P1: TIX/IXYZ
JWSTO071-01

P2: ABC
JWSTO71-Waas July 2, 2011 14:39 Printer Name: Yet to Come

Forces and Moments

1.1 Introduction

Mechanics of solids is concerned with the analysis and design of solid bodies under the action of applied
forces in order to ensure “acceptable” behavior. These solid bodies are the components and the assemblies
of components that make up the structures of aircraft, automobiles, washing machines, golf clubs, roller
blades, buildings, bridges, and so on, that is, of many manufactured and constructed products. If the solid
body is suitably restrained to exclude “rigid body” motion it will deform when acted upon by applied
forces, or loads, and internal forces will be generated in the body. For “acceptable” behavior:

1. Internal forces must not exceed values that the materials can withstand.
2. Deformations must not exceed certain limits.

In later chapters of this text we shall identify, define, and examine the various quantities, such as
internal forces, stresses, deformations, and material stress-strain relations, which determine acceptable
behavior. We shall study methods for analyzing solid bodies and structures when loaded and briefly study
ways to design solid bodies to achieve a desired behavior.

All solid bodies are three dimensional objects and there is a general theory of mechanics of solids
in three dimensions. Because understanding the behavior of three dimensional objects can be difficult
and sometimes confusing we shall work primarily with objects that have simplified geometry, simplified
applied forces, and simplified restraints. This enables us to concentrate on the process instead of the
details. After we have a clear understanding of the process we shall consider ever increasing complexity
in geometry, loading, and restraint.

In this introductory chapter we examine three categories of force. First are applied forces which act
on the surface or the mass of the body. Next are restraint forces, that is, forces on the surfaces where
displacement is constricted (or restrained). Thirdly, internal forces generated by the resistance of the
material to deformation as a result of applied and restraint forces.

Forces can generate moments acting about some point. For the most part we carefully distinguish
between forces and moments; however, it is common practice to include both forces and moments when
referring in general terms to the forces acting on the body or the forces at the restraints.

1.2 Units

The basic quantities in the study of solid mechanics are length (L), mass (M), force (F), and time (7).
To these we must assign appropriate units. Because of their prominent use in every day life in the
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United States, the so-called English system of units is still the most familiar to many of us. Some
engineering is still done in English units; however, global markets insist upon a world standard and so
a version of the International Standard or SI system (from the French Systéme International d’Unités)
prevails. The standard in SI is the meter, m, for length, the Newton, N, for force, the kilogram, kg, for
mass, and the second, s, for time. The Newton is defined in terms of mass and acceleration as

m
IN=1kg 1= (1.2.1)
s
For future reference the acceleration due to gravity on the earth’s surface, g, in metric units is
m
§=981— (1.2.2)
s

The standard English units are the foot, fz, for length, the pound, /b, for force, the slug, s/ug, for mass,
and the second, s, for time. The pound is defined in terms of mass and acceleration as

t
11b=1slug- 1]% (1.2.3)
N

The acceleration due to gravity on the earth’s surface, g, in English units is

g= 32.2% (1.2.4)
N

We shall use SI units as much as possible.

Most of you are still thinking in English units and so for quick estimates you can note that a
meter is approximately 39.37 inches; there are approximately 4.45 Newtons in a pound; and there are
approximately 14.59 kilograms in a slug. But since you are not used to thinking in slugs it may help to
note that a kilogram of mass weighs about 2.2 pounds on the earth’s surface. For those who must convert
between units there are precise tables for conversion. In time you will begin to think in SI units.

Often we obtain quantities that are either very large or very small and so units such as millimeter are
defined. One millimeter is one thousandth of a meter, or 1 mm = 0.001 m, and, of course, one kilogram
is one thousand grams, or 1 kg = 1000 g. The following table lists the prefixes for different multiples:

Multiple Prefix Symbol
10° giga G
100 mega M
10° kilo k
1073 milli m
10-° micro "
1072 nano n

One modification of Sl is that it is common practice in much of engineering to use the millimeter, mm,
as the unit of length. Thus force per unit length is often, perhaps usually, given as Newtons per millimeter
or N/mm. Force per unit area is given as Newtons per millimeter squared or N/mm?. One N/m? is called
a Pascal or Pa, so the unit of 1 N/mm? is called 1 mega Pascal or 1 MPa. Mass density has the units of
kilograms per cubic millimeter or kg/mm’. Throughout we shall use millimeter, Newton, and kilogram
in all examples, discussions, and problems.

As noted in the above table: Only multiples of powers of three are normally used; thus, we do not
use, for example, centimeters, decimeters, or other multiples that are the power of one or two. These are
conventions, of course, so in the workplace you will find a variety of practices.
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1.3 Forces in Mechanics of Materials

There are several types of forces that act on solid bodies. These consist of forces applied to the mass of
the body and to the surface of the body, forces at restraints, and internal forces.

In Figure 1.3.1 we show a general three dimensional body with forces depicted acting on its surface
and on its mass.

line force NV

body force N mm
mnr

_——— concentrated force N

surface forces

2
mm

Figure 1.3.1

Forces that are volume or mass related are called body forces. In the system of units we are using
they have the units of Newtons per cubic millimeter (N/mm®). Gravity forces are a good example. Inertia
forces generated by accelerations are another.

Surface forces can be specified in terms of force per unit area distributed over a surface and have the
units of Newtons per square millimeter (N/mm?). As noted one Newton per square millimeter is also
called one mega Pascal (MPa).

