum windows

Consider the “idealized time series” of 36 consecutive values of temperature at

Phoenix, Arizona, during fair weather shown in Figure 1.32a. Because Phoenix is

located in the southwestern desert of the United States, we expect a strong diurnal

variation in air temperature. It is idealized because other harmonics that would

normally contribute to the daily temperature variation, such as the semi-diurnal

−0.5 cycles
Δt Δt Δt Δt

 = −fν

B' C' D' B C D E

0.5 cycles

= fν

1.0 cycles

= 2fν

1.5 cycles

  = 3fν

0

Frequency (rate of rotation) f

Figure 1.31 The aliased spectrum for frequency of rotation greater than the Nyquist

frequency.
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component seen in Figure 1.15, have been ignored. In a periodogram of this time

series, the diurnal variation would occur at a nonharmonic frequency midway

between harmonic 1 (fundamental period¼ 36 hours) and harmonic 2 (period

¼ 18 hours). The purpose of this section is to show how the input variance at a

nonharmonic frequency (the daily cycle here) gets distributed to the harmonic

frequencies.

Apart from the constant offset value of 35 �C, the time series in Figure 1.32a is

given by the sinusoid

xn ¼ a cosðvnDt� wÞ; n ¼ 0; 1; . . . ;N� 1
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Figure 1.32 (a) Idealized time series of temperature at Phoenix, Arizona, during fair

weather in July. (b) Periodogram to harmonic 6 of idealized time series of temperature in (a).
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where x represents temperature,Dt¼ 1 hour, amplitude a¼ 7 �C, data lengthN¼ 36

hours, phase angle w¼ 0�, and angular frequencyv¼ 2p� 1.5/N. That is, there are

1.5 cycles over the 36-hour record. Changing to angular frequency is merely a

convenience to reduce the number of symbols in each equation. Figure 1.32b is the

resulting periodogram in the form of a line spectrum out to harmonic 6. Harmonics

1 and 2,which are adjacent to the frequency of the inputwave, account for about 80%

of the variance of xn; the higher harmonics account for the remaining variance.

The big question is: How did the variance from the input wave get distributed to the

various harmonics?

To find the answer, we first substitute xn above into the equations for Am and Bm
(N even) in Table 1.1. Carrying out the summations is a tedious exercise in

trigonometry, and the general procedure is shown in Appendix 1.D. We are really

interested in the variance at harmonics, so the Fourier coefficients need to be squared

according to S2m ¼ ðA2
m þ B2

mÞ=2. This step is also given in Appendix 1.D, with the

result that

S2mðvÞ ¼ a2

2

(
sin2½Nðvþ vmÞ=2�
N2 sin2½ðvþ vmÞ=2�

þ sin2½Nðv� vmÞ=2�
N2 sin2½ðv� vmÞ=2�

þ2 cos ðN� 1Þv� 2w½ � sin½Nðvþ vmÞ=2�
N sin½ðvþ vmÞ=2� �

sin½Nðv� vmÞ=2�
N sin½ðv� vmÞ=2�

)
;

m 6¼ 0; N=2: ð1:42Þ

It is not necessary to work through Appendix 1.D at this time. It is important,

though, to be able to properly interpret Equation 1.42, and there are twoways. In the

first way, S2m vð Þ gives the variance at harmonic numbersm, where 0<m<N/2, due

to an input sinusoid of amplitude a at angular frequency v. Figure 1.32b is an

example. In short, the equation shows how input variance a2/2 is distributed among

the harmonic frequencies.

The second way to interpret Equation 1.42 is to consider fixing m successively at

1, 2, 3, . . ., wherevm¼ 2pm/N, and, then, for eachm, allow the input frequencyv to

vary continuously over the range of frequencies in the spectrum. A plot of the ratio

S2m vð Þ= a2=2ð Þ for each m provides the “window” through which the spectrum is

viewed at that harmonic for input variance at anyv. Figure 1.33 shows the spectrum
window, that is, the part of Equation 1.42 in braces, for harmonicsm¼ 1, 2, and 3 for

a cosine input (w¼ 0�). The heavy solid line shows the location of the input wave at
harmonic 1.5. To get the variance at harmonic 2, we multiply the variance of an

integer number of cycles of the input wave, a2/2¼ 24.5 �C2, by 0.5277, the amplitude

of the window associated with harmonic 2 (i.e., center curve) at the input frequency.

The product is the variance at harmonic 2 in Figure 1.32b. The product of 0.2641,
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the amplitude of the window associated with harmonic 1 (i.e., left-hand curve) at the

input frequency, and 24.5 �C2 is the value of variance at harmonic 1 and, similarly,

the variance at harmonic 3 is the product of 24.5 �C2 and 0.0804 (right-hand curve).

The windows for sine wave inputs (w¼ 90�) are shown in Figure 1.34; their indi-

vidual shapes tend to be a reverse image of those in Figure 1.33.We conclude that the

spectrum window depends on harmonic number and phase angle for a given N.

The spectrum window for the mean squared value standardized by the input

variance is, from Equation 1.D.4,

A2
0=ða2=2Þ ¼ 2 cos2 ðN� 1Þðv=2Þ � w½ � sin

2ðNv=2Þ
N2 sin2ðv=2Þ : ð1:43Þ

Figure 1.35 shows the spectrum windows for a cosine input (w¼ 0�) and a sine

input (w¼ 90�). For the Phoenix example (w¼ 0�) the value of the window at

harmonic 1.5 is 0.001543, so that with a¼ 7 �C, A0¼ 0.1944 �C (to get the mean of

the time series in Figure 1.32a, add back 35 �C). That A0, the mean of the time

series, is not zero is because the Phoenix time series does not have an integer

number of cycles. In fact, if A0 is multiplied by N¼ 36, the number of data, the
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Figure 1.33 Spectrum windows from Equation 1.42 centered at harmonics 1, 2, and 3 for

a cosine wave input. The product of the variance (24.5 �C2) in Figure 1.32a and the

intersection of the spectrum windows yields the observed variance at harmonics 1, 2,

and 3 in Figure 1.32b.
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result is 7 �C, the amplitude of the sinusoid. By matching positive departures from

35 �C with negative departures, we see that only one of the two maximum positive

values of temperature has a negative equivalent. At the Nyquist frequency, where

m¼N/2, S2N=2 vð Þ can be obtained directly from Equation 1.42 by dividing the

right-hand side by two.

In general, the window shape is dependent on harmonic number, the number of

data, and the phase angle of the input. When the number of data in a sample is

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

harmonic 1
harmonic 2
harmonic 3

R
at

io

Harmonic (cycles/data record length)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 1.34 Spectrum windows (Equation 1.42) centered at harmonics 1, 2, and 3 for a sine

wave input.
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Figure 1.35 Spectrumwindows (Equation1.43) at the 0-thharmonic for sine and cosine inputs.
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N� 100 or higher, themain and adjacent lobes at the interior harmonics can be quite

accurately modeled by simplifying Equation 1.42 to

S2mðvÞ ¼ a2

2

sin2½Nðv� vmÞ=2�
½Nðv� vmÞ=2�2

ð1:44Þ

which is dependent only on the number of data and the difference between the input

frequency and the harmonic where the calculation is made. The maximum error in

using Equation 1.44 in place of Equation 1.42 for interior harmonics is about �3%

for N¼ 100. This formula is the square of the familiar “diffraction function”

common in optics and is plotted in Figure 1.36.

Assuming N is sufficiently large, we can think of the variance computed at a given

harmonic frequency as the integral over the frequency range in the spectrum of a

weight function (Equation 1.44) centered at that harmonic times an underlying, but

unknown, spectrum. This process is repeated at all harmonics and results in variance

“leaking” from one part of the spectrum to other parts of the spectrum. The variance

observed at a particular harmonic does not necessarily mean that the data contain a

pure tone at that harmonic. To find the variance of the Phoenix diurnal temperature

cycle in a periodogram, a record length that is a multiple of 24 hours should

be selected.

1.5.3 Detecting a periodic signal by averaging spectra

If we were to average together periodograms of equal length realizations from the

same random process, harmonic by harmonic, we expect the averaged periodogram

would be smoother than any individual periodogram. If a deterministic signal is
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Figure 1.36 The spectrum window (Equation 1.44) at general harmonic m, when m is away

from the low and high frequency ends of the periodogram.
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present, its magnitude should not be affected by averaging. In this section we use the

idea of averaging to investigate the particular problem of detecting a sinusoid

embedded in white noise when multiple realizations are available.

The average of the two periodogram random variables C1(fm) and C2(fm) from

realizations of equal length N (even) of a white noise process is

CðfmÞ ¼ C1ðfmÞ þ C2ðfmÞ
2

so that

CðfmÞ
CðfmÞ ¼ 1

4
x22 þ x22
� � ¼ x24

4

or, in general, averaging u spectra, u¼ 1, 2, . . ., yields

CuðfmÞ
CðfmÞ ¼ x22u

2u
ð1:45aÞ

for the interior harmonics, and

CuðfmÞ
CðfmÞ ¼ x2u

u
ð1:45bÞ

for the 0-th and Nyquist frequencies, that is, f0 and fn¼ fN/2, respectively.

In parallel with Equation 1.30 we can use Equation 1.45a to determine the

confidence interval for the population variance at the interior harmonics given the

sample variance. Thus,

Pr
CuðfmÞ

x22uð1� a=2Þ=2u � CðfmÞ � CuðfmÞ
x22uða=2Þ=2u

	 

¼ 1� a; fm 6¼ f 0; fn

where a is the significance level. The interval between

2u
CuðfmÞ

x22uð1� a=2Þ and 2u
CuðfmÞ
x22uða=2Þ

is the 100(1�a)% confidence interval for C(fm). By taking logarithms of the lower

and upper limits of the confidence interval for log C(fm), they become, respectively,

logCuðfmÞ þ log
2u

x22uð1� a=2Þ
� �

and logCuðfmÞ þ log
2u

x22uða=2Þ
� �

:
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As noted in Section 1.4.4, the width of the confidence interval will remain constant

regardless of frequency. For example, consider averaging three Fourier spectra so

that u¼ 3. The 95% (a¼ 0.05) confidence interval for logC(fm), fm 6¼ f0, fu, extends

from log C(fm)þ log (0.415) to log C(fm)þ log (4.85). In a similar manner,

Equation 1.45b can be used to find the confidence interval for the population

variance at the exterior harmonics.