If a force is distributed along a narrow band it is specified as a line force, that is, a force per unit length
or Newtons per millimeter (N/mm).

If the force acts at a point it is a concentrated force and has the units of Newtons (V). Concentrated
forces and line forces are usually idealizations or resultants of distributed surface forces. We can imagine
an ice pick pushing on a surface creating a concentrated force. More likely the actual force acts on a
small surface area where small means the size of the area is very small compared to other characteristic
dimensions of the surface. Likewise a line force may be the resultant of a narrow band of surface forces.

When a concentrated, line, surface, or body force acts on the solid body or is applied to the body by
means of an external agent it is called an applied force. When the concentrated, line, or surface force is
generated at a point or region where an external displacement is imposed it is called a restraint force. In
addition, for any body that is loaded and restrained, a force per unit area can be found on any internal
surface. This particular distributed force is referred to as internal or simply as stress.

Generally, in the initial formulation of a problem for analysis, the geometry, applied forces, and
physical restraints (displacements on specified surfaces) are known while the restraint forces and internal
stresses are unknown. When the problem is formulated for design, the acceptable stress limits may be
specified in advance and the final geometry, applied forces, and restraints may initially be unknown. For
the most part the problems will be formulated for analysis but the subject of design will be introduced
from time to time.

The analysis of the interaction of these various forces is a major part of the following chapters. For
the most part we shall use rectangular Cartesian coordinates and resolve forces into components with
respect to these axes. An exception is made for the study of torsion in Chapter 6. There we use cylindrical
coordinates.
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In the sign convention adopted here, applied force components and restraint force components are
positive if acting in the positive direction of the coordinate axes. Positive stresses and internal forces will
be defined in different ways as needed.

We start first with a discussion of concentrated forces.

1.4 Concentrated Forces

As noted, concentrated forces are usually idealizations of distributed forces. Because of the wide utility
of this idealization we shall first examine the behavior of concentrated forces. In all examples we shall
use the Newton (V) as our unit of force.

Force is a vector quantity, that is, it has both magnitude and direction. There are several ways of
representing a concentrated force in text and in equations; however, the pervasive use of the digital
computer in solving problems has standardized how forces are usually represented in formulating and
solving problems in the behavior of solid bodies under load.

First, we shall consider a force that can be oriented in a two dimensional right handed rectangular
Cartesian coordinate system and we shall define positive unit vectors i and j in the x, and y directions,
respectively, as shown in Figure 1.4.1. Using boldface has been a common practice in representing
vectors in publications.

Figure 1.4.1

A force is often shown in diagrams as a line that starts at the point of application and has an arrowhead
to show its direction as shown in Figure 1.4.2.

y F

Fj

Fi
Figure 1.4.2
The concentrated force, F, can be represented by its components in the x and y directions.
F=F,\i+F)j (1.4.1)

In keeping with the notation most commonly used for later computation we represent this force vector
by a column matrix {F} as shown in Equation 1.4.2.

(F} = [?] (1.4.2)

y



P1: TIX/IXYZ
JWSTO071-01

P2: ABC
JWSTO71-Waas July 2, 2011 14:39 Printer Name: Yet to Come

Forces and Moments 5

In matrix notation the unit vector directions are implied by the component subscripts. From the
properties of a right triangle the magnitude of the vector is given by

F = [F2+F? (1.4.3)

The orientation of the force can be represented by the angle between the force and either axis. For
example, with respect to the x axis

Fy  F
tan6 = A — 6 =tan T (1.4.4)

Quite often we must sum two or more forces such as those shown in Figure 1.4.3 as solid lines.

F3=F1+F2

Figure 1.4.3

To add or subtract vectors is simply to add or subtract components. For example,

(F3) = (F\} +{F} = [2] + [2] = [2 12] = [2] (1.4.5)
y y y y

y

The sum is shown by the dashed line and its components in the two coordinate directions by the dotted
lines.

i i

Example 1.4.1

Problem: Two forces are acting at a point at the origin of the coordinate system as shown in Figure (a).
Sum the two to find the resultant force and its direction.

F1=85N
45° F,=100 N

30°

Figure (a)
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Solution: Resolve the forces into components and sum. Solve for the resultant force and its orientation.

The components are

| Fic | _ [—85sin45°| [ —60.1 | Foc | _ [ 100cos30° | [ 86.6
{Fl}_[Fly]_[ 85005450]_[ 60.1} {Fz}—[Fzy]‘[loosinw]‘[50 }N @
The sum is

tra =t m = e |+ [0°] = [idon | )

The total magnitude of the force is
F3=‘/E3+Ev2:,/(26.5)2—1-(110.1)2:113.2N (c)

The resultant force vector makes an angle with respect to the x axis,

0= 71i_ S 1o B R
= tan 7 = tan %5 =tan  4.15=76.5 (d)

The resultant force is shown as a dashed line and its components as dotted lines in Figure (b).

F3=1132N

——
[}
I

Y

—

Fi=85N

45° F,=100 N

sessmssnsmEmEnEEn
—

X

Figure (b)
SR

This can be extended to three dimensions. We shall define positive unit vectors i, j, K in the x, y, z

directions, respectively, as shown in Figure 1.4.4.

y

Figure 1.4.4
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The concentrated force, F, can be represented by its components in the x, y, and z directions as in
Equation 1.4.6.

F=F,i+Fj+Fk (1.4.6)

This is shown graphically in Figure 1.4.5.

z
Figure 1.4.5
The components in matrix form are
F,
(F}=|F, (1.4.7)
F.