If there are deterministic components in the spectrum, they will remain

unchanged by spectrumaveraging. Looking at thismethod in anotherway, averaging

spectra can be used to detect deterministic components.

Consider the following computer simulation of

xn ¼ b sinð2pfn� wÞ þ en; n ¼ 1; 2; . . . ;N

where b¼ ffiffiffi
2

p
, N¼ 32, f¼ 6.25/N, w is phase angle (0�w< 360�), and en is white

noise with population variance s2¼ 5. If the signal-to-noise variance ratio (SNR) is

defined to be

SNR¼
b2

2
s2

ðN� 1Þ=2
ð1:46Þ

the ratio of the variance of the sinusoid to the white noise variance at an interior

harmonic frequency, its value is 3.1.

Each realization of length 32 comprises computer generated normal white noise,

en, added to the sinusoid with a different value of w. If we make the null hypothesis

that the variance spectrum comes from a white noise process and rewrite the two-

sided equation for the confidence interval for the population variance in the form for

a one-sided test only, namely,

Pr 0 � CuðfmÞ � x22uð1� aÞCðfmÞ
2u

	 

¼ 1� a ð1:47Þ

we can use this formula to obtain the a priori upper confidence limit for the

distribution of the observed harmonic variances. That we are dealing with only the

upper confidence limit is because we are interested in the possible existence of a

sinusoid, the indication of which is a peak in the spectrum. Figure 1.37 shows the

spectra for six realizations of 32 data each for harmonics 3–9. The lower dashed line

in each realization is the average variance for the interior harmonics and the arrow

indicates the input frequency of the sinusoid. The upper dashed line shows the 95%
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upper confidence limit for the observed variance of each individual realization

(u¼ 1) and is computed from:

x22ð0:95Þ
2

CðfmÞ

where C(fm) is estimated by summing all of the harmonic variances (signal plus

noise) of a realization and dividing by (N� 1)/2. Realizations (1) through (6) of
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Figure 1.37 Periodograms of six realizations of a sinusoid plus white noise with signal-to-

noise ratio (SNR)¼ 3.1 (solid line). The input sinusoid is 6.25 cycles over data length N¼ 32.

The upper dashed line is the 95% a priori confidence limit. The lower dashed line is the average

variance of the 15 interior harmonics for N¼ 32.
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white noise yielded variances 6.72, 4.12, 5.60, 4.92, 6.77, and 4.25, respectively,

compared to the population variance s2¼ 5.

Figure 1.37 shows that the spectra vary considerably from one sample to the next,

as expected, and that with a signal-to-noise ratio slightly greater than three, one

may very well not detect the sinusoid using a single realization. Figure 1.38 shows

the results of averaging the six spectra in Figure 1.37. The a priori 95% upper

confidence limit is computed from x212 0:95ð ÞCðfmÞ=12 ¼ 0:61, where the estimate

of C(fm)¼ 0.348 is obtained by averaging the estimates from all six realizations.

The upper confidence limit occurs at a lower value of variance and closer to the

mean than for any single periodogram. The result is the variance at harmonic 6 now

clearly stands out.

Let us assume that the six realizations are actual data.Whether wewould conclude

that there is a significant oscillation at or near harmonic 6 depends on what we know

from physical considerations may be occurring there and the likelihood the peak

could have occurred by chance. With regard to the latter, we expect to observe, on

average, 1 in 20 harmonic variances that exceed the a priori upper confidence limit.

It is appropriate then to find the 95% a posterioriupper confidence limit, so that there

is only a 5% chance that any one or more of the 15 harmonic variances will exceed

this limit.

Following the procedure in Section 1.4.6, we divide a¼ 0.05 by 15, the number of

interior harmonics, the result being 0.0033. Next we find (estimate) from a chi-

square table the abscissa of a x212 distribution such that the area to the left is 0.9967.

Thus, x212ð0:9967Þ=12 ¼ 2:46. Given the above estimate of C(fm), the 95% a

posteriori upper confidence limit is 0.86. Assume further that there is physical
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Figure 1.38 Average of the six periodgrams in Figure 1.37 (solid line). The upper two

dashed lines are the a priori and a posteriori 95% confidence limits, the bottom dashed line is

the average variance across all interior harmonics.
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evidence for a sinusoid close to harmonic 6. Since the white noise null hypothesis has

been rejected, the variance in the sinusoid should have been removed from the

estimate of C(fm), the consequence being the correct a posteriori upper confidence

limit would be even lower. Therefore, the test is conservative in that if the null

hypothesis is rejected at some value ofausing the precedingmethod, the actual value

of a is even less.

When the spectrum of random data is not white noise, the estimation of C(fm) in
Equation 1.47 must be made at the frequency at which a sinusoid is suspected. One

way to do this is to apply a straight-line fit to the surrounding periodogram values

and use the value of the straight line at fm as the estimate of C(fm), as illustrated in

Figure 1.39. Confidence limits for the observed variance then can be computed if the

departures from the straight line are suitably white. Another way is to model the

underlying stochastic process using an appropriately smooth function and deter-

mine the white noise confidence limits with respect to the departures from the

model. Crowley, Duchon, andRhi (1986) show an example of the latter inwhich they

searched for potential solar cycles in annual varve data.

We conclude this section by saying that if onewere fortunate enough to have six or

more realizations from a random process in which there is a deterministic sinusoid

with the signal-to-noise ratio of three or greater, there is a good chance of detecting

the sinusoid in the averaged periodogram. The determination of the minimum SNR

required for detection and statistical confirmation of a sinusoid, in general, is

complicated because the outcome depends on its proximity to the nearest harmonic

and the spectrum of the noise. For example, if the sinusoid is located between
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Figure 1.39 When the white noise null hypothesis is inadequate, it may be advantageous to

fit a smooth curve or, as shown above, a straight line to the harmonic variances in the

neighborhood of the possible sinusoid. A white noise test can be applied to the departures

from the fitted curve.

64 CH 1 FOURIER ANALYSIS



harmonics, the spectrum window will distribute its variance to a number of

harmonics (Section 1.5.2). If the noise spectrum falls or rises sharply where it

is located, we expect that the SNR would have to be very large in order to detect a

pure sinusoid.

1.5.4 Effect of data length on detecting a periodic component

As noted in Section 1.4.5, the Fourier spectrum of random data can be viewed as an

“unstable” spectrum because increasing the data length does not reduce the

variability of variance computed at any harmonic from one realization to the next.

Rather, an increase in data length results in an increase in frequency resolution; if the

data length is doubled, the bandwidth or frequency separation between adjacent

harmonic frequencies is halved. The dof for each approximately independent

variance estimate is still two; as a result, the statistical distribution of each variance

ratio C(fm)/C(fm) remains x22=2.
As in the previous section, consider a sinusoidal signal to which is added white

noise. In this case let the signal have an integer number m cycles. The variance at the

harmonic of the sinusoid is the sum of three terms: the variance of the sinusoid, the

variance of the randomcomponent, and the covariance between the twoharmonics –

one from the sinusoid, the other from the noise. This can be understood by

considering the sample variance of the sum of two sinusoids x1n¼ a1 cos (2pmn/

Nþw1) and x2n¼ a2 cos (2pmn/Nþw2), where x1n is the sinusoid and x2n the

Fourier component of randomnoise at the frequency of the sinusoid. It can be shown

that the variance of the sum

S2ðx1n þ x2nÞ ¼ ð1=NÞ
XN
n¼ 1

ðx1n þ x2nÞ2

reduces to

S2ðx1n þ x2nÞ ¼ a21 þ a22
� �

=2þ a1a2 cosðw1 � w2Þ: ð1:48Þ

A convenient way to prove Equation 1.48 is to express x1n and x2n in terms of

complex exponentials using Euler’s formula and then apply the summation

procedure in Appendix 1.B – similar to the way it was applied it in Section 1.2.2.

We see from Equation 1.48 that, depending on the magnitudes of a2 and w2 in a

particular realization of noise, the variance at the harmonic of the sinusoidal

signal could be larger or smaller than the variance of the sinusoid itself. In an

expected sense there is no preference for the covariance term in Equation 1.48 to

be either positive or negative because a2 has no sign preference and is uncor-

related with w2.
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The important point to remember is that if the data length is doubled, the white

noise variance will be distributed over twice as many frequencies and, on average,

reduced by a factor of two at the frequency of the sinusoidal signal. The variance of

the sinusoid will remain unchanged but occurs at twice the original harmonic

number. Of course, there will be a proportional reduction in white noise at any

harmonic for other integer multiple increases in data length.

If the sinusoid is not at a harmonic frequency, the most likely case in practice, the

results aremore complex, but in the expected sense can be qualitatively inferred from

multiplying the spectrumwindowwith the sinusoidal input variance, as discussed in

Section 1.5.2. For example, if the frequency of the sinusoid lies midway between

adjacent harmonics in the periodogram, the variance at the same frequency after

doubling the data length will contain all the variance of the sinusoid. Considering

only the variance of the sinusoid, its value will be more than twice the values at the

adjacent harmonics in the original periodogram because the spectrum window

spreads the variance of the sinusoid to all harmonics, not just the two adjacent

harmonics. If the sinusoid is nearer to one or the other adjacent harmonics in the

original periodogram, the variance will be mostly contained in the two harmonic

frequencies that surround it in the spectrum for the case of twice the original data

length. In summary, increasing the length of a time series that is stationary and

contains a deterministic component results in improved ability to distinguish the

variance of the deterministic component from the surrounding harmonic variances.

At an appropriate stage, one can test for statistical significance of a possible sinusoid

using one of the approaches given in Section 1.4.6.

As an example, consider the simulated time series b sin(2pft�p/4), where
b¼ ffiffiffi

2
p

and t¼ 1, 2, . . . , N, to which white noise is added. The white noise has

a population variance s2¼ 5.0. In Figure 1.40, curve (a) shows the distribution of

percentage of total variance for harmonic numbers three through nine for the

sinusoid plus a realization of white noise for N¼ 32 and f¼ 6/N. The signal-to-

noise ratio, as defined by Equation 1.46, is 3.1. Percentage of total variance is used

as the ordinate so that comparisons between realizations are not affected by varying

amounts of total sample variance. Curve (a) indicates that the periodogram

estimates vary considerably and that there would be no reason to expect an input

sinusoid at harmonic 6. The periodogram of the white noise by itself (not

presented) shows that, by chance, the value of variance at harmonic 6 is small

compared to the adjacent variances and the phase angle between the component of

white noise at harmonic 6 and the sinusoidal signal is about 30�. The combination

of these two factors yields the value shown at harmonic 6 as dictated by

Equation 1.48.

Curve (b) in Figure 1.40 results from extending the sinusoid and the realization of

white noise associated with curve (a) to double their lengths. That is, the seed for the

white noise random number generator was the same for curves (a) and (b).

As expected, the periodogram values are generally reduced in magnitude as the
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white noise variance is now distributed across twice the number of harmonics in (a).

The presence of an input sinusoid is more in evidence with a SNR¼ 6.2, double that

in (a) (ignoring the –1 contribution in the denominator of Equation 1.46). Even

with this higher SNR, there is still considerable variance at harmonic 8.

Figure 1.41 is similar to Figure 1.40 with two exceptions: the input sinusoid is at

harmonic 6.25 in the 32-point data set and there is a second doubling of the initial

data length to yield a 128-point data set. The highest peak in curve (a) occurs at

harmonic 7 with a comparatively small value at harmonic 6. By chance,

the component of white noise at harmonic 6 is nearly out of phase (
170�) with
the component of the input sinusoid at harmonic 6 (negative covariance term).

At the same time, there is only about a 70� phase difference between the component

of white noise at harmonic 7 and the component of the input sinusoid at harmonic 7

(positive covariance term). The result is that the contribution of the input sinusoid to

the variance at harmonic 7 is about 1.5 times greater than that at harmonic 6.

This, coupled with the much larger variance of the random component at harmonic

7 than at harmonic 6, yields the magnitudes shown. Curve (b) shows the spectrum

when the data are extended to twice the original length so that the SNR is 6.2.

Generally, the periodogram values are less than those in (a), as anticipated.

The frequency of the input sinusoid now lies midway between adjacent harmonics.

The phase differences between the components of white noise and the input sinusoid

at harmonics 12 and 13 and the magnitudes of the components account for the

similar percentages of total variance at these harmonics. Other large percentages of

total variance occur at harmonics 8, 14, and 17, due mainly to the strength of the
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Figure 1.40 Partial periodograms for sinusoidal input plus white noise. (a) For signal-to-

noise ratio (SNR)¼ 3.1 and data length N¼ 32. (b) For SNR¼ 6.2 and N¼ 64.
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component of white noise as leakage of variance from the input sinusoid diminishes

with distance from harmonic 12.5.

In curve (c) in Figure 1.41, the data have been extended to four times the original

length, the SNR thus being 12.4. FromTable 1.7, which applies to curve (c), the phase

difference between the input sinusoid and the sinusoid of noise at harmonic 25 is

about 95�. In the “worst case” that could have arisen, the phase angle difference

would be 180�, with the result that the ordinate would have been 9.4%. This figure is

not too different from the values of 7.3% and 8.6% that were found at harmonics 2

and 10 (not shown), in which situation there would be little evidence for the

deterministic component at harmonic 25. The figure of 9.4% can be calculated from

values in the total variance and variance columns of Table 1.7 and Equation 1.48. The

calculation is a good exercise to demonstrate understanding of how periodogram

variances can change due to phase angle differenceswhen two sinusoids are summed.

Nowwe can adapt Equation 1.47 to the ordinate in Figure 1.41 in order to find the

100(1�a)% a priori confidence interval. Dividing each term by the total variance,

such that the confidence interval is expressed as a percentage, yields

Pr 0 � CðfmÞ
5:882

� x22ð1� aÞCðfmÞ
2� 5:882

	 

¼ 1� a: ð1:49Þ

The white noise estimate for C(fm) is 5.882/((N� 1)/2)¼ 2� 5.882/127¼ 0.0926.

The resulting upper limit of the 95% a priori confidence interval is 4.7%. Among the
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63 interior harmonics there are four with values outside this limit. These include

harmonic 25 for both the observed (95�) and “worst case” (180�) phase differences.
On average, one would expect about three (63� 0.05) rejects under the white noise

null hypothesis. Using only the a priori confidence limit, it is unclear whether to

reject or not reject the white noise null hypothesis that the data set comes from a

white noise process. Accordingly, we calculate the 95% a posteriori confidence

interval from Equation 1.49 after replacing the argument of x22 by 1�
a/63¼ 0.99921. Integrating Equation 1.36 between 0 and the upper limit of

integration results in x22(0.99921)¼ 14.278. The upper limit of the a posteriori

confidence interval is, therefore, 11.2%. The only harmonic whose percentage of

total variance exceeds this limit is that at harmonic 25 for the 95� phase angle

difference case. There are no harmonics with values exceeding this limit for the 180�

“worst case.”

We conclude that even with a SNR as large as 12, it can be difficult, in general, to

not only detect a sinusoidal signal in the presence ofwhite noise in a given realization,

but to show also that it is statistically significant. Factors that contribute to this

difficulty are (i) the occurrence of the sinusoid between harmonics and the attendant

spectrum window effects and (ii) the chance occurrence of a combination of

amplitude and phase angle of random noise at the same harmonic as the signal

that significantly cancels the signal variance.

To briefly summarize Sections 1.5.3 and 1.5.4, we can state that the detection of a

sinusoidal signal embedded in noise will be enhanced by either increasing the data

length (with resultant increase in the SNR) or averaging a number of periodograms

(with resultant narrowing of the spectrum confidence interval). Increasing the data

length forces the periodic component to be closer to a harmonic frequency.

1.5.5 Complex representation of Fourier series

The most compact expression of a Fourier synthesis is that written in complex

exponential form. The purpose of this section is to develop complex exponential

forms for Fourier synthesis and analysis producing what is called a Fourier transform

pair. The periodogram is then expressed in terms of complex coefficients. We shall

Table 1.7 Statistical properties of signal
ffiffiffi
2

p
sin (2p 25 n/128�p/4) and a realization of a

time series of 128 values of white noise.

Time

series

Total

variance

Variance at

harmonic 25

Percentage of total

variance

Phase angle

(degrees)

signal 1.000 1.000 100.00 135.0

noise 4.936 0.084 1.70 39.6

signalþ
noise

5.882 1.030 17.51 118.5
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see that one of the features of the periodogram in complex form is that, with a couple

exceptions, the Fourier coefficients are one-half the magnitude given in Table 1.1.

The exceptions occur at the zero harmonic (N even or odd) and the Nyquist

frequency (N even), in which cases there is no change of magnitude. The compact-

ness also can result in an amplitude spectrum that includes both positive and

negative harmonics (or frequencies), as described in Section 1.5.1 and Figure 1.28.

Figure 1.42 shows the locations of the harmonic coefficients Am and Bm along a

harmonic axis that has been extended to twice its usual length. If the range ofm in the

synthesis formula

xn ¼ A0 þ
XN2�1

m¼ 1

Am cos
2pmn

N
þ Bm sin

2pmn

N

� �
þ AN=2 cospn ð1:50Þ

fromTable 1.1 forN evenwere to be extended beyondN/2,whatwould happen to the

values of Am, Bm, cos
2pmn
N

, and sin 2pmn
N

? Using trigonometric identities for the sum

and difference of two angles, the results for the sine terms will be

sin
2p N

2
þm

� �
n

N
¼ sinðpnÞ cosð2pmn=NÞ þ cosðpnÞ sinð2pmn=NÞ ð1:51Þ

and

sin
2p N

2
�m

� �
n

N
¼ sinðpnÞ cosð2pmn=NÞ � cosðpnÞ sinð2pmn=NÞ: ð1:52Þ

Because the first term on the right-hand side in both equations is always zero and

the second term is the same except for sign, it follows that

sin
2p N

2
þm

� �
n

N
¼ �sin

2p N
2
�m

� �
n

N
: ð1:53Þ

0

1 2 (N/2)−2 (N/2)−1

N/2

(N/2)+2(N/2)+1 N−2 N−1

N

m

Figure 1.42 Fourier coefficents Am andBm computed at harmonics (N/2)þ 1 to N� 1 can be

exactly matched to Fourier coefficients computed at harmonics 1 to (N/2)� 1 with appro-

priate change in sign. N is even.

70 CH 1 FOURIER ANALYSIS



In a similar manner it can be shown that

cos
2p N

2
þm

� �
n

N
¼ cos

2p N
2
�m

� �
n

N
: ð1:54Þ

Thus, the sine terms show odd symmetry about harmonicN/2 and the cosine terms

show even symmetry. For N odd, the location of the Nyquist frequency is between

adjacent harmonics that surround the Nyquist frequency. Nevertheless, the same

pattern of symmetry about the Nyquist frequency holds for N odd as for N even.

Continuing with N even, since Am and Bm both involve the cosine and sine

terms above,

AN
2
þm ¼ AN

2
�m and BN

2
þm ¼ �BN

2
�m: ð1:55Þ

Thus, noting the even and odd symmetry of the Fourier cosine and sine

coefficients, respectively, xn can be written

xn ¼
XN�1

m¼ 0

A0m cos
2pmn

N
þ B0

m sin
2pmn

N

� �
ð1:56Þ

where A0
m¼Am/2 and B

0
m¼Bm/2, except A

0
0¼A0 (N even or odd) and A0

N/2¼AN/2

(N even). Fourier coefficients Am and Bm are the original coefficients defined in

Table1.1.Fromthispoint forward,wheneveraprimedFourier coefficient isobserved,

itmeans that its value isone-half thevalueof anunprimedcoefficient, except asnoted.

Primed coefficients have been used already in Appendix 1.D.