The magnitude of the vector F is given by

F=[F2+F2+F? (1.4.8)

The angular orientation of the force F with respect to each axis is given by

cosa = i cos = ﬂ cosy = 5 (1.4.9)
F F F
The angle between the force, F, and the x axis is «, between the force F and the y axis is B, and
between the force F and the z axis is y. The quantities in Equation 1.4.9 are called the direction cosines.
Asnoted in the two dimensional case, to add or subtract vectors is simply to add or subtract components.
For example, given three forces acting at a point the force representing the sum is

le FZA' F}x le + F2x - FS.\‘ F4x
(Fy={F}+{R}—{FBl=|Fy |+ | Foy |~ | Fy |=| Fiy+Fy—Fy | =| Fay
Fl: FZz F3z F12+F2:_F3z F4z
(1.4.10)
HHHHHHEH

Example 1.4.2

Problem: Two forces act in perpendicular planes as shown in Figure (a). Sum the two to find the resultant
force and its direction.



P1: TIX/IXYZ P2: ABC
JWSTO071-01 JWSTO71-Waas July 2, 2011 14:39 Printer Name: Yet to Come

8 Analysis of Structures: An Introduction Including Numerical Methods
Y
Fi=200N Fy=98 N
60° 45
/ ‘ x
z
Figure (a)

Solution: Resolve the forces into components and sum. Solve for the value of the resultant force and its
orientation.

The components of the forces are

Fi 0 0 Foy 98 cos 45° 69.3
(Fy=| F, | =] 200sin60° | =| 1732 [N  {F)=|F, | =| 98sin45° | =| 693 | N
Fi. 200 cos 60° 100 Fs, 0 0

(a)

The sum of the forces is

0 69.3 69.3
(FY={F}+{F)=|1732 |+ | 693 | = | 2425 | N (b)
100 0 100

The magnitude of the total force is

F=F+F+F= \/(69.3)2 +(242.5)* 4+ (100> = 271.3 N ©

The direction cosines are

F. 693
coseg = — = — =025 — «a=752°
F 2713
B F, _ 2425 0.662 B =26.6° (d
cosp=—=——=0. — = .
F 2713
F, 100
cosy = =——=0369 — y =684
F 2713

The final result is shown in Figure (b).
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Fi=200N

F,=98N

Figure (b)

HHHHHHAAEHAH

Another property of a matrix that we shall use shortly is multiplication of a matrix by a scalar. It is
simply

F, aF
a{F}=a| F, | = | aF, (1.4.11)
F. aF.

Additional matrix operations will be introduced as needed. They are summarized in Appendix A.

1.5 Moment of a Concentrated Force

A concentrated force can produce a moment about any given axis. In all examples we shall use Newton
millimeter (N - mm) as our unit for moments. Consider the force applied to the rigid bar at point B as
shown in Figure 1.5.1.

F

_B—x

<

Figure 1.5.1
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If we take moments about points A and B we get

My =FL Mg =M—-FL=FL—-FL=0 (1.5.1)

Now consider the force has been moved to point A and a concentrated moment equal to FL is added
at point A as shown in Figure 1.5.2.

y

F

A

|
M=FL ( . .
P

Figure 1.5.2

The moments about points A and B in this new configuration are the same as for the first configuration
Summing moments about each point we get

My=F-0+M=M=FL Mg=M—FL=FL—FL=0 (1.5.2)
We can, in fact, take moments about any point in the xy plane and get the same result for both

configurations. For example, take moments about the point C as shown in Figure 1.5.3 located at

_L _L (1.5.3)
Xc ) Yc = 4 .
Ce F
¥ | N
L2 | L4
A é
it
L |
Figure 1.5.3
From the configuration in Figure 1.5.3 we get
L
Mc = FE (1.5.4)
From the configuration in Figure 1.5.2 we get
L L L
Mc=M—-F—-=FL—-F—=F— (1.5.5)
2 2 2

The problem can be posed in another way: If you move a force, what moment must be added to achieve
an equivalent balance of moments?
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Let us consider the rigid bar in Figure 1.5.4 with the force initially at point B. We shall call this
configuration 1. It is then moved to point C (shown by a dashed line). This we call configuration 2. What
moment must be added (and at what location) to provide equivalence?

F
Y
4
< L2 —>
A C
B X
L |
Figure 1.5.4
Let us take moments about point A for configuration 1 and 2.
L
MA1:F'L MA2:F'* (156)

2

For equivalence we must add a moment that is equal to the difference in the two values or

L L
M=My—-Mo=F L-F —=F (1.5.7)
Now where should it be added? The answer is anywhere. In this case anywhere along the bar, for

example, at point A, or point C, or point B, or any point in between.

y A F
L2 :
Ao Poc
-: — X
M=FL/2 ™, B
[ 3

L |
Figure 1.5.5

Just to be sure let us place the new applied moment at point A and sum moments about points A, B,
and C in Figure 1.5.5.

FL FL
= — 4+ — =

FL FL FL
My = =4+ ==

5 7 FL My = > > 0 Mc = - (1.5.8)

If you compare this with the original configuration in Figure 1.5.1 you will see that the moments about
points A, B, and C agree.