Before rewriting the expression above in terms of complex numbers, let us briefly

review what we mean by a complex number. A complex number is given by

z ¼ xþ iy

and its complex conjugate by

z
� ¼ x� iy

where x and y are real numbers and i the imaginary unit defined by

i ¼
ffiffiffiffiffiffi
�1

p
:

The real number x is called the real part of z (or its conjugate) and the real number

y is called the imaginary part of z (or its conjugate). (Note that the x notation here is

distinct from notation xn for the time series above.) The complex number z can be
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easily interpreted as a vector in the complex plane shown in Figure 1.43 extending

from the origin to the intersection of x and y.

The length of vector z is given by

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and its direction by

q ¼ tan�1 y

x


 �
:

Since

x ¼ jzj cosq and y ¼ jzj sinq

it is apparent that z¼ xþ iy can be written in the equivalent form

z ¼ jzj cosqþ ijzj sinq ¼ jzj ðcosqþ i sinqÞ

which, from Euler’s formula, can be written

z ¼ jzj eiq:
This is called the polar or trigonometric form of a complex number.

As for now, we represent the Fourier coefficients using complex numbers in order

to rewrite the synthesis formula in complex exponential form. That is,

xn ¼
XN�1

m¼ 0

A0
m � iB0

mð Þ cos
2pmn

N
þ i sin

2pmn

N

� �
: ð1:57Þ

The cross product termswill vanish in the summation because of their odd symmetry

aboutm¼N/2. For example, the product of A0
mwith sin(2pmn/N) for 0<m<N/2

Imaginary axis

Complex plane

Real axis

−i

i

x

y
z

| z |

θ

Figure 1.43 The complex plane.
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will be identical to the same product at harmonic N�m, but of opposite sign since

A0
m is an even function about N/2 and sin(2pmn/N) is an odd function.

If we let S0m¼A0
m� iB0

m, then, from Table 1.1 and the Fourier coefficients there

divided by two, as required earlier,

S0m ¼ 1

N

XN�1

n¼ 0

xn cos
2pmn

N
� i

1

N

XN�1

n¼ 0

xn sin
2pmn

N

¼ 1

N

XN�1

n¼ 0

xn cos
2pmn

N
� i sin

2pmn

N

 !
; 0 � m � ðN� 1Þ; N even:

ð1:58Þ

S0m is the complex Fourier coefficient at the m-th harmonic frequency.

Using Euler’s formula, expressions for xn and S
0
m can be expressed very compactly

and symmetrically as

S0m ¼ 1

N

XN�1

n¼ 0

xn expð�i2pmn=NÞ; m ¼ 0; 1; . . . ;N� 1 ð1:59Þ

and

xn ¼
XN�1

m¼ 0

S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1: ð1:60Þ

These equations constitute a digital Fourier transform pair, are valid whether N is

even or odd, and could be written also

S0m ¼ 1

N

XN�1

n¼ 0

xn expð�i2pmn=NÞ; m ¼�½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2�

or m¼�½N=2�; . . . ; 0; . . . ; ½ðN� 1Þ=2�
ð1:61Þ

and

xn ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1

or

xn ¼
X½ðN�1Þ=2�

m¼�½N=2�
S0m expði2pmn=NÞ; n ¼ 0; 1; . . . ;N� 1 ð1:62Þ
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where [q] means truncation of q. The new limits on m follow from the easily proved

relation S0m� kN¼ S0m,where k is an integer. Equations 1.60 and 1.62 are referred to as
inverse Fourier transforms of Equations 1.59 and 1.61, respectively. Whenever there

is a Fourier transformpair, the equation for the time or space function in terms of the

frequency function is considered the inverse Fourier transform.

If the variance in the periodogram is denoted by C0
m, then

C0
m ¼ S0m � S0m

�
¼ A0

m � iB0
mð Þ A0

m þ iB0
mð Þ ¼ A02

m þ B02
m;

m ¼ �½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2� ð1:63Þ

where the asterisk again indicates complex conjugate. Ordinarily, variance is not

computed at m¼ 0. Notice the periodogram here is two-sided; that is, there are

variances at both negative and positive harmonics. Their use is a mathematical

convenience. Recall that the primed Fourier coefficients are one-half the values given

inTable 1.1 except atm¼ 0 andm¼N/2 (Neven). Tomatch the one-sided spectrum

in Table 1.1 for N even or odd, the variances have to be doubled according to

S2m ¼ Cm ¼ C0
m þ C0�m ¼ 2C0

m; m 6¼ 0; m 6¼ N=2 ðN evenÞ
and

S2N=2 ¼ CN=2 ¼ C0
N=2; ðN evenÞ:

ð1:64Þ

1.5.6 The spectrum at nonharmonic frequencies

Itwas pointedout in Section 1.2 that the total variance in adata set can be shown to be

the sumof the variances at the harmonic frequencies. In terms of accounting for total

variance, there is no need to examine the spectrum at a frequency resolution higher

than the spacingbetweenadjacent harmonics.Nevertheless, a valueof variance canbe

computed at any frequency by changing the cosine and sine arguments in the

spectrum formulations from 2pmnDt/(NDt) to 2pfnDt where f is frequency (in

cycles per time interval between samples). In this section we derive a formula from

which we conclude that the variance spectrum C0(f), available at a continuum of

frequencies, is uniquely related to the variances at the harmonic frequencies C0
m.

Define S0(f) to be the complex amplitude coefficient at frequency f. Then, by

analogy with Equation 1.61,

S0ðfÞ ¼ 1

N

XN�1

n¼ 0

xn expð�i2pfnDtÞ; �1=ð2DtÞ � f � 1=ð2DtÞ: ð1:65Þ
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Now substitute the first form of Equation 1.62 for xn to get

S0ðfÞ ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m
XN�1

n¼ 0

1

N

� �
exp i2p

m

N
� fDt


 �
n

h i
ð1:66Þ

where [q], as earlier, means the truncated value of q in the summation limits.

Using Equation 1.B.4 to obtain the second summation yields

S0ðfÞ ¼
X½N=2�

m¼�½ðN�1Þ=2�
S0m � EmðfÞ; �1=ð2DtÞ � f � 1=ð2DtÞ ð1:67Þ

where

EmðfÞ ¼ exp i N� 1ð Þ m

N
� fDt


 �
p

h i
�

sin
m

N
� fDt


 �
Np

h i
N sin

m

N
� fDt


 �
p

h i : ð1:68Þ

Equation 1.67 tells us that each complex Fourier coefficient at a frequency between

two adjacent harmonics is a weighted sum of the S0m harmonic coefficients. This

means that calculating Fourier coefficients at nonharmonic frequencies yields no

additional insight into the variance structure of the data; all of the variance

information is revealed by the harmonic coefficients.

If S0m and Em(f) are replaced by their conjugates, the conjugate companion of

Equation 1.67 will result and the weighted sum relation will apply to S0
�
ðfÞ. Because

the periodogram is the product of S0m and S0m
�
, we conclude that at any frequency, f,

the variance spectrum

C0ðfÞ ¼ S0ðfÞ � S0
�
ðfÞ; � 1=ð2DtÞ � f � 1=ð2DtÞ ð1:69Þ

is a weighted sum of the variances at the harmonic frequencies. When f is at a

harmonic frequency, theweight function is zero at all other harmonics except the one

under consideration.

Let us re-examine Equation 1.68 for the case when m¼ 0. Then,

E0ðfÞ ¼ exp �iðN� 1ÞpfDt½ � sinðpNfDtÞ
N sinðpfDtÞ : ð1:70Þ

Note that the limit ofE0(f) is one as f tends to zero. If S
0
0, themeanof the series, is large,

the product of E0(f) and S00 will provide a large contribution to S0(f) when f is in the

neighborhood of the origin. The variance C0(f) will then include a large contribution
from the mean. Since it is the second moment about the mean that is desired, this
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contribution must be deleted. Therefore, in applying Equation 1.69 it is to be

understood that the samplemean has been removed before computing S0(f) or C0(f).
One might expect that C0(f) could be used to find the exact frequency of a

deterministic signal embedded in noise. Unfortunately, this is not true, and an

illustration of this fact is shown in Figure 1.44. The spectrum here is the same as

spectrum (5) in Figure 1.37, except that the variances were calculated at frequency

increments corresponding to 1/20 the harmonic spacing using Appendix 1.A. Due

mainly to the leakage of noise variance from surrounding harmonics, the peak in the

spectrum occurs not at the frequency of the input sinusoid (harmonic 6.25) but

slightly to the left of harmonic 6.

If the noise is reduced to zero, however, the input frequency can be accurately

determined, as shown in Figure 1.45.Why is this? In the first place there is no noise to

contend with and, therefore, no noise leakage. In the second place, for interior

frequencies and sufficiently large N, the frequency at which the peak in the spectral

window in Equation 1.42 occurs when 2pfi is substituted for vm is close to the

frequency of the input sinusoid fi. Recall from Figures 1.33 and 1.34 that the peak in

the spectrum window at harmonic 1 is displaced from harmonic 1 for a pure cosine

or sine input. It was found from simulations that when N> 100 a reasonably

accurate estimate of the frequency of an input sinusoid away from the ends of the

spectrumcanbemade because thewindow is nearly symmetric and its peak is close to

the center of the window. This parallels the earlier finding in Section 1.5.2 that the

squared diffraction function in Equation 1.44 provides a good approximation to the

window function in Equation 1.42 away from the spectrum ends for N> 100.

Of course, the larger the value of N, the greater the accuracy. From Figures 1.44
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Figure 1.44 Spectrum of sinusoid with frequency 6.25 cycles over data length N¼ 32 with

added white noise. The ratio of the signal variance to the white noise variance at an internal

harmonic (SNR) is 3.1 (see Equation 1.46).

76 CH 1 FOURIER ANALYSIS



and 1.45 we conclude that the higher the ratio of the deterministic signal variance to

the noise variance, the more accurately one can estimate the frequency of the signal.

The various equations developed in this and the previous sections typically are not

used in computing a periodogram. Instead, we use a straightforward algorithm

employing the formulas in Table 1.1 or a fast algorithm as in the computer program

in Appendix 1.A. The latter algorithm permits us to evaluate the Fourier coefficients

and variances at as high a resolution in frequency as we wish. When we do this, we

now know that the variance computed at an off-harmonic frequency is a weighted

sum of all harmonic variances, and the closer they are to a given off-harmonic

frequency, the greater their influence.

1.5.7 Padding data with zeroes

In this section we investigate a topic of practical interest wherein a time series with

zero mean is modified by appending zeroes to it in order to obtain a desired length.

The procedure is called “padding data with zeroes” and a common purpose is to

match the length of a record with that required when using an FFT (fast Fourier

transform) algorithm to analyzemany and/or long data sets. As an example, if we had

an 83 point sequence and were using a simple FFT requiring 2k points, we could add

45 zeroes to obtain 27¼ 128.Wewill show that the periodogramof the paddeddata is

identical to the variance spectrum (Equation 1.63) of the original data computed

at intervals in frequency of 1/128, except for a multiplicative constant. It may seem

odd that one would add a sequence of zeroes to a time series (after removal of the

mean) and compute a periodogram that has any meaning. The interesting aspect

is that in calculating the Fourier coefficients, the padded series can be partitioned
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Figure 1.45 Spectrum of sinusoid with frequency 6.25 cycles over data data length N¼ 32.
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into the original series and the sequence of zeroes, the latter contributing nothing to

the coefficients. The result is a spectrum with higher resolution than the period-

ogram of the original data.

Let us begin by considering a time series of data and subtract its mean from each

datum to get data set A. Next consider data set B. It is the same as data set A except

that zeroes have been appended in order to apply an FFT. The means of data sets

A and B are zero. The variances of both are the same if, for set B, the coefficient of the

sum in the expression for variance is the same as that for set A – a condition that we

now investigate.

The formula for the Fourier coefficients in data set A is, following Equations 1.58

and 1.59,

S0m ¼ A0
m� iB0

m ¼ 1

N

XN�1

n¼0

xn expð�i2pmn=NÞ; m ¼ � ðN�1Þ=2½ �; . . . ;0; . . . ; N=2½ �

ð1:71Þ
where m is harmonic number, xn is the n-th datum, N is the number of data and [q]

indicates truncated value, as before.

Of course, we know from the previous section that we can calculate Fourier

coefficients at higher resolution in frequency than the harmonic frequencies

(Equation 1.65) and they are completely dependent on those at the harmonic

frequencies (Equation 1.67). Consider increasing the number of complex coeffi-

cients N in set A by a factor R, such that RN is the number of data needed by an FFT.

Then the new formula for the high resolution coefficients in data set A is

S0r ¼ A0
r � iB0

r ¼ 1

N

XN�1

n¼ 0

xn expð�i2prn=ðRNÞÞ;

r ¼ �½ðRN� 1Þ=2�; . . . ; 0; . . . ; ½RN=2�: ð1:72Þ
To distinguish padded data set B from data set A, we will use bold notation, for

example, xn. Data set B has RN data and, by analogy with Equation 1.71, noting that

xn¼ 0 beyond n¼N� 1, its Fourier coefficients are

S0r ¼ A0
r � iB0

r ¼ 1

RN

XRN�1

n¼ 0

xn exp½�i2prn=RN�

¼ 1

RN

XN�1

n¼ 0

xn expð�i2prn=RNÞ þ 1

RN

XRN�1

n¼N

xn expð�i2prn=RNÞ

¼ 1

RN

XN�1

n¼ 0

xn expð�i2prn=RNÞ; r ¼ � ðRN� 1Þ=2½ �; . . . ; 0; . . . ; RN=2½ �:

ð1:73Þ
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Except for the coefficient of the summation, Equation 1.73 is the same as Equa-

tion 1.72. If it were desired that the Fourier coefficients of padded data set B be the

same as the high resolution coefficients of data set A, the former coefficients need to

be multiplied by R.

Whether one uses padding (Equation 1.73) or direct calculation (Equation 1.72),

the total variance derived from the Fourier coefficientsmust equal the variance in the

data. The variance at a Fourier harmonic frequency can be obtained by forming the

product Sm � S
�
m, inwhich the asteriskmeans complex conjugate. Accordingly, from

Equations 1.61 and 1.63,

S0m � S0m
�

¼ A02
m þ B02

m ¼ 1

N2

XN�1

n¼ 0

xn expð�i2pmn=NÞ
�����

�����
2

;

m ¼ � ðN� 1Þ=2½ �; . . . ; 0; . . . ; N=2½ � ð1:74Þ

the total variance of which is

X½N=2�
m¼�½ðN�1Þ=2�

A02
m þ B02

m


 �
: ð1:75Þ

When variances are computed at a higher resolution in frequency than that

associatedwith just the harmonic frequencies, theymust be scaled by 1/R. The reason

for scaling is that the variances computed at a resolution in frequency greater than the

harmonic resolution are not independent (as are the harmonic variances). The

dependence is taken into account by reducing the bandwidth associated with each

high resolution spectrum variance by 1/R.

Using padding for FFT purposes, with the consequent increase in spectral

resolution, the expression for the periodogram variance is

S0r � S0r
�

¼ A02
r þ B02

r ¼ 1

ðRNÞ2
XN�1

n¼ 0

xn expð�i2prn=RNÞ
�����

�����
2

;

r ¼ � ðRN� 1Þ=2½ �; . . . ; 0; . . . ; RN=2½ �: ð1:76Þ

However, as mentioned earlier, to match the variances associated with high

resolution data set A, the Fourier coefficients in data set B have to be multiplied

by R, or, what is the same, the variances in Equation 1.76 have to be multiplied

by R2. Thus,

A02
r þ B02

r ¼ R2A02
r þ R2B02

r : ð1:77Þ
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It follows that for high-resolution data set A, the total variance is given by

1

R

X½RN=2�
r¼�½ðRN�1Þ=2�

ðA02
r þ B02

r Þ ð1:78Þ

and, for data set B, by

1

R

X½RN=2�
r¼�½ðRN�1Þ=2�

R2 A02
r þ B02

r


 �
¼ R

X½RN=2�
r¼�½ðRN�1Þ=2�

ðA02
r þ B02

r Þ: ð1:79Þ

If the variances at the nonharmonic frequencies in Equation 1.77 are treated as

random variables, they have the same asymptotic (as N tends to infinity) mean,

variance, and distribution as those at the harmonic frequencies (Koopmans, 1974,

pp. 261–265).

The consequences of padding a time series with zeroes to accommodate analysis

with an FFT can be illustrated with a typical example in which the number of data

does not match the requirements of the FFT that is to be used. Consider spatially

averaged sea surface temperature (SST) in an area bounded by 10� south latitude on
its southern edge, the equator on its northern edge, and 80 and 90� west longitude on
its eastern andwestern edges, respectively. This area comprisesNiño Regions 1 and 2,

which are often used as indicator regions of the current state of the El Niño Southern

Oscillation (ENSO). Figure 1.46 shows Niño Region 1þ 2 monthly SST anomalies

for the 30-year period of 1981–2010. These values were derived by subtracting the

1981–2010 monthly means from each month’s actual SST in a manner identical to

that used in Section 1.4.6.2. The original monthly values of SST were obtained from
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Figure 1.46 Mean monthly SST (sea surface temperature) anomalies in Niño Region 1þ 2

for the 30-year period of 1981–2010.
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the National Weather Service Climate Prediction Center (http://www.cpc.ncep.

noaa.gov/data/indices/).

If one were not concerned with computational speed, the SST anomaly data

could be analyzed without implementation of an FFT by using standard Fourier

analysis techniques, as in Appendix 1.A, where the number of data is N¼ 360. The

first 60 harmonics of the periodogram resulting from such an analysis are

presented in Figure 1.47, where these harmonics explain over 96% of the total

variance in the time series. Notice that harmonics 30 and 60 necessarily have zero

variance, since the 30-year mean was removed from the data. There is a

concentration of variance at harmonics 20 and lower, corresponding to periods

of 1.5 years and longer, and of particular interest are the peak variances that occur

at periods of 3.75 and 5.0 years (harmonics 8 and 6, respectively). The period-

ogram provides an informative depiction of the cyclic nature of El Niño and

La Niña.

Suppose, however, that many thousands of such analyses needed to be performed

as rapidly as possible. The computational efficiency of FFTs then becomes necessary,

and it may be the case that the FFT requires N¼ 2k data points as previously

described. By augmenting the 30 years of monthly data with 152 zeroes, we obtain a

time series that is 512 (29) data points in length. An FFT was used to compute the

folded version (positive harmonics only) of the Fourier coefficients in Equation 1.73

and the folded version of the periodogram variances in Equation 1.76 where

RN¼ 512. The ratios (in percentage) of the individual variances to their sum are

shown in Figure 1.48 for the first 85 harmonics to account for the inherently

narrower bandwidth of the analysis.

In comparing Figures 1.47 and 1.48 to each other, we can make the general

statement that they are different for two reasons. One is that the period (in years)
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Figure 1.47 Periodogram to harmonic 60 of SST anomalies in Figure 1.46. Total anomaly

variance is 1.440 �C2.
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versus harmonic relation is different in each figure; the other is that the bandwidth

or width of the spectrum window associated with the variance estimates in each

figure is different. To explain these differences, consider an example. As mentioned

earlier, Figure 1.47 shows two strong peaks: the first at a period of 5 years

(harmonic 6) and the second at a period of 3.75 years (harmonic 8). In Figure 1.48,

the periodogram of the padded data, the variance in the first peak lies between

harmonic 8, corresponding to a period of 5.333 years, and harmonic 9, corre-

sponding to a period of 4.741 years. The spectrum windows centered at harmonics

8 and 9 transfer most of the variance in the first peak in Figure 1.47 to these

two harmonics. Because the location of the first peak is approximately midway

between the surrounding harmonics 8 and 9 in Figure 1.48, the variances there are

quite similar.

An analogous situation occurs with the second peak in variance in Figure 1.47.

This peak, at a period of 3.75 years (harmonic 8), lies between harmonics 11 (period

of 3.879 years) and 12 (period of 3.556 years). Again, the spectrumwindows centered

at these harmonics redistribute the variance that lies between them in Figure 1.47 to

these harmonics, as shown in Figure 1.48.