The use of the half circle symbol in Figures 1.5.2 and 1.5.5 is one way of representing a concentrated
moment in diagrams. It is used when the moment is about an axis perpendicular to the plane of the
page. A common practice is to use a vector with a double arrowhead shown here in an isometric view to
represent a moment. The vector is parallel to the axis about which the moment acts. The right hand rule
of the thumb pointed in the vector direction and the curve fingers of the right hand showing the direction
of the moment is implied here. The moment of Figure 1.5.2 is repeated in Figure 1.5.6 using a double
arrowhead notation.
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y
F
M=FL
z
X
Figure 1.5.6
HHHHEHEHAH

Example 1.5.1

Problem: A force is applied to a rigid body at point A as shown in Figure (a). If the force is moved to
point B what moment must be applied at point C (origin of coordinates) to produce the same net moment
about all points in space?

)

‘K 250 mm

100 mm \‘

Figure (a)

Solution: Find the moment components at point C due to the force at point B and add the necessary
moments so the total is equivalent to the moment components generated by the force at point A.
The force at point A produces the following moment components about the origin (point C)

Mcay =0 Mcay =0 Mca: =500 - F (a)
This can be written in matrix form as a column vector.

0
{(Mcay=F| 0 (b)
500
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The same force at point B would produce the following moment components at point C.
MCBX — —250 -F MCBy S 0 MCBZ = 400 -F (C)
or
—-250
400
The needed moment components would be
Mc, 0 —250 250
{Mc} = Mcy | = {Mca) —{Mcp} =F 0 - F 0 =F 0 (e)
Mc. 500 400 100
This is illustrated in Figure (b).
Mex=250F Nmm
\ 500 mm
Mc, = 100F Nmm
z
100 mm \
‘ ‘K 250 mm *
Figure (b)
Let us check our answer by summing moments about the origin. Using Figure (b)
> M, =250F —250F =0 Y M,=0 Y M.=400F + 100F = 500F ®
In matrix form we get the same answer as Equation (a)
0
My=F| O (€
500

Summing moments about any point in space will prove that the answer is always the same.

i

So far we have considered a single force parallel to one of the axes. Consider now a force with
components in all three dimensions acting at a point in space. We select a point about which we wish to
find the moment components of this force with respect to a set of rectangular Cartesian coordinate axes.
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14 Analysis of Structures: An Introduction Including Numerical Methods

Figure 1.5.7

In Figure 1.5.7 we show the components of a force {F'} and the axes about which we wish to find the
moment. If we take the moment at the origin of the coordinate system about each axis in turn we get

ZM.X =Fzyo_FyZu ZM} =FXZU_F:-XU ZM: =Fy-x0_FJy0 (159)

The moment components in matrix form about all three axes are

M,\' Fzyo - Fyzo
My=| M, | =| Fcz, — F.x, (1.5.10)
M: Fyxo - nyo

This same information is often presented in the form of vector notation. The cross product of two
vectors is stated as

C=AxB (1.5.11)
The magnitude of the cross product is
C = ABcosf (1.5.12)

where 6 is the angle between the two vectors. The vector C has a direction that is perpendicular to the
plane containing A and B and its direction is defined by the right hand rule. Since the angle between unit
vectors is either 90", —90°, or O° the cross product of unit vectors is found to be

in=k iXk=—j ixi=0
jxk=i jxi=-k jxj=0 (1.5.13)
kxi=j kxj=-i kxk=0

With this definition in mind the moment of the force in Figure 1.5.7 is represented as the cross product
of a position vector and the force. Thus

M=dxF (1.5.14)

If the moment is taken with respect to the origin of the coordinates in Figure 1.5.7 the position vector
is

d = x,i+ y,j+ 2,k (1.5.15)
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The moment is then
M=dxF = (xoi+y()j+zf)k)x(Evi+ F}j+FZk)
= onx(i X i) + any(i X j) + onz(i x k)

. - . (1.5.16)
+ Yo F(j x 1) +ny_v(J X j) + 2, F.(j x k)
+zoFu(k x i) + 2, Fe(k x j) + 2, Fi(k X K)
By combining terms this reduces to
M=dxF = (y,F: = z,F))i+ (x,F: = 2,F)j + (X, Fy — y, Fok (1.5.17)
This is often presented in the form of a determinant.
i j k
M=|x, Y, 2, (1.5.18)
F. F, F.

Equations 1.5.17 and 1.5.18 convey exactly the same information as that contained in Equation 1.5.10.

The matrix formulation of vectors very often has replaced the boldfaced vector representation more
common in past treatises. We shall discontinue the use of boldface in representing vectors since we shall
be using the matrix representation in all future work. The representation of any vector quantity will be
clear from the context of its use.

As noted before we denote a moment using a vector with a double arrowhead as shown in
Figure 1.5.8.

y
F,
y SR %
> Fy
>> X
M, =
yo MX Fz
Z()
/ Yo
z
Figure 1.5.8

The vector components can be combined to obtain the total value of the moment.

M= M2+ M2+ M2 (15.19)

and the orientation can be given by the direction cosines.

cosa = % cosff = % cosy = % (1.5.20)
M M M
In all our deliberations applied forces are positive if they are in the positive directions of the axes
and applied moments resulting from applied forces are positive by the right hand rule. Right handed
rectangular Cartesian coordinate systems are used for the most part. Cylindrical coordinates will be used
when we study torsion in Chapter 6.
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HHHEHHEHA

Example 1.5.2

Problem: Find the moment components of the force shown in Figure (a) about the origin of the coordinate
axes and the total value of the moment.

Figure (a)
Solution: Use Equations 1.5.18-20.
The components are
-20 X, 600
{F}=| =80 | N {dy=1y, | = 300 | mm (a)
34 Z, —280
The moment can be obtained from
i j k M, 34.300 — 80 - 280 —12200
M =| 600 300 —280 - (M}=|M, |=|—-34-6004+20-280 [ = | —14800 | N - mm
—20 —80 34 M. —80 - 600 + 20 - 300 —42000
(b)
The total value of the moment is
M= M+ M+ M? = \/ (12200)* 4 (14800)* 4 (42000)* = 46172.3 Nmm (c)
The orientation of the resultant moment is given by the direction cosines.
M, —12200
cosa = = =-02642 — «a=10532°
M 46172.3
M, —14800
cosp=—2 = =-0.3205 — pB=108.7° (@
M 46172.3
M. 22000 _ 9006 — 155.46°
cosy = — = = —0. = .
V=M T 161723 v

HHHHHHAAEHAH
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To find the moment about some point other than the origin of the coordinate system requires only
defining a new position vector. For example suppose we wish to find the moment components about
point A as shown in Figure 1.5.9.

y
Fy
r
> F,
o X
yD
a
ZO
A
/ X,
z
Figure 1.5.9
The components of the new position vector would be
Xo
{dy =1y (1.5.21)
0

A special case of a moment caused by forces occurs when there are two parallel forces of equal and
opposite direction separated by a distance a. This might occur, for example, with the loads applied to a
member as shown in Figure 1.5.10.

y
B L]
i) roA
| 3a2
< F
A ¢ A .
a
>
L

Figure 1.5.10

The resultant force of the two forces is zero. The resultant moment about any point in the plane is
M =Fa (1.5.22)

To illustrate that the location of the point in the plane is of no effect take moments about point A
which is at the origin of the coordinates and about point B whichis atx = L/2 and y = 3d /2.
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Mya=FL4Fe —Fa (15.23)

2 2
3a+aFF
=4z — Fa
2 2

Mo — 3a aF+
B 2 2

Such a force combination as shown in Figure 1.5.10 is called a couple. When d is small it can often
be represented as a concentrated moment as in Figure 1.5.11.

M=Fa

Figure 1.5.11

HHEHEHEHAH

Example 1.5.3

Problem: Find the moment components about the axes of the set of couples shown in Figure (a).

y

Figure (a)

Solution: Use the definition of a couple.
The moment components about the axes are simply

M, =500-2F M, =-500-F M. =0 (a)

Example 1.5.4

Problem: A force system consists of a couple and another force as shown in Figure (a). Find the moment
about the z axis at point A.
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Solution: Sum moments about the z axis.

y
3F
-~
<« 12 —3 M=Fa
A
X

G/

Figure (a)
The sum of moments about point A is
L L 3L
My=3F -—+M=3F-—+Fa=|—+a|F (a)
2 2 2
HHHHHHHAHHE

1.6 Distributed Forces—Force and Moment Resultants

Forces may be distributed along a line, on a surface, or throughout a volume. It is often necessary to find
the total force resultant of the distributed force and also find through what point it is acting. Consider the
area shown in Figure 1.6.1 and the force per unit area acting upon it. We have chosen a planar rectangular
area and a particular distribution for ease of explanation. Real surfaces with loads will be found in many
shapes and sizes and can be external or internal surfaces.

< an ek al2 >‘
X

Figure 1.6.1

This particular surface loading acts in the y direction, varies in the x direction, and is uniform in
the z direction. We label this force f;,(x, z) where the subscript s denotes a surface force and the y its
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component direction. We note that its units are force per unit area (N/mm?) and since it is uniform in the z
direction we can multiply the surface force by the width, a, of the planar surface and obtain an equivalent
line force with units of force per unit length (N/mm) as shown in Figure 1.6.2. This line force acts in the
plane of symmetry, that is, in the xy plane at z = 0. Our coordinate system was selected conveniently
with this in mind. Bear in mind that this is the resultant of the distributed surface force and not the actual
force acting on the surface. It may be used for establishing equilibrium of the body.

< an 9% al2 9‘
X

Figure 1.6.2

We label this force f;,(x) where the subscript / denotes a line force and note that
fiy(x) = afy(x, 2) (1.6.1)

Now consider an infinitesimal length, dx, along the line force at location x, as shown in Figure 1.6.2.
On the length, dx, the force in the y direction is

dry, = df,(x) (1.6.2)

If we sum the forces on all such dx lengths, ranging for x = 0 to x = L, we obtain the total resultant
of the distributed force

L L
Fy, = / fiy(x)dx =a f Soy()dx (1.6.3)
0 0

We can find the location, or line of action, of the force resultant by equating the moments of the
distributed force to the moment of the force resultant as follows. Again, the sum of all the moments of
all the forces on all the infinitesimal elements dx is

L
XF, =/ X fry (X)dx (1.6.4)
0
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And the location of the resultant is

L
1L / xfiy (X)dx
N / xfiy (0)dx = 22— (1.6.5)
e fiy (1) dx
0

x

The use of symmetry to locate the line force and the resultant force at z = 0 can be confirmed by
equating the moments of the distributed force to the moment of the resultant force about the z axis.

L p4 3 L
ZF, = / / zfyy (Odzdx —  I= L/ zdz/ fsy () dx (1.6.6)
0 J- FyJ- 0

a
2

Clearly the integral

S

/ zdz =0 (1.6.7)

S

and therefore Z = 0.
The line force and the resultant force and its location are depicted in Figure 1.6.3.

y
<— x

\ £

»

Figure 1.6.3

AR

Example 1.6.1

Problem: A distributed force per unit area is applied to the surface as shown in Figure (a). The force is
uniform in the z direction.

mwn=ﬁ% (@)

Find the total value and its line of action.
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@mn=ﬁ%

:
T

Figure (a)

Solution: Convert the surface force (N/mm?) to a line force (N/mm) and integrate to find the total resultant
force (V). Then equate moments to find its line of action.
The distributed line force and resultant force are

2L

. X Lx X L
Sy () = bfoz F, = bfo/o‘ de = bfy i = bfoz (b)

0

Find the line of action by equating moments.