The opposite situation occurs in Figure 1.48 at harmonic 15 and period 2.844

years. The peak at this harmonic falls between harmonics 10 (period of 3 years) and

11 (period of 2.727 years) in Figure 1.47. In this case, a redistribution of a peak in

variance in the padded spectrum occurs in the unpadded spectrum. In any period-

ogram, variance that is intrinsically located between harmonics is distributed to

surrounding harmonics by a spectrum window centered at each harmonic, as we

learned in Section 1.5.2. In addition, the two periodograms of the SST anomaly data

illustrate the effect of data length on finding periodicities, a subject discussed in

Section 1.5.4.

0

5

10

15

20

0 10 20 30 40 50 60 70 80

Pe
rc

en
t o

f 
To

ta
l V

ar
ia

nc
e

Harmonic

5 3 2 1 0.5
Period (yr)

1.5

Figure 1.48 Periodogram to harmonic 85 of SST anomalies in Figure 1.46 after padding with

152 zeroes. Total anomaly variance is 1.440 �C2.
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Appendix 1.A Subroutine foranx

subroutine foranx (s, n, var, nf, tvar, fr1, fr2, iprnt)

dimension s(1), a(400), b(400), pvar(400), phi(400), var(400),

freq(400)

c*************************************************************

c

c This subroutine performs a fast Fourier analysis of an even

number of data points at as

c many frequencies as desired. The frequency span is between 0.0

and 0.5 cy/data interval,

c inclusive. The algorithm used is that given at the end of

Chapter 9 of Spectral Analysis

c (Jenkins & Watts, 1968, Holden-Day, San Francisco, 525 pp.)

c * Input *

c s input data array.

c n length of s. n is an even number.

c nf number of frequencies (including zero) at which variance

is to be computed.

c nf.gt.n/2 and is an odd number.

c nf = n/2 + 1 for standard periodogram.

c fr1 frequency at which printing begins.

c fr2 frequency at which printing ends.

c fr1 and fr2 are less than or equal to 0.5 and fr1 < fr2.

c * Output *

c var the array of spectrum variances at the nf frequencies.

c tvar the total variance in the data.

c * Other *

c iprnt user supplied output device unit number.

c

c the synthesis form is x(t) = a*cos(wt) + b*sin(wt)

c = c*cos(wt - phi) phi = phase angle in program

c

c*************************************************************

c **setconstants,variancescalefactor,andfrequencyarray**

c

data pi /3.1415926536/

anf = nf

an = n

rddg = 180.0/pi

frfac = an/(2.0*anf - 2.0)

bb = 0.5/(anf - 1.0)

do 10 i = 1, nf

aa = i

10 freq(i) = (aa - 1.0)*bb
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c

c ** get Fourier coefficients at 0 and Nyquist frequencies **

c

a(1) = 0.0

b(1) = 0.0

a(nf) = 0.0

b(nf) = 0.0

e = n

tvar = 0.0

do 20 i = 1, n

c = i - 1

r = s(i)/e

a(1) = a(1) + r

20 a(nf) = a(nf) + r*cos(c*pi)

c

c ** get variance in data, start accumulation of variance in

spectrum **

c

do 30 i = 1, n

s(i) = s(i) - a(1)

30 tvar = tvar + s(i)**2/e

var(nf) = a(nf)**2

pvar(nf) = var(nf)*100.0*frfac/tvar

var(1) = 0.0

pvar(1) = 0.0

wvar = var(nf)*frfac

g = n/2

phi(1) = 0.0

phi(nf) = 0.0

do 40 i = 1, n

40 s(i) = s(i)/g

c

c ** J & W algorithm **

c

nfm1 = nf - 1

do 50 j = 2, nfm1

ang = 2.0*pi*freq(j)

co = cos(ang)

si = sin(ang)

v0 = 0.0

v1 = 0.0

z0 = 0.0

z1 = 0.0

do 60 i = 2, n

ii = n - i + 2
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v2 = 2.0*co*v1 - v0 + s(ii)

z2 = 2.0*co*z1 - z0 + s(ii)

v0 = v1

v1 = v2

z0 = z1

z1 = z2

60 continue

a(j) = s(1) + v1*co - vo

b(j) = z1*si

var(j) = (a(j)**2 + b(j)**2)/2.0

pvar(j) = var(j)*frfac*100.0/tvar

wvar = wvar + var(j)*frfac

50 phi(j) = atan2(b(j), a(j))*rddg

c

c **print results **

c

kj = 0

ih1f = 1

ih2f = nf

if(fr1.lt.0.0.or.fr1.gt.0.5) go to 111

if(fr2.lt.fr1.or.fr2.gt.0.5) go to 111

if(fr1.eq.0.0.and.fr2.eq.0.5) go to 109

ih1f = 2.0*fr1*(anf - 1.0) + 1.01

ih2f = 2.0*fr2*(anf - 1.0) + 1.01

c

109 do 70 j = ih1f, ih2f

wn = freq(j)*an

kj = kj + 1

if(((kj - 1)/25)*25.eq.(kj - 1)) write(iprnt, 102)

70 write(iprnt,103) wn, freq(j), a(j), b(j), var(j), pvar(j),

phi(j)

write(iprnt,104) tvar, wvar

102 format(//9x, ’har-’, 6x, ’freq’, 7x, ’cosine’, 9x, ’sine’,

*10x, ’line’, 7x, ’percent of’, 5x, ’phase’, /8x, ’monic’,

*5x, ’cy/di’, 2(3x,’coefficient’), 5x, ’variance’, 6x,

’total var’,*5x, ’angle’, /)

103 format(5x, f8.3, 4x, f6.3, 4(2x,g12.5), 4x, f6.1)

104 format(///21x, ’variance in data set’, g12.5//8x,

*’variance explained by periodogram’, g12.5)

go to 99

111 write(iprnt, 112)

112 format(//, 10x, ’fr1 or fr2 or both out of range’)

99 return

end
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Appendix 1.B Sum of complex exponentials

Let

Q ¼
Xb
n¼ a

expðivnÞ ¼ eiva þ eivðaþ1Þ þ 	 	 	 þ eivb ð1:B:1Þ

where a and b are integers and b> a. Multiply Equation 1.B.1 by eiv to get

eivQ ¼ eivðaþ1Þ þ eivðaþ2Þ þ . . .þ eivðbþ1Þ: ð1:B:2Þ

Subtract Equation 1.B.2 from Equation 1.B.1 to obtain

Q ¼ eiva � eivðbþ1Þ� �
1� eivð Þ : ð1:B:3Þ

Nowmultiply the numerator and denominator of Equation 1.B.3 by exp(�iv/2).
Then successively withdraw exp(iav/2) and exp(ibv/2). The result is

Q ¼
Xb
n¼ a

expðivnÞ

¼ exp iðaþ bÞv=2½ � eivðb�aþ1Þ=2 � e�ivðb�aþ1Þ=2

eiv=2 � e�iv=2

" #

which, using Euler’s formula, reduces to

Q ¼ exp iðaþ bÞv=2½ � sin½vðb� aþ 1Þ=2�
sinðv=2Þ : ð1:B:4Þ

In application of Equations 1.B.3 and 1.B.4 it is important to test sin (v/2) to verify
that it is not zero for any values of the argument. If sin (v/2) is zero, then l’Hopital’s

rule can be applied to these equations to obtain a determinate form. Equation 1.B.1

can be used, also.

Appendix 1.C Distribution of harmonic variances

The purpose of this appendix is to develop relationships for the statistical

distribution of the harmonic variances. Because the chi-square (x2) distribution
plays a prominent role in the development that follows, it is important to be
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familiar with its properties. We begin with the forms for the Fourier cosine and sine

amplitudes given in Table 1.1, now treated as random variables, for an even number

of data N, namely

Am ¼ 2

N

XN�1

n¼ 0

Xn cos
2pmn

N
ð1:C:1aÞ

and

Bm ¼ 2

N

XN�1

n¼ 0

Xn sin
2pmn

N
; m ¼ 0;

N

2

� �
: ð1:C:1bÞ

Making use of linear expectation operator E and assuming a purely random process

(white noise) represented by random variable Xn with E[Xn]¼ 0 so that E[Am]¼
E[Bm]¼ 0, we obtain:

Var½Am� ¼ E½A2
m�

¼ 4

N2
E X0X0½ � cos2pm0

N
cos

2pm0

N
þE X0X1½ � cos2pm0

N
cos

2pm1

N

8<
:

þ		 	þE X0XN�1½ � cos2pm0

N
cos

2pmðN� 1Þ
N

þE X1X0½ � cos2pm1

N
cos

2pm0

N

þE X1X1½ � cos2pm1

N
cos

2pm1

N
þ	 	 	þE X1XN�1½ � cos2pm1

N
cos

2pmðN� 1Þ
N

þ	 	 	þE XN�1X0½ � cos2pmðN� 1Þ
N

cos
2pm0

N

þE XN�1X1½ � cos2pmðN� 1Þ
N

cos
2pm1

N

þ 		 	þE XN�1XN�1½ � cos2pmðN� 1Þ
N

cos
2pmðN� 1Þ

N

9=
;: ð1:C:2Þ

The expectation E[XiXj]¼ 0 for i 6¼ j because the random variables are uncorrelated;

similarly, E[XiXj]¼ s2X for i¼ j because the random variables are completely

correlated. The latter relation follows from Equation 1.18 and noting from above

that E[Xn]¼ 0. Therefore, Equation 1.C.2 becomes
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Var Am½ � ¼

4

N2 s
2
X

XN�1

n¼ 0

cos2
2pmn

N
¼ 4

N2 s
2
X

N

2
¼ 2

N
s2X; m ¼ 1;

N

2
� 1

" #

1

N2
s2X
XN�1

n¼ 0

cos2
2pmn

N
¼ 1

N2
s2XN ¼ 1

N
s2X; m ¼ 0;

N

2

8>>>>><
>>>>>:

ð1:C:3Þ

and for the sine coefficients

Var Bm½ � ¼

4

N2 s
2
X

XN�1

n¼ 0

sin2
2pmn

N
¼ 4

N2 s
2
X

N

2
¼ 2

N
s2X; m ¼ 1;

N

2
� 1

" #

1

N2 s
2
X

XN�1

n¼ 0

sin2
2pmn

N
¼ 0; m ¼ 0;

N

2
:

8>>>>><
>>>>>:

ð1:C:4Þ

The sums of the cosine-squared and sine-squared terms can be determined from

Equations 1.4 and 1.5.