L 1t 1 bfx®|" 2
XF, =/ xbfordx - i= 7/ whfyrdy = 4+ Pl _ 2, ©
’ 0 L Fy Jo L F, 3L |, 3
The line force and the location of the force resultant are shown in Figure (b).
Yy
F,
-~
fo —
Ji(x)
X
0 L
e _
x=2L —
Figure (b)

AR
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Symmetry may be used to identify quickly the location of a resultant force. The two line forces shown
in Figure 1.6.4 are symmetrical about their midpoints and so the location of the resultant is known
instantly as shown.

F

>
>

>

»

Figure 1.6.4

Distributed surface forces may be functions of two variables; for example, as shown in Figure 1.6.5.

Sy (x,2)

S %@i al2 >‘
X

Figure 1.6.5

Then the resultant force for the area shown, using the same procedure as before, is

-

[

L

/ fsy(x, 2)dxdz (1.6.6)
5 J0
and its line of action is found by

¢ oL
- L opd ot /J/O Xfyy (x, 2)dxdz
IFy = / Xfyy (x,2)dxdz — X = = / Xfyy (x, 2)dxdz = —% i
_4a _a 2
20 y oz d0 / foy(x, 2)dxdz
-2 Jo
4 L
- Lo 3 /0 zfsy (x, z2)dxdz
IFy = / zfsy (X, 2)dxdz — 7 = — / zfsy (x, 2)dxdz =
-5 J0 Fy 0

o [ IR

—_a
2

L
/ foy(x, 2)dxdz
0
(1.6.7)

SR
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The location of the resultant force is also depicted in Figure 1.6.5.

Of course, surfaces are not always planar and rectangular and surface forces may have components in
all coordinate directions. We shall be satisfied with simplified geometry and forces until and unless the
need arises for more complicated cases.

HHEHHEHHEH

Example 1.6.2

Problem: A distributed force per unit area is applied to the surface shown in Figure (a). The surface
force is represented by the function in Equation (a). Find the resultant force and its line of action.

2 1
fo (i) = fo <1 - ;%) (5 + ;—b) @

Figure (a)

Solution: Integrate to find the resultant force. Equate moments to find its line of action.
The resultant force is given by Equation (b)

a b a b xZ 1 7
F, = - (x, D)dzdx = 1— =)=+ = )dzd
' /o/ofy(xz)zx fo/0/0< a2>(2+2b)zx

b
; 3 z, ENL ; ab (b)
= X - — — J— = —
0 3a2 )|, \2 " ap )|, °2
Its location is given by Equations (c) and (d).
“r 1 @b X2\ (1 z
XFy=/O/(;xﬁy(x,z)dxdz — i:F—yfo‘/O‘ /())c(l—a—2 (z—i—%)dzdx o
c
2 x? | z_‘_z2 b_3a
Tab \ 2 4a )|, \2 4b)|, 8
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i a b ) 1 e x? 1z
ZFy:/O/(;szy(x,z)dxdz — z—F—yjo/(;/Oz 1—? 5-}—% dzdx
2 x3
= — X — ——
ab 3a?

AR

We may also need to find the resultants of body forces and their location. Body forces have the units
of force per unit volume (N/mm’) and may be distributed over the volume. Consider the general solid
shown in Figure 1.6.6.

Figure 1.6.6

The most common body force is that due to gravity, that is, weight. The weight (dW) of a infinitesimal
volume dV is given by

dW = p(x, y, z)gdV (1.6.8)

where p(x, y, z) is the mass density (kg/mm’) and g is the acceleration due to gravity (mm/s?). (See
Section 1.2, Equation 1.2.2.)
If the y axis is oriented parallel to the gravity vector then the total weight is given by

W = g/ p(x,y,z)dV (1.6.9)
Vv

and its line of action, or, in this case, the point through which it acts is given by

/xp(x,y,z)dV /y,o(x,y,z)dV /Zp(x,y,z)dV
f=2 00000 = F=< (1.6.10)
/,o(x,y,z)dV /,o(x,y,z)dV /p(x,y,z)dV
v 14 v

The location of this resultant force is called the center of gravity and is commonly abbreviated as
C.G. Notice that the acceleration due to gravity is a constant that cancels out of the integrals for finding
the C.G. and the resulting equations depended only upon the mass density and the volume. This is also
called the center of mass.
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In many situations the solid body is homogenous, that is, the mass density is a constant. In such cases
the mass density terms also cancel. Equations 1.6.10 then become
/ zdV
7=

/ xdV / ydV
% j=2Lv
[ e T [w
v v v
This locates the centroid of the volume. In such cases the centroid, the center of mass, and the center
of gravity are the same point.

When a homogenous body can be divided into sub volumes with simple geometry so that the centroids
of the sub volumes are known we can find the centroid of the total using the following formulas.

szvs — Zyxvx _ szvx
= zZ =
v T Tw SV
The quantities x;, y,, and z, represent the distances from the base axes to the centroids of the sub
volumes V. For a body with uniform mass density you can replace the volume in Equation 1.6.12
with the mass or the weight to find the center of mass or the center of gravity. All are at the same
location.