The covariance between the coefficients at different harmonics may be calculated

in a similar manner. For m 6¼ k,

Cov½Am;Ak� ¼ 4

N2
s2X
XN�1

n¼ 0

cos
2pmn

N
cos

2pkn

N

¼ 0 ð1:C:5Þ

since the cosine terms are orthogonal to each other, as demonstrated in the

derivation of Equation 1.8. Similarly, for the sine coefficients

Cov½Bm;Bk� ¼ 0: ð1:C:6Þ

Lastly, for all m, k,

Cov½Am;Bk� ¼ 0 ð1:C:7Þ

because over their length, any integer number of sine waves is orthogonal to any

integer number of cosine waves.

Now assume that each rv Xn from our white noise process has a normal

distribution with population mean zero and population variance s2X. Since random
variables Am and Bm are linear functions of normal random variables from

Equation 1.C.1, they also are normally distributed. From statistical theory, the

square of a normal random variable with zero mean and unit variance (i.e., a

standard normal variable) is distributed as a chi-square variable with one degree of
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freedom. Thus, if we square the Fourier coefficients and standardize them by

dividing by their variance, we have

A2
m

Var½Am� ¼
A2
m

s2X=ðN=2Þ
) x21; m ¼ 1;

N

2
� 1

� �
ð1:C:8Þ

B2
m

Var½Bm� ¼
B2
m

s2X=ðN=2Þ
) x21; m ¼ 1;

N

2
� 1

� �
ð1:C:9Þ

and

A2
m

Var½Am� ¼
A2
m

s2X=N
) x21; m ¼ 0;

N

2
ð1:C:10Þ

in which the arrow indicates “is distributed as.” Notice that no equation compa-

rable to Equation 1.C.10 is given for Bm when m¼ 0, N/2; the reason is that Bm is

always zero for these two values of m. There is another relevant relationship

involving x2 variables: the sum of any number of mutually independent x2 variables
whose degrees of freedom sum to n is itself a x2 variable with n degrees of freedom;

that is,

x2n1 þ x2n2 þ 	 	 	 þ x2nk ¼ x2n ð1:C:11Þ

where n¼ n1þ n2þ 	 	 	 þ nk. Thus, dividing Equations 1.C.8 and 1.C.9 by two and

then summing yields

A2
mþB2

m

2

s2X=ðN=2Þ
) x22

2
; m ¼ 1;

N

2
� 1

� �
: ð1:C:12Þ

The reason for dividing by two is to match the expression for variance at a

harmonic given in Table 1.1. The denominators in Equations 1.C.12 and 1.C.10

distribute the population variance s2X among the harmonic frequencies in such a

way that the variance at the interior harmonics is uniform and twice the value at the

frequency origin (m¼ 0) and the highest frequency (m¼N/2). The variance at

m¼ 0 is the variance of the sample mean (i.e., the mean of a realization) about the

population mean, the latter value of which is zero in this development.

Now simplify the notation by letting

CðfmÞ ¼ A2
m þ B2

m

2
; m ¼ 1;

N

2
� 1

� �
ð1:C:13aÞ
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and

CðfmÞ ¼ A2
m; m ¼ 0;

N

2
ð1:C:13bÞ

where fm¼m/NDt is the harmonic frequency for harmonic m. Next, replace the

white noise variance s2X/(N/2) at the interior harmonics and s2X /N at the two exterior

harmonics, by C(fm) in Equations 1.C.12 and 1.C.10. Taking their expectations, and
noting that E[x2n]¼ n, yields

E
CðfmÞ
CðfmÞ
� �

¼ E
x22
2

� �
¼ 1; m ¼ 1;

N

2
� 1

� �
ð1:C:14Þ

and

E
CðfmÞ
CðfmÞ
� �

¼ E x21
� � ¼ 1; m ¼ 0;

N

2
ð1:C:15Þ

with the result that

E CðfmÞ½ � ¼ CðfmÞ; m ¼ 0;
N

2

� �
: ð1:C:16Þ

We now introduce the term estimator. An estimator is a random variable used to

estimate a population parameter. For example, in Equation 1.C.13, spectrum

estimator C(fm), as an appropriate function of the Fourier coefficients, is used to

estimate the population variance at frequency fm. Equation 1.C.16 shows that C(fm)

is an unbiased estimator of the white noise variance at the harmonic frequencies

because its expected value is equal to the population variance C(fm). If the expected
value were something other than C(fm), C(fm) would be a biased estimator. It is

usually desirable that an estimator be unbiased. However, if the calculation of an

unbiased estimator requires information that is otherwise unavailable, or if repeated

calculations are needed that consume significant computation time, it may be more

advantageous to employ a biased estimator.

Since Var[x2n]¼ 2n, we have, following Equations 1.C.14 and 1.C.15,

Var CðfmÞ½ � ¼ C2ðfmÞ; m ¼ 1;
N

2
� 1

� �
ð1:C:17Þ

and

Var CðfmÞ½ � ¼ 2C2ðfmÞ; m ¼ 0;
N

2
ð1:C:18Þ
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showing that the variance of the estimator is uniform at the interior harmonics

and twice that value at the exterior harmonics (note the definitions of C(fm)).
That we are dealing with the variance of harmonic variances simply means

that each harmonic variance C(fm) is itself a random variable and thus has

a probability distribution function based on an infinity of realizations. Equa-

tions 1.C.16–1.C.18 are the expressions for the mean and variance of the

probability distribution function.

It is significant that the variances of the harmonic variances are independent of

sample size. The collection of additional data does not increase the stability of

the estimator. That this is the case is not unexpected because as the length, N, of the

time series increases, the number of Fourier harmonics increases accordingly and

the separation between them, that is, the bandwidth or frequency averaging distance

associated with each harmonic, decreases. The number of data (degrees of freedom

for white noise) consumed in a variance estimate remains the same. To effect

increased stability of the spectrum estimator requires some form of spectrum

averaging.

In the case of N odd, the analysis parallels that above, except that the highest

harmonic is (N� 1)/2. To get C(fm) at all harmonics except the frequency origin

divide the population variance by N/2; at m¼ 0 divide s2X by N.

The above derivations have been done under the assumption that the pop-

ulation mean is known, and in this case equal to zero. The derivation could have

been done with a known nonzero mean, but the procedure is more tedious. More

generally, the population mean is unknown and the total variance in a given time

series is taken with respect to the sample mean. If the time series is hypothesized

to be a realization of white noise (with mean unknown), the total variance is

similarly distributed as above but without any variance contribution at m¼ 0.

This is because the total variance must be perforce computed about the sample

mean.

For the case of an even number of data, the estimate of the total variance, ŝ2X, is
divided by (N� 1)/2 to obtain white noise variances at the interior harmonics and

by N� 1 to obtain the white noise variance at the highest harmonic, N/2. There is

no contribution of variance at m¼ 0. In the case of an odd number of data, the total

variance is divided by (N� 1)/2 to obtain estimates of the harmonic white noise

variances and, again, there is no contribution of variance at m¼ 0.

In summary, for N even and the mean of the white noise process known,

variances at the interior harmonics have a distribution proportional to x22=2.
Variances at the two exterior harmonics (0 and N/2) have a distribution propor-

tional to x21=1. For N odd and the population mean known, the distributions of

variance at all harmonics are proportional to x22=2, except at the 0-th harmonic

where the distribution is proportional to x21=1. When the population mean is

unknown, the variances have similar distributions except that no variance is

generated at the origin.
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Appendix 1.D Derivation of Equation 1.42

The problem is to find the variance at any harmonic frequency when the input is at a

nonharmonic frequency. Consider the general input sinusoid acos(vn�w) and take
its Fourier transform. From Equation 1.63 for a two-sided spectrum,

S0m ¼ A0
m � iB0

m ¼ 1

N

XN�1

n¼ 0

a cos ðvn� wÞ expð�ivmnÞ

m¼�½ðN� 1Þ=2�; . . . ; 0; . . . ; ½N=2� ð1:D:1Þ

where m is harmonic number and vm¼ 2pm/N is angular frequency. It is assumed

that the time step Dt¼ 1.

Using Euler’s formula, the input sinusoid can be put in complex exponential form

such that:

A0
m� iB0

mð Þ2N
a

¼ expð�iwÞ
XN�1

n¼0

exp i v�vmð Þn½ �þexp iwð Þ
XN�1

n¼0

exp �i vþvmð Þn½ �:

ð1:D:2Þ

From Equation 1.B.4,

A0
m� iB0

mð Þ2N
a

¼ exp i N�1ð Þ v�vmð Þ=2�w½ �f g sin N v�vmð Þ=2½ �
sin v�vmð Þ=2½ �

þexp �i N�1ð Þ vþvmð Þ=2�w½ �f g sin N vþvmð Þ=2½ �
sin vþvmð Þ=2½ � :

ð1:D:3Þ

We can make use of Euler’s formula, again, to rewrite the exponential terms of

Equation 1.D.3. Equating the real portions of the resulting equation allows us to solve

for A0
m, and, similarly, equating the imaginary portions yields B0

m, so that

A0
m ¼ a

2
cos

�
N�1ð Þ

�
vþvm

2

�
�w

�
sinN vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

(

þcos

�
N�1ð Þ

�
v�vm

2

�
�w

�
sin N v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
ð1:D:4Þ
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and

B0
m ¼ a

2

(
sin

�
N�1ð Þ

�
vþvm

2

�
�w

�
sin N vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

�sin

�
N�1ð Þ

�
v�vm

2

�
�w

�
sinN v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
: ð1:D:5Þ

These results apply for N even or odd and to a two-sided spectrum. In reference to

Equation 1.42, where N is even and the periodogram is one sided, the A0
m and B0

m

above have to be doubled except at m¼ 0, N/2. Thus the variance at positive

harmonic m is

S2mðvÞ ¼ 2Amð Þ2þ 2Bmð Þ2� �
=2 ¼ 2A2

mþ2B2
m

¼ a2

2

(
sin2 N vþvmð Þ=2½ �
N2 sin2 vþvmð Þ=2½ �þ

sin2 N v�vmð Þ=2½ �
N2 sin2 v�vmð Þ=2½ �

þ 2cos ðN�1Þv�2w½ � sin N vþvmð Þ=2½ �
Nsin vþvmð Þ=2½ �

� sin N v�vmð Þ=2½ �
Nsin v�vmð Þ=2½ �

)
; m 6¼ 0;

N

2
ð1:D:6Þ

which is Equation 1.42.