(1.6.11)

X =

(1.6.12)

X =

i

Example 1.6.3

Problem: A cylindrical bar has a portion hollowed out as shown in Figure (a). It is made of aluminum
which has a mass density of 2.72 E-06 kg/mm’. Find its total weight and center of gravity. The y axis is
aligned with the gravity vector.

15 mm

Fe————— 5 mm

Figure (a)

Solution: The total weight is the volume times the mass density times the acceleration due to gravity.
From axial symmetry we know the center of gravity will lie on the centerline of the cylinder. We find the
x location by summing moments about the z axis.

To find the total weight we find the weight of the outer cylinder and subtract the weight of the inner
cylinder.

2
wri L
Wiotal = Wouter — Winner = 124 (N"guzer[‘ - %)

=2.72-107°-9.81 (7 (15)* 100 — 7 (5)> 50) = (1.886 — 0.105) N = 1.781N

(a)
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Using symmetry the center of gravity location is located on the centerline of the cylinder and at an x
position given by

XWiotal = 50Wouter — T5Winper = 50 - 1.886 — 75 - 0.105 = 86.425

86.425
= 48.526 mm (b)
1.781
‘)_] =

— X =

z=0

i i

1.7 Internal Forces and Stresses—Stress Resultants

As we have said, when forces are applied to a solid body that is suitably restrained to eliminate rigid body
motions it will deform and internal forces will be generated. It has been found convenient on any internal
surface to define stress as the force per unit area (N/mm?). The stress on any internal surface is usually
divided into components normal to that surface and tangent to it. The stress and stress components are
depicted in Figure 1.7.1.

Consider a force, Ap, acting on an element of area, AA, in the interior of the solid. If we resolve
the force Ap into components normal and tangential to the surface, Ap, and Ap,, respectively, we can
define a normal component of stress, o, and a tangential or shearing (or shear) stress component, 7, as
shown in Figure 1.7.1.

Ap, _
AA
y
Ap
AA
X
Ap, _
‘ AA
Figure 1.7.1
If we allow A A to shrink to an infinitesimal size, then,
Ap, A
lim 22— fim 22— (1.7.1)
AA—0 AA AA—0 AA

To illustrate internal stresses let us first consider a uniform slender bar in equilibrium with equal but
opposite distributed loads on each end as shown in Figure 1.7.2. These distributed forces have units of
force per unit area and act on the end surfaces. There are no force components in the y and z directions.

The applied force resultants in the x direction are

Fy= / [0, y,2)dA = —F F, = / fL,y,2)dA=F (1.7.2)
A A
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y
H02) y2)
> x
Figure 1.7.2

Let us choose distributed forces for which the applied moment resultants are zero, that is

M,y = / f:(0, yz)zdA =0 M, = / fo(L,yz)zdA =0
! ! (1.7.3)

My = [ £UO.y2ydA =0 My, = / oL, y2)ydA =0
A A

This is illustrated in Figure 1.7.3.

X0

Figure 1.7.3

Now let us ask what the distributed internal force or stress is on an interior surface. Let us choose a
flat surface normal to the x axis at, say, x = xy and examine the stress on that surface by considering
the equilibrium of the segment of the bar between x = x; and x = L, as shown in Figure 1.7.4. As
noted above, in the usual notation for stress, we designate the normal stress component with the symbol
o and the tangential or shearing stress component with the symbol t. To further specify the specific
components of stress we use a double subscript notation. The first subscript refers to the direction of the
normal to the surface and the second to the direction of the stress.

Thus we show the two possible stress components on this particular surface and label them o, and
T,y. Since normal stress components always have the same subscript repeated we usually use only one
and so we use o, for o, in subsequent applications.

Txy F

Oxx 4—1 e

Figure 1.7.4
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The sign convention for stresses is different from that for external and restraint forces; the normal
and shear stress components are positive as shown in Figure 1.7.4. Sign conventions for stress will be
discussed in greater detail shortly.

At this time we do not yet know the distribution of these stresses on that surface; however, we can
define stress resultants on the surface as

P = / o,.dA V= / ToydA (1.7.4)
A A
This is shown in Figure 1.7.5.
4 F
P 4-—1 — X
Figure 1.7.5

If we sum the forces acting on the segment in the x and y directions we get
ZF*':F_P:O -~ P=F ZF),:V:O - V=0 (1.7.5)

While we do not yet know the actual distribution of stress on this surface we can define an average
stress as

F
(O )ave = X (T"‘y)ave = Z =0 (1.7.6)

Now consider that the chosen internal surface is not normal to the axis but is defined by a local
coordinate system, 77, at an angle « to the xy coordinate system as shown in Figure 1.7.6.

y

n a t
P >

Fe— >/ L

X0
Figure 1.7.6

The stresses on this surface, that we have labeled A, are shown in Figure 1.7.7.

Oy Tnt

F

N -

Figure 1.7.7

Once again we can define stress resultants on this surface as

P, =/ 0, dA Vi =/ T, dA 1.7.7)
Ay Aqy
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This is shown in Figure 1.7.8.

Vi

\/:; )

Figure 1.7.8

When we sum the forces acting on the segment in the x and y directions we get

ZFX =F+V,cosa — P,sina =0 — V,cosa— P,sine = —F

(1.7.8)
ZF),:V,sina—i—P,lcosa:O —  V,sina+ P,cosa =0
Solving we get
P,=Fsina — V,=—Fcos«a (1.7.9)
And the average stresses are
Pn F . V, F
(On)ave = AT A sina (Tnt)ave = iy cosa (1.7.10)

Stresses are always defined by their magnitude, direction, and the surface upon which they act.