Problems

1 On graph paper, carefully sketch at least one complete cycle of the sinusoid

given by

yðtÞ ¼ 1� 2 cosð0:5ptþ p=4Þ

starting at t¼�1. (Suggestion: First find the period and location of the

maximum or minimum of the cosine term alone without the phase angle.

Then adjust the plot to take into account phase and vertical

displacement.)
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2 The figure below shows a sinusoid that is digitally sampled according to

xk ¼ aþ ccos
2pmk

N
� wm

� �
; k ¼ 0;�1;�2; . . .

–2

–1

0

1

2

3

0 20 40 60 80

xk

k

From the above figure determine:

(a) a¼ ________

(b) c¼ ________

(c) an appropriate m¼ ____ for an appropriate N¼ ____

(d) wm¼ ____ degrees

3 Use Appendix 1.B to show that

XN�1

n¼ 0

sin2
2pkn

N

� �
¼ N

2

where N is an even integer and 0� k�N/2.

4 A time series of length NDt where N¼ 50 is obtained. It then is discovered

that the last half of the series, 25Dt, is a repeat of the first 25Dt. How does the

variance of the time series of length 50Dt compare with the variance of the

time series of length 25Dt?

5 Manual Fourier Analysis: use only paper, pencil, and a nonprogrammable

hand-held calculator.

The data below are 30-year normal monthly precipitation values for

1971–2000 at San Francisco International Airport (SFO AP), California

(37.62 N, 122.40 W) and Oklahoma City Will Rogers Airport (OKC AP),

Oklahoma (35.38 N, 97.60 W).
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(a) Plot the data on separate graphs and comment on differences you

observe between the time series. Can you provide a meteorological

explanation for the differences in annual total precipitation regimes?

(b) Choose one of the time series and perform a Fourier analysis of the data

sufficient to detect both amplitudes and phase angles of the significant

harmonics present (i.e., find enough harmonics to explain at least 95%

of the variance in the data).

(c) On a separate graph, plot the significant waves in (b) in the form of the

amplitude and phase representation discussed in Section 1.2.4.

(d) Plot the sum of the significant waves (plus the mean) on the time series

graph in (a).

(e) What percentage of the variance of the observed series does each

harmonic explain?

(f) Compare the observed variance (that of the data set itself) with the

explained variance to obtain residual variance.

Month San Francisco

International Airport

Oklahoma City

Will Rogers Airport

Precipitation (mm) Precipitation (mm)

January 113.0 32.5

February 101.9 39.6

March 82.8 73.7

April 30.0 76.2

May 9.7 138.2

June 2.8 117.6

July 0.8 74.7

August 1.8 63.0

September 5.1 101.1

October 26.4 92.5

November 63.2 53.6

December 73.4 48.0

6 Fourier Analysis Using a Computer Program

In this problem we use the paradrop days data in Table 1.3 that were

discussed in Section 1.3.2.

(a) Write a computer program that will find the cosine amplitudes, sine

amplitudes and phase angles for the largest harmonics that explain at

least 95% of the variance.

(b) Convert the phase angles into actual times of the maximum amplitude

for the various harmonics.
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(c) Plot (l) the original data, (2) each of the largest harmonics, the sum of

which explains at least 95% of the variance, and (3) the sum of these

harmonics, all on one graph. Compare your results with Figure 1.14.

(d) Can you attach any physical meaning to the individual harmonics? You

might consider the typical cycle of daily wind, for example. Does it have

a sinusoidal shape?

7 Recall that the variance of rv X is given by

Var½X� ¼
ð1

�1
ðx� mÞ2fðxÞdx:

Let rv X have a uniform probability density function f(x) between a and b

and zero elsewhere. If b� a¼ 1, find the variance of rv X for this rectangular

distribution.

8 Theobserved variance in a periodogramat harmonic k is 8 �C2. The goal is to

find the limits of the 95% a priori confidence interval for the population

variance C(fk) at harmonic k. Assume that

Cðf kÞ
Cðf kÞ ¼ x22=2

(a) Write down the appropriate probability statement(s) of the form

Pr{__}¼ __ for the confidence limits on the population variance

(b) What are the upper and lower limits of the 95% a priori confidence

interval? Recall that

fx22ðxÞ ¼ 1

2
e�x=2

9 The observed variance in a periodogram of a time series with N¼ 41 data

is found to be 12m2. The null hypothesis is made that the sample of data

comes from a white noise process. Find the limits of the 95% a posteriori

confidence interval for the observed variances at the harmonic

frequencies.

10 Consider a time series comprising N¼ 51 data with variance¼ 40 Pa2. The

null hypothesisH0 ismade that the realization is from a data population that

is white noise. A periodogram of the time series is calculated and the largest

value in the periodogram is 10.45 Pa2 and the smallest is 0.0065 Pa2. Show

whether Ho will be rejected or not rejected.
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11 If a signal can be described by xn¼A sin (2pfnDt) in whichDt¼ 0.1 s and

f¼ 12Hz, at which frequencies in the principal part of the complete aliased

spectrumwill the variance be observed andwhatwill be the variance at each

frequency?

12 Suppose you have a data set that comprises 100 values of wind speed in

which the sampling interval is two seconds. Unbeknownst to you, there

was a strong sinusoid with period 1.6 seconds introduced into the

analog signal (i.e., before digitization) because of a defective electronic

component. A periodogram analysis of the data set is performed.

(a) What is the Nyquist frequency in Hz?

(b) At what positive frequency (in Hz) in the principal part of the aliased

spectrum will the erroneous variance occur?

(c) What is the corresponding harmonic number for the frequency found

in (b)?

(d) What can be done or what should have been done to eliminate the

unwanted signal from appearing in the periodogram? Explain.

13 An analog temperature signal is sampled once every second. The number

of data collected is 40. Unfortunately, a nearby transmitter has added an

unwanted frequency of 1.125Hz.

(a) At what frequencies (Hz) in the principal part of the (two-sided) aliased

spectrum will the unwanted variance appear?

(b) What are the corresponding harmonics in the principal part of the

aliased spectrum at which the variances occur?

14 Consider a stagecoach scene in a motion picture (e.g., How the West

Was Won). The wheels of the stagecoach have a radius r¼ 0.6 m and

each has eight spokes. Assume the camera shutter speed is 24 frames

per second.

Plot the perceived (which may be the actual) angular speed (radians/

second) of one of the wheels versus the speed of the stagecoach as it

increases from 0m/s to the speed at which the wheels are perceived to be

stationary, that is, not rotating. (Hint: Sketch an eight-spoke wheel, write

down the equation for the stagecoach speed in terms of the angular speed

of a wheel, then adapt it to the conditions of the problem.)

15 Under certain conditions the spectrum window function of the form

[(sin x)/x]2 can be used to estimate the variance at harmonic frequencies

due to variance in the data at nonharmonic frequencies.
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(a) What are the two primary conditions?

(b) Assume the conditions of (a) are met. Sketch at least one spectrum

window centered at a harmonic and calculate the variance at harmonics

m� 1, m, andmþ 1 based on the figure below. The one-sided variance

input shown in the figure is 10m2 s�2 located midway between har-

monics m�1 and m.

variance

m-3 m-2 m-1 m m+1 m+2

harmonic

16 The objectives of this problem are to compare periodograms of hourly

temperature for January and July, 2009 at Oklahoma City, OK, and

determine whether the hourly temperatures in these months can be

modeled as a white noise process after removal of the daily cycle.

Data

The data are available on the website http://www.wiley.com/go/duchon/

timeseriesanalysis. The filenames are OKC_200901_hrly_temp.xls and

OKC_200907_hrly_temp.xls. The data are hourly temperatures in degrees

Celsius for January and July 2009. The first column is the sequential hour

count, the second column is the date, the third column is the time the

temperature was observed in Central Standard Time, and the fourth

column is the temperature. The only data needed to work this problem

are the hourly temperatures in the fourth column.

(a) Plot the times series of hourly temperature for each month on separate

sheets of paper, using the same size for all your plots. Show on each plot

frontal passages, cloudy days, clear days, and any other meteorological

events that you believe to be present.

(b) Use the Fourier Analysis computer program you designed in problem 6

or subroutine FORANX in Appendix 1.A to compute the periodogram

of the 744 points for eachmonth. Plot the log10 variance (or variance on

a log10 axis) versus frequency, period, or harmonic for all harmonics.

On each plot show the total variance and bandwidth associated with

each plot. Place the plots on separate pages.

(c) Compute and plot the average daily cycle of temperature for each

month. Briefly discuss the principal differences between the two

months and their causes.
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(d) Remove the daily cycle from the original hourly data for eachmonth to

form two new time series (the “uncontaminated” data). Plot the two

time series of “uncontaminated” data. Comment on the presence or

absence of the daily cycle of temperature.

(e) Plot the periodograms of the uncontaminated hourly data, replacing

the variance estimates at the harmonic frequencies of the daily cycle

with the average of surrounding variances. On each plot show the

total variance and the bandwidth associated with each estimate.

(f) Apply a white noise test to each periodogram in (e). Compute the a

priori confidence limits and a posteriori confidence limits. Place themon

the periodograms of variance in which the vertical axis is log10 variance.

Do you accept or reject the white noise null hypothesis? If you reject the

hypothesis that the sample comes from a population of white noise,

what physical phenomenon or phenomena do you think led to its

rejection?
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