The actual distribution of the stresses on the interior surfaces in this example is discussed in detail in
Chapter 4.

To continue our discussion of stress we consider a thin flat plate acted upon by forces in the plane
of the plate. We orient this plate in the xy plane of the coordinate system. With forces only in the plane
of the plate on the thin plate edge surfaces and no forces on the plate surfaces in the z direction we can
assume that the only stress components are those acting in the plane of the plate.

To consider the stress at a point in the plate we take a small rectangular element, dxdy, of the plate as
shown in Figure 1.7.9 and note the stress components as the size of the element approaches zero.

v /'
] &
dx
X
v
Figure 1.7.9

The stresses on this rectangular element are shown in Figure 1.7.10. This is called a two dimensional
state of stress. Remember this is a uniform stress through the thickness at a point where the edges dx and
dy approach zero.
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Txy

Oy —— dy —_ O

(2%

Figure 1.7.10

Stresses are positive as shown. If the normal to the surface upon which the stress acts points in the
positive x direction the normal stress is positive in the positive x direction. If the normal points in
the negative x direction the normal stress is positive in the negative x direction. If the normal points in
the positive x direction the shear stress is positive in the positive y direction. If the normal points in the
negative x direction the shear stress is positive in the negative y direction. We see that the forces called
stress resultants have a different sign convention than the applied forces.

At this time one would conclude that there are four components of stress in a two dimensional solid -
O, Oy, Tyy, Tyy. We note in Figure 1.7.10 that the 7., and 7, components each form a couple and as the
sides of the rectangle shrink to a point by applying moment equilibrium let us conclude that

Tyy = Tyx (1711)
This 2D state of stress is often depicted in matrix form as

Oy
{o} =] o, (1.7.12)

Tyy

To depict a complete state of stress at a point in a three dimensional solid with respect to rectangular
Cartesian coordinates consider a rectangular element dxdydz oriented as shown in Figure 1.7.11. Stress
components are shown on the three faces with positive normal directions and on the one face with a
negative normal (x) direction. Similar components are on the negative y and z directions but are not
shown to avoid confusion.

On a face whose normal is in the positive x direction we have three stress components as follows:

. AP, . APy
= lim Tyy ~
AA—0 AA

. AP,
= lim (1.7.13)
AA—0 AA

Oy Tz

= lim :

AA—>0 AA

On a face whose normal is in the negative direction of the axis the positive directions of both normal
and shearing stresses are in the negative direction of their respective axes.

At this time one would conclude that there are nine components of stress in a three dimensional solid -
Oy, Oy, Oz, Tyy, Tyy, Tz, Toxs Tyz, Toy. By the same argument used in the two dimensional case each of the
three pairs of shear stresses form a couple and as the element shrinks to a point, we can conclude from



P1: TIX/IXYZ P2: ABC

JWSTO071-01

JWSTO71-Waas July 2, 2011 14:39 Printer Name: Yet to Come

32 Analysis of Structures: An Introduction Including Numerical Methods

Oy
Tyx
T
vz Ty
Txz P ; I
Oy < ." > Ox
: 4
v e
Txy / Tzx Txz
(<P
Figure 1.7.11
moment equilibrium that
tx)' = t,\'/\' I)’Z = sz Tox = Ty: (1714)

Thus, there are six independent components of stress at a material point within a solid. These are
variously arranged in matrix form as a column or square matrix according to their use in equations.

Oy Tyy  Tox
{0} = : or [o]l=|ty 0y Ty (1.7.15)
Tp Ty O

At the beginning of our deliberation the stresses, generally, are unknown. Finding stresses in particular
situations is a major part of the task before us. The state of stress on surfaces at other orientations than
normal to the xyz axis is discussed in great detail in Chapter 9.

Acceptable magnitudes of internal forces are limited by the properties of the material of the solid
body. We all know that if they are too great the body will fail either from undesirable permanent defor-
mations or from fracture. Material properties are introduced in Chapter 3 and discussed in greater detail
in Chapter 9.

1.8 Restraint Forces and Restraint Force Resultants

Solid bodies can be restrained at a point, they can be restrained along a line, or over a surface. When the
body is subjected to applied forces there must be forces at the restraints. In a common statement of the
problem these forces are unknown. Part of the purpose of our study in the following chapters is to find
the value of these forces. In some circumstances it is possible to predict the value of the resultants of
these forces without finding the actual distribution of the forces. This, in fact, is an important lesson of
Chapter 2. Just how the restraint forces are distributed will be considered in Chapters 4 and beyond.
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1.9 Summary and Conclusions

We have introduced the definition and notation for forces and moments of forces. An important part of the
study of the mechanics of material is the interaction among applied forces, restraint forces, and internal
forces and the moments generated by them. These forces come in various forms such as concentrated
forces with units of Newtons (V), forces per unit length or line forces with units of Newtons per millimeter
(N/mm), surface forces with units of Newtons per millimeter squared (N/mn?’), and body forces with
units of Newtons per millimeter cubed. (N/mm?).

We have shown how force resultants of distributed forces are found and how their location is deter-
mined. We have defined internal forces and stresses, and restraint forces.

Now we shall put all this to good use in Chapter 2 in establishing static equilibrium, that is, in satisfying
Newton’s laws as the various forces interact.
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